
Crowdsourcing Algorithms for Entity Resolution

Norases Vesdapunt

Stanford University

norases@cs.stanford.edu

Kedar Bellare

Facebook

kedar.bellare@gmail.com

Nilesh Dalvi

Facebook

nileshdalvi@gmail.com

ABSTRACT
In this paper, we study a hybrid human-machine approach
for solving the problem of Entity Resolution (ER). The goal
of ER is to identify all records in a database that refer to
the same underlying entity, and are therefore duplicates of
each other. Our input is a graph over all the records in a
database, where each edge has a probability denoting our
prior belief (based on Machine Learning models) that the
pair of records represented by the given edge are duplicates.
Our objective is to resolve all the duplicates by asking hu-
mans to verify the equality of a subset of edges, leveraging
the transitivity of the equality relation to infer the remaining
edges (e.g. a = c can be inferred given a = b and b = c). We
consider the problem of designing optimal strategies for ask-
ing questions to humans that minimize the expected number
of questions asked. Using our theoretical framework, we an-
alyze several strategies, and show that a strategy, claimed
as “optimal” for this problem in a recent work, can perform
arbitrarily bad in theory. We propose alternate strategies
with theoretical guarantees. Using both public datasets as
well as the production system at Facebook, we show that
our techniques are e↵ective in practice.

1. INTRODUCTION
Entity Resolution (ER) is the problem of identifying records

in a database that refer to the same underlying real-world
entity. ER is a challenging problem since the same entity
can be represented in a database in multiple ambiguous
and error-prone ways. Recently, the availability of crowd-
sourcing resources such as Amazon Mechanical Turk (AMT)
has provided new opportunities for improved ER, since hu-
mans are usually better than machines at performing ER
tasks. This is because humans can exploit domain knowl-
edge and other expertise to identify duplicates more easily.
For example, given four places (a) Stanford University,
(b) Standford Univ., (c) Stanford and (d) Stanford Uni-
versity Church, it is easy for a human to tell that (a), (b)
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and (c) are about the same entity and (d) refers to a dif-
ferent entity, whereas it would be very challenging for an
automated system to do so.

In this paper, we study a hybrid human-machine approach
for ER where a machine learned model first assigns candi-
date pairs of records a probability about how likely they are
to be duplicates, and then we ask humans questions about
record pairs until we have completely resolved all records
in our database. Asking humans about all possible record
pairs can be prohibitively expensive and time-consuming. If
our database contains n records we may need to ask O(n2)
pairwise questions for ER. In general, we can exploit the
transitive nature of the equality relation to reduce the num-
ber of questions we ask the crowd [16]. For example, con-
sider the Stanford example described above. If the crowd
first answers a = b and then a 6= d, we can infer that b 6= d,
therefore saving one question. On the other hand, if the
crowd first answers a 6= d and then b 6= d, we still need to
ask the crowd about whether a =? b. The example shows
that the order in which we ask questions can a↵ect the num-
ber of questions required to completely resolve all duplicates.
In this paper, we consider the problem of devising optimal
strategies for asking questions to the crowd, based on the
pairwise matching probabilities, that minimize the expected
numbers of questions required.

Recently, Wang et al. [16] posited that the strategy of ask-
ing questions in decreasing order of pairwise probability is
the optimal strategy for this problem. However, we show in
this paper that the claim is not correct. In fact, we show
that computing the optimal strategy is NP-hard and fur-
thermore, we prove that Wang et al.’s strategy can be ⌦(n)
worse than optimal, where n is the number of records in the
database.

We analyze two alternate strategies and provide theoret-
ical bounds on the cost of each strategy. The first strategy
simply asks pair of records in random order. Surprisingly,
although this approach ignores probabilities altogether, we
find that it performs well both in theory and practice. Al-
though this random strategy has been used in several other
papers as baseline (e.g., [10, 16, 18]), all the work that we
know of does not prove the theoretical bounds and this is
non-trivial. Our second strategy fixes a priority over records
based on the expected number of duplicates and then for
each record asks whether it is a duplicate of a higher-priority
record in decreasing order of matching probability until a
match is found. We theoretically prove that both strategies
are at most O(k) worse than optimal, where k is the ex-
pected number of clusters. We compare various strategies on
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Figure 1: Duplicates of Stanford University

two real-world datasets and show that our node-prioritized
strategy can save an order of magnitude more questions over
Wang et al. [16]’s in practice. We also demonstrate that
both our strategies are robust to adversarial probabilities.
Although this scenario is not common, it can indeed arise
when there are systematic biases in a machine learning sys-
tem for entity resolution.

The summary of our contributions is as follows:

• We formulate the problem of minimizing the expected
number of crowdsourcing questions for deduplication
(Section 3).

• We analyze worst case bounds and prove that Wang et
al. [16]’s strategy can be ⌦(n) worse than optimal. We
also show that finding the optimal strategy is NP-hard
(Section 4).

• We present the randomized and node-prioritized strate-
gies and prove that they are at most O(k) worse than
optimal (Section 5).

• We evaluate our algorithms against optimal, andWang
et al. [16]’s using real-world datasets (Section 6).

2. DEDUPLICATION AND THE CROWD
In this section, we describe our deduplication problem,

and give an overview of the Facebook Crowdsourcing sys-
tem.

2.1 Deduplication
Our motivation for this work was deduplicating the Face-

book places database. Our places database contains hun-
dreds of millions of places across the world and predomi-
nantly consists of user-generated content (UGC). Facebook
lets users search for places and check-in to them. When
users cannot find a place they are trying to check-in to,
they can create a new place. The place then gets added to
the database and is available for subsequent users to search
and check-in to.

There are various reasons why duplicate records arise in
our database. The place that the user is trying to check-in
to might exist in the database, but not in the results of the

Figure 2: Crowdsourcing Flow

search query. Search failures can happen for two reasons: (1)
the user search query might have a typo, alternate spelling,
abbreviation, etc., and, (2) the user might try to check-in
to a place from a physical location that is far away from the
actual place location, e.g., trying to check-in to a restaurant
on the way back home. These failures might result in the
place not being in the search results or not being ranked at
the top in the search results. In these situations the user
might simply choose to create a new place instead of refin-
ing or altering the search query. Given the extremely high
volume of Facebook check-ins, even a very small fraction of
search failures, for the reasons outlined above, can result in
a large number of duplicates.

The fact that our database predominantly consists of UGC
makes it an extremely challenging deduplication problem.
When users create places, they do not necessarily add de-
tailed attributes. E.g., a user trying to check-in to a restau-
rant might not know the full street address, the business
phone or the website for the restaurant. This leads to severe
attribute sparsity, reducing the e↵ectiveness of automated
deduplication techniques. User generated content also im-
plies that there is no standardization in terms of naming
places. Examples of this includes descriptions like “GocHi
Japanese Fusion Tapas” vs. “Gochi Asian Restaurant”,
abbreviations like “JF Kennedy Intl. Arpt.”, misspellings,
alternate spellings, and so on.

