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ABSTRACT

Trajectories of moving objects are collected in many applications.
Raw trajectory data is typically very large, and has to be simplified
before use. In this paper, we introduce the notion of direction-
preserving trajectory simplification, and show both analytically
and empirically that it can support a broader range of applica-
tions than traditional position-preserving trajectory simplification.
We present a polynomial-time algorithm for optimal direction-
preserving simplification, and another approximate algorithm with
a quality guarantee. Extensive experimental evaluation with real
trajectory data shows the benefit of the new techniques.

1. INTRODUCTION
With the proliferation of GPS-embedded devices (e.g., smart

phones and taxis), trajectory data is becoming ubiquitous. Indeed,
it has been studied extensively in the past decades in the literature
of Moving Objects Databases (MOD) [22, 19].Trajectory data is
usually generated by periodically collecting the position of a mov-
ing object with the help of the GPS technologies.

Since the raw trajectory data is usually very large, simplifying
trajectory data is important. To appreciate this, consider a city with
10k taxis. Suppose that we track the trajectory of each taxi by
sampling its position once every 5 seconds (i.e., the sampling rate
is 5s). The size of the collected trajectories for just one day is
approximately 4 GB.

Raw trajectory data is large, and hence expensive to store. Even
worse, it is expensive to manipulate and to analyze on account of its
large size. In fact, most existing query processing and data mining
algorithms on trajectory data are memory-resident and thus cannot
be used with raw trajectory data that is too large to fit in memory.

A question one may ask is why not just sampling less frequently
to reduce the size of the data. The answer is that, in real life, ob-
jects have great variance in their velocities. A taxi moving at 40
mph would have moved about 100 yards in 5s, whereas another
taxi stuck at a traffic signal may not have moved at all. Obviously,
we need more frequent observations of the former than of the latter.
Similarly, we need more observations to capture a taxi that makes a
turn and fewer for one that continues straight. Therefore, standard
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practice is to oversample initially, and then to simplify by eliminat-
ing observations that add little information.

In view of this, several algorithms have been developed for sim-
plifying trajectory data [17, 6, 21, 18, 11]. All these algorithms
make the natural assumption that the goal should be to simplify
trajectories such that the position information captured in the sim-
plified trajectories is “similar” to the position information captured
in the original trajectories. We can call them position-preserving

trajectory simplification algorithms. However, as we will soon see,
this objective, though natural, is not the best choice in many situa-
tions. To illustrate, let us work through a toy example in detail.

EXAMPLE 1 (MOTIVATING EXAMPLE). Consider three raw
trajectories T1, T2 and T3 as shown in bold lines in Figure 1(a)(i),
(a)(ii) and (a)(iii), respectively. Each of these trajectories has four

positions, p1, p2, p3 and p4. T1 and T2 are similar to each other,
and each of them is dissimilar to T3. Thus, a trajectory clustering
algorithm, such as [15], should group T1 and T2 in the same cluster
and place T3 by itself in a separate cluster.

Now suppose that these raw trajectories are too large, and so
must be simplified to three points each before being further pro-
cessed. We could use an existing position-preserving trajectory
simplification, denoted by Apos, for this simplification. Follow-
ing existing studies, the first position p1 and the last position p4 in
each trajectory have to be kept. Therefore, one of position p2 and
position p3 is to be retained, and the other one dropped.

Consider the simplification process on T1. It can drop either p2
or p3 in the simplified trajectory. Let d1 (d2) be p2’s (p3)’s per-
pendicular distance to line segment p1p3 (p2p4). Since d1 > d2,
Apos drops p3 and returns the simplified trajectory T ′

1 as shown
in Figure 1(b)(i). Similarly, Apos return T ′

2 (Figure 1(b)(ii)) and
T ′
3 (Figure 1(b)(iii)) as the simplified trajectories of T2 and T3, re-

spectively. We now see that, though raw trajectories T1 and T2 are
similar, their simplified trajectories T ′

1 and T ′
2 generated by Apos

are dissimilar. On the other hand, raw trajectories T1 and T3 are
dissimilar, but their simplified trajectories T ′

1 and T ′
3 generated by

Apos are similar. In consequence, the clustering algorithm on the
simplified trajectories T ′

1, T ′
2 and T ′

3, places T1 and T3 together into
one cluster, and thus fails to produce correct (or expected) clusters.

In contrast, as will be shown later, a direction-preserving trajec-
tory simplification method we introduce below, denoted by Adir ,
would simplify T1, T2 and T3 to T ′′

1 (Figure 1(c)(i)), T ′′
2 (Fig-

ure 1(c)(ii)) and T ′′
3 (Figure 1(c)(iii)), respectively. Since T ′′

1 and
T ′′
2 are similar to each other and each of them is dissimilar to
T ′′
3 , the clustering algorithm based on these simplified trajectories

would produce the expected clusters.

Before we can discuss direction-preserving trajectory simplifica-
tion in depth, we first have to describe what direction information
is, which we do next.
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Figure 1: A motivating example

1.1 Direction Information
When an object moves from position p to position p′, we define

the direction of this movement to be the angle of an anticlockwise
rotation from the positive x-axis to a vector from p to p′. The di-
rections of all movements captured in the trajectory is called the
direction information, and is used heavily, both directly and indi-
rectly, in a wide range of applications on trajectory data. We list
some of them as follows.

• Map Matching [1]. Given a digital map of a road network and
a trajectory of an object moving on the road network, the map
matching problem is to locate the trajectory on the digital
map. Since each road segment in the road network has its
own orientation, restricting the directions of the movements
in the trajectory, the direction information plays an essential
role in most map matching algorithms [1].

• Knowledge Discovery on Trajectory Data. As with other
types of data, a rich set of knowledge discovery tasks has
been proposed on the trajectory data [7]. Among them, many
algorithms rely heavily on the direction information, which
include [15, 9] for Clustering, [13] for Outlier Detection

and [14] for Classification.

• Direction-based Query Processing. Sometimes, there are
reasons to query trajectory information directly. One exam-
ple is to find the trajectories moving within a direction range
in a given time slot [2]. Another example is to find trajecto-
ries similar to a given trajectory, where the similarity mea-
surement is based solely on moving direction [20].

In short, there are many situations in which direction preserva-
tion is important. Furthermore, as we show analytically in Section 3
and empirically in Section 6, direction preservation is stronger than
position preservation, in that a simplification that preserves direc-
tion information well can be shown to preserve position informa-
tion also, within some reasonable bounds. However, the converse
is not true: position-preserving simplifications can be very bad at
direction preservation.

1.2 DirectionPreserving Trajectory Simplifi
cation (DPTS)

In this paper, we propose a new trajectory simplification mecha-
nism called Direction-Preserving Trajectory Simplification (DPTS)
such that the direction information loss due to the simplification
process is bounded. Within DPTS, we propose a direction-based

measurement Ed, which is new and is defined to measure the error

of a simplified trajectory in terms of the direction information. Let
T be a trajectory and T ′ be a simplification of T . The error (or
simplification error) of T ′ under Ed, denoted by ǫ(T ′), is equal
to the maximum angular difference between the direction of the
movement during each time period in T and the direction of the
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Figure 2: A running example

movement during the same time period in T ′. Then, the problem
of DPTS is to simplify a given trajectory such that its size is mini-
mized and its incurred simplification error (i.e., ǫ(T ′)) is bounded
by a given error tolerance ǫt where ǫt ∈ [0, π).

We use the maximum angular difference rather than the average
angular difference to preserve better the shape of the trajectory. If
we used the average one, we could still have a few segments that
were completely off, resulting in the types of errors illustrated in
Figure 1 for position-preserving techniques.

In this paper, we study the properties of DPTS, develop multiple
algorithms to solve the DPTS problem, both exactly and approx-
imately, and evaluate our algorithms experimentally. Specifically,
we make the following contributions.

Contribution. First, we propose a novel notion of direction-
preserving trajectory simplification, which favors a wide spectrum
of applications on trajectory data. Second, we show that DPTS
not only preserves direction information, but also preserves posi-
tion information, thereby supporting a wide range of applications.
Third, we adopt a common dynamic programming (DP) technique
for DPTS. Since it is not scalable, we propose a novel optimal algo-
rithm called SP for DPTS. SP solves DPTS by first constructing a
graph based on the given trajectory, then computing a shortest path
in this graph and finally returning the solution for DPTS according
to the shortest path found. The time complexity of SP isO(C ·n2),
where C is usually a small constant (C = 1 if ǫt ≤ π/2). Fourth,
since even an O(n2) running time is likely to be unacceptable for
a large n, we propose a scalable approximate algorithm called In-

tersect which runs in O(n) time. We show that Intersect provides
a certain degree of the quality guarantee in terms of the size of the
simplified trajectory returned, in spite of running so fast. Finally,
we perform a careful experimental comparison of these algorithms
and a baseline using real trajectory data. The baseline is developed
by common sense modifications of standard trajectory simplifica-
tion techniques to address the DPTS problem.

The remainder of this paper is organized as follows. We define
the DPTS problem in Section 2 and review the related work in Sec-
tion 3. We introduce the optimal and approximate algorithms of
DPTS in Section 4 and Section 5, respectively. We give the empir-
ical study in Section 6 and conclude the paper in Section 7.

