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ABSTRACT
In current databases, GPUs are used as dedicated accel-
erators to process each individual query. Sharing GPUs
among concurrent queries is not supported, causing serious
resource underutilization. Based on the profiling of an open-
source GPU query engine running commonly used single-
query data warehousing workloads, we observe that the uti-
lization of main GPU resources is only up to 25%. The
underutilization leads to low system throughput.

To address the problem, this paper proposes concurrent
query execution as an effective solution. To efficiently share
GPUs among concurrent queries for high throughput, the
major challenge is to provide software support to control and
resolve resource contention incurred by the sharing. Our so-
lution relies on GPU query scheduling and device memory
swapping policies to address this challenge. We have im-
plemented a prototype system and evaluated it intensively.
The experiment results confirm the effectiveness and perfor-
mance advantage of our approach. By executing multiple
GPU queries concurrently, system throughput can be im-
proved by up to 55% compared with dedicated processing.

1. INTRODUCTION
Multitasking has been a proven practice in computer sys-

tems to achieve high resource utilization and system through-
put. However, despite the wide adoption of GPUs (Graphics
Processing Units) for analytical query processing, they are
still mainly used as dedicated co-processors, unable to sup-
port efficient executions of multiple queries concurrently.

Due to the heterogeneous, data-driven characteristics of
GPU operations, a single query can hardly consume all GPU
resources. Dedicated query processing thus often leads to
resource underutilization, which limits the overall perfor-
mance of the database system. In market-critical applica-
tions such as high-performance data warehousing and multi-
client dataflow analysis, a large number of users may de-
mand query results simultaneously. As the volume of data
to be processed keeps increasing, it is also essential for user
queries to make continuous progress so that new results can
be generated constantly to satisfy the goal of interactive
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analysis. The lack of concurrent querying capability restricts
the adoption of GPU databases in these application fields.

While dedicated usage of GPUs is still needed for latency-
critical queries to ensure performance isolation, databases
must be improved to support concurrent multi-query exe-
cution as an option to maximize the throughput of non-
latency-sensitive queries on the GPU device. This consol-
idated usage of GPU resources enhances system efficiency
and functionalities, but it makes the design of query exe-
cution engine more challenging. For maximal performance,
each user query tends to reserve a large amount of GPU re-
sources. Unlike CPUs where the operating system supports
fine-grained context switches and virtual memory abstrac-
tions for resource sharing, current GPU hardware and sys-
tem software provide none of these interfaces for database
resource management. For example, GPU tasks cannot be
preempted once started; on-demand data loading is not sup-
ported during task execution; automatic data swapping ser-
vice is also missing when the device memory undergoes pres-
sure. As a result, without efficient coordination by the
database, multiple GPU queries attempting to execute si-
multaneously can easily cause low resource usage, system
thrashing, or even query abortions, which significantly de-
grade, instead of enhance, overall system performance.

In this paper we present a resource management facility
called MultiQx-GPU (Multi-Query eXecution on GPU) to
address the above challenges and support efficient execu-
tions of concurrent queries in GPU databases. It ensures
high resource utilization and system performance through
two key components: a query scheduler that maintains op-
timal concurrency level and workload on the GPUs, and
a data swapping mechanism to maximize the effective uti-
lization of GPU device memory. This paper also presents
a prototype implementation of MultiQx-GPU in an open-
source GPU query engine and discusses several technical
issues addressed by our system to ensure its usability and
efficiency in practice. Through intensive experiments with
a wide range of workloads, we demonstrate the effectiveness
and performance advantage of our solution. By supporting
concurrent query processing, MultiQx-GPU improves sys-
tem throughput by up to 55% relative to the system without
such support.

This paper makes the following main contributions. First,
we have made a strong case for building an effective resource
sharing facility as a part of a database to manage concur-
rent query executions with GPUs. Second, we have shown
the effectiveness of our design and implementation of the
software facility with intensive experiments. Finally, the
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software framework presented in this paper is open-source
and can also be enhanced to support GPU resource sharing
activities in other data processing applications, raising the
productivity and system utilization.

The rest of the paper is organized as follows. Section 2
introduces the background and motivation of the research.
Section 3 outlines the overall structure of MultiQx-GPU.
Section 4 and 5 describe the device memory swapping and
query scheduling components of MultiQx-GPU respectively.
After a summary of the implementation issues in Section 6,
Section 7 evaluates the prototype system, Section 8 intro-
duces related work, and Section 9 concludes the paper.

2. BACKGROUND AND MOTIVATION
This section provides background on GPU query process-

ing and motivates this research by exposing the problems
of lacking multi-query support. Based on extensive bench-
marks over some existing GPU query engines, we show the
low resource utilization induced by dedicated query process-
ing and identify several system issues that must be addressed
in order to execute concurrent GPU queries efficiently.

2.1 Analytical Query Processing with GPUs
With vectorized cores and high-bandwidth device mem-

ory, GPUs have been widely utilized in databases for ana-
lytical query processing [32, 11, 17]. In this subsection we
describe the architecture of one such system, called YDB [1],
as an example to briefly introduce state of the art.

YDB is a standalone GPU execution engine for warehouse-
style queries. Its front end consists of a query parser and
optimizer, whose designs are based on the YSmart query
translation framework [16]. It translates an SQL query into
an optimized query plan tree, which is then used by the
query generator to generate a driver program. This driver
program controls the query execution flow; it is compiled
and linked with the GPU operator library to produce an
executable query binary. During execution, the query bi-
nary reads table data from a column-format backend stor-
age and invokes the according GPU operators to offload data
to GPUs for fast processing. Finally, the query results are
materialized into row format and returned to the user.

To explain GPU query execution in more details, consider
the following query that computes the total revenue from
orders with discounts no less than 1% in each month of 1993:

SELECT d_month, SUM(lo_revenue)

FROM lineorder, ddate

WHERE lo_orderdate = d_datekey

AND d_year = 1993 AND lo_discount >= 1

GROUP BY d_month

Figure 1 illustrates an execution plan generated by YDB
for the query. It first performs a table scan on the fact ta-
ble lineorder. The selection predicate lo discount ≥ 1 is
evaluated to generate a selection vector. With this vector,
the scan operator filters lo orderdate and lo revenue, and
returns an intermediate table consisting of the two filtered
columns to the driver program. Similarly, with a selection
predicate d year = 1993, the driver program invokes a scan
operation on the dimension table ddate, generating an in-
termediate table with the filtered d datekey and d month
columns. Following the scans, the two intermediate tables
are joined: a hash table is built on d datekey’ and probed
with lo orderdate’ to generate a filtering vector, which is
then used to filter the d month’ and lo revenue’ columns of
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Figure 1: An example query execution plan in YDB.

the intermediate tables. In the end, the join output is ag-
gregated (and materialized) to get the final query result.

