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ABSTRACT
The proliferation of GPS-enabled mobile devises and the popularity
of social networking have recently led to the rapid growth ofGeo-
Social Networks(GeoSNs). GeoSNs have created a fertile ground
for novel location-based social interactions and advertising. These
can be facilitated by GeoSN queries, which extract useful informa-
tion combining both thesocial relationshipsand thecurrent loca-
tion of the users. This paper constitutes the first systematic work
on GeoSN query processing. We propose ageneral frameworkthat
offers flexible data management and algorithmic design. Our ar-
chitecturesegregatesthe social, geographical and query processing
modules. Each GeoSN query is processed via a transparent com-
bination ofprimitive queriesissued to the social and geographical
modules. We demonstrate the power of our framework by intro-
ducing several “basic” and “advanced” query types, and devising
various solutions for each type. Finally, we perform an exhaustive
experimental evaluation with real and synthetic datasets, based on
realistic implementations with both commercial software (such as
MongoDB) and state-of-the-art research methods. Our results con-
firm the viability of our framework in typical large-scale GeoSNs.

1. INTRODUCTION
A Geo-Social Network(GeoSN) couples social network func-

tionality with location-based services. Specifically, a GeoSN is a
graph, where nodes represent users and edges correspond to friend-
ship relations. Moreover, through GPS-enabled mobile devices,
users publish their current geographical location to their friends,
by “checking-in” at various places. The most popular GeoSN to
date, Foursquare [5], accommodates over 30M users, and receives
millions of check-ins per day [8]. In addition, more “traditional”
social networks, such as Facebook and Twitter, have been recently
augmented with check-in functionality.

This trend in geo-social networking has created opportunities for
novel location-based social interactions and advertising. For in-
stance, services like Facebook’sNearbyand Foursquare’sRadar
return the friends that recently checked-in at close proximity to a
user’s current location. In addition, Foursquare has joined forces
with GroupOn to provide offers from stores to nearby users [13].
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We expect more advertising applications to gravitate towards ex-
ploiting both the geographical and social information of GeoSNs.

In this paper we focus on GeoSN queries that extract useful in-
formation combining both thesocial relationshipsand thecurrent
(i.e., lastly posted)locationof the users. Despite their importance,
there is a limited literature on GeoSN query processing. In industry,
to the best of our knowledge, there are no white papers document-
ing the processing of queries such asRadarandNearby. On the
other hand, the few existing academic works [21, 39, 31, 38] focus
solely on the algorithmic part, overlooking critical data manage-
ment issues, namely that (i) the data storage methods greatly influ-
ence the performance of a GeoSN algorithm, and (ii) the social and
geographical data may be administered by different entities.

Towards this end, we introduce a general framework for GeoSN
query processing. Specifically, we propose an architecture thatseg-
regatesthe social, geographical, and query processing modules.
Each GeoSN query is processed via a transparent combination of
primitive queriesissued to the social and geographical modules,
which do not interact with each other. This allows separate (and
thus more flexible) social and geographical data management, and
permits each module to be optionally operated by a different entity.
Moreover, it renders the implementation of each module orthog-
onal to the architecture. As such, any existing technology (e.g.,
cloud computing, graph databases, sophisticated spatial structures,
etc.) or future advances can be easily integrated into any module.

We first address two “basic” GeoSN queries;Range Friends(RF),
which returns the friends of a user within a given range, andNear-
est Friends(NF), which returns the nearest friends of a user to a
given location. We design various algorithms for every query type,
with each algorithm utilizing a different combination of primitive
queries. We show that (i) our framework provides flexibility in al-
gorithmic design, and (ii) the algorithm efficiency heavily depends
on the number and performance of the involved primitives, which
in turn depends on the underlying data management scheme.