2. PROBLEM DEFINITION
A trajectory is represented by a sequence of n triplets in the form

of ((x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)), where (xi, yi) is the
position in the 2D Euclidean space at time stamp ti. We define
positions pi = (xi, yi) for each i ∈ [1, n]. Then, T ’s trace is the
sequence of ordered positions, i.e., (p1, p2, ..., pn).

Since the direction information of a trajectory is captured by
its trace only, in the following, following existing studies, we fo-
cus on the trace part of the trajectory and use the terms “trajec-
tory” and “trace” interchangeably. Thus, we simply denote T by
(p1, p2, ..., pn) by keeping the position information only. The size

of T , denoted by |T |, is defined to be the number of positions in T .
Consider a running example as shown in Figure 2. In this figure,

the trajectory T is represented in the form of (p1, p2, ..., p10). The
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size of this trajectory (i.e., |T |) is 10. The start position of T is p1
and the end position of T is p10.

The straight line linking two positions pi and pj in T where 1 ≤
i < j ≤ n is denoted by pipj . If pi and pj are adjacent in T (i.e.,
j = i+1), then pipj is said to be a segment in T . Thus, a trajectory
could also be regarded as a sequence of n − 1 segments joining at
n− 2 positions (in addition to unique start and end positions).

In Figure 2, the solid horizontal straight line connecting p1 and
p2 is denoted by p1p2. Similarly, the dashed inclined straight line
connecting p1 and p3 is denoted by p1p3. Here, p1p2 is a segment
in T but p1p3 is not a segment in T . All segments in T are shown
in solid lines in the figure. In T , there are 9 segments jointing at 8
positions, namely p2, p3, ..., p9.

Trajectory T ′ is said to be a simplification of T if T ′ is of the
form of (ps1 , ps2 , ..., psm) where m ≤ n and 1 = s1 < s2 <
... < sm = n. Note that p1 and pn in T must be kept in any
simplification of T . There arem−1 segments in T ′, and T ′ is using
m−1 segments to represent T containing n−1 segments. For each
k ∈ [1,m), the segment pskpsk+1

in T ′ is used to approximate

the sequence of segments between psk and psk+1
in T , namely

pskpsk+1, psk+1psk+2, ..., psk+1−1psk+1
. In other words, this

sequence of segments in T is approximated by a single segment
(i.e., pskpsk+1

) in T ′ only.
Consider our running example. Let T ′ = (p1, p3, p6, p10). T

′

is a simplification of T in Figure 2. Here, s1 = 1, s2 = 3, s3 = 6
and s4 = 10. Note that the size of T ′ is 4. All segments in T ′ are
shown in dashed lines in the figure. There are 3 segments in T ′.
In other words, T ′ is using 3 segments to approximate 9 segments
in T . Consider segment p1p3 in T ′. It is used to approximate
the sequence of segments between p1 and p3 in T , namely p1p2
and p2p3. In other words, p1p2 and p2p3 are approximated by a
single segment p1p3. Similarly, trajectory T ′′ = (p1, p10) is also
a simplification of T , which uses only one segment (i.e., p1p10) to
approximate the whole trajectory T .

Direction-based Error Measurement Ed. Given a segment
pipi+1 in T , the direction of pipi+1, denoted by θ(pipi+1), is de-
fined to be the angle of an anticlockwise rotation from the posi-
tive x-axis to a vector from pi to pi+1. Thus, each direction falls
in [0, 2π). Consider our running example (Figure 2). θ(p7p8) is
π/4(= 0.788) radian and θ(p4p5) is 7π/4(= 5.498) radian, as
illustrated in Figure 3(a). It is easy to verify that θ(p1p2) is equal
to 0 radian, θ(p2p3) is equal to 0.983 radian (= tan−1 3/2) and
θ(p1p3) is equal to 0.644 radian (= tan−1 3/4).

The angular difference between two directions θ1 and θ2, de-
noted by △(θ1, θ2), is defined to be the minimum of the angle of
the anticlockwise rotation from θ1 to θ2 and that from θ2 to θ1, i.e.,

△(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|} (1)

For illustration, Figure 3(b) shows the case where △(θ1, θ2) =
|θ1 − θ2| and Figure 3(c) shows the case where △(θ1, θ2) =
2π − |θ1 − θ2|. Note that the angular difference between any two
directions falls in [0, π].

Consider our running example. The angular difference between
θ(p1p2) and θ(p1p3) is |0 − 0.644| = 0.644 and that between
θ(p2p3) and θ(p1p3) is |0.983 − 0.644| = 0.339.

Let T ′ = (ps1 , ps2 , ..., psm) be a simplification of T The sim-

plification error of T ′ under Ed, denoted by ǫ(T ′), is defined as
follows. Given a segment pskpsk+1

in T ′, the simplification error

of pskpsk+1
, denoted by ǫ(pskpsk+1

), is defined to be the great-

est angular difference between the direction of pskpsk+1
and the

direction of a segment in T approximated by pskpsk+1
. That is,

ǫ(pskpsk+1
) = maxsk≤h<sk+1

△(θ(pskpsk+1
), θ(phph+1))

Then, the simplification error of T ′ under Ed is defined to be the
greatest simplification error of a segment in T ′. That is,

ǫ(T ′) = max1≤k<m ǫ(pskpsk+1
) (2)

Consider back our running example (Figure 2). Each seg-
ment in T ′ has its simplification error. Consider the first seg-
ment p1p3 in T ′ which approximates two segments in T , namely
p1p2 and p2p3. Recall that △(θ(p1p3), θ(p1p2)) = 0.644 and
△(θ(p1p3), θ(p2p3)) = 0.339. Thus, the simplification error of
p1p3 (i.e., ǫ(p1p3)) is equal to max{0.644, 0.339} = 0.644. Sim-
ilarly, we compute the simplification errors of the second segment
p3p6 and the third segment p6p10 in T ′ which are both equal to
0.785. Thus, the simplification error of T ′ in this example is equal
to max{0.644, 0.785, 0.785} = 0.785.

In the following, when we write ǫ(pipj) (0 ≤ i < j ≤ n), we
mean the simplification error of pipj when it is used to approximate
the line segments between pi and pj in T .

Problem Statement of DPTS. Let T be a trajectory and ǫt be
the error tolerance (ǫt < π). Trajectory T ′ is said to be an ǫt-
simplification of T if T ′ is a simplification of T and ǫ(T ′) ≤ ǫt.

The DPTS problem is formalized as follows.

PROBLEM 1 (DPTS). Given a trajectory T and an error tol-

erance ǫt, the DPTS problem is to find the ǫt-simplification of T
with the smallest size.

Consider our running example. Suppose that we set ǫt to 0.785.
T ′ is an ǫt-simplification of T since ǫ(T ′) = 0.785 ≤ ǫt. In
fact, T ′ is the ǫt-simplification of T with the smallest size (which
involves only four remaining positions).

3. ANALYSIS OF PREVIOUS WORK
We describe how DPTS relates to existing error measurements

(Section 3.1) and trajectory simplification techniques (Section 3.2).

3.1 Existing Error Measurements
In this section, we show that the direction-preserving simpli-

fied trajectories give error guarantees in position-related properties,
such as length and speed. However, the reverse is not true. That is,
the position-preserving simplified trajectories [17, 18, 21, 11, 6] do
not give any error guarantee on the direction information.

Before we give our claims/properties (Section 3.1.2), we review
some representative existing error measurements (Section 3.1.1).

3.1.1 Existing Error Measurements

Let T = (p1, p2, ..., pn) be a trajectory and T ′ =
(ps1 , ps2 , ..., psm) be a simplification of T (m ≤ n). Several
position-based measurements for evaluating the “simplification er-
ror” of T ′ have been defined in the literature. These measurements
for T ′ are usually defined to be a distance measure which takes T
and T ′ as input. For each position ph of T at the time stamp equal
to th where 1 ≤ h ≤ n, the distance measure defines the estimated
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position of ph, denoted by p′h, in T ′ based on some criteria. Let
d(·, ·) be the Euclidean distance between two given points. Thus,
the distance measure is defined to be maxh∈[1,n] d(ph, p

′
h). Since

different distance measures have different definitions on estimated
positions, in the following, we focus on how to define estimated
positions for some representative distance measures.

(1) Closest Euclidean Distance: With this distance measure, p′h
is defined to be the location on the segment pskpsk+1

of T ′ with
sk ≤ h ≤ sk+1, which has the smallest Euclidean distance from
ph. We define a mapping function MC which maps ph and T ′ to
p′h for this distance measure. That is, p′h =MC(ph, T

′).

(2) Synchronous Euclidean Distance: Under this distance mea-
sure, p′h can be calculated with the following steps. The first step
is to find the segment pskpsk+1

of T ′ with sk ≤ h ≤ sk+1.
The second step is to find a point along the line passing through
two points, namely (xsk , ysk , tsk) and (xsk+1

, ysk+1
, tsk+1

), in a
three-dimensional space such that the third dimensional value (rep-
resenting the time dimension) of this point is th. Then, p′h is set
to be the first two-dimensional values of this point. Similarly, we
define a mapping function MS which maps both ph and T ′ to p′h.
That is, p′h =MS(ph, T

′).
However, all of them adopt position-based distances instead of

the direction-based distance studied in this paper. In the next sec-
tion, we show that they do not give any error guarantee on the di-
rection information.

