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ABSTRACT

Cluster computing has emerged as a key parallel processing plat-
form for large scale data. All major internet companies use it as
their major central processing platform. One of cluster comput-
ing’s most popular examples is MapReduce and its open source
implementation Hadoop. These systems were originally designed
for batch and massive-scale computations. Interestingly, over time
their production workloads have evolved into a mix of a small frac-
tion of large and long-running jobs and a much bigger fraction of
short jobs. This came about because these systems end up being
used as data warehouses, which store most of the data sets and at-
tract ad hoc, short, data-mining queries. Moreover, the availability
of higher level query languages that operate on top of these cluster
systems proliferated these ad hoc queries. Since existing systems
were not designed for short, latency-sensistive jobs, short interac-
tive jobs suffer from poor response times.

In this paper, we present Piranha—a system for optimizing short
jobs on Hadoop without affecting the larger jobs. It runs on exist-
ing unmodified Hadoop clusters facilitating its adoption. Piranha
exploits characteristics of short jobs learned from production work-
loads at Yahoo!! clusters to reduce the latency of such jobs. To
demonstrate Piranha’s effectiveness, we evaluated its performance
using three realistic short queries. Piranha was able to reduce the
queries’ response times by up to 71%.

1. INTRODUCTION

Nowadays, virtually all major internet companies run clusters
of commodity servers to process and store web-scale data—often
measured in petabytes. Examples of these data sets include web
crawls, click streams, and user profiles.

MapReduce [10] and its open source implementation, Hadoop,
have popularized this approach. This is because it is very powerful
and cost effective yet fairly easy to use. Currently, tens of compa-
nies including Facebook, Google, and Yahoo! run large-scale pri-
vate MapReduce/Hadoop clusters (to the tune of tens of thousands
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of nodes) [23]. Moreover, higher level query languages from sys-
tems like Pig [21], Hive [24], CQL [8], Jaql [3], and Sawzall [22]
running on top of these cluster computing infrastructures have made
these systems even easier to use and hence more accessible. All
this made most of these internet companies use their clusters both
as data warehouses and central processing units.

Although these systems were originally built for large-scale jobs,
currently their workloads are dominated by short jobs. For exam-
ple, in Yahoo!’s Hadoop production clusters, over 80% of the jobs
complete in under 10 minutes (Section 3). Similar behavior was
reported by Facebook [27] and Microsoft [15]. This came about
because over time more people started running ad hoc queries at
these clusters instead of just large scale production jobs. Then, the
emergence of higher level query languages that can run over these
clusters made their usage for ad hoc queries very popular.

Each of these small ad hoc queries could run efficiently on a
classical DBMS and does not need to use MapReduce or a cluster
of machines. However, the aggregate size of the corpus of data all
these queries operate on is usually too large to fit in a single DBMS.
Hence, the data is usually left in these clusters as they become the
de facto data warehouse. Moreover, users want to run their ad hoc
queries in place, on the clusters hosting the data.

Unfortunately, these cluster computing frameworks were built
without having short jobs in mind. For example, their key de-
sign goals were (1) scalability with respect to the job and cluster
sizes, (2) reliability: so that jobs are fault tolerant, and (3) through-
put. Consequently and according to our experience in production
Hadoop clusters, short jobs do not have good response times, al-
though for short interactive ad-hoc jobs, latency is key.

In this paper, we first studied and characterized short Hadoop
jobs in a multi-thousand-node Yahoo! production cluster. We learned
that these short jobs typically have a small number of tasks. More-
over, these jobs are very unlikely to experience failures. We also
learned that a big fraction of these production jobs originate from
higher level query languages like Pig, where many queries are com-
piled into a chain of MapReduce jobs.

Using this information, we developed a new system, Piranha,
to optimize Hadoop’s short jobs and reduce their response times
without affecting the larger jobs. Piranha runs on existing unmod-
ified Hadoop clusters, to facilitate its adoption. Although built for
Hadoop, the techniques used in developing Piranha and the lessons
learned can be generalized to other cluster computing platforms.

The key optimizations Piranha employs to reduce the latency of
short Hadoop jobs are the following:

e Given that short jobs are small and unlikely to suffer from fail-
ures, Piranha optimizes for the common case and avoids check-
pointing intermediate results to disk. Instead, it reruns the whole
job in the very unlikely event of failure. This is acceptable be-



cause the job is small and short so rerunning it is inexpensive,
especially if it is unlikely to happen.

e Piranha’s simple fault-tolerance mechanism facilitated extend-
ing Hadoop beyond MapReduce to support short jobs having
a general directed acyclic data flow graph. This is because
the main hurdle against supporting these kinds of jobs is their
complex fault tolerance, where support for rollback recovery is
needed. Supporting jobs with general directed acyclic data flow
graph allows Piranha to run complex queries efficiently instead
of having to inefficiently implement them in chains of MapRe-
duce jobs as we will see in Section 3.1.3.

e In Piranha jobs, tasks are self coordinating instead of relying on
Hadoop’s master for coordination. This is because the master
relies on a high-latency polling protocol for coordination as it
trades off higher latency for better scalability and reliability as
we will see in details in Section 2.2. Consequently, relying on
Hadoop’s master for coordination introduces significant latency
for short jobs.

To demonstrate Piranha’s effectiveness, we evaluated it using
three realistic short queries. Piranha was able to reduce the queries’
response times by 71%, 59%, and 46%.

The remainder of this paper is organized as follows. Section 2
presents the needed background about MapReduce and Hadoop.
The motivation for this work is laid out in Section 3. Section 4
presents the design and implementation of Piranha. Then, the ef-
fectiveness of Piranha is evaluated in Section 5. Related work is
presented in Section 6. Finally, Section 7 concludes this paper.

2. BACKGROUND

In this section, we first provide a brief overview of the MapRe-
duce programming model. We then describe some of the key as-
pects of the Hadoop implementation of this model as it relates to
this paper.

2.1 MapReduce Programming Model

The MapReduce programming model defines a computation step
using two functions: map () and reduce (). The map function
maps its input set of key-value records to another set of keys and
values. Its output is then shuffled to the reduces, where each key
and its corresponding values arrive at one reduce sorted by the key.
The reduce function is then applied to each key group it receives.

While simple, this model is powerful and scalable. It naturally
exploits parallelism: First, the input data is split such that the map
function can be invoked on the various parts in parallel. Similarly,
the reduce function is invoked on partitions in parallel.