The GPU operator library provides the GPU implemen-
tations of common database operations such as scans, joins,
aggregations, and sorting. These operations are optimized
at both kernel1 and procedure levels in YDB. Shared mem-
ory and memory access coalescing are fully exploited to max-
imize single kernel performance. IOMMU-based direct host
memory access (through CUDA [20] unified virtual address-
ing or OpenCL [15] mapped buffer interfaces) and data com-
pression techniques are supported to mitigate data transfer
overhead. To ensure kernel execution efficiency, table tuples
are pushed from one operator to another in batches. For
data sets that cannot directly fit into device memory, they
are partitioned into smaller blocks and processed one by one.

Despite possible differences in implementation details, the
core design principles of other analytical GPU query engines
are similar to YDB. For example, Ocelot [11] is a hardware-
oblivious parallel database engine supporting query execu-
tions on either CPUs or GPUs. Its integration with Mon-
etDB [2] requires it to comply with the internal interfaces
of MonetDB, but its column-based data stores, operator-
at-a-time execution model, and the designs of major GPU
operators agree with YDB closely.

2.2 Low Resource Utilization
Current analytical GPU engines such as YDB and Ocelot

use GPUs as dedicated query co-processors. The query en-
gine admits one user query at a time, generates and exe-
cutes a query plan assuming exclusive usage of the GPU
device. Although this dedicated query processing scheme
simplifies query optimization and algorithm design, it in-
evitably causes low resource utilization due to the heteroge-
neous, data-driven features of query processing with GPUs.

A typical query execution comprises both CPU and GPU
phases. The CPU phases are in charge of, e.g., initializ-
ing GPU contexts, preparing input data, setting up GPU
page tables, launching kernels2, materializing query results,
and controlling the steps of query progress. These opera-
tions can take a notable portion of query execution time,
which may cause GPU resources to be underutilized during
these periods. Besides CPU phases, there also exist data
dependencies amid various query stages. For example, a
kernel cannot be launched until its input data are loaded
into device memory or mapped to the GPU page table; ag-
gregations cannot start until the join results are generated.
Techniques such as double buffering can be used to miti-
gate data latency, but their applicability is constrained by
the limited opportunities within a single query and the high
complexity introduced to GPU operator designs. Assuming
dedicated occupation of the device, GPU queries also tend

1A kernel is a data-parallel task executed on the GPU.
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Figure 2: Utilization of GPU resources during ded-
icated executions of SSB queries with YDB.

to release reserved device memory space lazily to improve
data reuses and simplify algorithm implementation. This
lowers the effective usage of allocated space.

To show the problem of low resource utilization, we mea-
sure the executions of Star Schema Benchmark (SSB [21])
queries on a modern server with an Intel CPU and NVIDIA
GPU (platform details in Section 7.1). We use YDB to gen-
erate an optimized binary for each of the 13 SSB queries at
scale factor 14. For each binary, it is executed dedicatedly
on the server for several times. We collect the average uti-
lization of main GPU resources during one query execution.
To minimize the influence of disk accesses, all data sets are
preloaded into system memory before queries are executed.

Figure 2 depicts the utilization of three major types of
GPU resources. The first two bars in each group give the
utilization of GPU’s copy and compute units. It can be
seen that both hardware resources are poorly utilized when
a query executes dedicatedly on the GPU. The copy unit,
which is in charge of DMA data transferring, is in use for
only 24% of query execution time on average. The com-
pute unit, which executes the kernels of GPU operators, is
even less utilized, accounting for an average of merely 8%
of query makespan (4% at minimum). By further breaking
down DMA traffic, we find that the overwhelming majority
(over 99%) of data transfers are from the host to the device.
Therefore, if a server-class GPU with dual copy units (e.g.,
an NVIDIA Tesla or Quadro GPU) is used in the production
system, the device-to-host copy unit would remain (almost)
completely idle through the entire query lifetime, wasting
precious PCIe bandwidth resource.

Figure 2 also shows the low utilization of device memory
space, as illustrated by the third bar in each group. Queries
allocate device memory to hold their working sets for fast
access. However, not all the allocated space may be al-
ways effectively utilized during query execution. We have
instrumented YDB to collect memory traces and computed
the space utilization, which is defined as the ratio of device
memory space occupied by actively accessed data. It can be
seen that, averaged across all queries, only 23% of allocated
device memory space is effectively utilized, with the lowest
near 16% for queries in the q1 series. The allocated but
underutilized space could not be put into better uses since
only a single query was executed at any time in YDB.

The problem of low resource utilization has motivated us
to exploit concurrent query processing with GPUs in the be-
ginning. However, will be shown in the next subsection, with
some critical components missing, current GPU databases
still cannot support concurrent query executions efficiently.

2Latest GPU systems support kernel launches from the de-
vice, which eases the overhead of CPU phases in some cases.

2.3 Problems with Uncoordinated Query Co-
Running

Running multiple queries on the same GPUs can improve
resource utilization and system performance. However, as
we demonstrate next, these benefits do not come gratu-
itously. Due to the lack of necessary database facilities to
coordinate the sharing of GPU resources, co-running queries
naively can cause serious problems such as query abortions
or mediocre throughput.

One of the most important functionalities not supported
in current database systems is the coordination over GPU
device memory usage. To maximize performance, each query
tends to allocate a large amount of device memory space and
keep its data on the device for efficient reuses. This causes
high conflicts when multiple queries try to use device mem-
ory simultaneously. Since the underlying GPU driver does
not support automatic data swapping, query co-runnings,
if not managed by the database, can easily abort or suffer
low performance. Even though there are recent proposals to
suggest adding such service in the operating system [28], the
database engine still needs to provide this functionality on
its own in order to take advantage of additional information
from query-level semantics for maximizing performance.

To show this demand, we measure how the system per-
forms when co-running SSB queries used in the previous
subsection on YDB. For all 69 combinations whose peak de-
vice memory consumption exceeds the device capacity (i.e.,
suffering contention), device memory allocation failures are
observed for one or both of the participating queries. Be-
cause of high device memory conflicts, some query pairs can-
not finish executions successfully every time they are co-ran
together. Some others suffer failures sporadically, depending
on whether their co-runnings happen to trigger the conflicts.
To verify the commonness of the problem, we have also
performed similar experiments with Ocelot running TPC-
H benchmarks on an AMD GPU. Ocelot supports device
memory swapping within a single query, but provides no
mechanisms to handle device memory conflicts caused by
concurrent queries. We observe similar experiment results
— all query co-runnings suffering device memory conflicts
cannot finish executions successfully with Ocelot. The un-
derlying GPU drivers used in the YDB and Ocelot experi-
ments are the latest commercial CUDA and OpenCL drivers
from NVIDIA and AMD respectively. The problem shown
by our experiments is thus general, which exists with both
major GPU computing platforms.