3.1.2 Theoretical Properties

The length between two positions pi and pj wrt T (i < j), de-
noted by len(pi, pj |T ), is defined to be the length of the trace from
pi to pj in T . That is,

len(pi, pj |T ) =
∑j−1

k=i d(pk, pk+1)

The (average) speed between two positions pi and pj wrt T (i < j),
denoted by speed(pi, pj |T ), is equal to len(pi, pj |T )/(tj − ti),
where ti (tj) is the time stamp corresponding to pi (pj).

Interestingly, DPTS gives error guarantees on the length and
speed information. Consider that T is a trajectory and T ′ is an
ǫt-simplification of T with ǫt < π/2. For any two adjacent posi-
tions pi and pi+1 in T where i ∈ [1, n), both the length and the
speed between the two corresponding estimated positions wrt T ′

are theoretically bounded. The estimated positions are determined
by a mapping function. For the sake of space, in the remaining
of the paper, if we do not specify the distance measure, we mean
that we adopt the mapping function used in the Closest Euclidean
Distance (i.e., MC(·, ·)). The results based on the other mapping
function (i.e., MS(·, ·)) can be found in [16].

LEMMA 1 (BOUNDED LENGTH/SPEED). Let T be a trajec-

tory and T ′ be an ǫt-simplification of T with ǫt < π/2. For any

two adjacent positions pi and pi+1 in T where i ∈ [1, n),

cos(ǫt) ≤
len(p′

i
,p′

i+1|T
′)

len(pi,pi+1|T )
≤ 1 and cos(ǫt) ≤

speed(p′
i
,p′

i+1|T
′)

speed(pi,pi+1|T )
≤ 1

where p′i =MC(pi, T
′) and p′i+1 =MC(pi+1, T

′).

PROOF. Let pskpsk+1
be the segment of T ′ such that psk is the

last position with sk ≤ i and psk+1
is the first position with sk+1 ≥

i + 1. Consider Figure 4(a) for illustration. Since ǫt < π/2, we
can verify that p′i and p′i+1 are located along pskpsk+1

.
Let ψi be the angle formed by the two lines that pass through

pipi+1 and pskpsk+1
. Thus,

len(p′i, p
′
i+1|T

′) = d(p′i, p
′
i+1) = cos(ψi) · d(pi, pi+1)

= cos(ψi) · len(pi, pi+1|T ) ≥ cos(ǫt) · len(pi, pi+1|T )
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Figure 4: Proofs of Lemma 1, Lemma 2 and Lemma 3

which implies that cos(ǫt) ≤
len(p′

i
,p′

i+1|T
′)

len(pi,pi+1|T )
≤ 1. Besides,

since speed(p′i, p
′
i+1|T

′) = len(p′i, p
′
i+1|T

′)/(ti+1 − ti) and
speed(pi, pi+1|T ) = len(pi, pi+1|T )/(ti+1 − ti), we know

cos(ǫt) ≤
speed(p′

i
,p′

i+1|T
′)

speed(pi,pi+1|T )
≤ 1.

Interestingly, DPTS gives an error bound on the position infor-
mation (in addition to the length/speed information).

LEMMA 2 (BOUNDED POSITION ERROR). Let T be a tra-

jectory and T ′ be an ǫt-simplification of T with ǫt < π/2. For

each position pi in T where i ∈ [1, n], we have

d(pi, p
′
i) ≤ 0.5 · tan(ǫt) · Lmax

where p′i = MC(pi, T
′) and Lmax =

maxk∈[1,m) len(psk , psk+1
|T ′).

PROOF. Let pskpsk+1
be the segment of T ′ such that psk is

the last position with psk ≤ i and psk+1
is the first position with

psk+1
≥ i. We construct a rhombus ⋄abcd with four corners,

namely a, b, c and d, such that a is at psk , c is at psk+1
and the

angle between ab (cb) and ad (cd) is equal to 2 · ǫt. Consider Fig-
ure 4(b) for illustration where ⋄abcd is indicated by the shaded area.
We claim that pi is inside ⋄abcd which we prove by contradiction.

Assume that pi is outside ⋄abcd. We partition the plane into 4
parts with the two lines that pass through ac and bd as indicated by
I, II, III and IV in Figure 4(b), where o is the intersection of the two
lines. We consider 4 cases of which partition pi is in. Without loss
of generality, suppose pi falls in part I.

Since pi is outside ⋄abcd, we know θ(psk , pi) falls outside range

[θ(ad), θ(ab)]. For illustration, consider Figure 4(c).
Consider the segments between psk and pi in T . For each such

segment phph+1 (sk ≤ h < i), we denote by −−−−→phph+1 the vec-
tor from ph to ph+1. We know that the direction of each such
vector falls in range [θ(ad), θ(ab)] since otherwise ǫ(T ′) > ǫt.
As a result, we know θ(pskpi) falls in range [θ(ad), θ(ab)] since
−−−→pskpi =

∑
sk≤h<i

−−−−→phph+1. This, however, contradicts the fact

that θ(pskpi) falls outside range [θ(ad), θ(ab)].
Thus, we know that pi falls in ⋄abcd. Therefore, we have

d(pi, p
′
i) ≤ d(b, o) = tan(ǫt) · d(a, o) = 0.5 · tan(ǫt) · d(a, c)

= 0.5 · tan(ǫt) · len(psk , psk+1
|T ′) ≤ 0.5 · tan(ǫt) · Lmax

which finishes the proof.

Next, we show that existing position-preserving simplified tra-
jectories do not have bounds on the direction information.

LEMMA 3 (UNBOUNDED DIRECTION ERROR). Let T be a

trajectory and T ′ be a (direction-based) ǫt-simplification of T with

ǫt < π/2. Let TC be a (position-based) simplified trajectory of
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T such that |TC| = |T
′| and the error of TC under the Closest

Euclidean Distance is minimized. There exists a dataset such that

ǫ(TC) ≈ π and ǫ(T ′) ≈ 0.

PROOF. We prove by constructing a problem instance as shown
in Figure 4(d). T = (p1, p2, p3, p4, p5) is a trajectory, where p1,
p2, p3 and p5 are located at a horizontal line and p4 has its per-
pendicular distance from this line equal to a small real number d△.
Besides, d(p2, p3) = δ where δ << d△.

Suppose that we can only keep 4 positions in the simplified
trajectory. In other words, we have to remove 1 position from
the 5 positions. If we consider preserving the direction informa-
tion, p4 will be removed and thus T ′ = (p1, p2, p3, p5). Thus,
ǫ(T ′) = ǫ(p3p5) ≈ 0. If we consider preserving the position
information, p2 will be removed and thus TC = (p1, p3, p4, p5).
Hence, ǫ(TC) = ǫ(p1p3) = △(θ(p1p3), θ(p2p3)) ≈ π.

3.2 Existing Trajectory Simplification
Many trajectory simplification techniques have been proposed.

We categorize them by the main idea employed in the algorithm as
follows. They are Split [17, 6], Merge [21, 18], Greedy [11, 17] and
Dead-Reckoning [12].Split is an approach which finds a position in
a given trajectory, according to the heuristic value of the position, to
split the whole trajectory into two sub-trajectories and continues the
process iteratively on each of the split sub-trajectories which can-
not be approximated by a line segment connecting its start position
and its end position. Merge is an approach which finds two adja-
cent segments in a given trajectory, according to the heuristic value
computed from these two adjacent segments, discards the position
p bridging these two segments, and create a segment connecting
the non-bridging end position of one segment and the non-bridging
end position of the other segment. It continues the process itera-
tively until discarding any position p violates the error tolerance.
Greedy is an approach which finds a sequence of the greatest num-
ber of consecutive segments to be discarded and create a segment
connecting the two end positions of this sequence iteratively un-
til discarding any sequence of 2 consecutive segments violates the
tolerance constraint. Dead-Reckoning is an online algorithm which
reads each position sequentially and determines whether this posi-
tion is discarded or not according to a heuristic criterion.

The aforementioned ideas of Split, Merger and Greedy can be
adapted to our DPTS problem. The only change is to change the
error measurement to our simplification error (Equation (2)). How-
ever, they have their drawbacks. First, they cannot return optimal

solutions. Second, as shown in our experiments, they are not effi-
cient compared with our proposed Intersect algorithm. Details of
the adaptation can be found in our technical report [16].

Other related studies include [3] which studies the error bounds
of several queries on the simplified trajectories with bounded sim-
plification errors mainly measured by the position information, [5]
which studies the trajectory simplification problem with the con-
sideration of the shape and also the semantic meanings of the tra-
jectory, [4] which introduces a multi-resolution polygonal curve

approximation (also called line simplification) algorithm for trajec-
tory simplification, and [10] which studies the trajectory simpli-
fication problem where the trajectories are constrained to a road
network. None of these studies pay attention to the direction infor-
mation for trajectory simplification.

4. FINDING OPTIMAL SOLUTION
A naive solution for the DPTS problem is to traverse each possi-

ble simplification of T with its simplification error at most ǫt and
then to pick the one with the smallest size. Since the number of all

p1 p2

p3

p4

p5 p6

p7

p8 p9

p10

Figure 5: The graph Gǫt constructed based on the running ex-

ample when ǫt is set to be π/4 = 0.785

possible simplifications of a trajectory T is 2|T |−2, this solution is
not feasible in practice. Alternatively, one may adopt a common
dynamic programming (DP) technique for the DPTS problem. Un-
fortunately, the time complexity of this technique is cubic. For the
sake of space, we include this DP algorithm in [16]. Instead, we
propose a method called SP which is much faster and scalable.