Further, deduplication often requires domain knowledge
that is hard to completely capture algorithmically. For ex-
ample, the pairs “Newpark Mall Gap Outlet” and “Newpark
Mall Sears Outlet” have a very high string similarity, but
separating them requires the domain knowledge that they
represent two di↵erent store names in the same mall. De-
duplication also frequently requires geographical knowledge.
For example, Fig. 1 shows all the places called “Stanford
University” that users have created in the San Francisco
Bay Area, along with the locations where they were cre-
ated. Merging them requires the geographical knowledge
that there is a single Stanford University campus in the en-
tire region.

We train a machine learning model that predicts record
pairs that are potential duplicates, along with confidences.
However, in light of the challenges described in this sec-
tion, we use our model in conjunction with crowdsourcing.
Crowdsourcing allows us to discover false positives and false
negatives that arise from imperfect machine learned proba-
bilities.
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2.2 Facebook Crowdsourcing System
Facebook lets any user suggest edits to the places database

through its crowdsourcing system called Places Editor [1].
Users can suggest attributes like address, phone, website
and category for places with missing attributes, review sug-
gestions by other users, as well as review potential dupli-
cates. Figure 2 shows a snapshot of the interface for re-
viewing duplicates. The interface shows a pair of places, the
attributes of each place, and a map containing the locations
where they were created. We use this interface to review the
candidate pairs generated by our machine learned model as
described in the previous section. We currently ignore when
users answer “Not Sure” but it can be useful for estimating
the di�culty of the candidate pairs. The crowdsourcing in-
terface gets hundreds of thousands of suggestions each day
from the users.

Note that, as with any crowdsourcing system, we cannot
assume that the users are always correct. Hence, we have to
ask the same question to multiple users to improve the confi-
dence of the answers. Several techniques have been proposed
in the literature for reconciling the answers from multiple
users, which range from simple majority voting to sophisti-
cated matrix factorization techniques [6, 9, 12]. Facebook
crowdsourcing system maintains a reliability score for each
user based on all the previous suggestions. Given any ques-
tion that we want to resolve, the system repeatedly asks
users the question until “enough” users with “enough” re-
liability “agree” on the answer. The exact details are not
important. For the purpose of this paper, we assume that
we have an abstraction that, given any question, reliably
returns the truth value of the question using the crowd.

2.3 Crowdsourcing Entity Resolution
When resolving duplicate candidate pairs, the order in

which they are resolved matters. We illustrate with an ex-
ample.

Example 1. Consider the following three records:

a : SFO San Francisco International Airport

b : Starbucks San Francisco International Airport

c : Starbucks SFO

Records b and c are duplicates, while a refers to a distinct
entity. Suppose all the three pairs (a, b), (b, c) and (a, c) are
generated as duplicate candidates that need to be reviewed by
the crowd. If the pair (b, c) is asked first, followed by (a, c),
we gain the knowledge that b is same as c and a is distinct
from c, which allows us to infer that a is distinct from b. On
the other hand, if we ask (a, b) first and (a, c) next, we don’t
learn anything about the third edge, so we have to review the
third pair as well. Thus, di↵erent orderings require di↵erent
number of crowd labels.

The focus of this paper is to design strategies for review-
ing duplicate pairs, based on the confidences given by the
machine learned models, that minimize the crowdsourcing
e↵ort in expectation. The next section formally defines the
problem.

3. PROBLEM FORMULATION
Let X = {x1, · · · , xn

} be a set of records. Let G(X, E) be
an undirected graph on X. Let p be a function that assigns,

to each edge e 2 E a number p(e) 2 [0, 1]. Let P denote the
probability distribution on undirected graphs over X, where
each edge (x

i

, x
j

) is chosen independently with probability
p(x

i

, x
j

). In other words, p(x
i

, x
j

) denotes the probability
that x

i

and x
j

are matching. x
i

matches x
j

when they refer
to the same real-world entity. Therefore, an edge (x

i

, x
j

)
exists i↵ x

i

and x
j

are matching.
We say that a graph C over X is a clustering of X if it is

transitively closed. Thus C is a partition of X into cliques
where all records in each clique represents a distinct real-
world entity. We call each clique a cluster of C. Let L(G)
denote the set of subgraphs of G which are clusterings of X.

Let � denote the event that a graph chosen from the
distribution P is a clustering. Let Q = P(. | �) denote
the probability distribution P conditioned on the event �.
Thus, Q defines a distribution over L(G).

c 
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b 
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Figure 3: Problability Distribution P for X = {a, b, c}
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Figure 4: L(G) for Figure 3

Example 2. Consider P and X in Figure 3. Each record
pair has the match probability of 0.5, i.e., p(a, b) = p(b, c) =
p(a, c) = 0.5. Out of all 8 possible worlds, three of them
(marked with red crosses in Figure 4) are not transitively
closed. Thus, there are 5 clusterings L(G). For any cluster-
ing C in Figure 4, Q(C) = 0.2.

Querying Humans We can ask a human to verify whether
an edge exists or not. Recall that an edge connects two
records that are matching (duplicates). We can ask a hu-
man questions of the form “Does x1 represent the same
real-world entity as x2?” Let us denote this question as
query(x1, x2). Let us assume that humans are perfect (i.e.,
asking humans is equivalent to asking an oracle). Humans
make mistakes but we can use simple techniques such as ma-
jority vote to reduce human errors (or sophisticated tech-
niques discussed in [6, 9, 12]). There are two possible re-
sponses for query(x1, x2): YES and NO. A human answers
YES (NO) when x1 and x2 are matching (non-matching).
Evaluation Strategies Consider an unknown clustering
C along with an oracle access to C (abstraction for query-
ing perfect crowds) that, given a pair of nodes x1, x2, tells
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whether C contains the edge (x1, x2). We want to find a
strategy that finds out C with as few oracle calls as possi-
ble. We can represent a strategy ⇡ by a decision tree whose
internal nodes are pairs of records in X with two outgoing
edges corresponding to the response of the oracle. Each leaf
is labeled with a clustering C such that C is the unique clus-
tering of X that is consistent with all oracle responses. The
cost of the strategy, denoted cost(⇡), is the expected num-
ber of oracle calls that ⇡ makes on a clustering drawn from
the distribution Q. We define the crowdsourcing problem
as:

Problem 1 (crowd-cc). Given an problem instance
(G(X, E), p), find the strategy ⇡ with the smallest cost(⇡).

