
Aggregate Estimation Over Dynamic Hidden Web
Databases

Weimo Liu†, Saravanan Thirumuruganathan‡, Nan Zhang†, Gautam Das‡
The George Washington University†; University of Texas at Arlington‡

{wliu, nzhang10}@gwu.edu;
{saravanan.thirumuruganathan@mavs, gdas@cse}.uta.edu

ABSTRACT
Many databases on the web are “hidden” behind (i.e., accessible
only through) their restrictive, form-like, search interfaces. Recent
studies have shown that it is possible to estimate aggregate query
answers over such hidden web databases by issuing a small number
of carefully designed search queries through the restrictive web in-
terface. A problem with these existing work, however, is that they
all assume the underlying database to be static, while most real-
world web databases (e.g., Amazon, eBay) are frequently updated.
In this paper, we study the novel problem of estimating/tracking
aggregates over dynamic hidden web databases while adhering to
the stringent query-cost limitation they enforce (e.g., at most 1,000
search queries per day). Theoretical analysis and extensive real-
world experiments demonstrate the effectiveness of our proposed
algorithms and their superiority over baseline solutions (e.g., the
repeated execution of algorithms designed for static web databas-
es).

1. INTRODUCTION
In this paper, we develop novel techniques for estimating and

tracking various types of aggregate queries, e.g., COUNT and SUM,
over dynamic web databases that are hidden behind proprietary
search interfaces and frequently changed.
Hidden Web Databases: Many web databases are “hidden” be-
hind restrictive search interfaces that allow a user to specify the
desired values for one or a few attributes (i.e., form a conjunctive
search query), and return to the user a small number (bounded by
a constant k which can be 50 or 100) of tuples that match the user-
specified query, selected and ranked according to a proprietary s-
coring function. Examples of such databases include Yahoo! Au-
tos, Amazon.com, eBay.com, CareerBuilder.com, etc.
Problem Motivations: The problem we consider in this paper is
how a third party can use the restrictive web interface to estimate
and track aggregate query answers over a dynamic web database.
Aggregate queries are the most common type of queries in decision
support systems as they enable effective analysis to glean insights
from the data.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

• Tracking the number of tuples in a web database is by itself an
important problem. For example, the number of active job post-
ings at Monster.com or listings at realestate.com can provide an
economist with real-time indicators of US economy. Similarly,
tracking the number of apps in Apple’s App Store and Google
Play provides us a continuous understanding of the growth of
the two platforms. Note that while some web databases (e.g.,
App Store) periodically publish their sizes for advertisement
purposes, such published size is not easily verifiable, and some-
times doubtful because of the clear incentive for database own-
ers to exaggerate the number.
• More generally, there is significant value in monitoring a wide

variety of aggregates. For example, a sudden drop on the COUN-
T of used Ford F-150s in a used car database may indicate a sub-
sequent increase of prices. Similarly, a rapid increase of AVG
salary offered on job postings which require a certain skill (e.g.,
Java) may indicate an expansion of the corresponding market.
• A number of economically important aggregates such as changes

in employment month-over-month or the stock prices of specif-
ic sectors of companies (e.g., semiconductor stocks) fluctuate
wildly. Tracking these aggregates effectively is of paramount
interest to policy makers. In general, for any database, aggre-
gates that are not overly broad (to the degree of COUNT(*) or
AVG over the entire database) tend to change rapidly, with high-
er change frequencies for narrower aggregates.

Challenges: Since aggregate queries are not directly supported by
the web interface, one can only estimate them by combining the
results of multiple search queries that are supported. Prior work
has shown ways to translate aggregate queries over a static hid-
den database to a small number of search queries, and then gener-
ate unbiased estimations of SUM and COUNT aggregates from the
search query answers. But no existing technique supports dynam-
ic databases that change over time. A seemingly simple approach
to tackle the dynamic case is to repeatedly execute (at certain time
interval) the existing “static” algorithms [6]. Unfortunately, this
approach has two critical problems:
• Many real-world web databases limits the number of search

queries one can issue through per-IP (for web interface queries)
or per-developer key (for API based queries) limits. In many
cases, this daily limit is too low to sustain a complete execution
of the static algorithm (to reach a reasonable accuracy level).
For example, eBay limits API calls to 5,000 per day, making it
extremely difficult for a third party user to track changes that
occur to the database1. The existing (static) techniques handle

1Note that while some web databases do display a list of recently added
items (e.g., “New and Noteworthy” for App Store), such a list is rarely
comprehensive. In addition, there is no direct way to identify tuples that

1107

this by stretching its execution across multiple days, and assume
that the database does not change within the execution period -
an assumption that often does not hold for frequently updated
web databases such as eBay.
• Even when the daily limit is high enough, repeated executions

actually wastes a lot of search queries. To understand why, con-
sider an extreme-case scenario where the underlying database
remains unchanged. With repeated execution, the estimation
error remains the same as the first-day estimate, even after nu-
merous queries have been issued in later days. On the other
hand, it is easy to see that if one somehow detects the fact that
the database changes little over time, then all queries issued af-
terwards can be used to improve the estimation accuracy and
reaching a significantly lower error than the simple “repeated
execution” strategy.

Another straightforward approach is to track all changes that oc-
cur to the underlying database - i.e., to determine which tuples got
inserted/deleted - and then use these changes to update the previous
aggregate estimations. This approach, however, likely requires an
extremely large number of queries because, as shown in previous
studies of web database crawling [18], the crawling of changed tu-
ples through the web interface requires a prohibitively high query
cost for most real-world settings.
Problem of Dynamic Aggregate Estimation: In this paper, we
initiate a study of estimating and tracking aggregates over a dy-
namic hidden web database. Note that the definition of “aggregate”
here is more subtle than the static case. To understand why, note
that any aggregate estimation process may require multiple (search)
queries to be issued through the web interface. The issuance of
these queries take time - during which the database and the aggre-
gate might have already changed, making the estimation of it an
ill-defined problem.

As such, for the ease of formally studying the problem of ag-
gregate estimation over dynamic hidden databases, we introduce a
theoretic concept “round” (i.e., a fixed time interval). Specifically,
we assume that the database only changes at the starting instant of
each round. With this definition, our objective is then (well) defined
to be estimating an aggregate over the database state at the current
round. Note that this “round” concept is introduced for theoreti-
cal purposes only, because many real-world databases are updated
at arbitrary time/intervals - nevertheless, as we shall show in §5,
results in the paper can be easily extended to address these cases.
Outline of Technical Results: Aiming to address the shortcom-
ings of the above-described “repeated execution” strategy (a strate-
gy which we refer to as RESTART-ESTIMATOR), our first result is
REISSUE-ESTIMATOR: Instead of restarting the process all over
again at every round, we try to infer whether and how search query
answers received in the last round change in this round (and revise
the aggregate estimations accordingly).

It might seem as if one has to reissue every query issued in the
last round to obtain its updated answer. But a key rationale for
REISSUE-ESTIMATOR is that this is indeed not the case. Specif-
ically, we find that the query cost required for detecting/inferring
changes is far lower because of the interdependencies between dif-
ferent query answers. For example, often times confirming that one
query answer does not change is enough for us to infer that mul-
tiple search queries must have stayed unchanged in the last round.
This leads to a significant saving of query cost.

were recently deleted (e.g., cancelled job listings at monster.com) or updat-
ed - which are important for understanding how the database changes over
time.

Nonetheless, it is important to note that, besides the reduction
of query cost, we have another important objective: improving
the accuracy of aggregate estimations. Here it might appear that
REISSUE-ESTIMATOR has a major problem - specifically, un-
like RESTART-ESTIMATOR which accesses / accumulates new
“sample points” round after round and thereby expands its reach to
a ever-increasing portion of the database, the reissuing idea can
be stuck with the same, sometimes-unlucky, picks generated in
the first few rounds because of its obligation on updating historic
query answers. Intuitively, this could make it very difficult for
REISSUE-ESTIMATOR to correct initial estimation errors (i.e.,
“unlucky picks”) and converge to an accurate estimation.

Somewhat surprisingly, we found through theoretical analysis
(and verified through experiments over real-world datasets) that,
in practice, the exact opposite is usually true. That is, unless the
database is almost regenerated after each round - e.g., with al-
l old tuples removed and entirely new tuples inserted, in which
case restarting is sometimes better - reissuing almost always offers
a better tradeoff between estimation accuracy and query cost. We
derive rigid conditions for the comparison between reissuing and
restarting when different types of aggregates are being estimated,
and verify their correctness through experiments.

While the idea of query reissuing significantly improves the per-
formance of aggregate estimation over dynamic hidden databases,
we find that REISSUE-ESTIMATOR still wastes queries in certain
cases - specifically, when the database undergoes little change in
a round. For many real-world databases that do not see frequent
updates, this could lead to a significant waste of queries (and lack-
luster accuracy) after a period of time.

We develop RS-ESTIMATOR to address this problem. Our idea
is close in spirit to reservoir sampling, which automatically main-
tains a sample of a database according to how the database changes.
Specifically, the fewer changes happen to the database, the few
changes the sample will see. We show through theoretical analy-
sis and experimental studies that RS-ESTIMATOR further outper-
forms REISSUE-ESTIMATOR, especially in cases where changes
to the database are small and/or infrequent.