Besides device memory swapping, another critical facility
missing in current GPU databases is query scheduling. Due
to the limited capacity of GPU resources and the diverse
demands of user queries, system performance is sensitive to
the number of queries co-running on the GPU. Running too
many queries can lead to severe resource contention that
may cause high overhead. Running too few queries, on the
other hand, underutilizes resources and loses the opportu-
nity to maximize system performance. Query scheduling
maintains optimal workload on the GPU by controlling the
combinations of queries that are allowed to execute concur-
rently, and thus plays an important role to system through-
put.

To demonstrate the necessity of query scheduling, we mea-
sure the performance of a system we have developed to sup-
port concurrent query executions (see Section 6 for details),
running SSB queries at scale factor 14. Without enabling
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Figure 3: The impact of query scheduling on system
throughput.

the query scheduling functionality, we change the number of
queries executed concurrently by our system and show the
average system throughput achieved under each setting in
Figure 3. It can be seen that system throughput improves
from running one query at a time to running queries pair-
wisely, but degrades quickly as the number of co-running
queries exceeds two. Noticeably, when four queries are al-
lowed to execute simultaneously, system throughput drops
to only 1/4 of the optimal value, which is even 65% lower
than running queries one by one. This result shows that
a database system without proper query scheduling func-
tionality can easily suffer low system throughput or high
system thrashing, which severely undermines the benefits of
concurrent query processing.

3. MultiQx-GPU: AN OVERVIEW
To support concurrent query processing, MultiQx-GPU

provides the functionalities needed by databases to coordi-
nate GPU resource sharing. In this section we highlight the
design principles and overall structure of the system.

The design of MultiQx-GPU abides by two main prin-
ciples. The first one is versatility — the techniques pre-
sented by the system should be applicable to different GPU
databases and computing frameworks for managing GPU re-
sources. GPU database technologies are still evolving very
quickly. Different systems have different query engine im-
plementations and may be based on different GPU comput-
ing frameworks. The methods employed by MultiQx-GPU
therefore should be easily utilized in all these variations.
This requires the design of MultiQx-GPU to capture the es-
sential properties of GPU query processing, to build upon
the common abstractions of GPU frameworks, and to inte-
grate with existing and future GPU database engines in a
non-intrusive manner.

The second principle followed by MultiQx-GPU is high
efficiency. Originally designed for gaming and super com-
puting applications, GPU hardware and system software
still do not have native support for multitasking. Basic
system-level functionalities familiar to the CPU world, such
as virtual memory (VM) and fine-grained context switches,
are not provided by commercial GPU drivers. This forces
MultiQx-GPU to add an extra layer of application-level soft-
ware to support multi-query capabilities on its own, which,
if not taken great care of, could incur high overhead.

Figure 4 shows the position of MultiQx-GPU in the over-
all GPU database software stack. MultiQx-GPU is built
into the database query engine, but remains loosely coupled
with existing components in the query engine. It enforces
controls over GPU resource usage by transparently inter-
cepting the GPU API calls from user queries. This design
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Figure 4: Overview of the MultiQx-GPU solution.
Shaded boxes denote the two new components pro-
vided by MultiQx-GPU to manage GPU resources.

does not change existing programming interfaces of the un-
derlying GPU drivers, and minimizes the modifications to
the other components of the GPU query engine. MultiQx-
GPU resides completely in the application space, and does
not rely on any OS-level functionalities privileging to the
GPU drivers. It can thus be easily ported between different
query engine systems (such as Ocelot, YDB, and MapD [17])
and GPU computing frameworks (such as CUDA, OpenCL,
and DirectCompute [19]) to enable GPU resource sharing.

MultiQx-GPU comprises two main components provid-
ing the support required for concurrent query executions.
Working like an admission controller, the query sched-
uler component controls the concurrency level and inten-
sity of resource contention on GPU devices. By control-
ling the queries that can execute concurrently at the first
place, query scheduler maintains optimal workload on the
GPUs that would maximize system throughput. Once a
proper concurrency level is maintained, the device memory
manager component further ensures system performance
by resolving the resource conflicts among concurrent queries.
Through VM-like automatic data swapping service, it makes
sure that multiple queries with moderate resource conflicts
can make concurrent progress efficiently without suffering
query abortions or causing low resource utilization.

In the next two sections we will elaborate the detailed
designs of these two components and explain various deci-
sions made by MultiQx-GPU to minimize overhead. Since
the design of query scheduler assumes the capability of the
query engine to efficiently resolve resource contention, we
first introduce the design of the device memory manager to
achieve this basic functionality in the following section.

4. DEVICE MEMORY MANAGER
The primary functionality of the device memory manager

is to coordinate the conflicting demands for device memory
space from different queries so that they can make concur-
rent progress efficiently. To achieve this goal, it relies on an
optimized data swapping framework and replacement policy
to minimize overhead.

4.1 Framework
When free device memory space becomes insufficient, in-

stead of rejecting a query’s service request, MultiQx-GPU
tries to swap some data out from device memory and reclaim
their space for better uses. This improves the utilization of
device memory space and makes concurrent executions more
efficient. To achieve this purpose, the device memory man-
ager employs a data swapping framework that is motivated
by a system called GDM [28]. Different from GDM, our
framework resides in the application space, which cannot
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rely on any system-level interfaces, but has the advantage
of using query-level semantics, for data swapping.

To support data swapping, the framework maintains a
swapping buffer in the host memory to contain the query
data that need not to reside in the device memory momen-
tarily. When a device memory allocation request is received,
it creates a virtual memory area in the swapping buffer and
returns the address of the virtual memory area to the query.
Device memory space only needs to be allocated when a
kernel accessing the data is to be launched. The framework
maintains a global list of data regions allocated on the device
memory for all running queries. When free space becomes
insufficient, the device memory manager selects some swap-
pable regions from the list and evicts them to the swapping
buffer. Due to the special features of multi-query workloads,
several optimization techniques are employed by the frame-
work to improve performance, as explained below.

Lazy transferring. When a query wants to copy some
data to a device memory region (e.g., through cudaMemcpy
in CUDA), the data are not immediately transferred to de-
vice memory until they are to be accessed in a GPU kernel.
The swapping buffer serves as the temporary storage for the
data to be transferred. This design prevents data from being
evicted from device memory immaturely because data only
need to be transferred to device memory when they are to
be immediately accessed. To further reduce overhead, the
memory manager marks the query source buffer copy-on-
write. The data can later be transferred directly from the
source buffer if it has not been changed.