Algorithm SP involves the following three steps.

• Step 1 (Graph Construction): It first constructs a graph
based on the given trajectory.

• Step 2 (Shortest Path Finding): It computes a shortest path
in this graph.

• Step 3 (Solution Generation): It finally returns the solution
for DPTS according to the shortest path found.

In Step 1, it constructs a graph wrt ǫt, denoted by Gǫt(V,E), as
follows. For each position pi of T where 1 ≤ i ≤ n, it creates a
vertex for pi in V . For each pair of two positions (pi, pj) where
i < j, it creates an edge (pi, pj) in E if ǫ(pipj) ≤ ǫt.

In Step 2, it finds the shortest path from p1 to pn in Gǫt by a
shortest path algorithm (e.g., a BFS search). Here, the length of a
path is defined to be the number of edges involved along the path.

In Step 3, it generates the solution for DPTS according to the
shortest path found. Note that all vertices involved in this shortest
path correspond to all positions in the ǫt-simplification of T with
the smallest size. Thus, if the ordering of the positions (or ver-
tices) involved in the shortest path is “ps1 -ps2 -...-psm”, it returns
the solution T ′ as (ps1 , ps2 , ..., psm).

EXAMPLE 2 (ALGORITHM SP). Consider our running ex-
ample in Figure 2. Suppose that ǫt = 0.785. In Step 1 of the
SP algorithm, we can construct graph Gǫt accordingly as shown in
Figure 5. In this figure, we construct a vertex for each position in
T . Besides, for each pair of positions pi and pj where i < j, if
ǫ(pipj) ≤ ǫt, we create an edge (pi, pj). Note that ǫ(pipi+1) = 0
for each i ∈ [1, n− 1].

In Step 2, we can find the shortest path in this graph. It is easy to
verify that p1-p3-p6-p10 is the shortest path. Finally, in Step 3, we
construct the solution of DPTS as (p1, p3, p6, p10).

Let us analyze the time complexity of a straightforward imple-
mentation of algorithm SP. For Step 1, a straightforward solution
for constructing Gǫt is to try all possible pairs of (pi, pj) where
1 ≤ i < j ≤ n and to check whether ǫ(pipj) ≤ ǫt. Since there
are O(n2) possible such pairs and the checking cost for each pair
is O(n), the time complexity of Step 1 is O(n3). For Step 2, a
simple BFS could be adopted to find the shortest path from p1 to
pn in Gǫt , which takes O(|V | + |E|) time. Since |V | = O(n)
and |E| = O(n2), we know that the cost of BFS is O(n2). Step
3 which returns the solution takes O(n) time. As we can see, the
time complexity of Step 1 (i.e., the graph construction) dominates
those of Step 2 and Step 3. Thus, the overall time complexity of
a straightforward implementation of algorithm SP is O(n3). Be-
sides, the space complexity of SP is simply O(|V | + |E|) which
corresponds to the space cost of maintaining Gǫt .

In the following, we propose two kinds of enhancement tech-
niques in order to improve the efficiency of our SP algorithm. The
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Algorithm 1 The SP algorithm with the practical enhancement

Input: A trajectory T = (p1, p2, ..., pn) and the error tolerance ǫt
1: H0 ← {p1}; U ← {p2, p3, ..., pn}; l ← 1
2: while true do

3: Hl ← ∅
4: //process the positions in Hl−1 and U in a reversed order
5: for each pi in Hl−1 and each pj in U where i < j do

6: if ǫ(pipj) ≤ ǫt then

7: if pj = pn then

8: return the trajectory corresponding to the shortest
path from p1 to pn

9: U ← U\{pj}; Hl ← Hl ∪ {pj}
10: l← l + 1

first one is called the practical enhancement (Section 4.1) which
is to improve the performance of the algorithm in a practical way.
The second one is called the complexity improvement (Section 4.2)
which is to improve the theoretical time complexity of the algo-
rithm from cubic to quadratic with some properties.

4.1 Practical Enhancement
The practical enhancement is to construct Gǫt (in Step 1) on

the demand of the BFS procedure used in Step 2. Specifically,
the straightforward implementation has to materialize all possible
edges inGǫt in Step 1 and then perform the BFS procedure in Step
2. Here, the enhancement constructs only some of the edges in Gǫt

which are needed in the BFS procedure. Since some other edges
need not be constructed, the space consumption can be reduced
and some computations can be also saved.

Given a position p in T and a non-negative integer l, p is said
to be an l-length position if the length of the shortest path from
p1 to p in Gǫt is equal to l. Given a non-negative integer l, we
define the l-length unique set, denoted by Hl, to be the set of all
l-length positions in T . For example, the 0-length unique set H0

is {p1}. Consider the BFS procedure starting from p1 on Gǫt . It
first retrieves the set of positions which are the out-neighbors of p1.
This set corresponds to H1. Then, starting from each position p in
H1, it retrieves the set of positions which are the out-neighbors of
p and have not been retrieved before. This set corresponds to H2.
The above process continues from H2 in the same manner until pn
is retrieved.

In view of the above discussion, we design our SP algorithm with
this enhancement as follows. We maintain the l-length unique sets
Hl (l = 0, 1, 2, ...) which store the positions retrieved by the BFS
procedure and U for storing the remaining positions that have not
been retrieved by the BFS procedure. We initialize H0 to be {p1}
and U to be {p2, p3, ..., pn}. We then compute Hl based on Hl−1

for l = 1, 2, ... iteratively as follows. We start from each position
pi in Hl−1. For each position pj in U , we compute ǫ(pipj). If
ǫ(pipj) ≤ ǫt, we further check whether pj is pn. If so, we stop the
process since the shortest path from p1 to pn has been found; oth-
erwise, we exclude pj from U and include it in Hl. Besides, when
processing the positions in Hl−1 and U , we impose a reversed or-
der, which corresponds to pn, pn−1, ..., p1. The intuition is that we
expect that pn could be retrieved earlier in this way. We present our
enhanced SP algorithm in Algorithm 1.

Complexity Analysis. The worst-case time complexity of the SP

algorithm with the practical enhancement keeps the same as that
of the straightforward implementation, i.e., it is still O(n3). How-
ever, in practice, with the practical enhancement, the SP algorithm
is more efficient since some computations of ǫ(pipj) are avoided,
and it is also more scalable since there is no need to materialize
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Figure 6: Illustration of fdr(p2p3|ǫt) and fdr(p1p2|ǫt)

Gǫt . The space complexity of SP with the practical enhancement
is simply O(n) since it maintains each position once and does not
materialize Gǫt explicitly.

4.2 Complexity Improvement
The complexity improvement is to improve the time complexity

of our SP algorithm from cubic to quadratic by using some prop-
erties for our algorithm. In this section, we focus on the complex-
ity improvement based on the straightforward implementation for
illustration. In Section 4.3, we describe how this complexity im-
provement can be incorporated with the practical enhancement.

As can be noticed, the cost of the straightforward implementa-
tion is dominated by the construction of graph Gǫt . In this section,
we propose a technique to reduce the cost of constructing the graph
from O(n3) to O(C · n2) time, where C is shown to be a small
constant in most cases. The major idea of such an improvement is
to reduce the time complexity of checking whether ǫ(pipj) ≤ ǫt
(in the graph construction step) from O(n) to O(C) by utilizing a
new concept called “feasible direction range”. Before we present
the main idea, we first introduce some related concepts.

Given two angles θ1 and θ2 in [0, 2π), an angular range, rep-
resented in the form of [θ1, θ2], is defined to be a set of all possi-
ble angles of a vector originated from the origin when it is rotated
anti-clockwise from θ1 to θ2. For example, the shaded part in Fig-
ure 6(a) shows the angular range of [0.198, 1.768], and the shaded
part in Figure 6(b) shows the angular range of [5.498, 0.785]. Since
the direction of p2p3 is 0.983 radian, we say that its direction is in
[0.198, 1.768] but not in [5.498, 0.785]. Similarly, since the direc-
tion of p1p2 is 0 radian, we say that its direction is in [5.498, 0.785]
but not in [0.198, 1.768].

DEFINITION 1 (FEASIBLE DIRECTION RANGE). Given a

segment phph+1 (1 ≤ h < n) in T , the feasible direction range

of phph+1 wrt ǫt, denoted by fdr(phph+1|ǫt), is defined to be the

angular range in the form of [θ1, θ2] with θ1 = [(θ(phph+1)− ǫt)
mod 2π] and θ2 = [(θ(phph+1) + ǫt) mod 2π].

The feasible direction range of phph+1 wrt ǫt corresponds to a
set of all possible directions each of which has its angular differ-
ence from phph+1 at most ǫt. We can write fdr as follows.

fdr(phph+1|ǫt) = [θ(phph+1)− ǫt, θ(phph+1) + ǫt] mod 2π
(3)

Consider our running example. Suppose that ǫt is set to 0.785.
Since the direction of p2p3 is 0.983 radian, fdr(p2p3|ǫt) =
([0.983 − 0.785, 0.983 + 0.785] mod 2π) = [0.198, 1.768]
(See Figure 6(a)). Similarly, since the direction of p1p2 is 0 ra-
dian, fdr(p1p2|ǫt) = ([0 − 0.785, 0 + 0.785] mod 2π) =
[5.498, 0.785] (See Figure 6(b)).