In summary, the main contributions of this paper are as follows.
• We initiate the study of aggregate estimation over a dynamic

web database through its restrictive search interface, so as to
enable a wide range of applications such as tracking the number
of active job postings at monster.com.
• We propose a query-reissuing technique which leverages the

historic query answers to produce up-to-date aggregate estima-
tions without bias. We prove that, for many aggregates, our
REISSUE-ESTIMATOR significantly outperforms the repeated
execution of static algorithms.
• We also propose a bootstrapping-based technique to auto-adjust

the query plan according to how much the database has changed.
The resulting algorithm, RS-ESTIMATOR, further improves up-
on REISSUE-ESTIMATOR especially when the database is up-
dated at various intervals.
• We provide a thorough theoretical analysis and experimental s-

tudies over synthetic and real-world datasets, including live ex-
periments on real-world websites such as Amazon.com and e-
Bay.com, that demonstrate the effectiveness of our proposed ap-
proaches.

Paper Organization: The rest of this paper is organized as fol-
lows. In §2 we introduce preliminaries and problem definition.
§3 and §4 are devoted to the development of REISSUE- and RS-
ESTIMATOR, respectively. In §5 we discuss a number of system

1108

design issues - e.g., how to deal with real-world web databases with
various query limitations. §6 contains a detailed experimental e-
valuation of our proposed approaches. §7 discusses related work,
followed by the conclusion in §8.

2. MOTIVATION
In this section, we start with introducing the model of hidden

databases, their web interfaces, and how they change over time.
Then, we define the objectives of aggregate estimation/tracking.

2.1 Model of Dynamic Hidden Web Databases
Hidden Web Database and Query Interface: Consider a hidden
database D with m attributes A1, . . . , Am. Let Ui be the domain
for attribute Ai. For a tuple t ∈ D, we use t[Ai] ∈ Ui to denote
the value of Ai for t. In this paper, we focus on categorical at-
tributes, as numerical attributes can be discretized accordingly. We
also assume all tuples to be distinct with no NULL values.

To query the hidden database, a user specifies the desired val-
ues for a subset of attributes through a conjunctive query of the
form q: SELECT * FROM D WHERE Ai1 = ui1 AND . . .
AND Ais = uis where i1, . . . , is ∈ [1,m] and uij ∈ Uij . Let
Sel(q) ⊆ D be the tuples matching q. When there are more than
k (where k is a constant fixed by the hidden database) matching
tuples (i.e., |Sel(q)| > k), these tuples are ordered according to
a proprietary scoring function, and then only the top-k tuples are
returned to the user. We call such a query as an overflowing query.
We say that a query is valid if it returns between 1 and k tuples. A
query underflows if it is too restrictive and returns empty.
Dynamic Hidden Databases: Real-world hidden web databases
change over time. In most part of the paper, we consider a round-
update model where modifications occur at the beginning instant of
each round. This model is introduced purely for ease of theoretical
analysis. Then, in §5, we extend the notion to arbitrary updates
where we make no assumption about what frequency, or at what
time, a hidden database is updated. Following the round-update
model, we set round to be a short interval (e.g., one day) during
which the database is considered fairly static. We denote the i-th
round as Ri, and represent the database state during Round Ri as
Di.

Most web databases impose a per user/per IP limit on the number
of queries that can issued over a time frame. Let G be the number
of queries one can issue to the database per round. Note that if the
query limit is enforced at a different time interval (e.g., per second),
we can always extrapolate the limit according to the length of a
round and set G accordingly.

It is important to note that we assume no knowledge of which tu-
ples have been inserted to and/or deleted from the hidden database
in a given time period. That is, we consider the worst-case scenario
where each tuple is not associated with a timestamp indicating the
last time it has been inserted or changed. The key rationale behind
making this worst-case assumption is the complexity of timestamps
provided by real-world web databases. For example, while Ama-
zon discloses the first date a product was added to Amazon.com, it
does not disclose the last time an attribute (e.g., Price) was changed,
or a variation (e.g., a new color) was added. iOS App Stores have
a similar policy where software updates are timestamped but price
and/or description changes are not. Because of these complex poli-
cies, for the purpose of this paper, we do not consider the usage of
timestamps for analyzing hidden web databases.

2.2 Objectives of Aggregate Estimation
In this paper, we consider two types of aggregate estimation tasks

over a dynamic hidden database:

• Single-round aggregates: At each roundRi, estimate an aggre-
gate query of the form Q(Di): SELECT AGG(f(t)) FROM
Di WHERE Selection Condition, where AGG is the aggregate
function (we consider SUM, COUNT, and AVG in this paper),
f(t) is any function over (any attribute or attributes of) a tuple
t, and Selection Condition is any condition that can be indepen-
dently evaluated over each tuple (i.e., there is a deterministic
function g(t) such that g(t) = 1 if tuple t satisfies the selection
condition and 0 otherwise).
• Trans-round aggregates: At each round Ri, estimate an aggre-

gate over data from both the current round and the previous ones
of the form Q: SELECT AGG(f(t(D1), . . ., t(Di))) FROM
D1, . . . , Di WHERE Selection Condition - where t(Dj) is the
value of a tuple t in RoundRj (if the tuple indeed exists inDj).
An example is the change of database size from Di−1 to Di -
in which case f(t(Di−1), t(Di)) = f ′(t(Di)) − f ′(t(Di−1))
where f ′(t(Dj)) = 1 if t ∈ Dj and 0 otherwise.

We would like to note that, while some trans-round aggregates
(e.g., change of database size) can be “rewritten” as a combination
of single-round aggregates, many cannot. For example, no com-
bination of single-round aggregates can answer a trans-round ag-
gregate “the average price drop for all products with a lower price
today than yesterday”. As we shall show in §3, even for those
trans-round aggregates that can be rewritten, directly estimating a
trans-round aggregate may yield significantly more accurate results
than post-processing single-round estimates.

For both categories, we aim to estimate the answer to an aggre-
gate query by issuing a small number of search queries through the
restrictive web interface. For most part of the paper, we focus on
tracking a fixed aggregate query over multiple rounds, and extend
the results in §5 to handling ad-hoc aggregate queries (e.g., how to
estimate the change of database size from R1 to R2 if we receive
this query afterR1 is already passed).

For a given aggregate, the goal of aggregate estimation is two-
fold. One is to maintain query cost per round below the database-
imposed limit G, while the other is to minimize the estimation
error. For measuring such estimation error, note the two compo-
nents composing the error of estimation θ̃ for an aggregate θ: Bias
E(θ̃ − θ) where E(·) is expected value taken over randomness of
θ̃, and Variance of θ̃. Specifically, θ̃’s mean squared error (MSE) is

MSE(θ̃) = Bias2(θ̃) + Variance(θ̃). (1)

Thus, in terms of minimizing estimation error, our goal is to reduce
both estimation bias and variance.

3. REISSUE-ESTIMATOR
Recall from §1 a “restarting” baseline for aggregate estimation

over dynamic hidden database which treats every round as a sep-
arate (static) hidden database and reruns a static aggregate estima-
tion algorithm [6] at each round to produce an independent esti-
mation. While simple, this restarting baseline wastes numerous
queries because no information is retained/reused from round to
round. Our goal in this section is to develop REISSUE-ESTIMATOR,
an algorithm that significantly outperforms the baseline by leverag-
ing historic query answers. Specifically, we first introduce the main
idea of query reissuing, and then present theoretical analysis for a
key question: is reissuing or restarting better for tracking aggre-
gates when the database has varying degrees of change?
Running Example: We use Figure 1 (explained below) as a running
example throughout this section.

3.1 Query Reissuing for Multiple Rounds

1109

For the ease of developing the idea of query reissuing and under-
standing its difference with the restarting baseline, we start this sub-
section by presenting a simple interpretation of the static aggregate-
estimation techniques developed in the literature [6]. Then, we de-
scribe the idea of query reissuing and explain why it may lead to a
significant saving of query cost.
Simple Model of Static Aggregate Estimation: Existing algo-
rithms for single-round aggregate estimation are centered on an
idea of drill downs over a query tree depicted in Figure 1. The
query tree organizes queries from broad to specific on top to bot-
tom. Specifically, the root level is SELECT * FROM D. Going
each level deeper, the query is appended by a conjunctive predicate
formed by (1) the attribute corresponding to the level (Level i is
corresponding to Attribute Ai), and (2) the attribute domain value
corresponding to the branch - e.g., in Figure 1, the three second-
level nodes, from left to right, are corresponding to queries SE-
LECT * FROM D WHERE A1 = u1, WHERE A1 = u2, and
WHEREA1 = u3, respectively. One can see that each leaf node of
the tree is corresponding to a fully-specified,m-predicate, conjunc-
tive query. There are

∏m
i=1 |Ui| such nodes. As such, we number

the leaf nodes from 1 to
∏m
i=1 |Ui|, respectively.

... ...

...

SELECT * FROM D

A1

A2

...

Am

u1 u2 u3

...

1 2 Π|Ui|

...