Page-based coherence management. GPU queries usu-
ally reserve device memory space in large regions. The mem-
ory manager internally partitions a large region into several
small, fixed-size, logical pages. Each page keeps its own
state and maintains data coherence between host and device
memories independently. Managing data coherence at page
units has at least two performance benefits. First, by break-
ing a large, non-interruptible DMA operation into multiple
smaller ones, data evictions can be canceled immediately
when they become unnecessary (e.g., when a region is being
released). Second, a partial update to a region only changes
the states of affected pages, instead of a whole region, which
reduces the amount of data that need to be synchronized
between host and device memories.

Data reference and access advices. To avoid allocat-
ing device memory space for unused regions, the memory
manager needs to know which data regions are to be refer-
enced during a kernel execution. It is also beneficial for the
memory manager to know how the referenced regions are
to be accessed by a kernel. In this way, for example, the
content of a region not containing kernel input data needs
not to be loaded into device memory before the kernel is
issued; the memory manager also needs not to preserve re-
gion content into the swapping buffer during its eviction if
the data are not to be reused. To achieve this purpose, the
memory manager provides interfaces for queries to pass data
reference and access advices before each kernel invocation.

4.2 Data Replacement
When free device memory space becomes scarce, the mem-

ory manager has to reclaim some space for the kernel to be
launched. The replacement policy that selects data regions
for evictions plays an important role to system performance.

There are three main differences between data replace-
ment in device memory and conventional CPU buffer pool
management. First, the target of device memory replace-
ment is a small number of variable-size regions rather than
a large amount of uniform-size pages. GPU queries usually
allocate a few device memory regions, whose sizes may dif-
fer dramatically depending on the roles of the regions and
query properties. Since the physical device memory space
allocated for a region cannot be partially deallocated with-
out necessary driver support, a victim region, once selected,
must be evicted from device memory completely. Second,
unlike CPU databases where data evictions can be inter-
leaved with data computation to hide the latency of replace-
ment, a GPU kernel cannot start execution until sufficient
space is vacated on the device memory for all its data sets.
This makes GPU query performance especially sensitive to
the latency of data replacement. Third, device memory
not only has to contain input table data and output query
results, but also stores various intermediate kernel objects
whose content can be modified from both CPU and GPU.
This makes the data access patterns of device memory re-
gions much more diverse than buffer pool pages.

Based on these unique characteristics, we propose a policy,
called CDR (Cost-Driven Replacement), that combines the
effects of region size, eviction latency, and data locality to
achieve good performance. When a replacement decision
has to be made, CDR scans the list of swappable regions,
and selects the region that would incur the lowest cost for
eviction. The cost c of a region is defined in a simple formula,

c = e + f × s× l, (1)

where e represents the size of the data that needs to be
evicted from device memory, s is region size, l represents the
position of the region in the LRU list, and f is a constant,
which we call latency factor, whose value is between 0 and
1. If two regions happen to have the same cost value, CDR
breaks the tie by selecting the less recently used one for
replacement.

The first part of Formula 1, e, quantifies the latency of
space vacation. Its value depends on the status of the data
pages in a region. For example, e is zero if the none of the
pages has been modified by kernels on the device memory.
If some pages have been updated by the query process from
the CPU, the device memory copies of those modified pages
would have been invalidated and thus should not be evicted
back to the swapping buffer, leading to a value of e less
than s. The second part of Formula 1, f × s × l, depicts
the potential overhead if the evicted region would be reused
in a future kernel. The value of l is between 1/n and 1,
depending on the region’s position among the n swappable
regions in the LRU order. For example, l = 1/n for the least
recently used region, l = 2/n for the second least recently
used one, and so on. The role of latency factor f is to give
a heavier weight to data eviction latency in the overall cost
formula.

As will be shown in Section 7.4, CDR delivers higher per-
formance than conventional replacement policies in support-
ing concurrent query executions, thanks to its capability to
identify suitable victim regions that incur low overhead.

5. QUERY SCHEDULER
In an open system where user queries arrive and leave dy-

namically, the query scheduler maintains optimal workload
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on the GPUs by controlling which queries can co-run simul-
taneously. A query is allowed to start execution if it can
make effective use of the underutilized or unused GPU re-
sources without incurring high overhead associated with re-
source contention. The GPU workload status is monitored
continuously, so that delayed queries can be rescheduled as
soon as enough resources become available.

A critical issue in query scheduling is to estimate the ac-
tual resource demand of a GPU query. As explained in
Section 2.2, the amount of resource being effectively uti-
lized by a query can be much lower than its reservation.
Scheduling queries based on the maximal reservation can
thus cause GPUs to be under-loaded, leading to suboptimal
system throughput. In GPU databases, different queries
and query phases may have diverse resource consumption,
depending on query and data properties such as filter con-
ditions, table sizes, data types, and content distributions.
If the query scheduler cannot accurately predict the actual
resource demand, a mistakenly scheduled query can easily
bring down the overall system performance by large, as has
been shown in Section 2.3.

To address the problem, we propose a simple, practi-
cal metric to effectively quantify the resource demand of a
GPU query. The design of the metric is based on some ob-
servations that are generally applicable to analytical GPU
databases. First, for GPU query processing, the utiliza-
tion of device memory space has the principal impact on
system throughput and can be frequently saturated under
multi-query workloads. Unlike compute cycles and DMA
bandwidth that can be freely reused, reusing a device mem-
ory region requires data evictions and space re-allocation,
which can potentially incur high overhead. This makes sys-
tem performance strongly correlated with the demand for
and utilization of device memory space. Second, to en-
sure data transfer and kernel execution efficiencies, analyti-
cal GPU engines usually employ a batch-oriented, operator-
based query execution scheme. Under this scheme, table
data are partitioned into large chunks and pushed from one
operator to another for processing. It is thus a good model
to consider query execution as a temporal sequence of oper-
ators, each of which accepts an input data chunk, processes
it with the GPU, and generates an output data chunk that
may be passed to the next operator for further processing.

Based on the above observations, we define a metric called
weighted device memory demand, or briefly weighted demand,
which is the weighted average of the device memory space
consumed by a query’s operator sequence. The weight is
computed as the percentage of query execution time spent
in each operator. The device memory space consumed by
an operator equals the maximal total size of device memory
regions referenced by any GPU kernel in the operator. Sup-
pose that each operator’s execution time and device mem-
ory consumption are ti and mi respectively, the weighted
demand m of the query can be computed by

m =

∑
(ti ×mi)∑

ti
. (2)

The device memory consumption of an operator can be com-
puted from query predicates and table data statistics. The
execution time of an operator can be predicted through mod-
eling, as has been shown in our previous work [32].