We denote by T [i, j] the sub-trajectory of T that is between
position pi and position pj (1 ≤ i < j ≤ n), i.e., T [i, j] =
(pi, pi+1, ..., pj). We define the feasible direction range of a sub-
trajectory T [i, j] wrt ǫt, denoted by fdr(T [i, j]|ǫt), to be the in-

tersection of the fdr’s of the segments in T [i, j]. That is,

fdr(T [i, j]|ǫt) = ∩i≤h<jfdr(phph+1|ǫt) (4)
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Figure 7: Illustration of intersection operations between two

angular ranges

In our running example, fdr(T [1, 3]|ǫr) is equal to
∩1≤h<3fdr(phph+1|ǫt) = fdr(p1p2|ǫt) ∩ fdr(p2p3|ǫt) =
[5.498, 0.785] ∩ [0.198, 1.768] = [0.198, 0.785]. Figures 6(a) and
(b) illustrate this scenario.

In the following, we simply write fdr(phph+1) (fdr(T [i, j]))
for fdr(phph+1|ǫt) (fdr(T [i, j]|ǫt)) if the context of ǫt is clear.

In some cases, an intersection between an angular range and an-
other angular range results in a single angular range. In some other
cases, this intersection operation results in multiple disjoint angular
ranges. To illustrate, an intersection between [0, 1.5] and [1.0, 2.0]
results in a single angular range [1, 1.5] (as shown in Figure 7(a)).
An intersection between [0, 4.0] and [3.5, 1.0] results in two angu-
lar ranges [3.5, 4.0] and [0, 1.0] (as shown in Figure 7(b)).

Thus, from Equation (4), since fdr(T [i, j]) involves multiple
intersection operations of angular ranges, it may consist of multiple
disjoint angular ranges. We denote by ||fdr(T [i, j])|| the number
of disjoint angular ranges in fdr(T [i, j]).

With the concept of “feasible direction range”, we are now ready
to describe how we can check whether ǫ(pipj) ≤ ǫt efficiently.

LEMMA 4. Let T = (p1, p2, ..., pn) be a trajectory. ǫ(pipj) ≤
ǫt iff θ(pipj) is in fdr(T [i, j]).

PROOF. “if”: Assume that θ(pipj) is in fdr(T [i, j]).
It follows that θ(pipj) is in fdr(phph+1) and thus
△(θ(pipj), θ(phph+1)) ≤ ǫt for i ≤ h < j. Therefore,
ǫ(pipj) = max{△(θ(phph+1), θ(pipj))|i ≤ h < j} ≤ ǫt.

“only-if”: this direction could be verified similarly.

Lemma 4 suggests that checking whether ǫ(pipj) ≤ ǫt is equiv-
alent to checking whether θ(pipj) is in fdr(T [i, j]). Suppose
that fdr(T [i, j]) has been computed. Then, checking whether
ǫ(pipj) ≤ ǫt takes O(||fdr(T [i, j])||) only (compared with O(n)
in the straightforward implementation).

Note that in some cases, ǫ(pipj) > ǫt but ǫ(pipj+k) ≤ ǫt where
j > i > 0 and k > 0. By Lemma 4, we know that θ(pipj)
is not in fdr(T [i, j]) but θ(pipj+k) is in fdr(T [i, j + k]). To
illustrate, in our running example (Figure 2), if we set ǫt = π/4,
then ǫ(p6p9) > ǫt but ǫ(p6p10) ≤ ǫt. By Lemma 4, θ(p6p9) is not
in fdr(T [6, 9]) but θ(p6p10) is in fdr(T [6, 10]).

Now, we know that the checking step can be done in
O(||fdr(T [i, j])||). There are two remaining issues related to this
checking step. The first issue is related to the size of fdr(T [i, j]).
If this size is very large, the checking step is still expensive. For-
tunately, we find that this size is usually a small constant. When
ǫt ≤ π/2, it is equal to 1. The second issue is how to compute
fdr(T [i, j]) efficiently for each i and j where i < j.

4.2.1 Issue 1: Size of fdr(T [i, j])

LEMMA 5. Let T = (p1, p2, ..., pn) be a trajectory and ǫt be

the error tolerance. Then, given two integers i and j (1 ≤ i < j ≤
n), ||fdr(T [i, j])|| is bounded by min{1 + ⌊ ǫt

(π−ǫt)
⌋, j − i}.

PROOF. We first give some concepts based on an angular range
and provide a lemma which is used to prove Lemma 5.

We denote the universe angular range [0, 2π) by U , Given an
angular range [a, b], we denote its complement wrt U , which is the
angular range (b, a), by [a, b]c. We define the span of an angu-
lar range [a, b], denoted by [a, b].span, to be equal to (b − a)(
mod 2π). We define the span of fdr(T [i, j]) (1 ≤ i < j ≤ n),
denoted by fdr(T [i, j]).span, to be equal to the sum of the spans
of the disjoint angular ranges that are involved in fdr(T [i, j]).

LEMMA 6. Let [a, b] and [a′, b′] be two angular ranges. [a, b]∩
[a′, b′] involves two disjoint angular ranges iff [a′, b′]c (i.e.,

(b′, a′)) falls in [a, b] completely.

PROOF. This could be verified easily by the fact that [a, b] ∩
[a′, b′] involves two disjoint angular ranges, namely [a, b′] and
[a′, b], iff (b′, a′) falls in [a, b] completely.

Suppose fdr(pkpk+1) is [ak, bk] for i ≤ k < j. Then,
fdr(T [i, j]) is equal to ∩j−1

k=i [ak, bk]. Besides, we know
[ak, bk].span = 2ǫt for i ≤ k < j since ak = θ(pkpk+1) − ǫt
mod 2π and bk = θ(pkpk+1) + ǫt mod 2π (Definition 1).

First, we prove ||fdr(T [i, j])|| ≤ j − i by induction of k =
j − i. Base step: k = 1. The correctness is obvious since
fdr(T [i, i + 1]) = [ai, bi] which involves one angular range only
(i.e., [ai, bi]) and thus ||fdr(T [i, i + 1])|| = 1. Induction step:
||fdr(T [i, i + k)|| ≤ k implies ||fdr(T [i, i + k + 1)|| ≤ k + 1.
Assume ||fdr(T [i, i + k)|| = r (r ≤ k). Specifically, let
[a′1, b

′
1], [a

′
2, b

′
2], ..., [a

′
r, b

′
r] be the r disjoint angular ranges in-

volved in fdr(T [i, i + k]). Then, fdr(T [i, i + k + 1]), which
is equal to fdr(T [i, i + k]) ∩ [ai+k, bi+k], corresponds to r in-
tersections, [a′h, b

′
h] ∩ [ai+k, bi+k] for 1 ≤ h ≤ r, each two of

which are disjoint. Among these r intersections, we show that at
most one involves two disjoint angular ranges by contradiction. As-
sume that there exists h1 and h2 (i ≤ h1 6= h2 ≤ r) such that
both [a′h1

, b′h1
]∩ [ai+k, bi+k] and [a′h2

, b′h2
]∩ [ai+k, bi+k] involve

two disjoint angular ranges. According to Lemma 6, we know that
(bi+k, ai+k) is in both [a′h1

, b′h1
] and [a′h2

, b′h2
], which leads to

a contradiction since [a′h1
, b′h1

] and [a′h2
, b′h2

] are disjoint. As a
result, fdr(T [i, i + k1]) involves at most r + 1 disjoint angular
ranges. That is, ||fdr(T [i, i+ k + 1])|| ≤ r + 1 ≤ k + 1.

Second, we prove ||fdr(T [i, j])|| ≤ 1 + ⌊ ǫt
π−ǫt
⌋. We com-

pute fdr(T [i, i+1]), fdr(T [i, i+2]), ..., fdr(T [i, j]) sequentially
based on the following equation.

fdr(T [i, i+ k + 1]) = fdr(T [i, i+ k]) ∩ [ai+k, bi+k]

= fdr(T [i, i+ k])\(bi+k, ai+k) (5)

We have two cases regarding Equation 5. Case 1: ||fdr(T [i, i +
k + 1])|| = ||fdr(T [i, i + k])|| + 1. In this case, accord-
ing to Lemma 6, (bi+k, ai+k) is in one of the disjoint angular
ranges that are involved in fdr(T [i, i + k + 1]). Then, we de-
duce that fdr(T [i, i + k + 1]).span = fdr(T [i, i+ k]).span −
(2π − 2ǫt) since (ai+k − bi+k) mod 2π = 2π − 2ǫt. Case 2:
||fdr(T [i, i+ k+1)|| = ||fdr(T [i, i+ k)||. In this case, we have
fdr(T [i, i+k+1]).span ≤ fdr(T [i, i+k]).span since the span is
non-increasing after an intersection operation. In view of the above
two cases, we conclude that the increase of the number of disjoint
angular ranges by 1 (in Case 1 only) is due to the decrease of the
span by (2π−2ǫt). Since at the beginning, ||fdr(T [i, i+1])|| = 1
and fdr(T [i, i+1]).span = 2ǫt, ||fdr(T [i, i+k])|| has its great-
est value equal to (1 + ⌊ 2ǫt

2π−2ǫt
⌋).