Drill Downs

Path 1
Path 2
Path 3

Queries / Nodes

Overflowing

Valid

Underflowing

a

b

c

Figure 1: Query Tree

Given the query tree structure, existing single-round aggregate
estimation techniques perform a simple drill down process that can
be understood as follows: First, choose a leaf node No. j uniformly
at random from [1,

∏m
i=1 |Ui|]. Then, find the path from root to

Leaf No. j and issue each node (i.e., query) on the path one by one
from top to bottom (i.e., drill down) until finding a node that does
not overflow. For example, if we happen to choose Leaf No. 1 (i.e.,
Path 1) in the running example, we would issue three queries, the
root, query a, and query b, and stop because query b is valid. As
another example, if Leaf No.

∏m
i=1 |Ui| is chosen, we would find

Path 3 and issue two queries, the root and query c.
This top non-overflowing query q is then used to produce an un-

biased estimation for a SUM or COUNT aggregate Q: SELECT
AGG(f(t)) FROM D WHERE Selection Condition. Specifically,
the estimation is Q̃ = Q(q)/p(q), where the numerator Q(q) is the
result of applying AGG over tuples returned by q that satisfy the s-
election condition, and p(q) is the ratio of leaf nodes that have q on
its path - i.e., the probability for q to be issued during a drill down
instance. For example, each of the three Level-2 nodes in the run-
ning example has p(q) = 1/3. Thus, the estimation of COUNT(*)
produced by Path 3 is 3c, where c is the number of tuples returned
by query c. Similarly, if Path 2 is taken, the aggregate estimation
generated for any SUM or COUNT query will be 0 because the
path terminates at an underflowing (i.e., empty) node.

It was proved in [6] that such an estimation is unbiased. The
reason is easy to understand: Each tuple is returned by one and
only one top non-overflowing query in the tree. In other words,
for any SUM or COUNT aggregate Q (with or without selection
conditions), the sum of Q(q) for all top non-overflowing queries is
always Q. As such, the expected value of Q(q)/p(q) is

∑
q p(q) ·

Q(q)/p(q) = Q (i.e., it is an unbiased estimator). To reduce esti-
mation variance, one can repeatedly perform multiple drill downs
(until exhausting the database-imposed query limit G) and use the
average output as the final estimation.
Query Reissuing: One can see from the simple model that the
randomness of each drill-down can be captured by a single ran-
dom number r - i.e., sequence number of the leaf-level node corre-
sponding to the drill-down. As such, each execution of the single-
round algorithm can be uniquely identified by a “signature” set
S = {r1, . . . , rh}where each ri defines one drill-down performed.

With this notation, a key difference between restarting and reis-
suing can be stated as follows. With the restarting baseline, at
each round, say round t, we randomly generate a signature set
{rt1, . . . , rts} (with a sufficiently large s), and perform drill-downs
rti in an increasing order of i until exhausting the query limit. With
reissuing, on the other hand, we generate {rt1, . . . , rts} only once
when t = 1, and then reuse the same set for every subsequent
round (i.e., with query reissuing, ∀t, t′, i, there is rti = rt

′
i).

Saving of Query Cost: To understand why reusing the same sig-
nature set can lead to a significant saving of query cost, note that for
each drill-down r1i , before performing it at Round Rj , we already
know substantial information about it from the previous rounds.
Specifically, we know that at Round Rj−1, which query q is the
top non-overflowing node for r1i . Thus, for Round Rj , we can s-
tart our drill-down from q instead of the root node, knowing that all
queries above q are likely to overflow. In the running example, this
means to start from query b instead of the root for “updating” Path
1 in a new round. After issuing q, we can drill down further if q
overflows, “roll up” to the first non-underflowing node if q under-
flows, and, if q is valid, directly generate an estimation. One can
see that this may lead to a significant saving of query cost, espe-
cially when the database undergoes little change. For example, in
the running example, if no change happens to the database, we can
save 2 out of 3 queries (i.e., root and query a) for updating Path 1.

It is important to note that the saving of query cost can be direct-
ly translated to more accurate aggregate estimations. In particular,
since updating a drill-down may consume fewer queries, the re-
maining query budget (after updating all previous drill downs) can
be used to initiate new drill downs, increasing the number of drill
downs and thereby reducing the estimation variance and error. Al-
gorithm 1 (at the end of this section) depicts the pseudocode for
REISSUE-ESTIMATOR.
Unbiasedness of Aggregate Estimations: An important property
of REISSUE-ESTIMATOR is that it produces unbiased estimations
on all COUNT and SUM aggregates with or without selection con-
ditions (as defined in §2.2). This is shown in the following theorem.

THEOREM 3.1. At any round, for a given SUM or COUNT ag-
gregate Q, we have E(π(ri)) = Q, where π(ri) is the estimation
produced by REISSUE-ESTIMATOR from drill down ri, and E(·)
is the expected value taken over the randomness of ri.

The proof follows in analogy to the proof of unbiasedness for
static algorithms [6] that is briefly described above. We do not in-
clude the proof here due to limitations of space. Note that similar to
the static case, REISSUE-ESTIMATOR produces (slightly) biased
estimations for AVG queries, because the ratio between unbiased
SUM and COUNT estimators may not be unbiased.

3.2 Key Question: Reissue or Restart?
While the idea of query reissuing likely saves queries, it is im-

portant to understand another implication of reissuing - the char-
acteristics of aggregate estimations also changes. Specifically, one
can see that, with the reissuing method, estimations produced in

1110

different rounds are no longer independent of each other due to
the reuse of the same signature set (of drill-downs). We now dis-
cuss whether such change of characteristics can lead to more (or
less) accurate estimations for various types of aggregates when the
database undergoes different degrees of change.

3.2.1 Motivating Examples
To illustrate the fact that reissue and restart may each perform

better in different cases, we start by discussing two extreme-case s-
cenarios: (1) no change - the database never changes over time, and
(2) total change - the database is randomly (re-)generated from a
given distribution at every round. In both cases, we consider the es-
timation of a single-round aggregate SELECT COUNT(*) FROM
Di, which we denote as |Di|, and a trans-round aggregate (SELEC-
T COUNT(*) FROM Di) − (SELECT COUNT(*) FROM Di−1),
which we denote as |Di| − |Di−1|.
Example 1 (No change): First, consider the case when the database
never changes round after round. One can see that, for updating
each drill down, the queries issued by REISSUE-ESTIMATOR are
always a subset of those issued by RESTART-ESTIMATOR. Since
such a saving of query cost allows REISSUE-ESTIMATOR to ini-
tiate new drill downs, the expected number of drill downs it per-
forms (i.e., updates or initiates) in Round Ri is higher than that
of RESTART-ESTIMATOR. This leads to a smaller variance and
therefore a smaller error for estimating |Di|.

For |Di| − |Di−1|, the error of REISSUE-ESTIMATOR is even
smaller because every estimation generated from updating a pre-
vious drill down is exactly 0 and therefore has no error at all. If
REISSUE-ESTIMATOR updates all h1 previous drill downs and
initiates h2 new ones, then the estimation variance is σ2 · h2/(h1 ·
(h1 +h2)), where σ2 is the variance of estimation produced by a s-
ingle drill down. Note that this is significantly smaller than σ2/h+
σ2/h′, the variance produced by RESTART-ESTIMATOR after
performing h drill downs in Round Ri−1 and h′ ones in Round
Ri. For example, even in a conservative scenario when h1 =
h = h′ (note that there is often h1 � max(h, h′) because of the
queries saved by reissuing), the variance produced by REISSUE-
ESTIMATOR is at most 50% of RESTART-ESTIMATOR, regard-
less of the value of h2.
Example 2 (Total change): When the database is completely re-
generated at each round, accuracy analysis is straightforward be-
cause estimations produced by reissuing and restarting a drill down
are statistically indistinguishable. Thus, the only factor to consider
is the query cost per drill down - the fewer an algorithm consumes
the better, regardless of which aggregate is to be estimated.

For query cost analysis, we first note the existence of data dis-
tributions (according to which the database is regenerated at each
round) with which REISSUE ends up consuming more queries than
RESTART. For example, consider a distribution that guarantees if
a tuple t exists in the database, there is always t′ which shares the
same value with t on attributes A1, . . . , Am−1 but different ones
onAm. With this distribution, when k = 1, a drill down can termi-
nate at Level-(m−1) of the tree. If we try to update this drill down,
however, we start at Level-(m− 1) but might have to travel all the
way up to the root to find a non-empty query in the new round be-
cause the database has been completely regenerated. This leads to a
significantly higher query consumption than a brand new drill down
starting from the root. In other words, REISSUE-ESTIMATOR
might end up performing worse than RESTART-ESTIMATOR.

It is important to note that there are also cases where REISSUE-
ESTIMATOR is better. For example, consider a Boolean database
with n = 2m/2 tuples, each attribute of which is generated i.i.d. with
uniform distribution. With REISSUE-ESTIMATOR, the expected

level from which a (reissued) drill down starts is Level-m/2, while
RESTART-ESTIMATOR has to start with the root and consumes
more queries (in an expected sense, when m� 1) per drill down.