2.2 Hadoop Architecture

Hadoop is an open-source Java-based implementation of the MapRe-

duce programming model. It is designed for clusters of commodity
nodes that contain both CPU and local storage and is comprised
of two components: (1) a MapReduce implementation framework,
and (2) the Hadoop Distributed File System (HDFS). HDFS is de-
signed primarily to store large files and it is modeled after the
Google File System [12]. In HDFS, data is striped across nodes
with large block sizes (for example, 64/128 MB blocks are com-
mon) and replicated for fault-tolerance. The HDFS master process
is called the NameNode. It is responsible for maintaining the file
system metadata. The slaves are called DataNodes. They run on
every node in the cluster storing the data blocks. In typical Hadoop
deployments, HDFS is used to store the input to a MapReduce job
as well as store the output from a MapReduce job. Any interme-
diate data generated by a MapReduce job (such as the output from

986

a map-phase) is not saved in HDFS; instead, the file system on the
local storage of individual nodes in the cluster is used.

In Hadoop’s MapReduce implementation, a process that invokes
the user’s map function is called a map task; analogously, a process
that reads the map output and invokes the user’s reduce function
is called a reduce task. The framework addresses issues such as
scheduling map/reduce tasks for a job, transporting the intermedi-
ate output from map tasks to reduce tasks, and fault-tolerance.

Hadoop’s MapReduce includes two key components:

e JobTracker process: a single master process to which users sub-
mit jobs. For each job, it creates the appropriate number of
map/reduce tasks and schedules them for execution on worker
nodes. It also keeps track of different jobs’ progress to detect
and restart failed tasks and also sends progress reports to the
user. Moreover, it keeps track of the liveness of all the nodes in
the cluster.

o TaskTracker processes: slave processes that run on individual
nodes in the cluster to keep track of the execution of individ-
ual tasks. Each TaskTracker process exposes some number of
slots for task execution. A slot is used to spawn and execute a
map/reduce task as assigned by the JobTracker. Also, the Task-
Tracker monitors the liveness of individual tasks running on its
node.

A heartbeat protocol is used between these two processes to com-
municate information and requests. It has different purposes, in-
cluding (1) detection of dead nodes, (2) assignment of a task for
execution by the JobTracker whenever a slot becomes available at
any TaskTracker, and (3) tracking the progress of the tasks spawned
by the TaskTracker. Progress tracking is used, for example, for the
JobTracker to detect the completion of a map task. This informa-
tion is then communicated to the corresponding reduces so that they
fetch the map’s output. Also, if a task fails, the JobTracker learns
about the failure through this heartbeat protocol. The JobTracker
then schedules the failed task for re-execution.

These heartbeats are exchanged periodically, where a lot of infor-
mation and requests are multiplexed over a single heartbeat. Hence,
Hadoop’s JobTracker adopts the polling mode opposite to the inter-
rupt mode. This design choice was made to allow this centralized
process to scale to a cluster with many thousand nodes, each po-
tentially running tens of tasks. Moreover, it reduces the risk of
having the JobTracker overwhelmed due to a spike in load lead-
ing to a storm of heartbeats. This is critical as the JobTracker is a
main controller of the Hadoop cluster and its dependability is key
for the the dependability of the whole cluster. Nevertheless, polling
can potentially introduce artificial timing delays, which can hurt re-
sponse time and overall utilization. But since Hadoop was mainly
designed for large jobs, these timing delays would be inconsequen-
tial relative to the overall large jobs runtimes. Finally, it is worth
mentioning that polling for interrupt mitigation in the context of
high performance computing is not new. For example, it is widely
used in operating systems [18].

2.3 Map Task Execution

The JobTracker determines the number of map tasks for a MapRe-
duce job by dividing the job input into a set of input splits, and then
assigns each split to a separate map task. Typically, an input split
consists of a byte-range within an input file (for example, a 128MB
block from a HDFS file). For optimal performance, the JobTracker
implements a locality optimization. It tries to schedule map tasks
close to the nodes where the input split data is located. To allow
the JobTracker to utilize this optimization, an input split can also
optionally specify the set of nodes where the data is located. This



locality optimization helps in avoiding a network data transfer for
reading the map input. The Hadoop framework provides users with
the flexibility in how the input splits are generated for each of their
MapReduce jobs.

When a map task starts, it parses its input split to generate key/value
pairs. The user-provided map function is invoked for each key/value
pair. The framework handles the management of the intermedi-
ate key/value pairs generated by a map task: The data is hash-
partitioned by the intermediate key, sorted, and appropriately spilled
to disk. Once an input split is fully processed, i.e., the user-provided
map function has been invoked on all the key/value pairs from the
split, execution is complete. Before the map task exits, the frame-
work merges the various spill files on disk and writes out a single
file comprising of sorted runs for each partition. As noted in Sec-
tion 2.2, this merged file is stored in the file system on the local
storage of the node where the task executed. Finally, a task com-
pletion notification is passed to the JobTracker, which in turn passes
it to the job’s reduce tasks.

Note that the map outputs are saved to disk and not pushed di-
rectly to the reduces for two reasons: (1) Fault tolerance: this is
to handle the case of a reduce task failing. When this reduce is
restarted, it can directly fetch the map outputs from disk instead of
having to rerun all the map tasks. (2) Asynchrony of execution of
maps and reduces: In general, a map cannot assume that all reduces
will be available when it finishes. This is because a reduce task can
get scheduled to run after the completion of some of the map tasks,
depending on the slot availability in the cluster. This is especially
true for a large job in a busy cluster. Hence, the disk is used as a
drop box to support this asynchrony of execution.

2.4 Reduce Task Execution

When a reduce task starts, it waits for the map tasks to produce
its inputs. Since the map output is stored on the local disk where the
map executed, a rendezvous mechanism is needed for the reduce to
locate the map tasks. The rendezvous between a reduce task and
its input is facilitated by a combination of JobTracker and Task-
Tracker processes, such that the information about a map’s comple-
tion along with its location is relayed to the reduce. Consequently,
the reduce task fetches its inputs—the maps’ outputs.

In Hadoop parlance, a reduce task execution comprises of three
phases. The first phase, which is this data transfer, is known as shuf-
fle. Once a reduce task has pulled all of its input data, it moves to
the second phase known as merge, where all the inputs are merged.
In the third phase, known as the reduce phase, the user-provided
reduce function is invoked on each key group. Once all the
groups have been processed, the reduce task execution is complete.

In Hadoop, the output from the reduce task is then materialized
by saving to HDFS. When all reduce tasks complete execution, the
MapReduce job execution is complete and its output is available
for consumption.