In addition, we propose a novel, more “advanced”, GeoSN query
type, calledNearest Star Group(NSG). Given a query location rep-
resented as a 2D pointq and an integerm, anNSG query returns a
user group of sizem, which (i) forms a star subgraph of the social
network, and (ii) minimizes the aggregate (Euclidean) distance of
its members toq. As an example, consider that a restaurant has a 4-
seat table available, and wishes to send a GroupOn-like offer (e.g.,
the next group of four people who come to the restaurant will re-
ceive a 20% discount). With m = 4 andq being the location of the
restaurant, anNSG query would return the nearest group of 4 users
to the restaurant, who are connected through acommon friend(the
center of the star). By focusing only on such groups, the GeoSN
can (i) increase the effectiveness of the advertisement, avoiding
overwhelming remote or socially unconnected groups with unin-
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teresting offers, and (ii) minimize the cost by contacting only the
star centers, who are likely to influence the other group members.
We show thatNSG runs in polynomial time, and introduce several
implementations that comply with our framework.

Finally, we provide an exhaustive experimental evaluation of all
proposed schemes, using real and synthetic datasets. In particular,
we experiment with various storage implementations for both the
social and geographical data, including commercial databases such
as MongoDB [17] (used by Foursquare [19]), as well as state-of-
the-art research schemes. We also test with two system settings;
the first positions all modules at one machine, whereas the second
utilizes a separate machine for each module.

Our contributions are summarized as follows:

• We propose the first general framework for GeoSN query
processing, which enables flexible data management and al-
gorithmic design.

• We introduce novel basic and advanced GeoSN queries, and
devise various algorithms for solving them.

• We include thorough experiments with diverse implementa-
tions/architectures, using real and synthetic datasets.

The remainder of the paper is organized as follows. Section 2
overviews related work. Section 3 introduces our general frame-
work. Section 4 presents our GeoSN query algorithms. Section
5 evaluates the proposed techniques with comprehensive experi-
ments. Section 6 concludes our work.

2. RELATED WORK
We describe the relevant work on GeoSN query processing in

industry and academia, and orthogonal topics on GeoSNs.

Industry. Foursquare’sRadarand Facebook’sNearbyreturn the
friends who are currently in the vicinity of a user. A similar func-
tionality is provided by Geoloqi [10], a platform for location-based
services, which notifies a user when friends enter a certain range.
FullCircle [9] detects groups of users (not necessarily friends) with
similar interests and preferences within small distance of each other.
Once a new group is found, the members are encouraged to com-
municate and form friendships. Hotlist [14] recommends to users
various events based on their social relations (e.g., how many friends
are also attending the event), preferences, and proximity to event
locations. Since most of the above work is proprietary, processing
algorithms are not documented.

Academic research. Huang and Liu [28] suggest a GeoSN query
that returns to a user the friends that are nearby and share common
interests, without providing concrete processing algorithms. [21,
39] aim at minimizing the communication cost for proximity de-
tection among friends, by enabling users to issue location updates
only when they exit certain safe regions. Liu et al. [31] propose the
k-Geo-Social Circle of Friend Query(k-gCoFQ): given a weighted
graph, a useru, and a positive integerk, the k-gCoFQ finds the
group g of k + 1 users, which (i) is connected, (ii) containsu,
and (iii) minimizes the maximum distance between any two of its
members (modeled as a weighted average of the Euclidean distance
and a notion of social strength). [38] introduces theSocio-Spatial
Group Query(SSGQ): given a query pointq and two positive inte-
gersk, n, the SSGQ returns a groupg of n users, such that (i) each
user ing is socially connected with at least(n− k) members ofg,
and (ii) the sum of distances of all members ing to q is minimized.
The k-gCoFQ and SSGQ queries are NP-Hard, and their authors
present approximation algorithms.

Orthogonal work. There are also other approaches that extract
useful information from a GeoSN, but target at different settings to
ours. In GeoFeed [23], a user receives a set of posts submitted by
friends, whose geo-tagged location is within a specific area of inter-
est. [37] predicts friendships based on past user locations. [41] rec-
ommends places and friends by taking into account the user loca-
tion history. [30] performs quantitative analysis on geo-social data.
[40] quantifies the influence of one user to another based on spatial
and social criteria. [27, 26] process SQL-like queries on archived
geo-social data. Finally, [36, 29] aim at answering GeoSN queries,
while protecting user location privacy (e.g., via encryption).