3.2.2 Theoretical Analysis
The above examples illustrate that the performance comparison

between REISSUE- and RESTART-ESTIMATOR does not have a
deterministic answer. Rather, it depends on the data distribution,
how it changes over time, and also the aggregate to be estimat-
ed. We now develop theoretical analysis that indicates under which
conditions will reissue or restart have a better performance.

Note that, given a previous drill down which terminates at query
q, there are three types of updates REISSUE-ESTIMATOR might
encounter in the new round:
1. If q neither overflows nor underflows in a new round, then it

is the only query REISSUE-ESTIMATOR issues to update the
drill down - i.e., all queries on the path from the root to q will
be saved (compared with RESTART-ESTIMATOR).

2. If q overflows in the new round, then REISSUE-ESTIMATOR
starts from q and drills down until reaching a valid or under-
flowing query. It still saves all queries on the path from the root
to q as compared with RESTART-ESTIMATOR.

3. Finally, if q now underflows, REISSUE-ESTIMATOR has to
trace upwards, along the path from q to the root node, until find-
ing a node that either overflows or is valid, say qt. In this case,
the queries REISSUE-ESTIMATOR issues (and wastes) are on
the path between q and qt.

One can see that the only case where REISSUE-ESTIMATOR
might require more queries than RESTART-ESTIMATOR is Case
(3). Thus, the worst-case scenario for REISSUE-ESTIMATOR is
when ni = 0, i.e., when no tuple is inserted into the database. This
worst-case scenario results in the following theorem.

THEOREM 3.2. After removing nd randomly chosen tuples from
an n-tuple database, for any SUM or COUNT query, the standard
error of estimation produced by REISSUE-ESTIMATOR in the new
database, denoted by sI, satisfies

sI ≤
(

1− nd

n

)
·

√
2 maxi∈[1,m](log |Ui|)

logn− log k
+
(nd

n

)k+1

· sS,

(2)

where sS is the standard error of estimation produced by RESTART-
ESTIMATOR in the old database, |Ui| is the domain size of at-
tribute Ai (i ∈ [1,m]), and k is as in top-k interface. Specifically,
when n is sufficiently large to ensure an expected drill-down depth
of at least 2 for RESTART-ESTIMATOR over the old database, we
have sI < sS.

Proof. Due to the limitations of space, please refer to [16] for the
complete proof.

3.3 Algorithm REISSUE-ESTIMATOR
In this subsection, we put all the previous discussions togeth-

er to develop Algorithm REISSUE-ESTIMATOR. We then briefly
describe how it can be extended to handle other aggregates and s-
election conditions. Algorithm 1 depicts the pseudocode. We use
the notation q(ri) to represent the first non overflowing query for
drill down ri and letQ = {q(r1), . . . , q(rs)}. parent(q(ri)) cor-
responds to parent of q(ri) in the query tree.
Aggregate Estimation with Selection Conditions: So far, we have
focused on aggregate queries that select all tuples in the database.
To support aggregates with selection conditions - e.g., the number

1111

Algorithm 1 REISSUE-ESTIMATOR
1: Randomly generate signature set S = {r1, . . . , rs}
2: In R1, perform drill downs in S till exhausting query budget.

UpdateQ.
3: for each roundRi do
4: for drill-down rj ∈ S do
5: if q(rj) overflows then
6: Do drill-down from q(rj) till a non-overflowing node
7: else if q(rj) underflows then
8: Do roll-up from q(rj) till a non-underflowing node or

an underflowing node with an overflowing parent
9: end if

10: end for
11: Issue new drill-downs from S for remaining query budget
12: Produce aggregate estimation according toQ
13: end for

of science fiction books in Amazon - REISSUE-ESTIMATOR on-
ly needs a simple modification. Recall that a selection condition
is specified via conjunctive constraints over a subset of attributes.
Given the selection conditions Q, we simply alter our query tree
to be the subtree corresponding to Q. In the Amazon example, we
construct a query tree with all queries containing predicate Type =
science-fiction. With the new query tree, drill-downs can be com-
puted directly over it to a get an unbiased estimate.

4. RS-ESTIMATOR
In this section, we start by discussing the problem of REISSUE-

ESTIMATOR, especially its less-than-optimal performance when
the database undergoes little change at a round. Then, we introduce
our key ideas for addressing the problem, and present the detailed
description of RS-ESTIMATOR.

4.1 Problem of REISSUE-ESTIMATOR
To understand the problem of REISSUE-ESTIMATOR, consid-

er an extreme-case scenario where the database does not change
round after round. One can see that, since updating each drill down
requires exactly two queries (one query to verify if the result is
same and one query over its parent to determine if it is still the top
non-overflowing query), the number of drill downs that can be up-
dated is at most G/2, where G is the total query budget per round.
This essentially places a lower bound on the estimation variance
achieved by REISSUE-ESTIMATOR for many queries - e.g., when
the aggregate query to be estimated is COUNT(*), the estimation
variance has a lower bound of 2σ2/G, where σ2 is the estima-
tion variance produced by a single drill down (for the COUNT(*)
query), no matter how many rounds have passed since the database
last changed.

Note that this lower bound indicates a significant waste of queries
by REISSUE-ESTIMATOR. In particular, it means that after a suf-
ficient number of rounds, issuing more queries (G per round for
whatever number of rounds) will not further reduce the estimation
error. Intuitively, it is easy to see that solutions exist to reduce this
waste. Specifically, one does not need to issue many queries (i.e.,
update many drill downs) before realizing the database has changed
little, and therefore reallocate the remaining query budget to initiate
new drill downs (which will further reduce the estimation error).

We note that this intuition has indeed been used in statistics - e.g.,
in the design of reservoir sampling. With reservoir sampling [19],
how much change should happen to the sample being maintained
depends on how much incoming data are inserted to the database.

Similarly, we can determine the number of drill downs to be updat-
ed based on an understanding of how much change has occurred to
the underlying database.

Unfortunately, reservoir sampling has two requirements which
we do have the luxury to satisfy over a web database: (1) it re-
quires the database to be insertion-only, while web databases often
feature both insertions and deletions, and (2) reservoir sampling
needs to know which tuples have been inserted. In our case, it is
impossible to know what changes occurred to the database without
issuing an extremely large number of queries to essentially “crawl”
the database. Next, we shall describe our main ideas for solving
these problems and enable a reservoir-like estimator.

4.2 Key Ideas of RS-ESTIMATOR
Overview of RS-ESTIMATOR: The key idea of RS-ESTIMATOR
is to distribute the query budget available for each round into t-
wo parts: one for reissuing (i.e., updating) drill downs from previ-
ous rounds, and the other for initiating new drill downs. How the
distribution should be done depends on how much changes have
occurred - intuitively, the smaller the aggregate (to be estimated)
changes, the fewer queries should RS-ESTIMATOR use for reissu-
ing and the more should it use for new drill downs.

Thus, in order to determine a proper query distribution, RS-
ESTIMATOR first uses a small number of bootstrapping queries
to estimate the amount of change to the aggregate. To illustrate
how this can be done, consider an example where the aggregate
to be estimated is COUNT(*), and we are at Round R2 with h
drill downs performed in Round R1. In the following discussion,
we first briefly describe how RS-ESTIMATOR processes the two
types of drill downs to estimate |D2| once the distribution is given,
and then present theoretical analysis for the optimal distribution.
Algorithm 2 provides the pseudocode for RS-ESTIMATOR.
Aggregate Estimation from Two Types: Let h1 be the number
of drill downs (among the h drill downs r1, . . . , rh performed in
Round R1) we update, and h2 be the number of new ones we per-
form. Without loss of generality, let the signatures for these h1 and
h2 drill downs be r1, . . . , rh1 and r′1, . . . , r′h2

, respectively. With
RS-ESTIMATOR, we first use the h1 updated drill downs to esti-
mate |D2| − |D1|. Specifically,

ṽc =
1

h1
·
∑

i∈[1,h1]

|q2(ri)|
p(q2(ri))

− |q1(ri)|
p(q1(ri))

, (3)

where q1(ri) and q2(ri) is the top non-overflowing query for path
ri in RoundR1 andR2, respectively, and p(q) represents the ratio
within all possible signatures for which q is the top non-overflowing
query. In addition, RS-ESTIMATOR also uses the h2 new drill
downs to produce an estimation of |D2|, i.e.,

ṽd =
1

h2
·
∑

i∈[1,h2]

|q2(r′i)|
p(q2(r′i))

. (4)

Note that RS-ESTIMATOR now has two independent estimations
for |D2|: (1) ṽ1 + ṽc, where ṽ1 is the first-round estimation of
|D1|, and (2) ṽd. A natural idea is to generate the final estimation
as a weighted sum of the two - i.e., ṽ2 = w1 · (ṽ1 + ṽc) + (1 −
w1) · ṽd, where w1 ∈ [0, 1]. The following theorem establishes the
unbiasedness of the estimation no matter what w1 is.

THEOREM 4.1. If ṽ1 is an unbiased estimation of |D1|, then

E(ṽ1 + ṽc) = E(ṽd) = |D2|. (5)

where E(·) denotes expected value taken over the randomness of
r1, . . . , rh1 , r

′
1, . . . , r

′
h2

.