3. MOTIVATION

In this section, we motivate the need for the Piranha system to
optimize short jobs using information collected from the Yahoo!
production clusters.

3.1 Workload Characterization

In this section, we study the job mix in the Yahoo! Hadoop clus-
ters. We show that the majority of jobs are short, having a small
set of tasks. These jobs are mostly online ad hoc queries, which
are latency sensitive. Moreover, we show that failure rates are very
low. Consequently, these short jobs are very unlikely to experi-
ence a failure. Furthermore, we point out that these short jobs are
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Figure 1: Distribution of overall jobs’ runtimes in a production
Hadoop cluster.

usually chained together. These job chains often have redundant
stages, which add unnecessary extra latency to the job’s execution
time.

3.1.1 Job Sizes

To this end, we studied 2 weeks worth of job logs in one of Ya-
hoo!’s few-thousand-nodes busy production Hadoop clusters. Fig-
ure 1 shows the CDF of individual jobs’ runtimes. These runtimes
are execution times and do not include the time a job may incur
queued waiting to be executed. Over 80% of the jobs complete ex-
ecution in under 10 minutes. Given that the vast majority of the
jobs execute for a short duration, this paper is mainly concerned
with optimizing Hadoop’s performance for such jobs. Hence, we
restrict the rest of our analysis to these short jobs.

Since these jobs run on a large cluster, runtime by itself does not
tell us the full story about the job size. Thus, we analyzed the num-
ber of map and reduce tasks per job. Figure 2 shows the distribution
in the number of map tasks in short jobs. The median number of
maps is 15. Figure 3 shows the distribution in the number of re-
duce tasks in short jobs. The vast majority of the jobs have a single
reduce. This typically arises from ad hoc queries.

The reason people run these tiny jobs on multi-thousand-nodes
clusters is because such clusters are used as data warehouses. Con-
sequently, these ad hoc queries, irrespective of their size, run where
the data is placed.

3.1.2 Failure Rates

In Yahoo! Hadoop clusters, failure rates are about 1% per month.
Assuming inter-failure times follow a poisson process, with a mean
time to failure MTTF', then the probability of failure of one or
more tasks in a job with N tasks, running for a given time, is given
by the following equation.

P=1-— (efNﬂf/MTTF)

Now, from Figure 1, the median job has a median runtime of 1
minute and from Figures 2 and 3 it has 15 maps and 1 reduce tasks,
a total of 16 tasks. Plugging these values into the above equation,
we find that the probability of failures in small jobs is virtually
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zero. This is consistent with our experience from Yahoo! produc-
tion clusters, where small bug-free jobs virtually never experience
failures.

3.1.3 Chained Jobs

In the studied workload, we also observed that over 70% of the
Hadoop jobs are generated from translations of higher level, SQL-
like, queries by systems such as Pig and Hive. These queries are
usually translated into a directed graph of MapReduce jobs chained
together. To illustrate this, consider the simple high level query:
“What are the top 10 web search queries for today?”. This query
is translated into two back-to-back MapReduce jobs. The first job
computes the frequencies of different search queries by grouping
search queries. The second job sorts these frequencies to obtain the
K most popular queries. Figure 4 shows a schematic diagram for
the execution of the above query broken down into two MapReduce
jobs. In practice, these chains are small for short jobs, i.e. they
typically have two or three chained MapReduce jobs.

As described in Section 2, Hadoop only supports MapReduce
jobs and does not provide native support for job chains. Instead, it
treats each step in the chain as an isolated Map-Reduce job. This
has two implications for job chains. First, the output of a job step
has to be materialized to HDFS before it can be consumed by a
subsequent job step. Second, in each step, the map phase has to be
invoked to enable data to flow through the Hadoop pipeline. Both
of these increase the latency for job chains. Furthermore, the lat-
ter may introduce a redundant phase to a job step. For instance,
the map phase of the second job in the top K query is an identity
function.

3.2 Opportunity

We can leverage the fact that the majority of jobs are short,
latency-sensitive ad hoc queries. First, since such jobs rarely fail,
checkpointing can be avoided and data can be streamed through
tasks without touching the disk. Not only does this reduce the
overhead of short jobs, but also it reduces disk contention, help-
ing the overall job population in the cluster. In the very unlikely
event of failure of a task, the whole job can be restarted to maintain
fault tolerance. This is inexpensive because the job is short. More-
over, avoiding checkpointing substantially simplifies the execution
of general computations, whose tasks’ execution follow a general
Directed Acyclic Graph (DAG) data flow. The main complexity in
executing these computations is check-pointing and roll-back re-
covery. With the support of DAG computations, redundant tasks
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can be eliminated from computation pipelines, further reducing the
computation’s latency.

Finally, since short jobs do not need Hadoop’s elaborate fault tol-
erance infrastructure, for such jobs, relying on the JobTracker with
its expensive heartbeats protocol for coordination between job tasks
can be avoided. Conversely, tasks can self coordinate to avoid the
latency introduced from relying on the JobTracker’s polling heart-
beats protocol.

4. PIRANHA

In this section we present the design and implementation of a
novel system, Piranha, that is designed for short jobs in the cloud.
Piranha exploits the special properties of short jobs to optimize
their performance. Our implementation is built on top of Hadoop.
However, the same concepts can be applied to build Piranha on top
of other cloud infrastructures like Mesos [13] and YARN [4].

As shown in Figure 5, Piranha runs as a middleware between
user defined jobs and the Hadoop framework. Also, systems like
Pig and Hive can compile their high level queries into Piranha jobs
to make their execution more efficient.

In the design section, we present Piranha’s design concepts inde-
pendent of Hadoop. In the implementation section, we show how
these concepts are adapted to Hadoop.

4.1 Design

A Piranha job has a directed acyclic data flow graph, where the
vertices of the DAG represent computations, i.e., tasks and edges in
the DAG represent communication between tasks. Figure 6, shows
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the flow graph of an example query, the TopK query presented in
Section 3, implemented using Piranha.
A Piranha task could be one of three types:

o Initial: These tasks have no parents in the DAG. Hence, they
do not get their inputs from previous tasks in the job. Instead,
they typically read it from the underlying file system. They pass
their output to their children tasks.

o Intermediate: They read their inputs from their parent tasks in
the DAG and pass their outputs to their children.

e Terminal: These tasks read their inputs from their parent tasks
in the DAG. They do not have children. They write their output
to the underlying file system.