According to Lemma 5, ||fdr(T [i, j])|| is usually bounded by
a small constant. Let C = min{1 + ⌊ ǫt

(π−ǫt)
⌋, j − i}. In par-

ticular, when ǫt ≤ π/2, ⌊ ǫt
(π−ǫt)

⌋ is equal to 0. In this case,

||fdr(T [i, j])|| is exactly equal to min{1, j−i} = 1 (since j > i).
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4.2.2 Issue 2: How to Compute fdr(T [i, j]) Efficiently

A straightforward method to compute fdr(T [i, j]) is to com-
pute fdr(phph+1) (i ≤ h < j) independently and then to inter-
sect these fdr’s. This straightforward method, nevertheless, in-
curs the cost of Ω(n) on average. Since we have Θ(n2) instances
of fdr(T [i, j]), computing all instances of fdr(T [i, j]) with this
method incurs the total cost of Ω(n3). Fortunately, this method
could be improved significantly since it involves a lot of redundant
work. A better method only takes O(C) instead of Ω(n) to com-
pute fdr(T [i, j]) based on the following incremental property.

Given two integers i and j where 1 ≤ i < j < n,

fdr(T [i, j + 1]) = fdr(T [i, j]) ∩ fdr(pjpj+1) (6)

Suppose that the content of fdr(T [i, j]) is known, since the total
number of angular ranges in fdr(pjpj+1) is 1, we can compute
fdr(T [i, j + 1]) in O(C) time. Note that C is the greatest num-
ber of angular ranges in fdr(T [i, j]) and the intersection operation
between two intervals could be finished in O(1) time.

Thus, we propose to compute fdr(T [i, j]) (1 ≤ i < j ≤ n)
using the incremental property. Specifically, it involves n rounds.
• At round 1, it computes fdr(T [h, h + 1]) (i.e.,
fdr(phph+1)) for 1 ≤ h < n.
• At round r (r > 1), it computes fdr(T [h, h + r]) for

1 ≤ h ≤ n− r. Specifically, it computes fdr(T [h, h+ r])
by intersecting fdr(T [h, h+ r− 1]) (which has been main-
tained at round r− 1) and fdr(ph+r−1ph+r). Note that this
operation takes O(C) time.

Complexity Analysis. The time complexity of the above method
for computing fdr(T [i, j])’s for 1 ≤ i < j ≤ n isO(C ·n2) since
it involves n rounds and each round incurs the cost of O(C · n).
Since there are O(n2) times of checking whether ǫ(pipi+1) ≤ ǫt
and each checking can be done inO(C) time with the fdr(T [i, j])
information, the time complexity of the SP algorithm with the com-
plexity improvement is O(C · n2). Besides, the above method
of computing fdr(T [i, j])’s has its space complexity of O(C · n)
since at each round, it is sufficient to maintain O(n) fdf(T [i, j])’s
each of which involves O(C) intervals. Since the SP algorithm
with the complexity improvement materializes Gǫt explicitly, we
know that its space complexity is O(C · n+ |V |+ |E|), where V
(E) is the vertex (edge) set of Gǫt .

4.3 Combining The Two Enhancements
The practical enhancement involves the construction of only

some edges, which means that we just need to perform the check-
ing of ǫ(pipj) ≤ ǫt for some pairs of positions (pi, pj) only
where 1 ≤ i < j ≤ n. However, the cost of checking whether
ǫ(pipj) ≤ ǫt isO(n) which is expensive. In contrast, the complex-
ity improvement reduces the cost of checking whether ǫ(pipj) ≤ ǫt
from O(n) to O(C), but the undesired part is that it always com-
putes fdr(T [i, j]) for all pairs of positions (pi, pj).

In this part, we propose to unify the good aspects of both the
practical enhancement and the complexity improvement and at the
same time, to avoid their undesired aspects. Our strategy is to main-
tain fdr(T [i, j]) (1 ≤ i < j ≤ n) (i.e., the idea of complexity
improvement) on the demand of the BFS process (i.e., the idea of
the practical enhancement). Specifically, when checking whether
ǫ(pipj) ≤ ǫt (1 ≤ i < j ≤ n), we have two cases. Case 1:
fdr(T [i, j]) has been computed. In this case, the checking could
be finished in O(C) time. Case 2: fdr(T [i, j]) has not been com-
puted. In this case, we recursively resort to fdr(T [i, j − 1]) for
computing fdr(T [i, j]). This recursive process stops either in Case
1 or fdr(T [i, i+ 1]) is acquired. Note that fdr(T [i, i+ 1]) could
be computed in O(1) time by Equation (3).

This version of SP algorithm enjoys the benefit of the practi-
cal enhancement since it checks whether ǫ(pipj) ≤ ǫt (1 ≤ i <
j ≤ n) on demand of the BFS process and does not materialize
Gǫt explicitly, and it also enjoys the benefit of the complexity im-
provement since it adopts the “feasible direction range” concept for
checking whether ǫ(pipj) ≤ ǫt, which is fast.

It could be verified that the worse-case time complexity of the SP

algorithm with both the practical enhancement and the complexity
improvement is O(C · n2) since it computes only a sub-set of all
possible fdr(T [i, j])’s.

Besides, the space complexity of this version of SP isO(C ·n) (it
is sufficient to maintain for each i the computed fdr[i, j] with the
largest j among all computed fdr[i, j]’s throughout the execution
of the algorithm since each fdr[i, j] is enquired at most once and
note that it does not materialize Gǫt ).

5. FINDING APPROXIMATE SOLUTION
According to the discussion in Section 4, the time complexity of

an optimal algorithm for DPTS is at least quadratic. This, however,
is not scalable enough when the datasets involves millions of posi-
tions. In this section, we develop an approximate algorithm called
Intersect for the DPTS problem, which runs in linear time and gives
a certain degree of quality guarantee.

Before we describe Intersect, we first give a concept of “feasi-
bility” used in the algorithm. Given an error tolerance ǫt and two
integers i and j where 1 ≤ i < j ≤ n, pipj is said to be ǫt-feasible

iff fdr(T [i, j]|ǫt) is non-empty. With this concept, we have the
following property.

LEMMA 7 (FEASIBILITY). Given an error tolerance ǫt and

two integers i and j where 1 ≤ i < j ≤ n, if pipj is ǫt
2

-feasible,

then ǫ(pipj) ≤ ǫt.

PROOF SKETCH. Since pipj is ǫt
2

-feasible, fdr(T [i, j]|ǫt/2) is
non-empty. We deduce that for any two segments between pi
and pj in T , phph+1 and ph′ph′+1 where i ≤ h < h′ < j,
△(θ(phph+1), θ(ph′ph′+1)) ≤ ǫt. We further deduce that θ(pipj)
is in fdr(T [i, j]|ǫt) because θ(pipj) is equal to the angle of a vec-

tor which is equal to the sum of all vectors between pi and pj in
T (i.e.,

∑j−1
k=i
−−−−→pkpk+1 where −−−−→pkpk+1 is a vector from pk to pk+1

for each k ∈ [1, j − 1]) in the two-dimensional space (i.e., the
x-coordinate and the y-coordinate). Here, the angle of a vector is
defined to be the angle of an anticlockwise rotation from the posi-
tive x-axis to this vector. By Lemma 4, ǫ(pipj) ≤ ǫt. The complete
proof could be found in [16].

Specifically, Intersect has the following steps. Let T ′ be a vari-
able storing the simplified trajectory to be returned. Let e be a
variable storing the position index of the last position in T ′. Let h
be a variable storing the position index of the position in T being
processed. Initially, Intersect initializes T ′ to be (p1), and then sets
e to be 1 (since p1 is currently the last position in T ′). Then, it reads
each of the remaining positions sequentially. It sets h to 2 (since p2
is the position in T to process next). It proceeds with an iterative
step as follows. Whenever h ≤ n and peph is ǫt

2
-feasible, it incre-

ments h by 1. It terminates this iterative step when either (1) h > n
or (2) h has just been incremented to a value such that peph is not
ǫt
2

-feasible. For both stopping conditions, we know that peph−1 is
ǫt
2

-feasible and thus by Lemma 7, we have ǫ(peph−1) ≤ ǫt. Thus,
ph−1 is appended to T ′. Then, e is set to h − 1. It repeats the
above iterative step whenever h ≤ n. At the end, it returns T ′. The
pseudo-code of Intersect is shown in Algorithm 2.

With Lemma 7, it is easy to verify that the trajectory returned by
Intersect is an ǫt-simplification of T .
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Algorithm 2 The Intersect Algorithm

Input: A trajectory T = (p1, p2, ..., pn); an error tolerance ǫt
Output: An ǫt-simplification of T ′

1: T ′ ← (p1); e← 1; h← 2
2: while h ≤ n do

3: while h ≤ n and peph is ǫt
2

-feasible do

4: increment h by 1
5: append ph−1 to T ′; e← h− 1
6: return T ′

LEMMA 8. Let T ′ be the output of the Intersect algorithm in

Algorithm 2. Then, T ′ is an ǫt-simplification of T .

Intersect not only scans the data once only and returns an ǫt-
simplification of T at the end, but also provides a certain degree of
guarantee on the size of the simplified trajectory.

LEMMA 9 (SIZE BOUND). Let T ′ be the output of the Inter-
sect algorithm in Algorithm 2. We have |T ′| ≤ |T ′′|, where T ′′ is

the ǫt/2-simplification of T with the minimum size.