In the rest of the paper, we assume that p(e) 2 (0, 1) for
all edges e, as p(e) = 0 is equivalent to removing the edge
and p(e) = 1 is equivalent to merging the edge in the original
problem definition. Further, we assume that G is connected,
since otherwise, we can independently work on each of the
connected component.

4. COMPLEXITY ANALYSIS
Let (G(X, E), p) be a problem instance, where G is a con-

nected graphs with |X| = n, and p(e) 2 (0, 1) for all edges
e 2 E. Let us denote the optimal strategy by ⇡

opt

. We want
to analyze the complexity of computing ⇡

opt

, and compare
the performance of various heuristics w.r.t. the optimal.
Given a set of edges T along with the response of the

oracle on the edges, we say the edges positively (negatively)
infer an edge e, if for all C 2 L(G) consistent with T , we
have e 2 C (e 62 C).

Lemma 3. Let T = T+ [ T� be a set of edges along with
the oracle responses, where T+ are the edges with YES re-
sponse, and T� with NO response.

1. An edge (x1, x2) can be positively inferred from T i↵
there is a path from x1 to x2 using T+ edges.

2. An edge (x1, x2) can be negatively inferred from T i↵
there exists nodes x0

1, x
0
2, s.t. (1) there is a path from

x1 to x0
1 using T+ (2) there is a path from x2 to x0

2

using T+, and (3) the edge (x0
1, x

0
2) is either absent in

G or belongs to T�.

Lemma 3 is the prior result from Wang et al. [16]. See
their Lemma 1 for more details.
We assume that a strategy never makes redundant queries,

i.e., it never queries edges which can be inferred, positively
or negatively, from the previous query responses.

4.1 Worst case bounds
Given a strategy ⇡, let cost(⇡)/cost(⇡

opt

) denote the ap-
proximation ratio of ⇡. The main result of this section is an
upper bound on the approximation ratio of any arbitrary
strategy. In particular, we show that every strategy is at
most O(n) worse than the optimal.
Let C 2 L(G) be any clustering of X. For a strategy ⇡, let

cost(⇡, C) denote the number of queries that ⇡ makes on
the clustering C. Thus, cost(⇡, C) lies in the range [1, n2].
Given a cluster c 2 C, let edges(c) denote all the edges in
c. For pairs of clusters c1, c2 2 C, let edges(c1, c2) denote
all edges (n1, n2) in G such that n1 2 c1, n2 2 c2.

Lemma 4. For any cluster c 2 C, ⇡ asks exactly |c| � 1
edges in edges(c).

Proof. We will show that the set of edges that ⇡ queries
in edges(c) must form a spanning tree of c. It is easy to see
that the set cannot contain a cycle, because the last edge in
the cycle can be positively inferred from the previous edges,
and hence, will be redundant.

Next, we show that the queries in edges(c) must connect
c. If not, then we can divide c into subgraphs c1 and c2 such
that ⇡ does not query any edges across them. Let C0 be
the clustering obtained from C by breaking c into c1 and c2.
Then, using the given queries, ⇡ cannot distinguish between
C and C0, which is a contradiction.

Thus, queries in edges(⇡, c) form a spanning tree of c, and
thus have size exactly |c|� 1.

Lemma 5. For any cluster c1, c2 2 C, if edges(c1, c2) =
c1 ⇥ c2, then ⇡ queries at least one edge in edges(c1, c2).

Proof. Let C0 be the clustering obtained from C by
merging c1 and c2. Since G contains all possible edges be-
tween c1 and c2, C

0 2 L(G). If ⇡ does not query any edge in
edges(c1, c2), it cannot distinguish between C and C0.

Lemma 6. For any strategy ⇡ and clustering C,

cost(⇡, C)  2(n+ 1).cost(⇡
opt

, C)

Proof. Recall that C is a set of clusters (cliques). We
divide the clusters in C into two groups, C1 and C2, where
C1 is the set of all the singleton clusters and C2 contains
the rest. Let |C1| = k1 and |C2| = k2. The total number of
nodes in C1 is exactly k1 (since all are singleton), while the
total number of nodes in C2 is n� k1. Since each cluster in
C2 is at least of size 2, we have k2  (n� k1)/2.

The total number of intra-cluster edges queried by any
strategy, using Lemma 4, is given by

X

c2C

|c|� 1 = n� |C| = n� k1 � k2

The total number of inter-cluster edges can be divided into
two groups: (1) edges between two clusters in C1, and (2)
all other inter-cluster edges. Let G contain l edges between
clusters in C1. Since all clusters in C1 are singleton, by
Lemma 5, any strategy must query all these edges. Thus,

cost(⇡
opt

, C) � (n� k1 � k2) + l � (n� k1)/2 + l

Further, there can be at most n.(n�k1) edges in the second
group. Thus,

cost(⇡, C)  (n� k1 � k2) + l + n.(n� k1)

 (n+ 1)(n� k1) + l

Thus, the Lemma follows.

The following is immediate.

Theorem 7. For any strategy ⇡,

cost(⇡)  2(n+ 1).cost(⇡
opt

)

Thus, any strategy is at most O(n) worse than optimal.

1074
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a 

b 

Figure 5: Example of Two Clusters: {a} {b,c}

4.2 Analysis of Wang et al. [16] strategy
Wang et al. [16] observe that it is beneficial to first query

the edges which are more likely to be true, as the following
example demonstrates.

Example 8. Suppose we have X = {a, b, c}. Consider
the clustering C shown in Fig. 5. If we query in the order
(a, b), (a, c), (b, c), we will have to query all the three edges in
order to infer C. On the other hand, if we query in the order
(b, c), (a, b), (a, c), then, after evaluating the first two edges,
we can infer the value of the third edge without querying it.
Thus, it is beneficial to first query edges that are likely to be
in the clustering.

Let ⇡
dec

denote the strategy where edges are queried in
the decreasing order of their probability p(e), skipping the
edges whose values can be inferred from the previous an-
swers. Based on the intuition of the above example, Wang
et al. [16] posit, without a formal proof, that ⇡

dec

is the
“optimal” strategy for the problem. However, in this paper,
we show that the problem of finding the optimal strategy is
NP-hard. Further, we show that there exist instances of the
problem where ⇡

dec

performs ⌦(n) worse than the optimal.
In light of Theorem 7, this shows that ⇡

dec

can be as bad as
an arbitrary strategy can be.

We start by showing a relationship between our crowd-

cc problem and the correlation clustering problem. In cor-
relation clustering [4], we are given a complete graph
H(V,E+, E�) on vertices V , where edges are divided into
two sets, positive edges E+ and negative edges E�. The
problem is to find a clustering of V that minimizes the to-
tal number of disagreements, defined as positive edges going
across clustering or negative edges within clusters.