A Piranha job is self organizing. This means that its tasks coor-
dinate among themselves to drive the job to completion with min-
imal reliance on the underlying infrastructure. Piranha relies on
the underlying infrastructure just for launching and scheduling its
tasks. It also relies on the underlying infrastructure to schedule ini-
tial tasks close to their input data if the infrastructure supports this
feature.

Piranha runtime handles the following key functionalities:

e Rendezvous between tasks: Since the underlying scheduling
infrastructure launches tasks in arbitrary locations in the cluster,
tasks need to locate each other. This is needed so that parents
can push their outputs to their children in the DAG. In Piranha,
each child task publishes its location to a job-specific location
accessible by other tasks in the job. For example, this publish-
ing medium could be the underlying distributed file system or a
coordination service like ZooKeeper [14]. Parent tasks read this
published information to locate their children. Piranha offloads
this rendezvous process from the underlying cluster’s sched-
uler, as it is done in the Hadoop JobTracker. This accomplishes
two things. First, it reduces the load on the cluster’s scheduler
allowing it to scale more. Second, it does not rely on the heart-
beats protocol with all the latency it introduces, hence, reducing
the job’s overall runtime. Finally, offloading the rendezvous to
an external system is scalable as more instances of this exter-
nal system can be added if the load increases, e.g., add more
Zookeeper services.

e Data transfer between tasks: Piranha assumes that the task’s
children will be available once the task completes and has its
outputs ready. This is achieved by requesting from the under-
lying cluster scheduling infrastructure to co-schedule tasks in
subsequent phases. For example, in Figure 6, the Initial and
the Intermediate tasks should be co-scheduled. When the Ini-
tial tasks finish, the Terminal task should be scheduled, leaving
the Intermediate and the Terminal tasks running. If a task does
not have all of its children running, it waits for them to come
up before it exits. Hence, to make forward progress, a Piranha
job needs the underlying infrastructure to give it as many slots
as needed to accommodate the tasks of the biggest two consec-
utive phases in its DAG. For example, the job in Figure 6 would
at least need 8 task slots to accommodate its first two stages so
that it can make forward progress. The above assumption is rea-
sonable for small jobs as a small set of slots will be required.
The Piranha runtime can check for the minimum number of
slots required for a particular job. If the user’s slots share on
the cluster permits, it can submit the job, else it aborts. This
guarantees that no job will be submitted without being able to
get the resources it needs.

Given that Piranha guarantees that a parent and its children al-
ways coexist, parents always push their output to their chil-



dren. This is more efficient than the dropbox approach, used
by Hadoop, for two reasons. First, it does not rely on the ex-
pensive heartbeat protocol to learn about the availability of the
parent’s output. Second, the output is streamed directly from
the parent’s memory over the network to its children without
hitting the disk. Conversely, in Hadoop’s MapReduce, maps
leave their outputs on disk and later reduces fetch these out-
puts. Multiple reduces fetch different parts of the outputs at
the same time introducing disk seeks and contention among the
reduces and the other jobs that access the same disk.

o Fault tolerance: Since Piranha jobs are very small, the proba-
bility of them failing is very low as shown in Section 3. Con-
sequently, Piranha optimizes for the most common case and
adopts a very simple fault-tolerance policy, i.e., it does not do
any checkpointing within the job and makes the whole job as
its unit of fault tolerance. In other words, if any task fails in
a Piranha job, the runtime simply aborts this run, deletes any
partial output files, and resubmits the job. This approach has
two advantages. First, it avoids the checkpointing performance
overhead, where intermediate outputs are materialized to disk.
Then, these outputs are deleted when the job finishes. This
overhead can be significant as we will see in Section 5 if these
intermediate outputs are large. Second, it substantially simpli-
fies the implementation of computations having their data flow
following a general DAG as it avoids supporting the complex
rollback-recovery for a general DAG.

Using Piranha

For using Piranha to run a particular computation, the computation
has to be represented as a Piranha DAG. The common use case is
for higher level languages like Pig and Hive to use Piranha to exe-
cute their queries. The query language would produce a query plan
for the query in question. Then, a plan along with its physical op-
erators is translated into a Piranha DAG, and executed by Piranha.

Discussion
There are three points that we would like to point out:

e First, the design choices that we made for Piranha are not suit-
able for large jobs, e.g., the lack of fault tolerance. Thus, it is
the responsibility of higher level applications, e.g., Pig or Hive,
to not compile their queries into Piranha if the query is large.
The job size can be checked before submission by inspecting
the input sizes and the depth of the processing pipeline. This
information is available to the higher level application, before
submission time. Hence, it can make an informed decision on
whether to compile its query to Piranha or, for large jobs, fall
back to MapReduce, where fault tolerance is automatically sup-
ported and latency is not critical. This is analogous to query
optimizers in classical database systems choosing query plans
according to input sizes.

e Second, Piranha is only concerned with optimizing the execu-
tion time of short jobs. If a Piranha job is submitted to an over-
loaded cluster, it may incur extended queuing delays, which
would inflate the job’s turn around time. However, different
cluster management infrastructures provide mechanisms to han-
dle this problem—most notably priorities, e.g., Hadoop allows
for assigning different priorities to different jobs. Higher pri-
ority jobs are executed first. Piranha can give its jobs higher
priority to ensure that they are not queued behind larger jobs
in busy clusters. This is analogous to operating systems giving
higher priorities to realtime and interactive processes.
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e Third, Piranha has the limitation of requiring parents and chil-
dren tasks in the execution DAG to be co-scheduled. In theory,
in a busy cluster, a Piranha job may have to wait for a while until
free slots in the cluster are secured to accommodate the parents
and the children in the DAG. In practice, this is not a problem.
Other than the fact that Piranha jobs only have small number of
tasks, production clusters typically have thousands of task slots
that experience a lot of churn. For example, Yahoo!’s Hadoop
clusters have tens of thousands of slots with average task run-
time of 20 seconds. Hence, securing a handful of free slots for
a high priority job is virtually instantaneous.

4.2 Implementation

Our implementation of Piranha extends Hadoop beyond the MapRe-

duce model to support short jobs having general directed acyclic
data flow graph as explained in Section 4.1. We choose Hadoop as
our underlying infrastructure as it is widely used in industry (e.g. at
Yahoo!, Facebook, and Turn), which would expedite the adoption
of Piranha.