To accommodate the changes of resource consumption in
different query phases, the weighted demand of a query is

dynamically updated as the query executes, and is exposed
to the query scheduler for making timely scheduling deci-
sions. When a new query arrives, the query scheduler com-
putes its initial weighted demand. If the number exceeds the
available device memory capacity, which is measured by the
difference between the device memory capacity and the sum
of weighted demands of scheduled queries, the query’s exe-
cution needs to be delayed. The query scheduler considers
rescheduling a postponed query every time when a running
query’s resource demand changes or when a query finishes
execution.

6. IMPLEMENTATION
We have implemented a prototype of MultiQx-GPU above

the CUDA computing framework and integrated it with
YDB to support concurrent query processing. This section
summarizes our experiences in building the system.

Our system adds two new components to the original YDB
software stack. The memory manager component is imple-
mented in a highly modulated shared library (5200+ lines of
C code). It is dynamically linked with the query binary to
intercept CUDA API calls (through the LD PRELOAD dy-
namic linking option on Linux). The query scheduler com-
ponent is an add-on Python module that wraps around a
query binary to control its execution. Most existing YDB
components remain unmodified. A small amount of code
(120+ lines) is added to the GPU operator library to pro-
vide data reference and access advices to the memory man-
ager. The algorithm designs and kernel implementations of
all GPU operators are unchanged.

A new programming interface, cudaAdvice(addr, flags),
is exported by the memory manager component to receive
data advices. In the interface, addr denotes the address of
the data region to be accessed in the next kernel execution,
and flags is the advice about how this region is to be ac-
cessed, which can be input, output, or both.

Our prototype system employs a process-based query ex-
ecution model: each user query executes in a separate oper-
ating system process. To share information such as region
states and resource availability, a shared memory area is cre-
ated in the host memory. Data replacement requests and re-
sponses are communicated between different query processes
through POSIX message queues. Copy-on-write is imple-
mented through the mprotect system call on Linux. Since
mprotect does not capture the event when a memory region
is freed, we have to additionally override the free() function
in libc. We set page size to 8MB, which provides the fine
granularity required for data coherence management, mean-
while retaining over 99% of PCIe efficiency. The value of
latency factor f is set to 0.01, which works empirically well
in practice.

The implementation of our prototype system addresses
several technical issues which are discussed in the rest of
the section. These issues are mainly caused by the undesired
behaviors or missing services in the underlying GPU driver.

False synchronizations. GPU kernels execute asyn-
chronously with respect to the host query process. To avoid
data races and kernel failures, the GPU driver usually en-
forces implicit synchronizations when handling some im-
portant operations such as data transfers and memory re-
leases [3]. For example, the CUDA driver forcibly inserts
a global barrier before a device memory region is released
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to ensure that no GPU operations are still accessing the re-
gion when its address mapping is removed from the GPU
page table. Such implicit synchronizations may be helpful
to some other GPU applications. In concurrent databases,
however, since the query engine has full knowledge about
the data access behaviors of its kernels and the data depen-
dencies among different GPU operations, the extra synchro-
nizations performed by the GPU driver are often unneces-
sary and can delay the progress of user queries. Our system
circumvents this problem with two main mechanisms. First,
it creates a dedicated CUDA stream (or two streams, each
for one direction, if the GPU card has dual copy engines) for
DMA transfers. To prevent data transfer requests from be-
ing unnecessarily blocked, our system internally maintains a
set of small, pinned buffers, and automatically converts all
data transfers into asynchronous DMAs by pipelining data
through the pinned buffers in the dedicated stream. Sec-
ond, our system uses a dedicated garbage collection thread
to handle device memory releases, so that the main query
thread is never blocked by such operations. This daemon
thread also handles the case when a region still being evicted
needs to be released.

Kernel event handling. When a kernel finishes execu-
tion, the states of the regions accessed by the kernel have
to be timely updated to ensure system correctness and per-
formance. This can be done by letting the GPU driver ex-
ecute a segment of maintenance code on CPU whenever a
kernel finishes execution (e.g., through the cudaStreamCall-
back interface in CUDA). However, this can degrade system
performance because the GPU hardware command queue is
suspended when the CPU service thread waits to be sched-
uled by the operating system and executes the maintenance
code. To avoid such overhead, our system inserts a short
GPU code segment after each kernel. This code has the sole
functionality of updating the states of the regions accessed
by a kernel when it finishes. By pinning the state fields
of data regions in the host memory and mapping them to
the device address space, region states can be updated effi-
ciently with a few direct host memory accesses without any
interventions from the CPU.

Device memory fragmentation. Data replacement re-
quires frequent allocations and deallocations of device mem-
ory space. We find that the device memory space may be-
come slightly fragmented in some cases after the system runs
for a long time. When this happens, a device memory al-
location operation may fail even if there seems to be suf-
ficient free space on the device memory. This problem is
due to the implementation of the physical device memory
allocator in the GPU device driver, but we are not able to
confirm the exact causes due to lack of public documenta-
tions about the commercial CUDA driver. Our system uses
a two-round memory allocation procedure to address the
problem without relying on the underlying driver details: if
the first allocation attempt fails, the device memory man-
ager evicts some data region, no matter whether the free
space still seems enough or not, and retries the allocation.
Since the release of free space often forces the device driver
to re-organize its free memory list, this mechanism effec-
tively addresses the influence of fragmentation in practice.
Because fragmentation happens rarely, the extra space evic-
tion caused by this approach also does little harm to system
performance.

7. EXPERIMENTS
This section evaluates the performance of MultiQx-GPU

thoroughly and verifies the effectiveness of various design
decisions in supporting concurrent query executions. Before
presenting the results, we first introduce the settings and
methodology of our evaluation.

7.1 Settings and Metrics
The experiments are conducted on a workstation equipped

with a four-core 3.4GHz Intel Core i7-2600 CPU, 16GB sys-
tem memory, and an NVIDIA GTX 580 GPU installed in a
PCIe 2.0 x16 slot. The maximum device memory capacity is
1.6GB, among which about 1.46GB of space is available for
executing database queries. The GPU operator library and
the device memory manager component of MultiQx-GPU
are compiled and executed with NVIDIA CUDA Toolkit 5.0.
The operating system is Red Hat Enterprise Linux Worksta-
tion 6.5 with 2.6.32 kernel.

Our experiments mainly use the queries and data sets
from the Star Schema Benchmark [21], which is widely used
in database research due to its realistic modeling of data
warehousing workloads. The table data are generated using
the standard benchmark tool and converted into the column
format required by the YDB query engine. The scale factor
is set to 14 by default, unless otherwise noted, which pop-
ulates the fact table with about 80 million tuples (6.6GB
in total size). The query executables are pre-generated to
exclude query parsing, optimization, code generation, and
compilation times from performance measurement. To min-
imize the influence of disk accesses, we load all data sets into
host memory before starting each experiment. Figure 5 lists
the device memory usage of each query when it executes
alone with MultiQx-GPU. The diversity of device memory
behaviors makes our workloads more representative.