Before we present a proof, we describe an example when
⇡
dec

is suboptimal while correlation clustering finds an op-
timal order.

b"

a"

c"

""

e"

d"

f"

""

Figure 6: Counter Example for ⇡
dec

Example 9. In figure 6, we have the ground truth with
two cliques (clusters) of size 3. Each clique represents a
real-world entity, i.e., all nodes in the clique are duplicates.
Nodes in di↵erent cliques are not duplicates. For example,
a and b are duplicates while a and d are not duplicates.

Optimal Order ⇡
opt

: The optimal strategy asks two ques-
tions for pairs in each clique and one question for a pair
between the two cliques. For instance, one possible optimal
strategy queries (a, b) and (b, c) (pairs within the left clique)
and merges them using positive transitive relations. Then it
queries pairs (d, e) and (e, f) (pairs within the right clique)
and merges them similarly. Finally, it asks a pair (a, d)
which will answer NO, thus, completely resolving the graph.

b"

a"

c" e"

d"

f"

Figure 7: Probability Distribution P for Figure 6

b"

a"

c" e"

d"

f"

Figure 8: Correlation Clustering Evaluation

In reality, we do not know whether an edge exists between
nodes or not and we use probability estimates. These esti-
mates can be noisy because the machine learning model may
make erroneous predictions. Let Figure 7 be our probability
graph. Let the probability estimates for edges between nodes
inside a clique (solid edges) be q = 1 � ✏. Let the prob-
ability estimates for edges between nodes across two cliques
(dashed edges) be p = 1�✏0 for some ✏0 < ✏, i.e., p is slightly
greater than q. Therefore, E+ consists of all of these solid
and dashed edges. All other edges are 2 E�.
Decreasing Edge Probablity Order ⇡

dec

: In this case,
⇡
dec

will ask cross edges first: (a, d), (c, d), (c, e), and (b, f).
This order will receive NO for all questions above. Then it
proceeds to ask edges inside the two cliques and will receive
YES for all questions. The algorithm can apply positive rela-
tions here and ask two questions for each clique. This order
asks three questions more than optimal in this case because
it asks all cross edges first.
Correlation Clustering: On the other hand, if we use
correlation clustering, we can achieve the optimal order in
this case. In correlation clustering, the objective function
is trying to minimize the disagreements (cost), namely the
number of edges across clusters and the number of non-edges
within clusters. For example, if we split the graph into two
clusters {a, b, c}{d, e, f}, the disagreements are dashed edges
shown in Figure 8: (a, d), (c, d), (c, e), and (b, f). Thus, the
cost is 4. On the other hand, if we put all nodes into one
cluster {a, b, c, d, e, f}, the disagreements are dotted edges
(these are non-edges) shown in Figure 8: (a, e), (a, f),
(c, f), (b, d), and (b, e). Thus, the cost is 5. Since the cost
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of splitting the graph into two clusters is lower than putting
every node in one cluster, correlation clustering will choose
to split. We can easily see that other splits are more costly.
Therefore, correlation clustering will find the true clusters.
Asking questions for edges within the cluster first and then
ask one question for an edge across clusters will yield the
optimal order.

Given an instance H(V,E+, E�) of correlation clustering
problem, we create an instance (G(X, E), p) of crowd-cc

as follows. Let ✏ > 0 be a real number. Let X = V , E =
E+ [ E�, and

p(e) =

(
1� ✏ for e 2 E+,

✏ for e 2 E�.

We now show that ⇡
dec

can be ⌦(n) worse than ⇡
opt

. Let C0

denote the clustering of X that minimizes the disagreements
in H. Assume for now that C0 is unique. Let k0 denote the
number of disagreements of C0, and let ✏0 = ✏

1�✏

.

Lemma 10. Let H,G,C0 be as defined above, and let ✏0 =
n�n�2. Then, for any strategy ⇡,

cost(⇡) = cost(⇡, C0) +O(1)

Proof. Let m = |E|. For any clustering C with k dis-
agreements, it is straightforward to see that

Q(C) =
✏k(1� ✏)m�k

P(�)
=

(1� ✏)m

P(�)
✏k0

Thus, for any clustering C 6= C0,

Q(C)  ✏0Q(C0)

Since there are less than nn possible clusterings (each clus-
tering can be represented as a function from node to a canon-
ical node, and there are at most nn functions from [1, n] to
[1, n]),

Q(C0) = 1�
X

C 6=C0

Q(C) > 1� nn✏0Q(C0) = 1� 1
n2

Thus,

cost(⇡) � Q(C0)cost(⇡, C0)

> cost(⇡, C0)�
cost(⇡, C0)

n2

� cost(⇡, C0)� 1

Similarly,

cost(⇡) = Q(C0)cost(⇡, C0) +
X

C 6=C0

Q(C)cost(⇡, C)

 cost(⇡, C0) +
X

C 6=C0

Q(C)cost(⇡, C)

 cost(⇡, C0) + n2
X

C 6=C0

Q(C)

 cost(⇡, C0) + n2(1�Q(C0))

< cost(⇡, C0) + 1

Thus, the lemma follows.

The lemma tells us that the cost of any strategy is dominated
by the cost it incurs on the clustering C0. Now, to show that
strategy ⇡

dec

can be ⌦(n) worse than the optimal, we need
the following lemma.

Lemma 11. There exists an instance H(V,E+, E�) of the
correlation clustering problem such that |V | = n, and the
clustering C0 which minimizes the total disagreements has
the following properties:

1. C0 has two clusters.

2. There are ⌦(n2) positive edges crossing the two clusters
in C0.

Before we prove the Lemma, let’s see how this gives us
the desired result. Let {c1, c2} denote the two clusters of
C0. Consider the corresponding (G(X, E), p) crowdsourcing
problem. Consider a strategy ⇡0 that queries (a) some span-
ning tree of c1, then (b) some spanning tree of c2, then (c)
an edge across, and (d) all remaining edges in some order.
For the clustering C0, ⇡0 will be done after step (c), and
hence, cost(⇡0, C0) = |c1|� 1+ |c2|� 1+ 1 = n� 2. Hence,
by Lemma 10, cost(⇡0) = cost(⇡0, C0) + O(1) = O(n).
The strategy ⇡

dec

queries in decreasing order of p. Since
all positive edges (edges in E+) have p(e) = 1 � ✏, ⇡

dec

can choose to query them in any order. In particular, ⇡
dec

may choose to first query all positive edges crossing c1 and
c2. We can also choose p(e) = 1 � ✏0 for all positive edges
crossing the clusters, for some ✏0 < ✏, to guarantee that ⇡

dec

chooses them first. For the clustering C0, by Lemma 3, none
of the edges crossing the clusters can be inferred from the
rest. Hence, for C0, ⇡dec

ends up querying all ⌦(n2) positive
edges crossing two clusters. Thus, cost(⇡

dec

, C0) = ⌦(n2),
and hence, cost(⇡

dec

) = ⌦(n2). Since there exists a strat-
egy ⇡0 with cost O(n), ⇡

dec

is ⌦(n) worse than the optimal.
It now remains to prove Lemma 11, which we show next.