A Piranha job is encoded as a set of tasks defined in a configura-
tion file. Each task has multiple attributes including: (1) an ID, (2)
the class name representing the computation, and (3) the input spli-
tIDs of children tasks, if this is a non-terminal task. This implicitly
also defines the job’s intertask data flow graph. Given the config-
uration file defining the job’s execution graph, along with the code
for classes to be executed by different tasks, the Piranha middle-
ware executes the Piranha job transparently on top of unmodified
Hadoop.

Piranha Tasks

To run a Piranha job on top of stock Hadoop, we need to adapt Pi-
ranha’s task types with those available in Hadoop. As we observed
in Section 2.1, unlike for reduce tasks, the MapReduce program-
ming model does not impose any constraints on map tasks. To
illustrate, the input to a map task is configurable (such as, read data
from HDFS or over a network socket); similarly, the destination of
the output from a map task is also configurable. In particular, it
is not necessary that the output of a map task to be passed down
the Hadoop sort pipeline and passed to reduce tasks. A Hadoop
map task therefore presents the abstraction of a general-purpose
task. We build on this observation and adapt the three Piranha’s
task types to be run solely using Hadoop’s map tasks. In Hadoop
parlance, a Piranha job is a “map-only” job.

For optimal performance, the JobTracker should run the Piranha
Initial tasks close to their inputs which resides in HDFS. On the
other hand, for the Intermediate/Terminal Piranha tasks, the Job-
Tracker has the flexibility to run them on any available node in the
cluster. This is because these latter tasks do not read their input
from HDFS.

We accomplish these two objectives by leveraging Hadoop’s flex-
ibility in defining input splits on a per task basis. First, Piranha
middleware uses the underlying job’s input split generator to gen-
erate a set of splits for the initial tasks. The job’s input split gen-
erator provides the locations hosting the data for the input split.
The JobTracker uses this information to implement the locality op-
timization for the Initial tasks. Second, Piranha generates a set of
empty input splits that correspond to each of the Intermediate- and
Terminal- Piranha tasks. An empty input split is a zero-length in-
put split. For the empty input splits, Piranha does not provide any
location information. This gives the JobTracker the flexibility to
schedule these tasks on any available slot in the cluster.



Rendezvous

For the rendezvous to work, the parent and the child tasks have to be
co-scheduled. Hadoop does not give jobs control over which tasks
to schedule. Instead, the job is submitted to the Hadoop scheduler
and it schedules as many tasks as it can for this job depending on
free slot availability. Consequently, in our implementation, we use
Hadoop to launch all the job’s tasks simultaneously. This is sub-
optimal, but it satisfies the Piranha requirements and complies with
the underlying Hadoop infrastructure. Hence it allows us to run on
unmodified Hadoop clusters, facilitating the adoption of Piranha. If
a task starts before its children, it waits until they come up and pub-
lish their location. If implemented on top of other frameworks like
YARN or Mesos, the Piranha runtime can incrementally request
tasks from the framework’s scheduler to only run tasks in subse-
quent phases simultaneously. This will result in less slot usage.
Also, it allows jobs make forward progress when slots are scarce in
the cluster.

In our implementation, Piranha provides the rendezvous service
in two ways, each using a different system.

First, it relies on HDFS. In this case, each child writes its ad-
dress (IP address + port number) to a file at a job-specific location
on HDFS as soon as it starts. The parent polls for these location
files written by all its children. As soon as all these files exist,
the parent learns the locations of its children, passes its output to
them, then it can exit freely. The advantage of using HDFS for this
purpose is that it is part of the Hadoop stack, so no external sys-
tems are needed. On the downside though, HDFS does not provide
asynchronous notification when a file is created. Thus, parents have
to resort to polling, which if done at a high rate can overload the
HDFS NameNode. Conversely, if polling is done at a low rate, it
can add a noticeable latency to the job runtime.

Alternatively, the Piranha middleware uses ZooKeeper for the
rendezvous. Briefly, ZooKeeper is a high-performance coordina-
tion service that allows distributed processes to coordinate with
each other through a shared hierarchal namespace which is orga-
nized similar to a standard file system. Unlike a typical file sys-
tem, which is designed for classical storage, ZooKeeper is designed
to store small, hot data, and for low latency. Finally, Zookeeper
also includes event notification mechanisms whenever data stored
in Zookeeper is modified and thereby lowering latency in detect-
ing changes as well as eliminating the need for application polling.
Similar to the HDFS case, each child task writes its address to
a well-defined node (for example, a ZooKeeper node that corre-
sponds to the task’s id) in the ZooKeeper tree. Each parent task
can determine the location of their children by retrieving the in-
formation from ZooKeeper. The only downside to the ZooKeeper
approach is that the Hadoop cluster needs an extra external com-
ponent, ZooKeeper, which may or may not be available. In our
current implementation, we provide the choice of the rendezvous
implementation as a configurable parameter.

Putting It All Together

The Piranha middleware specifies to Hadoop the number of map
tasks that are required for execution. This number is the sum of the
various task types required for an individual Piranha job. Hadoop
by default distributes the job configuration file to all the job’s tasks.
When a Piranha task starts up, it uses its task ID to index into the
configuration file to determine its attributes. It then performs ren-
dezvous actions: A child task publishes its location (IP address +
port number) to the rendezvous implementation; a parent task lo-
cates its children using the rendezvous implementation and estab-
lishes a TCP connection to each child so that the parent can push
data. At this point, the rendezvous is complete. All the inital tasks

991

can begin execution. The remaining tasks have to wait until their
parents have completed execution. A task execution is complete
once the task has consumed all its input and either it has pushed
output to its children if any or written the output to HDES. A child
task can begin execution only after it receives all its inputs. The job
execution is complete when all tasks have completed execution.

S. EVALUATION

In this section we study the effectiveness of Piranha using real-
istic workloads.

5.1 Experimental Setup

To evaluate the effectiveness of Piranha, we examine the perfor-
mance of its jobs in isolation of other workloads. Hence, we run
our experiments on a private 19-machine test cluster. Although this
cluster is small in size relative to clusters used in production, it is
adequate for the workload in question as we are primarily focusing
on small jobs. The cluster ran stock Hadoop 0.20. HDFS was con-
figured to have a maximum block size of 128 MB. Each machine
has an Intel dual core processor, 4 GB of memory and a single hard
drive. Machines are connected via a 1 Gb/s network connections.
All the machines were running Linux Red Hat 5. One machine ran
the Hadoop cluster masters, the JobTracker and the NameNode,
while the other 18 machines were workers. Each worker was con-
figured to have 2 map slots and a single reduce slot. Also, workers
were using Hadoop’s default inter-heartbeat interval of 3 seconds
for the polling heartbeat protocol®. Finally, for optimum perfor-
mance, Hadoop tasks were configured to use extra memory to avoid
any extra disk writes, e.g., map tasks doing external disk sorts of
their outputs in case of shortage of memory.