Several metrics are used in our experiments to character-
ize system performance from different perspectives. We use
weighted speedup to measure the throughput of multi-query
executions in a closed system, where the co-running queries
are fixed. It is defined as the sum of the speedups of par-
ticipating queries [27, 18]. Suppose n queries execute con-
currently, the throughput of their executions is computed
as

∑n
i=1

si
ci

, in which si is the execution time of the ith

query when it runs alone and ci denotes its execution time
when it co-runs with other queries. Under this definition,
the throughput of running queries sequentially (i.e., without
queries executing concurrently) is 1. Since queries have dif-
ferent execution times, we run each query multiple times to
ensure its full overlap with other queries. In an open system
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Figure 6: Throughput of pairwise SSB query co-runnings with three different systems. MultiQx-GPU-Raw
is a variant of MultiQx-GPU without optimizations. p.q denotes the combination of query p and q.

where user queries arrive and leave dynamically, we measure
system performance with the metric of queries per second,
which is defined as the number of queries processed divided
by the total processing time.

To gain insights into the performance numbers observed,
we also measure the utilization of GPU resources such as
the copy and compute units during workload execution. To
validate the effectiveness of various resource management
designs to reduce unnecessary data movement, we use an-
other metric, called DMA efficiency, that measures the per-
centage of DMA time used for effective data transfers. A
data transfer is effective if it is required when the query ex-
ecutes alone. Suppose a instances of query A co-runs with b
instances of query B in exactly full overlap, the time spent
on DMA data transfers is x for A and y for B when each
of them executes alone, and the total DMA time is t dur-
ing their co-runnings, then the DMA efficiency during the
co-running of A and B is (ax + by)/t.

In the following text, we first present the overall per-
formance of MultiQx-GPU in executing concurrent queries,
and then verify the effectiveness of its various components.

7.2 Performance of Concurrent Executions
Through coordinated sharing of GPU resources, MultiQx-

GPU improves system throughput by letting multiple queries
make efficient progress concurrently. In this subsection we
evaluate the overall performance of MultiQx-GPU in sup-
porting concurrent executions. The evaluation is performed
by co-running SSB queries pairwisely. Among 91 possible
query combinations, we select the 69 pairs of co-runnings
whose peak device memory consumption exceeds device mem-
ory capacity (i.e., suffering conflicts). We measure their
throughput achieved with MultiQx-GPU, and compare them
with the original YDB system. The first two bars of each
group in Figure 6 show the results.

It can be seen that, by processing multiple queries at
the same time, MultiQx-GPU greatly enhances system per-
formance compared with dedicated query executions. The
throughput is consistently improved across all 69 co-runnings,
by an average of 39% (at least 15%) as compared with YDB.
For the co-runnings of q32 with q41, q33 with q41, and q43
with itself, the improvements are more than 55%. The high
performance leap achieved by MultiQx-GPU is mainly at-
tributed to the better utilization of GPU resources. Under
the efficient management of MultiQx-GPU, the DMA band-
width and GPU computing cycles unused by one query can
be allocated to serve the resource requirements from other

queries. The efficient utilization of resources improves over-
all system throughput.

To validate the reasons for performance improvement, we
have measured the utilization of GPU’s compute and copy
units during the execution of each query pair on both YDB
and MultiQx-GPU. In Figure 7, the left bar graph shows
the geometric means of GPU resource utilization averaged
across all query combinations on the two platforms. The
right bar graph depicts the improvement of resource uti-
lization per query pair achieved on MultiQx-GPU versus on
YDB, with both the geometric mean and max-min values
shown for each resource type. It can be seen that MultiQx-
GPU significantly improves the utilization of both DMA and
GPU compute resources over that with YDB. On average,
the DMA engine becomes 62% more occupied (from 35%
on YDB to 57% on MultiQx-GPU) after concurrent query
execution is enabled, while the utilization of GPU cores is
improved from 13% to 18% (by 33%) accordingly. The per-
query-combination improvements of resource utilization also
reflect this trend, with the utilization of DMA and compute
engines consistently raised by 61% and 31% on average re-
spectively. Through manual inspections, we have also found
close correlations between the degrees of resource utilization
increasing and throughput improvement for different query
combinations. The diversity of resource utilization improve-
ment shown in the right bar graph of Figure 7 thus explains
the difference of throughput enhancement in Figure 6.

Figure 7 also shows the potential to further improve multi-
query performance on GPUs. Currently, despite the great
improvement of resource utilization with MultiQx-GPU, GPU’s
DMA and compute units are still not 100% utilized. This
is mainly due to the hardware limitation of GPUs and the
overhead of data swapping. On one hand, GPU is an ex-
clusive, non-preemptive device: the kernels and DMA com-
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mands inserted into the hardware command queue are usu-
ally executed on the GPU one after another. This serializes
query executions at the hardware level and greatly limits the
concurrency level of the whole system. The data swapping
activities performed by MultiQx-GPU, on the other hand,
also limits performance enhancement. Even if the optimiza-
tion techniques presented in this paper, as will be verified in
the next section, are helpful at reducing the overhead, there
are still some penalties that cannot be totally avoided.

To measure the performance of MultiQx-GPU processing
larger data sets, we have repeated the above experiment at
scale factor 28, which corresponds to over 13GB of table
data (each query processing about 3GB of data on aver-
age, much larger than the device memory capacity). Across
all 69 query co-runnings, MultiQx-GPU improves through-
put consistently by an average of 33% (up to 54%) above
YDB, which is comparable to the performance improvement
at scale factor 14 (39% on average, 55% at maximum). This
result is well expected because the execution behaviors of
GPU operators remain unchanged. When the sizes of in-
termediate results cannot fit into device memory, the YDB
query generator partitions data sets into smaller chunks and
generates a query binary that processes them separately.
This only increases the number of times each operator is
executed, not query behavior.

7.3 Validations of Optimizations
MultiQx-GPU’s data swapping framework employs a set

of optimization techniques, including lazy transferring, page-
based coherence maintenance, and data reference and access
advices, to minimize overhead. To validate the effective-
ness of these techniques in ensuring system performance,
we repeat the experiment performed in the previous sub-
section on a degraded version of MultiQx-GPU, denoted as
MultiQx-GPU-Raw, that does not have these optimizations
enabled. MultiQx-GPU-Raw transfers data to device mem-
ory eagerly, maintains data coherence in units of whole data
regions, and does not exploit advices from user queries to as-
sist data swapping. We measure the throughput of query co-
runnings achieved with MultiQx-GPU-Raw, and show the
results with the third bar of each group in Figure 6.