Proof. (Lemma 11) We will construct such an instance
H(V,E+, E�). Let V = L [ R, where L = {l1, · · · , ln} and
R = {r1, · · · , rn} are two sets of vertices, E+ consists of
all edges within L, all edges within R, and all edges (l

i

, r
j

)
such that i+j ⌘ 0 (mod 4), and E� consists of all remaining
edges. We will show that C0 consists of two clusters, L and
R.

Assume that C0 = {c1, c2, · · · , ck}, where c1, · · · , ck parti-
tion the vertices V . Let L(c

i

) denote L\c
i

and R(c
i

) denote
R \ c

i

. Call a cluster c
i

left-heavy if |L(c
i

)| > |R(c
i

)|, right-
heavy if |L(c

i

)| < |R(c
i

)|, and balanced otherwise. Given
two subsets V1, V2 of V , let pos(V1, V2) denote the num-
ber of positive edges between the two sets, neg(V1, V2) de-
note the number of negative edges, and let d(V1, V2) =
pos(V1, V2)�neg(V1, V2). We will show that there can be at
most one left-heavy and one right-heavy clusters. Consider
any two clusters c

i

, c
j

. If we merge the two clusters in C0,
we save pos(c

i

, c
j

) disagreements, but introduce neg(c
i

, c
j

)
new disagreements. Total savings is given by

S = d(c
i

, c
j

)

= d(L
i

, L
j

) + d(R
i

, R
j

) + d(L
i

, R
j

) + d(R
i

, L
j

)

= |L(c
i

)||L(c
j

)|+ |R(c
i

)||R(c
j

)|+ d(L
i

, R
j

) + d(R
i

, L
j

)

= (|L(c
i

)|� |R(c
i

)|)(|L(c
j

)|� |R(c
j

)|) +
2pos(L

i

, R
j

) + 2pos(R
i

, L
j

)

If c
i

and c
j

are both left-heavy or both right-heavy, the first
product term in the above equation will be strictly positive,
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and hence, S will be strictly positive, contradicting the op-
timality of C0. Hence, there are at most one left-heavy and
one-right heavy clusters. Further, if c

i

is a balanced cluster,
the first term is 0, and hence S � 0. For C0 to be optimal, S
must be exactly 0. So for any balanced cluster in C0, we can
merge it with any other cluster without a↵ecting the number
of disagreements. Let C0 = {c

l

, c
r

, b1, · · · , bk}, where c
l

is
left-heavy, c

r

is right-heavy, and each b
i

is balanced. Merge
each balanced cluster with one of the heavy clusters to ob-
tain C0

0 = {c0
l

, c0
r

}, such that C0
0 is another optimal solution

that has same number of disagreements as C0. W.l.o.g., as-
sume that |c0

l

| � |c0
r

|. Thus, |L(c0
l

)| � n/2. Suppose L(c0
r

) is
non-empty. Then, if we move all of L(c0

r

) from c0
r

to c0
l

, we
save at least pos(L(c0

l

), L(c0
r

)) � |L(c0
r

)|n/2 disagreements,
since each vertex in L(c0

r

) is connected to every vertex in
L(c0

l

). Also, we introduce pos(L(c0
r

), R(c0
r

))  |L(c0
r

)|n/4
disagreements, because each L vertex is connected to at
most n/4 vertices in R. Hence, we have a strictly bet-
ter solution, which is a contradiction. Thus, L(c0

r

) must
be empty. Similarly, R(c0

r

) must be empty. Hence, C0
0 =

{L,R}. Hence, C0 = {L,R}, since there cannot be a non-
trivial balanced cluster that is a subset of L or R.

Thus, we get the following result.

Corollary 12. There exists instances of crowd-cc such
that ⇡

dec

is ⌦(n) worse than ⇡
opt

.

4.3 Complexity of Computing ⇡
opt

Lemma 10 shows that when all probabilities are close to
0 or 1, then the problem of finding the optimal strategy be-
comes closely related to the problem of finding the cluster-
ing in a graph that minimizes the number of disagreements,
which is a known NP-hard problem. By extending the ideas
in the proof of the Lemma, we can show the following.

Theorem 13. The crowd-cc problem is NP-hard.

We omit the proof for lack of space.

5. ALGORITHMS
In the previous section, we analyzed the ⇡

dec

algorithm,
and showed that it can perform ⌦(n) worse than the optimal.
In this section, we propose some alternate algorithms with
better theoretical guarantees.

We use query(x1, x2) to denote a function that asks the
pair of records to humans, and returns the Boolean response,
where true represents that the records are duplicates, and
false otherwise.
All of our algorithms use the following subroutine, called

query-cache(x1, x2), which is defined as follows:

Subroutine 1 query-cache(x1, x2)

1: if (x1, x2) can be inferred from the set of human re-
sponses according to Lemma 3 then

2: return the inferred value
3: else
4: r  query(x1, x2)
5: add r to the set of responses
6: return r
7: end if

We can easily implement query-cache to run in time O(n).
In prior work, Wang et al. [16] presented a version of query-
cache called the DeduceLabel algorithm. We maintain a set
of connected components connected by the positive edges.
For each node, we store the mapping to its component. We
also maintain, for each pair of components, where there is
at least one negative edge between them. Given a pair of
nodes, we can check whether they can be inferred from the
current set of responses in constant time. They can be pos-
itively inferred i↵ their components are same, and can be
negatively inferred i↵ their components have at least one
negative edge. Also, given a new response, we can update
our data structures in constant time. If it is a negative
response, we simply add a negative edge between the corre-
sponding components, if it does not already exist. If it is a
positive response, we merge the two components, and union
their negative edges.

Using this subroutine, the ⇡
dec

algorithm that we de-
scribed in the previous section is formally presented in Al-
gorithm 2.

Algorithm 2 ⇡
dec

(G(X, E),p)

1: for (x
i

, x
j

) 2 decreasing p(x
i

, x
j

) do
2: query-cache(x

i

,x
j

)
3: end for

5.1 Randomized Querying
Since ⇡

dec

can perform badly in the worst case, we present
some alternatives. The first alternative, which we call ⇡

rand

,
is extremely simple. It queries edges in random order, as
presented in Algorithm 3. Every time an edge is labeled as
positive, it contracts the edge.