1112

The proof follows in analogy to that of Theorem 3.1. Since w1

does not affect the estimation bias, we should select its value so
as to minimize the estimation variance. Specifically, the following
theorem illustrates the optimal value of w1.

THEOREM 4.2. The variance of second-round estimation - i.e.,
ṽ2 = w1 · (ṽ1 + ṽc) + (1− w1) · ṽd is

w2
1 · (

σ2
c

h1
+
σ2
1

h
) + (1− w1)2 · σ

2
d

h2
(6)

where σ2
c is the variance of estimation for |D2|−|D1| from a single

drill down, i.e., the variance of |q2(ri)|/p(q2(ri))−|q1(ri)|/p(q1(ri))
for a random ri, while σ2

1 and σ2
d are the variance of estimation for

|D1| and |D2| for a single drill down, respectively. This variance
of ṽ2 takes the minimum value when

w1 =
σ2
d/h2

σ2
c/h1 + σ2

1/h+ σ2
d/h2

. (7)

We do not include the proof due to limitation of space. Please
refer [16] for proof.
Distribution of Query Budget: We now consider how to optimally
distribute the query budget for Round R2 so as to minimize the
estimation variance of ṽ2. According to Theorem 4.2, when w1

takes the optimal value, the estimation variance of ṽ2 becomes

ε22 =
(σ2

c/h1 + σ2
1/h) · σ2

d/h2

σ2
c/h1 + σ2

1/h+ σ2
d/h2

. (8)

Let gc and gd be the average query cost per updated and new drill
down, respectively. Given a per-round query budget G, the follow-
ing corollary illustrates how to optimally distribute query budget.

COROLLARY 4.1. For a given query budget G such that gc ·
h1 + gd · h2 = G, the value of h1 which minimizes ε22 is

h1 = max

0,min

G

gc
, h,

h · (
√
gd · σ2

d · σ2
c/gc − σ2

c)

σ2
1

 . (9)

Once again, the optimal distribution depends on σ2
1 , σ2

d and σ2
c ,

which, as described above, can be approximated using sample vari-
ances. Note that the optimal distribution here also depends on gc
and gd, which we also estimate according to the bootstrapping drill
downs conducted in the beginning, as shown in the detailed algo-
rithm described in the next subsection.
Comparison with REISSUE-ESTIMATOR: The comparison be-
tween REISSUE- and RS-ESTIMATOR can be directly observed
from Corollary 4.1, which indicates that (1) when the database un-
dergoes little change, RS-ESTIMATOR mostly conducts new drill
downs - leading to a lower estimation error than REISSUE, and (2)
when the database changes drastically, RS-ESTIMATOR will be
automatically reduced to REISSUE-ESTIMATOR.

To understand why, consider the following examples. When the
database is not changed, i.e., σ2

c = 0, Corollary 4.1 indicates that
h1 = 0 - i.e., all query budget will be devoted to initializing new
drill downs. On the other hand, when the database undergoes fair-
ly substantial changes - e.g., when σ2

c ≈ σ2
d ≈ σ2

1 , Corollary 4.1
indicates h1 = max(0,min(G/gc, h, h · (

√
gd/gc − 1))). Recall

from §3 that gd > gc in most practical scenarios. Thus, we have
h1 = min(G/gc, h) - i.e., the query budget is devoted to updat-
ing Round-R1 drill downs as much as possible, exactly like what
REISSUE-ESTIMATOR would do in this circumstance.

4.3 Algorithm RS-ESTIMATOR
Extension to General Aggregates and Multi-Rounds: We dis-
cussed in the last subsection an example of applying RS-ESTIMATOR
to estimate COUNT(*) in the second round R2. We now consid-
er the extension to generic cases, specifically at the following two
fronts: (1) in an arbitrary roundRi, by leveraging multiple historic
rounds of estimations, and (2) for estimating generic aggregates
defined in §2.2.

To understand the challenge of these extensions, consider the
following scenario: At Round R3, we detect more changes to the
database (i.e., a larger σ2

c), and therefore need a larger number of
updated drill downs (i.e., h1) than the second round. One can see
what happens here is that there are not enough second-round drill
downs for us to update. Thus, we may have to update some of the
drill downs from the first round, leading to two problems:
• Since the difference between first- and third-round results may

be larger, we have to adjust the distribution of query budget ac-
cordingly - e.g., by giving a higher budget to new drill downs
(i.e., larger h2).
• These cross-round updated drill downs will not be useful for

estimating queries such as |D3|−|D2|, because we do not know
their results for RoundR2.

Before presenting results that address these two challenges, we
first introduce some notations. Specifically, for any aggregate query
Q (to be estimated) and any drill down (with signature) ri which
we last updated in Round Rx, we denote the estimation produced
by updating ri at Round Rj by a function2 fQ(x, qj(ri)), where
qj(ri) is the top non-overflowing query in the path with signature
ri at Round Rj . Note that fQ(·) differs for different aggregate
query Q. For example,
• If Q is SELECT SUM(A1) FROM D, we have

fQ(x, qj(ri)) = Q̃x +
∑

t∈qj(ri)

t[A1]

p(qj(ri))
−

∑
t∈qx(ri)

t[A1]

p(qx(ri))
,

where Q̃x is the estimation we produced for Q in Round Rx.
One can see that what we discussed (for Q = |D|) in §4.2 is a
special case of this result (when x = 1, j = 2, t[Ai] ≡ 1 and
Q̃1 = |D1|.)
• If Q is |Dj | − |Dj−1| and x = j− 1, we have fQ(x, qj(ri)) =
|qj(ri)|/p(qj(ri))− |qx(ri)|/p(qx(ri)).
• If Q is |Dj | − |Dj−1| and x < j− 1, we have fQ(x, qj(ri)) =

|qj(ri)|/p(qj(ri))− |D̃j−1| where |D̃j−1| is our estimation of
|Dj−1| from the previous round. In this case, no result from
RoundRx (e.g., qx(ri)) is used in the computation of fQ - i.e.,
updating old and initiating new drill downs become equivalent.

Recall from the discussion in §3.3 and Theorem 4.1 that, for any
COUNT and SUM aggregate query Q defined in §2.2, we can find
fQ(·) that produces an unbiased estimation of Q. Given fQ(·),
we are now ready to theoretically analyze the optimal distribution
of query budget for estimating generic aggregates in multi-round
scenarios. First, we have a corollary to Theorem 4.2.

COROLLARY 4.2. At Round Rj , if RS-ESTIMATOR updates
c1, . . . , cj−1 drill downs that were last updated in RoundsR1, . . .,

2Note that we are reusing the symbol f(·) which we used to denote the
aggregate estimation function in §3.1. The meaning of f(·) remains the
same, yet the input here is not just the current-round result but results from
both Rx and Rj . In addition, the function now depends on the aggregate
function Q to be estimated.

1113

Rj−1, respectively, and initiates cj new drill downs, the optimal
estimation for an aggregate Q is

j∑
x=1

 1

cx · v2x(cx) ·
∑j
y=1

1
v2y(cy)

·
∑

i∈[1,cx]

fQ(i, qj(r
x
i))

 (10)

where rxi is the i-th drill down among the cx ones that were last
updated in Round Rx, fQ(j, qj(r

x
j)) is the estimation from a new

drill down rxj in RoundRj , and v2x(cx) is the variance of

1

cx

cx∑
i=1

fQ(i, qj(r
x
i)) (11)

taken over the randomness of rxi . The estimation variance is

ε2j (Q) =
1∑j

x=1(1/v2x(cx))
(12)

One can see that Theorem 4.2 and (8) indeed represent a spe-
cial case of this corollary when j = 2, c1 = h1, c2 = h2,
v21(c1) = σ2

c/h1 + σ2
1/h, and v22(c2) = σ2

d/h2. According to
Corollary 4.2, we can derive the optimal query budget distribution
similar to Corollary 4.1. This derivation uses the following two key
properties of fQ(x, qj(r

x
j)):

βx = lim
cx→∞

var(fQ(x, qj(r
x
j))) = lim

cx→∞
v2x(cx) (13)

αx = lim
cx→∞

cx · (var(fQ(x, qj(r
x
j)))− βx) (14)

= lim
cx→∞

cx · (v2x(cx)− βx) (15)

where var(·) represents the estimation variance.

COROLLARY 4.3. For a given query budgetG such that
∑j
x=1 gx·

cx = G, the value of cx which minimizes ε2j (Q) is

cx =
G ·
√
gx/αx

βx ·
∑j
i=1((

√
gi/αi − αi) · (gi/βi))

− αx
βx
. (16)

when βx > 0 for all x. When βx = 0 for all x, then cx = G/gx if
x minimizes αx · gx and 0 otherwise (break tie arbitrarily). When
βx > 0 for some x, consider y such that βy = 0 and

αy · gy = min
i∈[1,j],βi=0

αi · gi. (17)

The optimal distribution is to have

cx = max

(
0,min

(
G

gx
,

√
αx · αy · gy/gx − αx

βx

))
. (18)

One can see that Corollary 4.1 is indeed a special case of this corol-
lary when the last scenario occurs - i.e., one β2 (for the h2 new
drill downs) is 0, while the other β1 (for the h1 updated ones) is
not (β = σ2

1/h). Note that in this special case, we have α1 = σ2
c

and α2 = σ2
d - making (18) equivalent with (9).