For coordination between Piranha tasks, i.e., rendezvous, we
used Zookeeper in our cluster.

5.2 Workload

For our workload, we used a total of four different jobs. The
first job is a dummy job with empty input and no computation. It
acts as microbenchmark characterizing the inherent overhead of the
underlying Hadoop framework. The other three jobs are different
flavors of the top K query from Section 3, which are prevalent
in the Yahoo! workload. These queries follow a common idiom
of grouping operations followed by sorting. Moreover, they were
chosen to have runtimes around one minute, which is the median
job runtime in the Yahoo! cluster.

The first query runs over a small subset of Yahoo!’s internal web-
map table. Each record in the table is of an internet web page
recording many of its attributes, e.g., URL, domain, spam score,
anchor text, etc.This working set has 1,000,000 records and is 965
MB in size and spans 8 HDFS blocks. The query computes the top
5 domains having the maximum number of web pages in the data
set. We call this query TopKDomains query. This query was chosen
because it has a relatively small number of groups, i.e., domains.
This results in the first grouping sub-query to have low selectivity.
Consequently, the intermediate results between tasks in the query
execution DAG would be small. This diminishes the costs of ma-
terializing these intermediate results to disk. It also diminishes the
cost of redundant tasks in the query’s DAG as they do little work.
On the other hand, this emphasizes the scheduling overheads due
to polling in the heartbeat protocol described in Section 2.2.

The second query used was finding the 5 most frequent words
in a corpus of wikipedia documents. The data set was 737 MB

*This is Hadoop’s default value for clusters having 300 workers or
less



spanning 6 HDFS blocks. These documents were XML encoded,
which introduced significant noise and randomness in the docu-
ments. Consequently, the first grouping sub-query will have a large
number of groups, i.e., tokens or words. This makes the first sub-
query have high selectivity. Consequently, this workload is used to
emphasize the effects of materializing intermediate results to disk
and also the effects of redundant tasks in the query’s DAG. We call
this query TopKWords query.

The third query also ran over the same web-map data set. Con-
versely, this query performs two consecutive grouping operations
followed by a sort. It returns the top 5 anchor words in URLs from
domains having average spam score less than or equal to 10. The
query first groups URLs by domain filtering out URLs in domains
with average spam score ¢, 10. Then, it counts the frequency of each
anchor word and finally sorts the frequencies to get the top 5 most
frequent words. We call this NonSpamTopKAnchor query.

In summary, these last three queries were chosen to exercise the
different optimizations Piranha introduces. For example, they have
redundant stages that Piranha can eliminate. Also, they have dif-
ferent intermediate output sizes, which helps exploring the benefits
of eliminating checkpointing for different kinds of jobs. Moreover,
the third query has more stages, leading to longer execution graph,
which helps studying Piranha’s benefits for this kind of jobs. Fi-
nally, all these queries are short. Hence, Hadoop’s latency overhead
will be pronounced in their runtime.

5.3 Experiments

In our experiments, we first use microbenchmarks to evaluate
the basic latency overhead any job experience. Then, we use mac-
robenchmarks to evaluate the impact of Piranha’s optimizations on
realistic workloads.

5.3.1 Microbenchmarks

In this section, we study runtime of a dummy job, having empty
inputs and no computation. This is to quantify the inherent schedul-
ing and coordination overhead in Hadoop any Piranha job must in-
cur when running on top of Hadoop. The job is run on an idle
cluster to guarantee that the measured runtimes do not include any
queueing delays. For this dummy job, we use three configurations:
a MapReduce job, a map-only MapReduce job and a Piranha job.
The MapReduce job shuffles its empty map outputs to its reduce
tasks to produce empty outputs. Conversely, the map-only job skips
the shuffle and the reduce phases. On the other hand, the Piranha
job includes both shuffle and reduce phases. However, it is imple-
mented as a map-only job. So, it avoids the overhead of scheduling
reduces and the coordination between maps and reduces.

Table 1 shows the runtimes measured for each configuration.
For all configurations, we notice high latency which is mostly due
to spawning new tasks, scheduling them, and coordinating among
them using Hadoop’s expensive heartbeats protocol. The map-only
configuration avoids the shuffling and the reduce phase. Hence, it
avoids the associated scheduling and coordination overheads lead-
ing to the reduction of the runtime from 24 seconds to 17 seconds.
The Piranha job, although having both shuffle and reduce phases, it
is implemented as a Hadoop map-only job. It uses its light-weight
coordination protocol and it does not have its reduce tasks schedul-
ing depend on the execution of the map tasks. Hence, it achieves a
runtime similar to the map-only MapReduce job. Note that this mi-
crobenchmark establishes a lower bound on the performance gains
from using Piranha and a lower bound on the runtime of a Piranha
job, when running on top of Hadoop. This is because, a Piranha job
is a Hadoop job and hence it is subject to the scheduling overhead
any Hadoop job must experience to get slots allocated to it to run

Configuration: | MapReduce | Map-only Piranha

MapReduce
[ Runtime (s) [ 24 [ 17 [ 17 ‘

Table 1: Runtimes of a dummy job under different configura-
tions.
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Figure 7: Breakdown of the time spent in the TopKWords
query running over a corpus of wikipedia documents, us-
ing both Piranha and MapReduce. In this experiment we
use four Piranha configurations by varying two variables—
checkpointing and the elimination of redundant tasks that the
MapReduce execution relies on.

its tasks. However, performance gains from using Piranha become
more pronounced for more complex queries with longer chains of
tasks as shown in the following sections. Finally, this limitation is
not fundamental to Piranha. For example, if Piranha runs on top of
other frameworks like Mesos [13] and YARN [4] to run its tasks,
this overhead could be virtually eliminated and Piranha’s relative
performance gains would be much more pronounced. However, we
choose to run on top of Hadoop for the practical reason of main-
taining backward compatibility with the dominant framework in
practice.

5.3.2 Macrobenchmarks

This section studies the impact of three optimizations Piranha
provides to reduce different overheads for short jobs. Specifically,
we evaluate the individual contribution of each of the following
optimizations on queries’ runtimes. In addition, we study the per-
formance of computations having longer chains in their execution
graphs using regular MapReduce and Piranha.