Algorithm 3 ⇡
rand

(G(X, E),p)

1: while there are unresolved edges in G do
2: (x

i

, x
j

) random edge in G
3: r  query-cache(x

i

,x
j

)
4: if r ⌘ true then
5: G G/(x

i

, x
j

) // contract edge (x
i

, x
j

)
6: end if
7: end while

While ⇡
rand

seems to be inferior to ⇡
dec

since it completely
ignores the probabilities, we show that, in theory, it has
better guarantees than ⇡

dec

owing to randomization.
We will show that ⇡

rand

is at most O(k) worse than op-
timal, where k is the expected number of clusters in the
graph. Since, in general, the number of clusters is much
smaller than the number of nodes, we expect ⇡

rand

to per-
form well in practice. Recall that, in contrast, ⇡

dec

can be
⌦(n) worse than the optimal, even when there are only 2
clusters.

Given the problem instance (G(X, E),p), consider any valid
clustering C of G that has k clusters. We will show that, on
this world C, ⇡

rand

makes O(k) times the number of queries
made by ⇡

opt

.
Suppose k � n/2. Then, by Lemma 6, the assertion is

true for any strategy. So let us assume than k < n/2. Let
a1, a2, · · · , ak

be the sizes of the clusters. By Lemma 4, any
solution has to ask at least (a1�1)+ · · ·+(a

k

�1) = n�k =
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Figure 9: Illustration for ⇡
node

⌦(n) edges. We will show that ⇡
rand

asks at most O(kn)
edges.

Lemma 14. Let (G(X, E),p) and C be as defined above.
Then, if a random edge is chosen from E, with probability
⌦(1/k), the edge is a positive edge in C.

Proof. The number of positive edges in C is exactly
 
a1

2

!
+ · · ·+

 
a
k

2

!

= 1/2(
X

a2
i

)� n/2

By a classic inequality for non-negative numbers,

(
X

a2
i

)/k � (
X

a
i

/k)2

Applying the inequality, the number of positive edges in C
is at least k/2(

P
a
i

/k)2 � n/2 = n2/2k � n/2 = ⌦(n2/k),
since k < n/2. Since there are O(n2) total edges in G, with
probability ⌦(1/k), a random edge is positive.

It follows from the Lemma that if we randomly pick edges
from G, then in at most O(k) steps, we will get a positive
edge. When we contract the edge, the new graph has the
same number of clusters, with one less node. Inductively
applying the Lemma on the contracted graph, we can show
that in at most O(nk) steps, we can reduce the graph G to at
most O(k) nodes. At this point, with O(k2) more queries,
we can resolve all edges. The total number of queries is
O(nk + k2) = O(nk). Thus, we have the following:

Lemma 15. Let (G(X, E),p) be a problem instance and C
be a clustering of G with k clusters. Then,

cost(⇡
rand

, C) = O(k)cost(⇡
opt

, C)

By taking expectation of all possible clusterings, we have
the following result.

Theorem 16. Let (G(X, E),p) be a problem instance and
let k be the expected number of clusters. Then,

cost(⇡
rand

) = O(k)cost(⇡
opt

)

5.2 Node Priority Querying
While the randomized algorithm has nice theoretical guar-

antees, it does not use the probabilities at all. In this section,
we propose an algorithm that still has similar guarantees,

but can also leverage the input probabilities. The algorithm
is again extremely simple: it fixes a global priority of nodes.
For each node, it queries it with all nodes with a higher pri-
ority, until we get a match. We call this algorithm ⇡

node

,
and is described in Algorithm 4. This version does not yet
use probabilities, but we will show later how the algorithm
can be modified to make use of them.

Algorithm 4 ⇡
node

(G(X, E),p)

1: for i = 1! n do
2: for j = 1! i� 1 do
3: r  query-cache(x

i

,x
j

)
4: if r ⌘ true then
5: break
6: end if
7: end for
8: end for

First, we explain the intuition for ⇡
node

using the illustra-
tion in Figure 9.

Example 17. Let X = {a, b, c}. Let the node ordering be
a,b, and then c. We will describe di↵erent cases in Figure 9
in detail. ⇡

node

first compares a and b. If query(a,b) an-
swers YES (Case 1), then it merges a and b into a cluster.
Then it only has to compare c with a because the answer
to query(b,c) can be inferred from the answer to query(a,c)
using transitivity. On the other hand, if query(a,b) answers
NO (Case 2), it splits a and b into two clusters. In this case,
the worst case has to compare c with both a and b. This case
happens when query(a,c) answers NO because the relation-
ship between b and c cannot be inferred using transitivity.
If query(a,c) answers YES, it merges a and c into a cluster
and exits.

Next we show that, irrespective of the node ordering, the
algorithm satisfies the following property.

Theorem 18. Let (G(X, E),p) be a problem instance and
let k be the expected number of clusters. Then,

cost(⇡
node

) = O(k)cost(⇡
opt

)

Proof. Let C be any clustering of G with k clusters. We
will show that cost(⇡

node

, C) = O(k)cost(⇡
opt

, C).
Suppose after t iterations of the outer loop, the algorithm

has processed X
t

= {x1, · · · , xt

} nodes. Let b
t

denote the
number of connected components of X

t

formed by the set
of positive edges (edges where query returned true) after
iteration t. We will show, by induction, that b

t

 k. Clearly
b0 = 0  k, since X

t

is empty. Suppose b
t

 k. Since
X

t+1 contains one new node, the number of components can
increase by at most 1. If b

t

< k, this implies that b
t+1  k.

So assume that b
t

= k. This implies that X
t

contains at
least one node from each cluster of C. Since x

t+1 is queried
with all the previous nodes until a match, it will return a
positive match with some node x0 in X

t

that belongs to
the same cluster as x

t+1. Thus, x
t+1 gets merged with the

component of x0, and hence, b
t+1 remains k.

It follows that for each i in the outer loop, the query-cache
calls query at most k times. This is because, for each of the
connected components, query is called at most once. For ev-
ery other member of the component, the response can be in-
ferred from one member. Thus, the total number of queries
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Algorithm 5 ⇡
node

(G(X, E),p), with priorities

1: Sort X in decreasing order of expected #neighbors
2: for i = 1! n do
3: for j 2 decreasing p(x

i

, x
j

) j = 1! i� 1 do
4: r  query-cache(x

i

,x
j

)
5: if r ⌘ true then
6: break
7: end if
8: end for
9: end for
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Figure 10: Cluster-Size Distribution

asked by ⇡
node

on this clustering is at most nk. On the other
hand, the optimal algorithm requires at least n� k queries.
For k < n/2, we get cost(⇡

node

, C) = O(k)cost(⇡
opt

, C).
For k � n/2, this follows from Lemma 6.

The theorem follows by taking the expectation over all
possible clusterings.