Algorithm Description: We are ready to describe the generic RS-
ESTIMATOR algorithm. At each round Rj , our algorithm starts
by conducting a number of bootstrapping drill downs (line 4) to
estimate v2x(cx) and gx - i.e., the variance of estimation and the
query cost for updating a drill down that was last updated at Round
Rx (recall that if x = j, such an “update” is indeed initializing a
new drill down). Specifically, for each x ∈ [1, j], we conduct $
bootstrapping drill downs, where $ is a user-specified parameter.

After conducting the r · j drill downs, we obtain the estimations
for αx, βx and gx, and compute according to Corollary 4.3 the

optimal distribution of query cost - i.e., cx drill downs for each
x ∈ [1, j] (line 5). Suppose that there are hx drill downs that
were last updated at Round Rx. For each x ∈ [1, j], we choose
min(cx, hx) drill downs uniformly at random from the hx ones3,
and place all chosen drill downs into a pool Ω (line 6). Then, we
conduct drill downs in Ω according to a random order (line 8) until
exhausting all query budget. Note that the reason for doing so is to
accommodate the error of estimating gx - i.e., we might not have
enough query budget to completely conduct all c1 + · · · + cj drill
downs. Finally, we produce our final estimation of Q according to
Corollary 4.2 (line 9).

Algorithm 2 provides a pseudocode for RS-ESTIMATOR.

Algorithm 2 RS-ESTIMATOR
1: Input: Aggregate queryQ, round index j, bootstrapping query

limit per round $
2: Set drill down pool Ω = {}
3: for x=1 to j do
4: Execute $ pilot drill-downs corresponding toRx
5: Estimate update budget cx using Corollary 4.3
6: Ω = Ω ∪ randomly picked cx queries from roundRx
7: end for
8: Issue randomly chosen drill-downs from Ω till exhausting

query budget
9: Produce aggregate estimation according to Corollary 4.2.

5. SYSTEM DESIGN
While there exists a vast diversity in the properties of the dy-

namic hidden web databases in the real world, their differences can
be abstracted into two dimensions. The first is the query model
that describes the various ways in which the query (or queries) for
aggregate estimation are specified. The second corresponds to the
update model that describes how the database is updated over time.
In §3 and 4, we assumed a simple objective of accurately estimating
one pre-defined aggregate over dynamic data, and a simple update
model where all updates to a hidden database occur at the beginning
of a round. In this section, we describe how to adapt our algorithms
for other commonly used query and update models.

5.1 Dimension 1: Query Model
The query model over dynamic hidden web databases has some

parallels to queries over continuous data streams [2]. In this subsec-
tion, we describe the two categories of aggregate estimation queries
that could satisfy the need of most users.
• Stream query model: This is also called a pre-defined query

model and supports aggregate queries that are specified upfron-
t before any query processing over the hidden database start-
s. These queries are evaluated continuously as the database e-
volves and should be constantly updated with the most recent
estimation.
• Ad hoc query model: This model supports aggregate queries that

could be issued at any point after our system started tracking the
database. Such queries could be one-time, where the query is
evaluated once over, or continuous, where the query is evaluated
over the database instance at the present or some time in the past
(albeit after the time our system starts tracking the database).

Our algorithms can handle both the query models with few mod-
ifications. Recall that at any point in time, our system maintains

3Note that when x = j, we simply choose cx drill downs uniformly at
random.

1114

a number of drill downs with (past) results from previous round-
s that are refreshed (restarted or reissued) at each round. For the
streaming model, the aggregate estimates constructed from the past
drill downs are revised based on the updated results. For the ad hoc
model, since all tuples retrieved by the previous drill downs can
be preserved, one can “simulate” the aggregate estimation as if the
query was issued prior to the drill downs being done.

Nonetheless, it is important to note that there may still be signif-
icant performance differences between aggregate estimation over
the two query models. For example, recall from §3.3 that, with the
stream model, if we know all aggregates to process have a particu-
lar predicate (e.g., A1 = 1), then we could build a query tree (for
drill-down) with all nodes having that predicate (e.g., if the pred-
icate is A1 = 1, then we are essentially taking the subtree of the
original query tree under the branch A1 = 1). This smaller query
tree could lead to a more accurate aggregate estimation - a bene-
fit we can no longer enjoy for accommodating the ad hoc query
pool. As another example, at each round RS-ESTIMATOR makes
decisions on the distribution of query budget according to the ag-
gregate query being processed. Once again, we can no longer reach
the optimal distribution when the ad hoc query model is in place.

While the previous sections tracked only a single query, our sys-
tem could handle multiple queries simultaneously. However, per-
forming adaptive query processing for multiple queries or decid-
ing the distribution of drill-downs to update based on the complex
correlations between queries is a major challenge. This is a ma-
jor challenge even for traditional database query processing and a
significant body of prior work exists (see [9] for a survey). Adapt-
ing these techniques for hidden web databases is non-trivial and is
beyond the scope of our paper.

5.2 Dimension 2: Update Model
The update model abstracts the frequency of database updates

and the query budget. Depending on whether the database updates
happen in batch or in an even fashion, we can categorize dynam-
ic hidden web databases into two types. One is the round-update
model discussed so far in the paper. The other is constant-update
model - i.e., the database may be updated at any time, even in the
middle of the execution of our algorithms.

Adapting our (or any) algorithms for constant update model is
much trickier. The notion of rounds cannot be adapted to handle
such a case as the database is updated at any point in time, even
in the middle of algorithm execution. A even major problem is the
definition of the ground truth - how to define the aggregate over
such an unpredictably changing database. Should we try to esti-
mate the aggregate for the database instance that existed when the
algorithm started? Or is it the end? While both definitions sound
fine, it is easy to see no algorithm can guarantee unbiased estima-
tion/sampling no matter how the ground truth is defined. Neverthe-
less, our algorithm can be easily adapted to deal with this model
(albeit without the unbiasedness guarantees that may otherwise be
provided). A natural way is to utilize the concept of rounds by ig-
noring all updates after a specific point in time. Recall from §4 that
RS-ESTIMATOR uses a set of bootstrapping queries to estimate
the amount of change. After this pilot phase is over, we ignore
further changes and utilize the information obtained from the pilot
phase for deciding on how to redistribute queries or how to recom-
pute new estimation. Notice that this estimate could be biased by
the tuples that were inserted before the end of pilot phase.
Other Issues: While our data model makes a simplistic no-NULL
assumption, our algorithms readily handle NULL values as long as
the hidden database has a clear policy on how to handle NULL in
processing search queries. For example, if the database allows one

to include predicateAi IS NULL in a search query, then NULL can
simply be treated as yet another value in the attribute domain. If,
on the other hand, the database features a broad match policy and
returns a tuple t with Ai being NULL to queries with any Ai =
vij , then we can still precisely compute the probability for t to be
returned (by simply multiplying it with the domain size of Ai) and
use REISSUE- or RS-ESTIMATOR as is.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Datasets: We tested our algorithm over three datasets: (1) a real-
world (categorical) web database Yahoo! Autos to which we have
full offline access, (2) a live experiment on Amazon.com, and (3) a
live experiment on eBay.com.

Yahoo! Autos dataset [6] is a snapshot of the Yahoo! Auto database
and contains 188,917 unique tuples and 38 attributes, with attribute
domain sizes ranging from 2 to 38. The default insertion/deletion
schedule we used is to start with 170,000 (chosen uniformly at ran-
dom without replacement) tuples at the beginning and, for each
round, insert 300 randomly selected tuples not currently in the database,
and delete 0.1% of the existing tuples. The default search interface
is top-1000, and the default query budget per round is G = 100.
Since we had complete access to the dataset, we were able to build
locally an exact implementation of the top-k web interface and pre-
cisely compute the aggregate query answers and, thereby, the esti-
mation error generated by our algorithms.

We shall describe detailed settings for the live experiments at the
end of this section.
Algorithms Evaluated: We tested three algorithms discussed in
the paper: the baseline RESTART-ESTIMATOR (repeatedly exe-
cute [6] for each round) and our REISSUE-ESTIMATOR and RS-
ESTIMATOR. We abbreviate their names as RESTART, REISSUE,
and RS in most of the section. RESTART and REISSUE are parameter-
free algorithms (other than the database-controlled parameter of
query budget per round G). RS has one parameter $ which is the
number of bootstrapping drill downs performed for each historic
round. We set the default setting to $ = 10 in the experiments.
Performance Measures: For query cost, we focused on the num-
ber of queries issued through the web interface of the hidden database.
For estimation accuracy, we measured the relative error (i.e., |θ̃ −
θ|/|θ| for an estimator θ̃ of aggregate θ), and also plotted the error
bars for raw estimations.