PROOF SKETCH. Let T = (p1, ..., pn), T
′ = (ps1 , ..., psm)

and T ′′ = (pr1 , ..., prl). By definition, we have s1 = r1 = 1 and
sm = rl = n. Note that n = |T |,m = |T ′| and l = |T ′′|. Our
proof has two steps. First, we prove that fdr(T [rk, rk+1]|ǫt/2)
is non-empty for 1 ≤ k < l. This could be verified by the fact
that T ′′ is an ǫt/2-simplification. Second, we prove m ≤ l by
contradiction which main idea is that if m > l, we show sk ≥ rk
for k = 1, 2, ..., l by induction, which, however, results in that
sm > n contradicting sm = n. The complete proof could be
found in [16].

Complexity Analysis. We know that variable h is incremented
whenever line 4 of Algorithm 2 is executed. Both the stopping
condition of the outer while-loop (line 2) and one of the stopping
conditions of the inner while-loop (line 3) are “h ≤ n”. We con-
clude that there are O(n) times to execute the steps in line 3, line
4 and line 5. The step in line 4 and the step in line 5 take O(1)
time. In the following, we show that the step in line 3 also takes
O(1) time. Thus, the time complexity of Intersect is O(n).

The remaining issue is to derive the time complexity of the step
in line 3. In line 3, checking whether h ≤ n can be done in
O(1) time. However, a straightforward implementation of check-
ing whether peph is ǫt

2
-feasible (line 3) (or equivalently checking

whether fdr(T [e, h]|ǫt/2) is non-empty) is expensive. This is be-
cause as described in Section 4.2.2, computing fdr(T [e, h]|ǫt/2)
from scratch is expensive. By using the same technique in Sec-
tion 4.2.2, we can perform this checking operation in O(1) time.
Specifically, we introduce a variable called fdr to store the con-
tent of fdr(T [e, h]|ǫt/2). We have the following two changes in
the algorithm due to this variable. Firstly, between line 2 and line
3, we insert a statement that “fdr ← fdr(peph|ǫt/2)”. Note that
h = e + 1 at this moment, and the time complexity of this state-

ment isO(C′) where C′ = min{1+ ⌊ ǫt/2
(π−ǫt/2)

⌋, h− e} (by using

Lemma 5). Secondly, in the inner while-loop, just after line 4, we
insert a statement that “fdr← fdr ∩fdr(ph−1ph|ǫt/2)”. Note that
the time complexity of this statement is O(C′). With these two
changes, checking whether peph is ǫt

2
-feasible (line 3) is equiv-

alent to checking whether the current content of fdr is non-empty
because the current content of fdr is equal to fdr(T [e, h]|ǫt/2) (by
Equation (6)). Furthermore, since ǫt is at most π and thus ǫt/2 is at
most π/2, we deduce that C′ = O(1). We conclude that the time
complexity of the step in line 3 is O(1).

# of tra-
jectories

total # of
positons

average #
of posi-
tions per
trajectory

directional differ-
ence between two
adjacent segments
(Mean, S.D.)

Deer 32 20,065 627 (1.669, 0.948)

Elk 33 47,204 1,430 (1.647, 0.984)

Hurricane 570 17,736 31 (0.213, 0.300)

Geolife 17,621 24,876,978 1,412 (0.364, 0.615)

T-Drive 10,359 17,740,902 1,713 (0.657, 0.803)

Table 1: Real datasets

The space complexity of Intersect is O(n) (which corresponds
to the memory usage for storing the simplified trajectory T ′).

6. EMPIRICAL STUDIES

6.1 Datasets and Algorithms
We used 5 real datasets in our experiments, namely Deer, Elk,

Hurricane, Geolife and T-Drive. Deer and Elk1 are two animal
movement datasets which contain the radio-telemetry locations of
deers in 1995 and elks in 1993, respectively. Hurricane2 contains
the trajectories of the Atlantic hurricanes from year 1950 to year
2004. These three datases (i.e., Deer, Elk and Hurricane) are bench-
mark datasets for trajectory clustering [15]. Geolife3 records the
outdoor movements of 182 users in a period of 5 years and T-
Drive4 is a set of taxi trajectories in Beijing. These two datasets are
widely-used for a broad range of applications on trajectory data [24,
23]. The statistics of these datasets are summarized in Table 1.

We study 5 optimal algorithms with the following notions. DP
is the dynamic programming algorithm and SP is the straightfor-
ward implementation of the SP algorithm. SP-prac (SP-theo) is the
SP algorithm with the practical enhancement (complexity improve-
ment) only and SP-both is the one with all enhancements. Besides,
we study 4 approximate algorithms, Split, Merge, Greedy and In-
tersect. The first three are the adaptations of the existing trajectory
simplification methods and the forth is proposed in this paper.

All algorithms were implemented in C/C++ and run on a Linux
platform with a 2.66GHz machine and 4GB RAM.

6.2 Relevance to Existing Studies
In this section, we conducted experiments to show how DPTS is

relevant to existing studies.

6.2.1 Bounds of DPTS wrt Existing Measurements

In this part, we verify the theoretical bounds of the length (speed)
error and the position error of DPTS as introduced in Section 3.1.2.

We vary the tolerance ǫt on {0.2, 0.4, 0.6, 0.8, 1}. The
results about length (speed) errors are shown in Fig-
ure 8(a), where the “length (speed) ratio” is defined to be
mini∈[1,n){len(p

′
i, p

′
i+1|T

′)/len(pi, pi+1|T )} where p′i is the
estimated position of pi on T ′ for i ∈ [1, n]. Thus, the larger this
ratio is, the more accurate the length (speed) information of the
simplified trajectory is. Note that the length ratio and the speed
ratio (with respect to a segment in the original trajectory) are
exactly the same since the speed is equal the length divided by
the time difference between the time stamps of the two end-points
of the segment, and the time difference in the original trajectory
is kept to be the same as the time difference in the simplified
trajectory. We observe that the theoretical bound of the length
(speed) ratio is usually good (e.g., it is about 0.92 when ǫt = 0.4).

1http://www.fs.fed.us/pnw/starkey/data/tables/
2http://weather.unisys.com/hurricane/atlantic/
3http://research.microsoft.com/en-us/downloads/b16d359d-d164-
469e-9fd4-daa38f2b2e13/
4http://research.microsoft.com/apps/pubs/?id=152883
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The results about the position error are shown in Figure 8(b).
We observe that the empirical position error is usually significantly
smaller than the theoretical bound (by near to one order of magni-
tude). Besides, when ǫt increases, the increase in the position error
of DPTS becomes smaller. When ǫt becomes large, the position
error of DPTS keeps quite stable.
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Figure 8: Verification of theoretical error bounds (Geolife)

6.2.2 DPTS vs. PPTS

In this part, we want to compare DPTS with Position-Preserving
Trajectory Simplification (PPTS) in terms of two measurements,
namely the position error and the direction error. In Section 3, we
show that the position error of DPTS is bounded (Lemma 2) while
the direction error of PPTS is un-bounded (Lemma 3). We study
how worst the position error of DPTS compared with PPTS is and
how worst the direction error of PPTS compared with DPTS is.

We adopt the Douglas-Peucker algorithm [6] for PPTS which is
the most popular existing algorithm for PPTS [17, 3, 8], and we
use our SP algorithm for DPTS. We vary ǫt for DPTS. For a fair
comparison, we enforce that the simplified trajectories from DPTS
and PPTS have the same size. The results are shown in Figure 9(a)
for position errors and in Figure 9(b) for direction errors. Consider
Figure 9(a). It could be noticed that though the position errors of
DPTS are usually larger than those of PPTS, the difference is small.
For example, the ratio of the position errors is between 1.85 to 3.
Consider Figure 9(b). We observe that the direction errors of PPTS
are significantly larger than that of DPTS. For example, when ǫt =
0.2, the ratio is more than 10. Besides, the direction errors of PPTS
are greater than 2, a value greater than π/2, even with a small value
of ǫt and is nearly to π, the greatest possible direction error, with a
medium value of ǫt, which implies that PPTS can hardly preserves
the direction information. In conclusion, our DPTS preserves the
direction information by its nature and also the position information
to a certain degree, but PPTS preserves the position information
only but not the direction information.
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Figure 9: Comparison with existing PPTS (Geolife)

6.2.3 An Application Study (Trajectory Clustering)

In Section 6.2.2, we compared DPTS and PPTS with their favor-

metrics (i.e., the position error, favoring PPTS, and the direction er-
ror, favoring DPTS). In this section, we compare DPTS with PPTS
with a neutral metric, the clustering quality, for a real-life applica-
tion, trajectory clustering.

The main idea is as follows. Let D be a set of raw trajectories.
We perform DPTS (PPTS) on each trajectory in D and obtain a set
of simplified trajectories, denoted by Dd (Dp). Then, we perform
a clustering procedure on each of these two sets of trajectories and

obtain the corresponding clustering results. We regard the cluster-
ing results based on D as ground truth and measure the qualities of
the clustering results on Dd and Dp. We verify DPTS by showing
that the clustering results on Dd are consistently better (closer to
the ground truth) than those on Dp.