So far, we have not made use of the input probabilities.
However, they can be easily incorporated in the algorithm
to give heuristics that perform really well in practice. Note
that Theorem 18 holds irrespective of the ordering chosen
for the inner and the outer loop. For the inner loop, we sort
{x1, · · · , xi�1} based on decreasing probability of matches
with x

i

. When the probabilities are reliable, we can match
x
i

to the correct cluster early and break. For the outer
loop, we sort by decreasing order of expected number of
neighbours (sums of probabilities of outgoing edges), so that
several nodes in the inner loop can be matched to it. The
final algorithm is presented as Algorithm 5.

6. EXPERIMENTS
We compare all algorithms on three real datasets: Cora,

Places, and Product. We know the ground truth for all of
the record pairs and use all records for the testing set for
all datasets. We reimplement Wang et al. [16]’s approach
(⇡

dec

) as described in Section 5. See Algorithm 2 and the
subroutine query-cache for more details. For each data
point of ⇡

rand

, we take the average recall from 100 runs
for all of our experiments. We implemented our algorithms
in Python and ran experiments in memory on a 1.7GHz
Intel(R) Core i7 processor with 8GB of RAM.

6.1 Datasets

6.1.1 Cora

Cora [14] is a public publication dataset of 1,838 records.
These records come from 190 real-world entities (clusters).
The cluster size distribution is shown in Figure 10. Each
record contains the following attributes: title, author, venue,
date, and pages.
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Figure 11: Similarity-Probability Mappings

We follow the similarity function as in [18] for our Cora
experiments. We use the Jaro measure [19] string similarity
function (ranging from 0 to 1) to compute title and author
similarities between record pairs and return the average sim-
ilarity. Figure 11 shows similarity-probability mappings for
Cora record pairs with similarity of at least 0.7. Record pairs
with similarity below 0.7 match with probability 0.15%.

We map similarities to probabilities using buckets because
it is simple and e↵ective (see Section 3.1 in [18] for more
discussion). We use the all record pairs with similarity of at
least 0.7 to compute these mappings so that our probabilities
are computed from as many samples as possible. We first
evenly divide the record pairs with similarity at least 0.7 into
80 buckets (each bucket contains about 3100 pairs). Then
we use ground truth to compute the probability for each
bucket.

6.1.2 Places

For our second dataset, we use data from our production
system at Facebook. We constructed a dataset of 9000 en-
tities from Facebook Places [2]. This group of entities is
produced by running our machine learning model on the en-
tire dataset, and choosing a subset of the output. There
are 1,493 real-world entities (clusters) in this dataset. The
cluster size distribution is shown in Figure 10.

Our similarity function is a machine learning model that
predicts scores for given record pairs ranging from 0 to 1.
The higher the score, the more similar the record pair is pre-
dicted by machines. Figure 11 shows similarity-probability
mappings for Places record pairs with similarity of at least
0.3. Record pairs with similarity below 0.3 match with prob-
ability 1.41%.

6.1.3 Product

Product [3] is a public product dataset of mappings from
1,081 abt.com products to 1,092 buy.com products. These
records come from 576 real-world entities. The cluster size
distribution is shown in Figure 10. Each record contains the
following attributes: name and price.

We follow the similarity function as in [15] for our Prod-
uct experiments. For each record pair, we compute the
Jaccard Similarity between the token sets generated from
record attributes. Figure 11 shows similarity-probability
mappings for Product record pairs with similarity of at least
0.1. Record pairs with similarity below 0.1 match with prob-
ability 0.0027%.

6.2 Evaluation
We use two di↵erent studies to evaluate our strategies.

The first is the progressive recall study. Here, we study the
pairwise recall of di↵erent strategies as a function of number
of questions asked, where the pairwise recall is defined as
the number of duplicate pairs that can be inferred based
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Figure 12: #Questions vs Recall
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Figure 13: Adversarial #Questions vs Recall

on the questions asked, as a fraction of the total number of
true duplicate pairs. The second is the complete resolution
study, where we study the number of questions required by
each strategy to completely resolve the database. All of our
algorithms have perfect precision, since we assume that our
crowd abstraction is perfect. Thus, we will only focus on
the recall.

6.2.1 Progressive Recall

Figure 12 plots the recall of various strategies as a func-
tion of the number of questions asked. We see that ⇡

node

is
the best strategy overall. For Cora, ⇡

node

achieves 0.7 recall
at 1,000 questions while ⇡

dec

and ⇡
rand

achieve only 0.05
and 0.3 recall respectively. To achieve 0.7 recall, ⇡

dec

and
⇡
rand

require 1,700 and 2,300 questions respectively. Sim-
ilarly, ⇡

node

supersedes both ⇡
dec

and ⇡
rand

for Places. It
is worth noting that for Places, ⇡

rand

requires significantly
fewer questions than ⇡

dec

to achieve the same recall for recall
levels up to 0.95. This is because ⇡

rand

does not use prob-
abilities and in expectation it queries only O(kn) questions
where n=number of nodes and k=number of true clusters.
On the other hand, ⇡

dec

relies on imperfect probabilities pre-
dicted by machines. For Product, ⇡

dec

is the best strategy
for recall levels < 0.9. This is because ⇡

dec

asks the most
likely pairs first while ⇡

node

finds the correct cluster for each
record. ⇡

node

catches up at recall level 0.9 because after k
clusters are discovered, it only needs to ask k questions in
the worst case for each node. The relationships between x
and all other nodes in di↵erent clusters can be inferred us-
ing negative transitivity. For recall levels greater than 0.9,
⇡
node

requires fewer questions than ⇡
dec

. To achieve 0.96 re-
call, ⇡

node

only requires 16,200 questions while ⇡
dec

requires
22,200 questions.
⇡
dec

has a wide range (big di↵erence between the worst
case and best case) of 600 questions for Cora because there

are many indistinguishable pairs. For example, there are
900 pairs with the same similarity score of 0.89.

Figure 13 shows the results for the adversarial case where
the match probabilities are reversed. For example, if p(a, b) =
0.2, the reversal is 1� 0.2 = 0.8. This is the worst case be-
cause the probabilities are the opposite so ⇡

dec

will do the
worst in expectation. This experiment shows that ⇡

node

is
more robust to noisy probabilities than ⇡

dec

is. ⇡
rand

is the
best strategy overall while ⇡

dec

su↵ers the most. For Cora
and Product, ⇡

node

is much closer to ⇡
rand

than ⇡
dec

is. For
Places, ⇡

node

supersedes ⇡
rand

for recall values below 0.5.
For higher recall values, ⇡

node

is still close to ⇡
rand

. ⇡
dec

is
the worst strategy for all recall values. Overall, ⇡

dec

is much
worse than other strategies in the adversarial case.