Evidently, there is a narrow literature on GeoSN query process-
ing in our setting, namely, [21, 39, 31, 38] described above. These
works overlook crucial data management issues. In particular, they
bundle their algorithms with specific data representations and in-
dices, which may feature excessive costs in typical large GeoSNs.
For instance, [31] employs an adjacency matrix for keeping info
about the social graph, which may incur prohibitive storage over-
head. [21, 38] make use of hybrid indices, incorporating both so-
cial and spatial data. Such structures may suffer from enormous
maintenance costs due to high check-in rates. [38, 39] do not spec-
ify how the social graph is stored. We stress that the data repre-
sentation scheme may greatly affect the performance of an algo-
rithm. Finally, all the approaches essentially assume that all the
data are owned by a single entity, and are accommodated by a sin-
gle machine. In the next section we present a general framework
for GeoSN query processing that overcomes these drawbacks.

3. FRAMEWORK
In Section 3.1 we describe our architecture, whereas in Section

3.2 we explain the query primitives that serve as building blocks of
GeoSN query algorithms.

3.1 Architecture
The proposed architecture consists of three modules, depicted in

Figure 1: a social module (SM), a geographical module (GM), and
a query processing module (QM). The SM stores exclusively so-
cial data (e.g., friendship relations), whereas the GM keeps only
geographical information (e.g., check-ins). The QM is responsible
for receiving GeoSN queries from users, executing them, and re-
turning the results. The users do not communicate directly with the
SM and GM. The SM, GM and QM can either be three separate
servers, three separate clouds, or a single system (server or cloud).
However, the tasks of the three modules aresegregated.

User

Query Processing 
Module
(QM)

Social Module 
(SM)

Geographical 
Module 
(GM)

GeoSN Queries

Results

Social 
primitives

Geographical
primitives

Figure 1: Proposed GeoSN architecture

The SM and GM do not interact with each other, but rather com-
municate only with the QM. More specifically, the QM processes
a GeoSN query through an algorithm that builds upon well-defined
social and geographicalprimitive queries. These primitives define
a rigorous interface between QM-SM and QM-GM, respectively.
The sole duties of the SM and GM (with respect to a given GeoSN
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query) are to execute their corresponding primitives on their stored
data. The QM eventually derives the final results by combining
the outputs of the primitives, optionally exploiting auxiliary indices
maintained locally.

The segregation of SM and GM allows their administration by
different entities, e.g., the SM (GM) can be maintained by a com-
pany with expertise in social networking (resp. location-based ser-
vices). For instance, in UK and Japan, Facebook Places [3] coop-
erates with Factual [4], which provides infrastructure for location-
based services. Glancee [12], a location-based service app, uses
Facebook’s social graph to connect nearby users. Another exam-
ple is the cooperation of pure commercial social networks, e.g.,
Twitter or Facebook, and GeoSNs like Foursquare. A user who
has both a Twitter or Facebook and a Foursquare account can post
his Foursquare check-in at Twitter or Facebook [15]. Thus, if Face-
book or Twitter needs the geographical information of users’ check-
ins to execute a GeoSN query, it obtains it from Foursquare. The
separation of QM enables third-party companies that do not own
any social or geographical data to implement GeoSN queries by
solely interacting with the APIs of SM and GM (e.g., Agora [1]).

In addition, separating the functionality of SM and GM renders
the management of social and geographical data more flexible, be-
cause the frequent check-in updates do not burden the relatively
static social structures. For example, due to an unexpected high rate
of check-ins recently, Foursquare’s system had a very long down-
time. The problem was caused because their data are spread across
multiple balanced database shards. When a shard is overused, a
new one is added, followed by rebalancing. The rebalancing of the
entire database caused the crash [6]. In a segregated system, such a
crash in GM would not affect SM.

Finally, the segregation offers several other benefits. First, our
architecture can readily integrate modifications (e.g., a new, more
efficient structure) in the implementation of SM without modify-
ing GM, and vice versa. Second, novel GeoSN query types and
algorithms can be devised, either by using a different combination
of existing primitives or by implementing new ones, without the
need of altering the SM and GM infrastructures. Last, social (ge-
ographical) data can be used independently for pure social (resp.
geographical) queries, potentially through the same primitive oper-
ations utilized by GeoSN queries. As a result, a “traditional” social
network can adopt our architecture without extra effort.

3.2 Primitive Queries
Here we introduce the primitive social and geographical queries

that are used as fundamental components in our GeoSN algorithms
(presented in Section 4). These operations are supported by all typ-
ical graph and spatial data structures, and can be easily integrated
with any SM and GM implementation.