Consider the clustering procedure on D first. The clustering re-
sults based on D (i.e., the cluster membership of each trajectory)
could be represented by a binary matrix Mnt×nc

, where nt is the
number of trajectories in the set and nc is the number of resulting
clusters. Note that under some clustering mechanisms such as the
one in [15], a trajectory could belong to multiple clusters. For each
trajectory T ∈ D, its cluster membership could be represented by
an nc-dimensional binary vector. For each pair of trajectories T1

and T2 in D, we measure the similarity between T1 and T2 by the
Euclidean distance between T1’s cluster membership (which is a
vector) and T2’s cluster membership (which is a vector). If the dis-
tance is below a pre-set threshold σ, we regard T1 and T2 to be
similar; otherwise, we regard T1 and T2 to be dissimilar. Thus,
based on the clustering results on D, we can always obtain a simi-

larity matrix which indicates for each pair of two trajectories in D
whether they are similar or not. Let S be such a similarity matrix
corresponding toD. The distance threshold σ for deciding whether
two trajectories are similar is set to 0.5 by default (all distances are
normalized to [0, 1]).

For a specific trajectory T ∈ D, we denote its simplification in
Dd and Dp by T d and T p, respectively.

Similarly, we perform the same clustering procedure on Dd and
Dp as we did on D and obtain their corresponding similarity ma-
trices, denoted by Sd and Sp, respectively.

We measure the quality of the clustering on Dd (and the clus-
tering on Dp) as follows. For a pair of two trajectories T1 and T2

in D, we have 4 cases. Case 1: T1 and T2 are similar (wrt S) and
T d
1 and T d

2 (the simplified trajectories of T1 and T2 under DPTS)
are similar (wrt Sd). In this case, we have an occurrence of true
positive (TP). Case 2: T1 and T2 are dissimilar (wrt S) and T d

1 and
T d
2 are similar (wrt Sd). In this case, we have an occurrence of

false positive (FP). Similarly, Case 3 and Case 4 correspond to the
occurrences of false negative (FN) and true negative (TN), respec-
tively. We adopt three measures in our experiments for measuring
the clustering results. The first is called Rand, which is defined to
be (|TP | + |TN |)/(|TP | + |FP | + |FN | + |TN |) where | · |
denotes the number of occurrences. The second and the third are
defined to be |TP |/(|TP | + |FP |) and |TN |/(|TN | + |FN |),
respectively. The larger the measure is, the better the clustering is.

For the trajectory clustering procedure, we adopt the TRACLUS

algorithm [15] and the CATS algorithm [9]. According to [9], ex-
isting trajectory clustering algorithms fall in two categories. The
first category includes those algorithms which take each trajectory
as a whole for clustering while the second category includes the
algorithms which use sub-trajectories for clustering. CATS is the
state-of-the-art in the first category and TRACLUS is the state-of-
the-art in the second category [9].

For the PPTS procedure, again, we adopt the popular Douglas-

Peucker algorithm.
We vary the error tolerance ǫt with the values of 0.2, 0.4, 0.6, 0.8

and 1 for DPTS. Figure 10(a), (b) and (c) show the results about
the Rand measure, the measure of |TP |/(|TP | + |FP |) and the
measure of |TN |/(|TN |+|FN |) on the Deer dataset, respectively.

We observe that the clustering based on the simplified trajecto-
ries returned by DPTS is consistently better than that based on the
simplified trajectories returned by PPTS. This might be explained
by the fact that the direction information is heavily used in the tra-
jectory clustering algorithms and the direction information loss due
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Figure 10: Trajectory Clustering Study (the Deer dataset)
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to DPTS is bounded while that due to PPTS is un-bounded.

6.3 Performance Study of the Optimal Algs
In the part, we study the effects of 2 factors, namely the data size

(i.e., |T |) and the error tolerance (i.e., ǫt), on the performance of
the optimal algorithms. We use 2 measures, namely the running
time and the memory.

Effect of |T |. The values used for |T | are around 2k 4k, 6k, 8k and
10k (ǫt is fixed to be 1). For each setting of |T |, we select a set of
10 trajectories each of which has its size near to this value and run
DPTS on each of these trajectories. Then, we average the experi-
mental results on these trajectories (this policy is used throughout
our experiments without specification). Figure 12 show the results
on Geolife. According to these results, SP-both is the fastest while
DP is the slowest due to its high time complexity. Besides, the com-
plexity improvement helps to reduce the running time dramatically
(e.g., SP-theo is faster than SP by 2-3 orders of magnitude). This
could be easily explained by the fact that with the complexity im-
provement, the cost of checking whether ǫ(pipj) ≤ ǫt is reduced
from O(n) to O(C) (C is a small constant). Though the practical
enhancement improves the time efficiency a little, it helps to reduce
the memory significantly (e.g., the memory occupied by SP-theo is
1-3 orders of magnitude larger than that occupied by SP-both and
the difference increases when |T | increases on Geolife).

The experimental results on T-Drive are similar. Due to page
limit, we put these results in the full version of this paper [16].
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Figure 12: Effect of data size |T | (Geolife)

Effect of ǫt. The values used for ǫt are 0.2, 0.4, 0.6, 0.8 and 1
in radians (|T | is fixed to be 5k). Figure 13 shows the results on
Geolife. According to these results, ǫt affects the SP algorithms
only. Specifically, the running times of all SP algorithms increase
slightly when ǫt becomes larger. This is because a larger ǫt usually
results in Gǫt with more edges and thus the BFS process on Gǫt

needs more time.
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Figure 13: Effect of error tolerance ǫt (Geolife)

Compression Rate. We also study the effect of ǫt on the size ratio

which is defined to be equal to
∑

T ′∈D′ |T
′|/

∑
T∈D |T |, where

D is the set of raw trajectories and D′ is the set of the correspond-
ing simplified trajectories. Note that a smaller size ratio means a
higher compression rate. The results are shown in Figure 11. We
have the following observations. First, the size ratio decreases sig-
nificantly when we increase the tolerance from 0 slightly. This is
good since it implies that under DPTS, the trajectory data could be
simplified significantly with a small error. Second, we observe that
the size ratio is strictly smaller than 1 (e.g., it is about 0.9 for the
Geolife datasets) even if the error tolerance is set to be 0. This im-
plies that the real-life trajectories usually involve a certain degree
of redundancy and could be simplified without incurring any error.

Scalability Test. Figure 14 shows the results of the scalability test
on the optimal algorithms. We only show the results of SP-theo and
SP-both since the other optimal algorithms are not scalable on large
datasets due to their expensive time complexities. According to
these results, both SP-theo and SP-both are scalable to large trajec-
tory datasets with millions of positions, and SP-both runs slightly
faster than SP-theo. It is noted that SP-both occupies significantly
less memory than SP-theo and thus SP-both is more scalable than
SP-theo. This is because SP-both does not materialize Gǫt explic-
itly while SP-theo does.
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Figure 14: Scalability test (Geolife)

6.4 Performance Study of the Approx. Algs
In this part, we study the effects of |T | and ǫt on the approxi-

mate algorithms. We use 3 measures, namely the running time, the
memory and the approximation error. The approximation error of
an approximate algorithm is defined to be |T ′|/|T ∗|, where T ′ is
the simplified trajectory returned by the approximate algorithm on
a given raw trajectory and T ∗ is the simplified trajectory returned
by an optimal algorithm on the same raw trajectory.

Effect of |T |. The values used for |T | are around 200k, 400k,
600k, 800k and 1000k (ǫt is fixed to be 1). Figure 15 shows the
results. According to these results, Intersect is the fastest, which
is at least 1 order of magnitude faster than other approximate algo-
rithms. This is because Intersect runs in linear time while the other
algorithms run in quadratic time in the worst case [16]. Besides,
Intersect occupies the least memory and Greedy occupies slightly
more memory than Intersect (though the difference in Figure 15(b)
is not obvious).

Effects of ǫt. Figure 16 shows the effects of ǫt on the approxi-
mate algorithms, where we vary ǫt with 0.2, 0.4, 0.6, 0.8 and 1
(|T | is fixed to be 500k). According to these results, Greedy runs
faster than Split and Merge with small ǫt’s. This is because with a
smaller ǫt, it is less likely that a long sequence of consecutive seg-
ments could be approximated with one segment and thus the cost
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Figure 15: Effect of data size |T | (Geolife)

of checking the error of the segment linking the start position and
the end position is small.
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Figure 16: Effect of the error tolerance ǫt (Geolife)

Compression Rate & Approximation Error. Figure 17(a) shows
the results on the compression rates of the approximate algorithms.
We also show the theoretical bound of the size the trajectory re-
turned by Intersect (Lemma 9). Figure 17(b) shows the results on
the approximate errors of the approximate algorithms. Both these
results verify our Intersect algorithm.
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Figure 17: Compression rates and approximate errors of the

approximate algoritms (Geolife)

Scalability Test. The largest trajectory in our real datasets con-
tains around 2M positions only. In order to generate larger tra-
jectories, we concatenate multiple trajectories in ascending order
of their time stamps into one. Figure 18 shows the results of the
scalability test on the approximate algorithms. According to these
results, Intersect is very fast on large datasets with more than 20M
positions. For example, Intersect runs in 13.3s on the trajectory
with 24,876,978 positions. In contrast, the running times of other
approximate algorithms increase much faster when |T | increases.

7. CONCLUSION
In this paper, we propose direction-preserving trajectory simpli-

fication, which has not been studied in the literature, as a novel
alternative to the traditional position-preserving trajectory simpli-
fication. We propose an optimal algorithm called SP and an ap-
proximate algorithm called Intersect. We conducted experiments
to show the efficiency and the scalability of our proposed methods.
There are many possible future directions. Firstly, it is interesting
to study how to extend our algorithms when each segment is asso-
ciated with a weight. Secondly, it is good to study how to simplify
trajectories when positions are associated with labels (e.g., restau-
rants and gasoline stations).
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