6.2.2 Complete Resolution

In these experiments, we look at the number of questions
required by each strategy to completely resolve all the du-
plicates. We study this as a function of 1) the percentage of
adversarial pairs, and 2) the granularity levels of probabili-
ties. These experiments allow us to measure the sensitivity
of our three strategies to match probabilities (correctness
and granularity respectively).
%Adversarial Pairs: Here we evaluate strategies based
on their sensitivity to the correctness of match probabili-
ties. Recall that an adversarial pair is a record pair with the
match probability reversed. For example, %Adversarial
Pairs = 10 means that 10% of the candidate pairs have
their match probabilities reversed. We randomly choose the
pairs to reverse the probabilities. Figure 14 plots the num-
ber of questions asked by each strategy at completion as
a function of %Adversarial Pairs. It shows that ⇡

node

is
more robust than ⇡

dec

. ⇡
node

requires fewer questions than
⇡
rand

for most cases except for when most pairs (80-100%)
are adversarial. ⇡

dec

is the most robust for Cora compared
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Figure 15: #Bins vs #Questions

to other datasets. This is because Cora has a lot of large
clusters relative to its number of records. In the best case
scenario, a cluster of size k remains a connected component
when k�1 pairs are present while there are k(k�1)/2 pairs
in the cluster. For example, let us consider a cluster of size
100 that has 100(100 � 1)/2 = 4, 950 candidate pairs. It
is possible to delete all but 99 pairs without disconnecting
the cluster. In our case, if we reverse 98% of the pairs, the
remaining 2% may still connect a 100-record cluster. There-
fore, both strategies ⇡

dec

and ⇡
node

are not a↵ected when
fewer than 70% of the pairs are adversarial. On the other
hand, Product has clusters of size 2 and 3. 10% adversarial
pairs result in both strategies requiring 5% more questions
to complete the resolution. ⇡

dec

can tolerate only 40% and
60% adversarial pairs for Product and Places respectively.

#Bins: Let the number of bins (#Bins) denote the number
of granularity levels of probability, capturing the amount
of information available to the algorithm. The higher the
#Bins is, the more fine-grained the probability. For exam-
ple, #Bins = 10 means we classify candidate pairs into 10
di↵erent bins and within the same bin we cannot distinguish
which pair is more likely to match. Figure 15 plots the num-
ber of questions asked by each strategy at completion as a
function of #Bins. It shows that ⇡

node

is the best strategy
overall. For small #Bins, ⇡

dec

varies a lot and the worst case
of ⇡

dec

requires many orders of magnitude more questions
than ⇡

opt

(optimal). For Cora, we stop asking questions
when all the remaining pairs are below a similarity thresh-
old of 0.7. All algorithms achieve a recall of 0.9963 on com-
pletion. For Places, we use the similarity threshold of 0.3
and ⇡

dec

and ⇡
rand

achieve 0.981 recall while ⇡
node

achieves
0.978 recall. For Product, we use the similarity threshold
of 0.1 and ⇡

dec

and ⇡
rand

achieve 0.9642 recall while ⇡
node

achieves 0.9606 recall. ⇡
node

saves 5,000 questions over ⇡
opt

but the recall loss is only 4 pairs. For Product, ⇡
node

saves
about 28% of questions over ⇡

dec

consistently across di↵er-
ent #Bins. For the other datasets, ⇡

node

saves about 5% of
questions over ⇡

dec

consistently across di↵erent #Bins. Fur-
thermore, as #Bins increases, ⇡

node

requires fewer questions
(very close to ⇡

opt

at the largest #Bins).

Overall, we observe that ⇡
node

consistently supersedes
⇡
rand

and ⇡
dec

in our experiments on all datasets. ⇡
node

is also close to ⇡
opt

. Furthermore, ⇡
rand

supersedes ⇡
dec

in
some cases.

7. RELATED WORK
Entity Resolution (ER) has been well studied (see [17] for

a recent survey). Recently, many frameworks [7, 11, 13, 15,
18] have been developed to leverage humans for performing
ER tasks. Marcus et. al. [13] rely solely on humans to per-
form joins in their Qurk system. CrowdER [15] uses a hybrid
human-machine framework by first automatically detecting
matching pairs or clusters that are then verified by humans.
Machines are purely used as a way to filter non-duplicates
rather than a way of providing an ordering over pairwise
questions that the crowd should be asked. Demartini et.
al. [7] dynamically generates crowdsourcing questions for
record linking based on a probabilistic framework. Je↵ery
et. al. [11] describe Arnold, a declarative data cleaning and
integration system using machines and humans. Georgescu
et al. [8] proposed using crowdsourced examples for active
learning in ER. None of these works exploit transitivity to
reduce the human querying cost.

Recently, there have been several works that exploit tran-
sitive relations in hybrid human-machine ER. Gruenheid et.
al. [10] focus on using strong and weak transitivity for toler-
ating errors from conflicting human votes. Their algorithm
is similar to ⇡

rand

but they ask each question to multiple
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humans, and use transitivity to determine number of hu-
mans to ask a question. There is no guarantee of optimal-
ity. In contrast, we give theoretical guarantees when the
crowd is perfect, assuming the existence approaches [6, 9,
12] to make crowd reliable. Whang et. al. [18] describe an
approach to find the best next question to ask the crowd
that maximizes the information gain. However, there are
two shortcomings. First, it uses a brute force approach with
O(n4) complexity, which makes it infeasible, even for very
small datasets. Second, it assumes a di↵erent probabilistic
model where transitive closures are performed after picking
a random world, rather than randomly picking a transitively
closed world. This model has undesirable properties, where
small number of edges with high probabilities can create
large clusters, even if there are several edges with extremely
low probabilities. The closest related work to ours is Wang
et. al. [16], which incorrectly claim the optimality of their
techniques.

8. EXTENSIONS
Our strategies are simple and powerful that we can eas-

ily extend them. For example if we have constraints that
some edges have to be (or cannot be) in the graph, we can
just preprocess these edges (keeping our state transitively
closed) and run our algorithms. Another possible extension
is updating our probabilities after each query but proving
any bound is non-trivial. For example, we can use Reflect
and Correct [5] from active learning to update the proba-
bilities after acquiring each answer from the crowd, reorder
pairs based on the new probabilities, and run our strategy
iteratively (i.e., each iteration gets new probabilities).

9. CONCLUSION
We studied the problem of completely resolving an entity

graph using crowdsourcing where edges are annotated with
probability of matching from a machine learned model. We
analyzed the worst-case and optimal strategies for ordering
the questions based on machine learned probabilities. In
addition, it was shown that computing the optimal strategy
is NP-hard. We showed that a previously described “opti-
mal” algorithm can in fact be O(n) worse than optimal. We
presented two alternate algorithms and proved that both al-
gorithms are at most O(k) worse than optimal for expected
number of clusters k. Finally, we experimentally demon-
strated that our node-wise strategy performs very well in
practice on three real-world data sets. We also showed that
our algorithms are quite robust to adversarial probabilities
whereas the previous approach performs very poorly.
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