We make use of the following social primitives:

• GetFriends(u): Given a useru, returnu’s friends.

• AreFriends(ui, uj): Given two usersui, uj , returntrue if
ui, uj are friends, andfalse otherwise.

We also utilize the geographical primitives below. Note that ev-
ery location is regarded as a(x, y) pair of coordinates in some
fixed Cartesian plane. When we refer to a user’s location, we
mean the(x, y) coordinates associated with his/hercurrent (i.e.,
lastly posted) check-in. We assume Euclidean space, but the gen-
eral framework and query processing techniques also apply for road
networks (the GM should simply integrate an indexing scheme that
supports the primitives according to the network distance, e.g., [35]).

• GetUserLocation(u): Givenu, returnu’s location.

• RangeUsers(q, r): Given a query pointq and a real number
r, return the users within distancer from q, along with their
locations.

• NearestUsers(q, k): Given a query pointq and an integer
k, return thek users nearest toq in ascending distance, along
with their locations.

Observe thatRangeUsers andNearestUsers return also the lo-
cation of each user in the result. This could be very useful for the
algorithms at QM that employ these primitives, while it does not
affect the computational and space complexity of the result.

All the above primitives can be easily supported by the API of
SM and GM. For instance,GetFriends is readily implemented
in the API of Facebook, whereas the API of Foursquare offers
GetUserLocation. We do not exclude the existence of additional
primitives. Nevertheless, any primitive must be treated as anatomic
operation. To the best of our knowledge, operations that maintain
statefor future primitive invocations (e.g., an incremental version
of a nearest neighbor query that extracts thenextbest result upon
a new query) are not supported by any commercial GeoSN. The
main reason is that maintaining state (e.g., via priority queues) for
a large number of simultaneous queries is prohibitively expensive.

The efficiency of the primitives depends on the underlying stor-
age scheme employed by SM and GM. For instance, representing
the social graph by adjacency lists is preferable forGetFriends

(the output simply consists of the users in the list ofu), whereas
adjacency matrices are faster forAreFriends (the output istrue
if the bit at cell(i, j) of the matrix is 1). Similarly, although all
common spatial indices supportRangeUsers andNearestUsers,
they feature differences in performance.

Unfortunately, there is no unanimously accepted social or spatial
storage implementation. To elaborate, Facebook uses adjacency
lists stored in Memcached [16], a distributed memory caching sys-
tem, whereas Foursquare uses MongoDB [17], a document-oriented
database. Moreover, Twitter employs the R*-Tree spatial index
[20], whereas Foursquare adopts the grid-based geohashes of Mon-
goDB [11]. Similarly, academic research has utilized a wide vari-
ety of approaches; [27] uses adjacency lists stored in Neo4j [18] (a
graph database), [31] employs an adjacency matrix, whereas [26]
utilizes relational tables for storing the friendship relations; more-
over, [23] indexes check-ins with a grid, [21] applies a Quad tree,
while [31] exploits the R*-Tree. We stress that every GeoSN algo-
rithm should be tailored to a specific SM and GM instantiation, se-
lecting the combination of primitives that leads to maximum query
efficiency. In the next section, we explain that a variety of GeoSN
algorithms can be implemented using the described primitives.

4. QUERY PROCESSING
We study three GeoSN query types;Range Friends(RF) in Sec-

tion 4.1, Nearest Friends(NF) in Section 4.2, andNearest Star
Group (NSG) in Section 4.3. There are various ways to process a
GeoSN query using primitives. For each query type, we introduce
algorithms that use different combinations of primitives,without
requiring the existence of a sophisticatedhybrid index at the QM.

Notation. Symbols in Sans Serif typeface designate a query type,
e.g.,NF, sets are represented by symbols likeS, |S| denotes the
size ofS, and sets of sets appear in calligraphic form, e.g.,S.