It can be seen that the optimization techniques have high
impact on system performance. Compared with the op-
timized MultiQx-GPU, MultiQx-GPU-Raw achieves much
lower throughput for all query co-runnings. With an aver-
age slowdown of 40%, the largest performance loss reaches
over 73% due to the high memory conflict between q11 and
q13. As a matter of fact, MultiQx-GPU-Raw performs even
lower than YDB during most co-runnings; it brings down
the throughput of 55 (among 69) query combinations by
an average of 16%, up to 64%, compared with YDB. The
lack of optimization techniques greatly undermines the use-
fulness of the MultiQx-GPU system to support concurrent
query processing, causing performance degradation, instead
of enhancement, relative to dedicated query executions.

The major reason for the low performance of MultiQx-
GPU-Raw is the excessive data movement overhead caused
by the unoptimized data swapping framework. This is ex-
plained in Figure 8. We measure the average DMA ef-
ficiencies achieved with MultiQx-GPU-Raw and MultiQx-
GPU when executing the workloads, as shown in the left
bar graph. It can be seen that, without the optimizations,
the efficiency of the DMA engine is only 38%, which means

0

20

40

60

80

100

MultiQx-GPU-Raw MultiQx-GPU

D
M

A
 E

ff
ic

ie
n

c
y
 (

%
)

0

50

100

150

200

250

P
e

r-
E

x
e

c
u

ti
o

n
 

Im
p

ro
v
e
m

e
n

t 
(%

)

Figure 8: Improvement of DMA efficiency with the
help of swapping framework optimizations.

that over 60% of the DMA time is spent on data trans-
ferring that would not be necessary during normal query
executions. With the optimizations, the DMA engine works
much more efficiently, raising DMA efficiency by over 118%
(reaching 84%). This significant reduction of unnecessary
data transfers directly translates to the high performance
gap between MultiQx-GPU-Raw and MultiQx-GPU shown
in Figure 6. The right bar graph sheds lights on the same
result from the perspective of per-execution DMA efficiency
improvement. The efficiency of the DMA engine during the
execution of each query pair improves by 117% on average
from MultiQx-GPU-Raw to MultiQx-GPU, with the mini-
mum and maximum changes being 17% and 219%.

To further evaluate the effectiveness of each individual
optimization technique, we have implemented several mod-
ified variants of MultiQx-GPU. Each variant turns off the
optimization technique being tested, while keeping all other
optimizations enabled. We measure the throughput of the
same workload used above under these variants. To save
space, we categorize SSB queries into four groups based
on their query flight number, and only show the average
performance of query co-runnings that belong to different
group combinations. For example, q1.q2 denotes the aver-
age throughput for co-running one query from query flight
q1 with another query from query flight q2.

The result is depicted in Figure 9. NoLazy represents
a variant of MultiQx-GPU without lazy transferring; data
are transferred to device memory as soon as the request is
received. NoCow transfers data to device lazily, but does
not have the copy-on-write optimization for the data copied
to swapping buffer. NoRef denotes the variant without data
reference advice; the memory manager assumes that a kernel
references all the data regions resident in a GPU context.
NoAccess enables reference advice, but has no data access
advice; every region referenced by a kernel is assumed to
contain both data input and data output. Finally, NoPage
does not maintain data coherence in page units.

It can be seen that missing any optimization technique
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would degrade system performance consistently, by vary-
ing degrees under different workloads. For example, remov-
ing data reference advice alone lowers MultiQx-GPU perfor-
mance by an average of 22% (60% at maximum for work-
loads in the q1.q1 group). The effect of data reference advice
seems much more significant to workloads involving queries
in the q1 series (47% to 60% slowdown) than to others (5%
to 20%). This is because q1 queries have the highest de-
vice memory consumption (as can be seen from Figure 5),
for which data reference advice would be most effective at
reducing unnecessary device memory contentions. The in-
fluence of page-level coherence management may seem mod-
erate on average (5.7%), but still can be significant (14%) for
the q1.q2 workloads. This result shows the indispensability
of every optimization technique. It is when they work to-
gether that MultiQx-GPU achieves its highest performance.

7.4 Experiments with Replacement Policies
By controlling the selection of proper victim regions to

evict under resource contentions, data replacement policy
plays an important role to system throughput. This sub-
section presents the results of our experiment with several
data replacement policies to support multi-query executions
and verifies the effectiveness of CDR in improving MultiQx-
GPU performance. We compare the performance of five re-
placement policies, LRU (Least Recently Used), MRU (Most
Recently Used), LFU (Least Frequently Used), RANDOM,
and CDR. The first four policies are selected because they
are widely used in conventional multitasking and data man-
agement systems. We measure the throughput of the same
workloads used in the previous two subsections, achieved us-
ing MultiQx-GPU (all optimizations are enabled) with dif-
ferent replacement policies. Due to space constraint, we
randomly select 6 queries and only present the results for
their co-runnings, but similar observations can be made with
other queries as well.

As shown in Figure 10, there are no significant differences
among the performance of LRU, MRU, LFU, and RAN-
DOM; they perform unevenly, but closely match each other
under different workloads. CDR, however, performs much
better than other policies across all query co-runnings, con-
sistently improving system throughput by 44% on average
(56% at maximum) compared with LRU. The performance
advantage of CDR compared with other policies is expected,
due to its careful design to select victim regions that mini-
mize space eviction and data swapping costs. On the con-
trary, the other four policies do not consider the unique fea-
tures of GPU queries and their concurrent executions. The
criteria they use to make replacement decisions are rather
random in terms of the benefits to overall system perfor-
mance, often leading to increased kernel launch latency and
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Figure 11: System speedups achieved with different
scheduling policies, normalized to FIX-1.

unnecessary data swapping.

7.5 Effectiveness of Query Scheduling
To verify the effectiveness of query scheduling in ensur-

ing system performance, we use a random-load generator to
generate a sequence of 100 query requests, which model user
queries issued dynamically in an open system. The arrivals
of query requests follow Poisson process, with the arrival
rate set to 4 queries per second. The query issued at each
interval is randomly picked from a pre-generated query set.
Applying the same query request trace, we compare the sys-
tem performance (in terms of queries per second) achieved
by MultiQx-GPU under five query scheduling policies: FIX-
1, FIX-2, FIX-3, Peak, and Weight. FIX-n denotes the pol-
icy that fixes the number of concurrently executing queries
to n. For example, FIX-1 corresponds to the policy that ex-
ecutes one query at a time (without concurrent executions).
Peak is a scheduling policy that schedules queries based on
their peak device memory demands. Weight represents our
scheduling policy proposed in Section 5.