6.2 Experimental Results
Single-round aggregates: We started by comparing the perfor-
mance of all three algorithms for estimating single-round aggre-
gates over the Yahoo! Autos dataset under the default insertion/deletion
schedule and a per-round query budget of 500. Figures 2 depicts
how the relative error on estimating COUNT(*) changes round af-
ter round, while Figure 3 depicts the error bars of raw estimations.
One can see from the figure that, as we proved in the paper, all
three algorithms produce unbiased estimations, with RS having the
smallest variance (i.e., shortest error bar). In contrast to RESTART,
both REISSUE and RS provide more accurate estimations in latter
rounds by leveraging historic query answers.

In Figure 4, we tested the real-world performance of REISSUE
and RS when there are intra-round updates to the Yahoo! Autos
database. Specifically, we consider a worst-case scenario where
our algorithms are executed every hour and take the entire hour to
finish. Within each hour, a tuple is inserted to the database ev-
ery 12 seconds, while an existing tuple is deleted every 21 seconds

1115

0 10 20 30 40 50
0.0

0.2

0.4
R

el
at

iv
e

Er
ro

r

Round

 RESTART
 REISSUE
 RS

Figure 2: Relative Error

0 10 20 30 40 50
0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
el

at
iv

e
Si

ze

Round

 RESTART
 REISSUE
 RS

Figure 3: Error Bar

0 20 40

0.2

0.4

0.6

R
el

at
iv

e
Er

ro
r

Hours

 REISSUE
 REISSUE (Intra-Round)
 RS
 RS (Intra-Round)

Figure 4: Intra-Round

0 10 20 30 40 50
0.0

0.3

0.6

0.9

1.2

R
el

at
iv

e
Er

ro
r

Round

 RESTART
 REISSUE
 RS

Figure 5: Little Change

0 3 6 9

0.3

0.6

0.9

R
el

at
iv

e
Er

ro
r

Round

 RESTART
 REISSUE
 RS

Figure 6: Big Change

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
Er

ro
r

Round

 RESTART
 REISSUE
 RS

Figure 7: Big Change (k = 1)

200 400 600 800 1000
0.0

0.3

0.6

0.9

1.2

R
el

at
iv

e
Er

ro
r

k

 RESTART
 REISSUE
 RS

Figure 8: Effect of k

0 200 400 600
0.0

0.2

0.4

0.6

R
el

at
iv

e
Er

ro
r

Per Round Query Budget

 RESTART
 REISSUE
 RS

Figure 9: Query Budget

(i.e., evenly distributed over time according to the default inser-
tion/deletion schedule). As one can see from the figure, even in
this case, the estimation accuracy of REISSUE and RS is still very
close to the round-based model without any intra-round updates,
consistent with our discussions in §5.2.

We then studied how the algorithms perform under extreme-case
scenarios, in order to test our theoretical analysis in §3 and 4. We
started with the case when the database barely changes over time -
adding one tuple per round to the real dataset. Figure 5 depicts the
results. One can see that while REISSUE significantly outperforms
RESTART, the reduction of its relative error “tapers off” over time
and remains at around 0.3. On the other hand, the estimation error
produced by RS keeps decreasing (to around 0.2 after 50 rounds),
consistent with our theoretical analysis in §4.

We also tested the worst-case scenario for our algorithms - when
the database undergoes dramatic changes. Specifically, we started
with 100,000 tuples in the real dataset and, for each round, added
10000 tuples and deleted 5% of existing tuples. Figure 6 shows that
our algorithms still outperform the baseline significantly. Nonethe-
less, if we further change k to 1, Figure 7 shows that RESTART
performs better - as predicted by Theorem 3.2.

Finally, we tested how the performance comparison changes with
various parameters of the database and the search interface. Figures
8 to 12 tested k, the query budget G per round, the number of in-
serted/deleted tuples per round, the number of attributesm, and the
starting database size |D1|, respectively. Figures 8 and 9 depict-
s the estimation error after 50 rounds on the real dataset. And in
Figure 12, to enable the scalability test up to 10 million tuples, we
set m = 50. In the following, we discuss a few observations from
these figures:

Note from Figure 8 that the relative error is smaller when k is
bigger, consistent with our theoretical analysis in §3.2.2. For query
budget G, observe from Figure 9 that while all three algorithm-
s produce smaller errors with a larger budget, RS remains the top
choice throughout (though its advantage over REISSUE diminish-
es with a larger G because updating only takes a small part of the
budget anyway). Figure 10 compares cases when changes to the
database range from deleting 30 (randomly chosen existing) tuples
per round to inserting 30 new tuples. One can see from the figure
that RS significantly outperforms RESTART in all cases. REIS-
SUE, on the other hand, suffers when more than half of the database
(30× 100 = 3000 out of 5000) are deleted at the end of 100 rounds,
consistent with the conclusion from Theorem 3.2.

Figure 11 shows that the performance for all algorithms is inde-
pendent of m - again, consistent with the theoretical results. The
results from Figure 12 indicate a bigger relative error of RESTART
for a larger database but a static accuracy of our algorithms. Notice
that the performance improvement by our algorithms widens when
the database size increases.

Figure 13 depicts the relative error after 100 rounds for estimat-
ing SUM aggregates with 0, 1, 2, and 3 conjunctive selection con-
ditions. One can see from the figures that both RS and REISSUE
significantly outperform RESTART in all cases, with RS producing
even smaller errors than REISSUE. Also, observe from Figure 13
that the more selective the aggregate is, the lower the relative error
will be.
Trans-round Aggregates: For trans-round aggregates, we started
with testing the running average count - i.e., AVG(|Di|, |Di−1|, . . .).
Figure14 depicts the comparison between the three algorithms over
the real dataset when the COUNT of the last 2, 3, and 4 rounds are
taken as inputs to the AVG function. One can see that RS has the
best performance in all cases, while REISSUE and RS both signif-
icantly outperform RESTART.

We then tested in Figure 15 another trans-round aggregate over
the real-world dataset: the change of database size from last round
(i.e., |Di| − |Di−1|). In this test, the database undergoes minor
changes at each round - specifically, with 3000 tuples being insert-
ed and 0.5% being removed. We would like to note that this is
an extreme-case scenario where the database undergoes very minor
(less than 1%) changes, and the aggregate monitoring task tries to
measure exactly how much change has occurred. Figure 16 shows
the absolute estimations produced by all algorithms which shows
the stark superiority of our algorithms over RESTART-ESTIMATOR.
In comparison, Figure 17 depicts the same aggregate when the
database is substantially changed round after round - with 10000 tu-
ples inserted and 5% removed. One can make a number of interest-
ing observations from the figures: First, RS and REISSUE outper-
form RESTART by orders of magnitude when the database change
is minor - confirming previous discussions that RESTART yield-
s extremely poor results when the size difference is small. When
the database undergoes major changes, RS and REISSUE converge
to the same performance, again confirming previous analysis, and
both still hold significant superiority over RESTART. Finally, the
relative error produced by RESTART keeps increasing over time
(with a larger database size), while REISSUE and RS have decreas-

1116

-3000 0 3000
0.0

0.3

0.6
R

el
at

iv
e

Er
ro

r

The Number of Tuples Inserted

 RESTART
 REISSUE
 RS

Figure 10: Insertion/Deletion

34 36 38

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Er

ro
r

Attributes

 RESTART
 REISSUE
 RS

Figure 11: Effect of m

10000 100000 1000000 1E7
0.00

0.06

0.12

R
el

at
iv

e
Er

ro
r

Database Size

 RESTART
 REISSUE
 RS

Figure 12: Effect of |D1|

0 1 2 3
0.00

0.05

0.10

0.15

R
el

at
iv

e
Er

ro
r

Number of Conjunctive Predicates

 RESTART
 REISSUE
 RS

Figure 13: SUM w/ Condi-
tions

2 3 4
0.03

0.06

0.09

0.12

0.15

R
el

at
iv

e
Er

ro
r

Number of Rounds in Running Average

 RESTART
 REISSUE
 RS

Figure 14: Running Average

0 10 20

0.1

1

10
R

el
at

iv
e

Er
ro

r

Round

 RESTART
 REISSUE
 RS

Figure 15: Small Change

0 7 14 21

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
Er

ro
r

Round

 RESTART
 REISSUE
 RS

Figure 16: Small Change (Ab-
solute Estimation)

0 2 4 6 8
0
1
2
3
4
5
6
7
8
9

10

R
el

at
iv

e
Er

ro
r

Round

 RESTART
 REISSUE
 RS

Figure 17: Big Change

ing relative errors - again consistent with our theoretical analysis in
§3 and 4. The anomalous result (where REISSUE slightly outper-
forms RS) is due to the fact that the new drill downs do not reduce
relative error. According to our theoretical analysis, when the new
drill downs yield much higher variance (and therefore error) than
updating the old ones, the performance of RS-ESTIMATOR is es-
sentially reduced to that of REISSUE-ESTIMATOR.