To considerably simplify our notation throughout the section, we
use symbolu to denote a user (ID, location) pair, but we donotuse
separate symbols for user ID (e.g.,u.id) and location (e.g.,u.l).
This calls for some clarifications regarding the primitive queries
explained in Section 3.2.GetFriends returns only a list of user
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IDs, since the social module SM does not possess any spatial data.
Therefore, when we writeui ∈ F whereF = GetFriends(u), the
location attribute ofui is null. GetUserLocation(ui) results in
filling the (null) location ofui. On the other hand, when we write
ui ∈ U , whereU = RangeUsers(q, r), ui encompassesbothan
ID and location.

Finally, we denote the Euclidean distance of a useru to q by
||q, u||. Note though that, in order to execute this operator,u’s
location must not benull.

Running example. Throughout this section, we use Figure 2 as a
running example, where the black points refer to the locations of 10
users{u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}, the edges represent
the social relations among them, and the grey point is an arbitrary
query locationq. The table contains the distance of each user toq.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

||q, ui|| 5 6.4 10 10.4 11.3 12.2 15 15.5 15.9

5 units

q

u1

u2

u3
u4 u5

u6

u7

u8

u9

u10

18.9

Figure 2: Running Example

A useful subroutine. Several algorithms presented next require the
incrementalretrieval of the “next nearest user” to a locationq. This
can be implemented via a subroutine calledNextNearestUser(q).
However, such an operation necessitates the maintenance ofstate
(e.g., the lastly retrieved nearest user, or some heap information).
Recall from Section 3.2 that the primitives cannot keep state at
SM and GM. Hence,NextNearestUser(q) cannot be regarded as
a primitive query, but rather it should be implemented at QM.

A way to do this is via repeated calls toNearestUsers(q, k) as
follows: we initialize k = 0 and, every time we need the next
nearest user toq, we callNearestUsers(q, k) after incrementing
k by 1. Since the result is sorted in ascending distance toq, the
next nearest user is the last entry of the list. However, this would
incur considerable result overlap in successive calls. A solution to
this problem is to incrementk by a tunable steps ≥ 1. Then,
QM can keep thes newly retrieved users in a localqueue, sorted in
ascending distance toq. WheneverNextNearestUser is invoked,
it will pop the head of the queue and return it to the user. When
the queue is empty, another execution ofNearestUsers(q, k) is
necessary, after addings to the currentk.

4.1 Range Friends (RF)
Problem formulation. Simply stated,RF returns the friends of
useru that are within distancer to a locationq. More formally:

PROBLEM 1. Given a useru, a 2D pointq and a positive real
numberr, a Range Friends (RF) queryRF (u, q, r) returns a set
R defined as follows:

R = {ui | AreFriends(u, ui) ∧ ||q, ui|| ≤ r}

Similar toRangeUsers andNearestUsers , the result contains
also the users’ locations. For example,RF (u4, q, 8) = {u2} and
RF (u5, q, 10) = {u1, u3}, whereu1, u2, u3 carry both their ID
and location. This may be particularly useful for other GeoSN

queries that useRF as a subroutine, while it comes with a free
asymptotic cost (since the locations must be retrieved to answer the
query anyway, and do not add to the space complexity of the result).

We next describe three solutions for theRF query, whose pseu-
docode is given in Figure 3.

Input: Useru, locationq, radiusr
Output: Result setR

/* Algorithm 1 (RF1) */
1. F = GetFriends(u), R = ∅
2. For each userui ∈ F

3. GetUserLocation(ui)
4. If ||q, ui|| ≤ r, addui intoR

5. Return R

/* Algorithm 2 (RF2) */
1. Return R = GetFriends(u) ∩ RangeUsers(q, r)

/* Algorithm 3 (RF3) */
1. U = RangeUsers(q, r), R = ∅
2. For each userui ∈ U

3. If AreFriends(u, ui), addui into R

4. Return R

Figure 3: Pseudocode of RF algorithms

Algorithm 1 (RF1). This variant first extracts the setF of u’s
friends invoking primitiveGetFriends(u) in Line 1. Subsequently
(Lines 2-4), for everyui ∈ F , it retrieves its location via primitive
GetUserLocation(ui), and insertsui in result setR if the dis-
tance betweenui andq is smaller than or equal tor. For example,
RF1(u4, q, 8) first computesF = {u2, u3, u6} and retrieves the
user locations. Then, it adds onlyu2 toR, since||q, u2|| = 6.4 ≤ 8
(||q, u3|| = 10 > 8, and||q, u6|| = 12.2 > 8).