Coordination Overhead

In this section, we focus on evaluating the performance gains due
to avoiding the reliance on the JobTracker and its expensive heart-
beats protocol for coordination. To this end, we run each of the
the three queries described above using two setups: (1) Chained
MapReduce jobs and (2) A Piranha job having a query execution
DAG resembling that of the chained MapReduce configuration with
both the redundant tasks and the materialization of intermediate re-
sults to disk. Hence, the main difference between the two setups is
the inter-task coordination—one relies on the underlying Hadoop
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Figure 8: Breakdown of the time spent in the TopKDomains
query running over Yahoo!’s web-map table, using both Pi-
ranha and MapReduce. In this experiment we use four Pi-
ranha configurations by varying two variables—checkpointing
and the elimination of redundant tasks that the MapReduce ex-
ecution relies on.

JobTracker, while the other relies on out-of-band, light-weight co-
ordination using Zookeeper.

Figures 7, 8, and 9 show the runtimes, using both setups, for
the TopKWords query, the TopKDomains query, and the NonSpam-
TopKAnchor query respectively. To be able to compare the effec-
tiveness of different optimizations against each other, each figure
includes measurements for different experiments (from this section
as well as from next ones) using different configurations. In this ex-
periment we focus on the Piranha configuration having both redun-
dant tasks and checkpointing, shown in the figure, as it resembles
the MapReduce execution, with the only difference of eliminating
Hadoop’s heavy weight coordination overhead. Other Piranha con-
figurations are covered in the following sections.

For the TopKDomains query, both setups have a total of 17 tasks
structured in 4 stages. In the chained MapReduce setup, the exe-
cution DAG is similar to that in Figure 4. The first job has 8 map
tasks, a map per HDFS block of the input, plus 4 reduce tasks. The
second job has 4 map tasks, operating on the previous reduce out-
puts, plus a single reduce to do the final ranking. Conversely, in
the Piranha configuration there are 8 initial tasks, plus two inter-
mediate stages, each having four tasks, plus a single terminal task.
For the TopKWords query, there are only six tasks at the first stage
reading 6 HDFS input blocks. The following stages are similar to
these of the previous query. Finally, the NonSpamTopKAnchor has
six stages, with the first stage having 8 tasks.

In the figures, each query runtime is broken down by the individ-
ual runtimes of each of its stages®. Since stages of the query overlap
in their execution, we only report execution times of stages on the
critical path to the overall query execution. For example, in Piranha
configurations, a child task overlaps execution with its parents. We
only report the time the child takes after it has received all its inputs
from its parents. For the Piranha configurations, we see that the
runtime is broken-down into 5 components: (1) the runtime of the

*For simplicity of presentation the breakdown is omitted for the
NonSpamTopKAnchor query as it has several stages.
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Figure 9: Runtime of the NonSpamTopKAnchor query run-
ning over Yahoo!’s web-map table, using both Piranha and
MapReduce. In this experiment we use four Piranha configu-
rations by varying two variables—checkpointing and the elimi-
nation of redundant tasks that the MapReduce execution relies
on.

Initial phase, (2) the runtime of the Intermediate phase, (3) the run-
time of the second Intermediate phase, (4) the runtime of the Ter-
minal phase, (5) and finally other latency overheads. These other
latency overheads come about from the underlying Hadoop frame-
work. A big fraction of these overheads come from the polling
heartbeats protocol. For the chained MapReduce configuration, we
also see that the runtime is broken-down into 5 components: the
runtime of the map phase of the first job, the runtime of the reduce
phase of the first job, the runtime of the map phase of the second
job, the runtime of the reduce phase of the second job, and other
latency overheads.

We note that Piranha cuts down the runtimes of the NonSpam-
TopKAnchor, the TopKDomains and the TopKWords queries by 68%,
59%, and 20% respectively. These savings are chiefly due to lower
coordination overhead as parents and children tasks are co-scheduled
and communicate directly and not via the JobTracker with its ex-
pensive polling heartbeats protocol. For example, in MapReduce, a
reduce has to wait for a heartbeat to learn about the completion of a
map task before it can fetch its output. Also, tasks are scheduled on
heartbeats. So, for chained MapReduce, the last task of the first job
has to finish before the second job is submitted. Then, tasks of the
submitted job have to wait for heartbeats to be scheduled. Piranha
avoids all that. However, it still experiences some latency overhead
because it still runs over the Hadoop framework that uses heart-
beats. For example, Piranha jobs still have to wait for heartbeats
for their tasks to be scheduled.

Finally, there are three more things to note. First, in absolute
terms, the savings from cutting the coordination overheads are com-
parable for both the TopKWords and the TopKDomains queries as
the overheads are proportional to the number of stages in the job.
However, since the overall runtime of the TopKWords query is sig-
nificantly longer than that of the TopKDomains, the relative gains
for the TopKDomains query are significantly bigger. Second, there
is little variance between the runtimes of similar stages in different
configurations. This variance is due to timers’ variances as workers
do not have synchronized clocks. Hence, different runs can expe-
rience different delays because of unsynchronized heartbeats. That



said, we repeated the experiments three times. These small vari-
ances aside, the results are qualitatively the same. Third, we see
that the NonSpamTopKAnchor query enjoys the maximum perfor-
mance gains as it has more stages. Piranha eliminates coordinates
overheads for all its stages resulting in more gains than the other
two jobs.

Checkpointing Overhead

In this section, we study the overhead introduced by materializ-
ing the intermediate outputs of tasks for fault tolerance purposes.
To accomplish this, we use a different Piranha configuration for
the queries we studied before. In this configuration, parent tasks
stream their outputs directly to their children in the query execution
graph without touching the disk. We refer to this configuration as
”Redundant / Checkpointing” in Figures 7, 8, and 9. In this exper-
iment, we compare the runtimes of the new Piranha configuration
to both the Piranha configuration having disk materialization and
to the MapReduce configuration used in the previous experiment.
Interestingly, we notice that only the TopKWords query experience
a noticeable gain from eliminating disk materialization as this op-
timization cuts 11% of its runtime in comparison to the earlier Pi-
ranha configuration that uses disk materialization. This is because
this query has much higher selectivity than the TopKDomains and
the NonSpamTopKAnchor queries leading to much more disk 1/0
due to disk materialization. More specifically, it has intermediate
outputs ranging from 100 MB to 180 MB per task compared to
only about 2 MB of intermediate outputs per task for the other two
queries. Hence, disk materialization is far more expensive for the
TopKWords query.