Figure 18 shows the efficiency benefits achieved by our algo-
rithms. Instead of fixing the query budget, we ran our algorithms
till the estimation was within a relative error of 0.15, 0.2 and 0.3.
The experimental results show that lower relative errors require a
higher query cost. However, our algorithms requires substantially
less queries than RESTART-ESTIMATOR to achieve same relative
error. Figure 19 measures how REISSUE- and RS-ESTIMATOR
achieve query savings enabling us to perform additional drill down-
s for the same query budget. This experiment was conducted over
Yahoo! Autos dataset over 50 rounds. As expected, our algorithm-
s achieve significant savings over RESTART-ESTIMATOR due to
their ability to leverage historical query results.
Live Experiments: We conducted live experiments over Ama-
zon.com and eBay.com, respectively, in order to demonstrate the
effectiveness of our algorithms in real-world settings. For Ama-
zon.com, we conducted the experiment during Thanksgiving week,
2013, using the Amazon Product Advertising API with k = 100
and a query budget of 1,000 queries per day. Specifically, we mon-
itored various aggregates over all watches sold by Amazon.com.
Admittedly, we have no access to the ground truth in this experi-
ment, and thus cannot measure the exact accuracy of the aggregate
estimations we generate. Nonetheless, as one can see from Fig-
ure 20, the average price estimation we generated shows a sharp
drop (∼$50) on Thanksgiving day (Nov 28) and the Black Friday
(Nov 29), consistent with the common sense that most sellers are
running promotions during this period. On the other hand, two oth-
er aggregates we tracked, the percentage of watches for men and
the percentage of wrist watches, barely changed during this time
period, once again consistent with the common sense.

For eBay.com, we conducted the experiment on Monday, Febru-
ary 24, from 1pm to 9pm EST, using the eBay Finding API with
k = 100 and a query budget of 250 queries per hour (for each

algorithm we tested). Figure 21 depicts the experimental results.
Specifically, we monitored the average (current) price of all wom-
en’s wrist watches which (1) offer a “Buy It Now” option (i.e., with
FixedPrice returned by the API, represented as -FIX in the figure),
and (2) offer a bidding option (represented as -BID in the figure).
We tested in this experiment all three algorithms discussed in the
paper - i.e., RESTART-, REISSUE-, and RS-ESTIMATOR.

One can make two observations from the figure. First, the aver-
age price of Buy-It-Now items is significantly higher than that of
the bidding ones, consistent with the intuition that (1) Buy-It-Now
items are generally more expensive, (2) while a price snapshot of
an item for bid is likely lower than the final transaction price, the
price snapshot of a Buy-It-Now item is usually the exact transaction
price. The second observation is on the performance comparison
between REISSUE-/RS-ESTIMATOR and the RESTART baseline.
One can see that, while all three algorithms perform similarly at the
beginning (around 1pm), our REISSUE and RS algorithms perfor-
m significantly better than RESTART as time goes by, especially
for Buy-It-Now items, consistent with our theoretical prediction-
s. Finally, note that the performance improvement of REISSUE
and RS over RESTART is more significant for Buy-It-Now items
than bidding ones. This is because bidding items are updated much
more frequently than Buy-It-Now items, once again consistent with
our theoretical results that the less the database changes, the better
REISSUE and RS will perform in comparison with RESTART.

7. RELATED WORK
Information Integration and Extraction for Hidden databas-
es: A significant body of research has been done in this field - see
tutorials [4, 10]. Due to limitations of space, we only list a few
closely-related work: [17] proposes a crawling solution. Parsing
and understanding web query interfaces was extensively studied
(e.g., [11, 21]). The mapping of attributes across web interfaces
was studied in [14].
Aggregate Estimations over Hidden Web Databases: There has
been a number of prior work in performing aggregate estimation
over static hidden databases. [6] provided an unbiased estimator for
COUNT and SUM aggregates for static databases with form based
interfaces. As discussed in §3, single-round estimation algorithms
such as [6] could be adapted for dynamic databases by treating each

1117

0.14 0.21 0.28
0

200

400

600
Q

ue
ry

 B
ud

ge
t

Relative Error

 RESTART
 REISSUE
 RS

Figure 18: R.E. vs Budget

0 200 400 600

0

80000

160000

D
ril

l D
ow

ns

Query Cost

 RESTART
 REISSUE
 RS

Figure 19: Drill Downs

Nov 27 Nov 29 Dec 1 Dec 3
200

220

240

260

Pe
rc

en
ta

ge
(%

)

 Price
 Men
 Wrist

Date

Pr
ic

e
(D

ol
la

rs
)

Nov 27 Nov 29 Dec 1 Dec 3
0

20

40

60

80

100

Figure 20: Amazon.com Figure 21: eBay.com

round as a separate static database and rerun [6] repeatedly. How-
ever, this is possibly a wasteful approach as no information from
prior invocations are reused as shown by our experimental result-
s. [5, 7, 8] describe efficient techniques to obtain random samples
from hidden web databases that can then be utilized to perform ag-
gregate estimation. [1] proposed an adaptive sampling algorithm
for answering aggregation queries over websites with hierarchical
structure. Recent works such as [15, 20] propose more sophisticat-
ed sampling techniques so as to reduce the variance of the aggregate
estimation. Unlike this paper, all these prior works assume a static
database.
Aggregate Query Processing over Dynamic Databases: There
has been extensive work on approximate aggregate query process-
ing over databases using sampling based techniques and non sam-
pling based techniques such as histograms and wavelets . See [12]
for a survey. A common approach is to build a synopsis of the
database or data stream and use it for aggregate estimation. Main-
tenance of statistical aggregates in the presence of database up-
dates have been considered in [13]. Another related area is answer-
ing continuous aggregate queries which are evaluated continuously
over stream data [2, 3]. A major difference with prior work is that
the changes to underlying database is not known to our algorithm
and we could also perform trans-round aggregate estimates.

8. CONCLUSION AND FUTURE WORK
In this paper we have initiated a study of estimating aggregates

over dynamic hidden web databases which change over time through
its restrictive web search interface. We developed two main ideas:
query reissuing and bootstrapping-based query-plan adjustment. We
provided theoretical analysis of estimation error and query cost for
the proposed ideas, and also described a comprehensive set of ex-
periments that demonstrate the superiority of our approach over
the baseline ones on synthetic and real-world datasets. There are
a number of possible future directions including: (1) a study of
how meta data such as COUNT can be used to guide the design of
drill downs in future rounds, and (2) given a workload of aggregate
queries, how to minimize the total query cost for estimating all of
them, and (3) how to leverage both keyword search and form-like
search interfaces provided by many web databases to further im-
prove the performance of aggregate estimations.

9. ACKNOWLEDGMENTS
Nan Zhang was supported in part by the National Science Foun-

dation under grants 0852674, 0915834, 1117297, and 1343976.
The work of Saravanan Thirumuruganathan and Gautam Das was
partially supported by National Science Foundation under grants
0812601, 0915834, 1018865 and grants from Microsoft Research.
Any opinions, findings, conclusions, and/or recommendations ex-
pressed in this material, either expressed or implied, are those of
the authors and do not necessarily reflect the views of the sponsors
listed above.

10. REFERENCES

[1] F. N. Afrati, P. V. Lekeas, and C. Li. Adaptive-sampling
algorithms for answering aggregation queries on web sites.
DKE, 64(2):462–490, 2008.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. PODS, 2002.

[3] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Rec., 30(3):109–120, Sept. 2001.

[4] K. Chang and J. Cho. Accessing the web: From search to
integration. In Tutorial, SIGMOD, 2006.

[5] A. Dasgupta, G. Das, and H. Mannila. A random walk
approach to sampling hidden databases. In SIGMOD, 2007.

[6] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das.
Unbiased estimation of size and other aggregates over hidden
web databases. In SIGMOD, 2010.

[7] A. Dasgupta, N. Zhang, and G. Das. Leveraging count
information in sampling hidden databases. In ICDE, 2009.

[8] A. Dasgupta, N. Zhang, and G. Das. Turbo-charging hidden
database samplers with overflowing queries and skew
reduction. In EDBT, 2010.

[9] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Foundational Trends In Databases, 1(1), 2007.

[10] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing
information extraction. In Tutorial, SIGMOD, 2006.

[11] E. Dragut, T. Kabisch, C. Yu, and U. Leser. A hierarchical
approach to model web query interfaces for web source
integration. In VLDB, 2009.

[12] M. N. Garofalakis and P. B. Gibbons. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[13] P. B. Gibbons and Y. Matias. Synopsis data structures for
massive data sets. In SODA, pages 909–910, 1999.

[14] B. He, K. Chang, and J. Han. Discovering complex
matchings across web query interfaces: A correlation mining
approach. In KDD, 2004.

[15] T. Liu, F. Wang, and G. Agrawal. Stratified sampling for data
mining on the deep web. Frontiers of Computer Science,
6(2):179–196, 2012.

[16] W. Liu, S. Thirumuruganathan, N. Zhang, and G. Das.
Aggregate estimation over dynamic hidden web databases,
http://arxiv.org/pdf/1403.2763.pdf.

[17] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB, 2001.

[18] C. Sheng, N. Zhang, Y. Tao, and X. Jin. Optimal algorithms
for crawling a hidden database in the web. In VLDB, 2012.

[19] J. S. Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1):37–57, Mar. 1985.

[20] F. Wang and G. Agrawal. Effective and efficient sampling
methods for deep web aggregation queries. In EDBT, 2011.

[21] Z. Zhang, B. He, and K. Chang. Understanding web query
interfaces: best-effort parsing with hidden syntax. In
SIGMOD, 2004.

1118