Figure 11(a) shows the speedup of each scheduling pol-
icy relative to FIX-1 when the scale factor is 14. It can be
seen that the speedups achieved by FIX-3 (1.1) and Peak
(1.07) are much lower than those delivered by FIX-2 (1.39)
and Weight (1.37). At scale factor 14, SSB queries have
high device memory demands. Co-running 3 queries to-
gether causes too much resource conflict that lowers sys-
tem performance. Peak, on the other hand, is too conserva-
tive at selecting queries to co-run, and thus loses the oppor-
tunities to improve system performance by executing more
queries concurrently. The performance of FIX-2 is compara-
ble with Weight, because the concurrency level it supports
(2) matches this workload. But, as we will show next, it
cannot maintain its peak performance under other settings.

To demonstrate how each scheduling policy performs un-
der workloads with less-intensive resource conflicts, we re-
peat the above experiment with data sets at scale factor 8.
The speedup of each policy compared with FIX-1 is shown
in Figure 11(b). It can be seen that FIX-1 still performs the
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Figure 12: Overhead of MultiQx-GPU.

worst among all policies, while Weight continues to deliver
the highest speedup (over 62% higher than FIX-1). FIX-2,
which performs equally with Weight under scale factor 14,
can no longer match up with Weight at scale factor 8 be-
cause it does not consider the changing resource demands
of user queries. This experiment, combined with the previ-
ous one, verifies the effectiveness of the query scheduler to
ensure system performance at various system settings.

Figure 11 also shows the benefits of concurrent query ex-
ecutions for speeding up dynamic query workloads. Even
though FIX-2, FIX-3, and Peak cannot consistently deliver
the highest system performance as Weight does, they all
outperform FIX-1, often by large margins.

7.6 Overhead
To efficiently manage GPU resources, MultiQx-GPU cre-

ates a swapping buffer in the host memory and performs
various maintenance actions such as setting copy-on-write
protections, updating the states of data blocks, and schedul-
ing kernels. These management activities may add some
overhead to query executions when there are not resource
conflicts. In this subsection, we evaluate this overhead and
show that it is sufficiently low in practice.

We measure the overhead by comparing the performance
of MultiQx-GPU (all resource management functionalities
enabled) with YDB at scale factor 14 under two groups of
workloads. The first group consists of the solo executions of
the 13 SSB queries; the second group comprises the 22 pairs
of query co-runnings that do not suffer device memory con-
flicts. The results are presented in Figure 12. It can be seen
that, for single-query executions, the performance of SSB
queries achieved with MultiQx-GPU closely matches their
performance with YDB, which does not have GPU resource
management overhead. MultiQx-GPU increases execution
times by at most 4.3% compared with YDB, with the av-
erage slowdown being 2.2% across all queries. For query
co-runnings, on the other hand, the average throughput

achieved with MultiQx-GPU is only 3.4% lower than that
with YDB. We believe that the overhead of MultiQx-GPU is
negligibly low, especially considering the performance ben-
efits it provides through concurrent query executions.

8. RELATED WORK
The use of GPUs for database applications has been inten-

sively studied in existing research. Some works focus on the
designs and implementations of efficient GPU algorithms for
common database operations such as join [8, 23, 12], selec-
tion [7], sorting [25, 6], and spatial computation [29, 17, 4],
achieving orders of magnitude of performance improvement
over conventional CPU-based solutions. Other works ex-
ploit various software optimization techniques to accelerate
query plan generations [10], improve kernel execution effi-
ciency [30, 26], reduce PCIe data transferring [30, 31], and
support query co-processing with both GPUs and CPUs [22].

Our work in this paper is mainly related to recent de-
velopment efforts of GPU query engines, which provide in-
frastructure software support for the integration of GPUs
in real-world database systems. YDB [32], based on which
MultiQx-GPU is implemented, is designed for data ware-
housing query processing. It employs a column-based stor-
age format, and generates query plans that execute in a
push-based, batch-oriented fashion. Ocelot [11] is a hy-
brid OLAP query processor as an extension for MonetDB.
By adopting a hardware-independent query engine design,
it supports efficient executions of OLAP queries on both
CPUs and GPUs. Ocelot provides a memory management
interface that abstracts away the details of the underlying
memory structure to support portability. The memory man-
ager can also perform simple data swapping within a sin-
gle query. However, as we mentioned in Section 2, it does
not have sufficient mechanisms or policies to support cor-
rect, efficient executions of queries in concurrent settings.
MapD [17] is a spatial database system using GPUs as the
core query processing devices. Through techniques such as
optimized spatial algorithm implementations, kernel fusing,
and data buffering, MapD outperforms existing CPU spa-
tial data processing systems by large margins. GPUTx [9]
is a high-performance transactional GPU database engine.
It batches multiple transactional queries into the same ker-
nel for efficient executions on the GPU and ensures isolation
and consistency under concurrent updates. The workloads
GPUTx targets are short-running, small tasks that would
not cause device memory contention. The techniques thus
cannot be used for concurrent analytical query processing
on GPUs, where tasks usually have long time spans and
have high demands for device memory space. HyPE [5] is
a hybrid engine for CPU-GPU query co-processing. The
idea of its operator-based execution cost model is similar to
the weighted demand metric proposed in this paper. Com-
pared with these works, MultiQx-GPU identifies the critical
demands and opportunities of supporting concurrent query
executions in analytical GPU databases. It addresses a set
of issues in GPU resource management to achieve high sys-
tem performance under multi-query workloads.

In addition, there are several research works on GPU re-
source management in general-purpose computing systems.
PTask [24] adds abstractions of GPUs in the OS kernel to
support managing GPUs as first-class computing resources.
It provides a dataflow-based programming model and en-
forces system-level management of GPU computing resources
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and data movement. TimeGraph [13] is GPU scheduler to
provide performance isolation for real-time graphics applica-
tions. Gdev [14] is an open-source CUDA driver and runtime
system. It supports inter-process communication through
GPU device memory and provides simple data swapping
functionality based on the IPC mechanism. GDM [28] is
an OS-level device memory manager.

9. SUMMARY AND FUTURE WORK
This paper presents the motivation, design, implementa-

tion, and evaluation of MultiQx-GPU, a high-performance
software support system for concurrent analytical query pro-
cessing with GPU devices. MultiQx-GPU provides two criti-
cally necessary functionalities, namely query scheduling and
device memory swapping, to allow coordinated multi-query
executions with GPUs. Our extensive experimental results
show that MultiQx-GPU can significantly improve overall
throughput when executing data warehousing benchmarks.

We will extend MultiQx-GPU in two directions. First,
considering the importance of CPU-GPU co-processing for
high-performance query executions, we plan to investigate
the probability of combining CPU scheduling in the operat-
ing system with the GPU scheduling in our system. Second,
under the guideline of minimal changes to query engines,
current query scheduler in MultiQx-GPU does not consider
data overlapping between different queries. We will study
how to coordinate the two layers to support data sharing.
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