Redundant Tasks’ Overhead

In this section, we study the overhead due to redundant tasks, when
queries are executed as chained MapReduce jobs. These redun-
dant tasks are imposed on the query execution graph to comply
with MapReduce programming model. To this end, we construct
two more Piranha configurations for each of the above queries that
avoid these redundant tasks, specifically, the second intermediate
stage for the TopKDomains and the TopKWords queries, and the
second and the fourth intermediate stages for the NonSpamTop-
KAnchor query. In Figures 7, 8, and 9, we refer to these two
new configurations as ”No Redundant”, while varying doing check-
pointing.

In this experiment, we compare the runtimes of the new Piranha
configurations to the two previous Piranha configurations along
with the MapReduce configuration for the three queries. In Fig-
ure 7, we note that eliminating the redundant phase leads to 20%
reduction in TopKWords query runtime over the corresponding Pi-
ranha job having the redundant phase. This is true for both Piranha
configurations with and without disk materialization. Conversely,
in Figure 8, we note that eliminating the redundant tasks virtually
did not result in any noticeable gains. Again, this is because the
TopKDomains query has very little selectivity. Hence, these redun-
dant, pass-through tasks do not result in noticeable latency. Finally
in Figure 9, while the NonSpamTopKAnchor query has low selec-
tivity, it also has two eliminated redundant stages, which explains
the 10% performance gain.

6. RELATED WORK

Piranha runs on top of Hadoop [1], which is an open source im-
plementation of Google’s MapReduce [10]. Both systems run par-
allel computations on a cluster of machines. They constrain the
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communication pattern between tasks such that, each map task par-
titions its output and distributes these partitions across all the re-
duce tasks. Piranha extends Hadoop to run short computations with
general acyclic directed flow graphs. Moreover it is optimized for
short jobs to reduce their latency.

Short and interactive jobs have received a lot of attention lately
from both industry and academia.

The most relevant system is Tenzing [7], which was developed
to reduce jobs’ turn-around time on MapReduce clusters. It uses
a pool of ever-running worker tasks, where new work is submitted
to free existing workers. While using a workers pool avoids the
overhead of spawning new tasks, it has two shortcomings. First,
reserving more workers than needed wastes the cluster’s resources.
Conversely, having less workers introduces latency due to waiting
for workers to become free. Consequently, a dynamic scheme may
be required to set the pool size, which is challenging as the work-
load can be highly dynamic. Second, constraining the MapReduce
scheduler to use specific workers for a particular computation may
significantly limit its ability to optimize for data locality (schedul-
ing the job at nodes where the inputs reside locally). This can
increase the network load as inputs may be read off the network
instead of being read locally, which may also increase the job run-
time. Moreover, Tenzing is constrained by the MapReduce model.
Hence, it may introduce redundant stages to execution pipelines
as it cannot directly execute computations with general DAG data
flow. Finally, Tenzing runs on top of MapReduce, which mate-
rializes intra-job intermediate results. Piranha’s optimizations are
complementary to Tenzing’s. Hence, the two sets of optimizations
can be applied simultaneously.

Shark [25] running on top of Spark [27] promises to make short
queries run faster. To accomplish this, Spark tasks load data off
disk and cache it in memory and reuses it across different compu-
tations/queries. For the memory to be effective, the working set
needs to fit in memory. Moreover, queries touching new data will
still have to be read off disk. Unlike Piranha, they do not run on top
of Hadoop as Spark is a stand-alone system.

Dremel [19] and its open source implementation Drill [2] also
attempts to make interactive queries faster. To this end, it reduces
the amount of data read by queries using column-store techniques.

Dryad [15] and Hyracks [6], like Piranha, can run a parallel com-
putation with DAG data flow on a cluster of machines. However,
both Dryad and Hyracks are standalone systems that do not run
on Hadoop or MapReduce clusters. Also, unlike Piranha, neither
Dryad nor Hyracks are optimized for short jobs.

CIEL [20] takes things a step further to support jobs with dy-
namic DAG data flow on a cluster of machines. It is also not opti-
mized for small jobs and it is a standalone system.

DryadLINQ [16,26] compiles higher level languages into Dryad.
Similarly, Pig [21] and Hive [24] can compile higher level query
languages into Piranha.

Frameworks like Mesos [13] and YARN [4] are introduced as
resource managers of a cluster’s resources, allowing different ap-
plications to share the cluster, e.g. Hadoop and MPI. Piranha can
run directly on top of these systems. In this case, Piranha can get a
set of slots in the cluster from the underlying resource manager to
run its tasks. Thus, it can avoid Hadoop’s high scheduling overhead
increasing its effectiveness. Moreover, controlling the set of tasks
it uses at a given time allows it to use the minimal set of tasks to
complete the job hence making its execution more efficient.

Like MapReduce Online [9], Piranha pipelines data between tasks.
MapReduce Online also can pipeline data between jobs. How-
ever, MapReduce Online jobs comply with the MapReduce pro-
gramming model and follow its prescribed communication graph.



Hence, it cannot eliminate redundant tasks in a chain of jobs. More-
over, unlike MapReduce Online, Piranha does not modify Hadoop
so it can run on unmodified Hadoop clusters.

Improving Hadoop’s performance has attracted much attention
from the research community [5, 11, 15, 17,27, 28]. For example,
Quincy [15] and Delay Scheduling [27] proposed fair share sched-
ulers to address resource starvation that arises whenever small jobs
are executed concurrently with large jobs. Others have focussed
on improving Hadoop performance for analytical queries such as
join [11,17].

7. CONCLUSIONS

We have studied Hadoop job execution history logs in produc-
tion environments. A key lesson learned is that most of the jobs are
short and small. These short jobs are interactive ad hoc queries,
where response time is critical. Moreover, we found that these
short jobs rarely experience failures. Cluster computing platforms
in general and Hadoop in particular are not optimized for low la-
tency for these short jobs as they were originally designed for large
jobs. Consequently, these short interactive jobs do not experience
good response times on these platforms.

We introduced a novel system, Piranha, that is optimized for
short jobs without affecting larger jobs. It avoids many of Hadoop’s
shortcomings for short jobs. More specifically, it extends Hadoop
beyond the MapReduce model to provide light-weight execution
DAG:s for short jobs. This helps in significantly reducing the run-
times of short jobs. Finally, Piranha is transparent to Hadoop and
runs on existing unmodified Hadoop clusters. We have experimen-
tally demonstrated the effectiveness of Piranha. Specifically, we
have shown reduction of query runtimes by up to 71% when using
Piranha.
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