Algorithm 2 (RF2). This algorithm gets the friends ofu through
GetFriends(u), and executesRangeUsers(q, r) to get the users
that are within distancer to q. Finally, it performs an intersection
between these two sets, which yields the resultR. For instance,
RF2(u4, q, 8) performsGetFriends(u4) ∩ RangeUsers(q, 8) =
{u2, u3, u6} ∩ {u1, u2} = {u2}.

Algorithm 3 (RF3). RF3 calculatesU = RangeUsers(q, r), and
then insertsui ∈ U into R if AreFriends(u, ui) = true. In our
running example,RF3(u4, q, 8) first executesRangeUsers(q, 8)
= {u1, u2}, and then calculatesAreFriends(u4, u1) = false and
AreFriends(u4, u2) = true. Consequently, the algorithm returns
R = {u2} as the result.

The above algorithms have important differences. For instance,
RF2 andRF3 necessitate a spatial index for efficient range query
processing.RF3 could also benefit from an adjacency matrix im-
plementation (because it invokesAreFriends numerous times). In
addition, as we demonstrate in our experiments, the machine archi-
tecture (centralized or distributed) has a significant impact on their
relative performance. Finally, the data and query parameters are
also vital in determining the best algorithm, e.g., if there are few
users within a range,RF2 andRF3 are preferable toRF1, while
RF1 is better for sparse social networks of users in the same geo-
graphic area.

4.2 Nearest Friends (NF)
Problem formulation. NF returns thek friends of useru that are
closest to locationq in ascending distance. Formally:
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PROBLEM 2. Given a useru, a 2D pointq and a positive in-
tegerk, a Nearest Friends (NF) queryNF (u, q, k) returns a list
R = (u1, . . . , uk) such that, for each1 ≤ i ≤ k:

AreFriends(u, ui) ∧ ||q, ui|| ≤ ||q, ui+1|| ∧

(∄ u
′ : u′ 6∈ R ∧AreFriends(u, u′) ∧ ||q, u′|| < ||q, uk||)

For example,NF (u2, q, 2) = (u4, u6). Similar to the case of
RF, the result incorporates the user locations. Figure 4 includes the
pseudocode of three solution variants forNF, explained next.

Input: Useru, locationq, positive integerk
Output: Result setR

/* Algorithm 1 (NF1) */
1. F = GetFriends(u), R = ∅
2. For each userui ∈ F , computeGetUserLocation(ui)
3. SortF in ascending order of||q, ui||
4. Insert the firstk entries ofF into R

5. Return R

/* Algorithm 2 (NF2) */
1. F = GetFriends(u), R = ∅
2. While |R| < k

3. ui = NextNearestUser(q)
4. If ui ∈ F , addui intoR

5. Return R

/* Algorithm 3 (NF3) */
1. R = ∅
2. While |R| < k

3. ui = NextNearestUser(q)
4. If AreFriends(u, ui), addui into R

5. Return R

Figure 4: Pseudocode of NF algorithms

Algorithm 1 (NF1). NF1 first calculatesF = GetFriends(u),
and gets the location of everyui ∈ F via GetUserLocation(ui).
Subsequently, it sortsF in ascending distance of each user therein
to q, and inserts the firstk entries ofF into R. In our example,
NF1(u2, q, 2) retrievesF = GetFriends(u2) = {u4, u6, u9},
extracts the user locations via three calls toGetUserLocation,
sortsF in ascending distance of eachui ∈ F to q producing or-
dered list(u4, u6, u9). It finally returns the first 2 users in the list,
i.e.,R = (u4, u6).

Algorithm 2 (NF2). NF2 first extracts the friendsF of u through
GetFriends(u). It then iteratively retrieves the next nearest userui

to q by callingNextNearestUser . If ui is in F , it is added toR.
When the size ofR becomes equal tok, we are certain that we have
evaluated the correct result. In Figure 2,NF2(u2, q, 2) evaluates
F = GetFriends(u2) = {u4, u6, u9}. Then, it getsu1 as the
result of the first call toNextNearestUser(q). Sinceu1 6∈ F , it is
not added toR. Subsequently, it proceeds with retrieving usersu2-
u6 through5 calls toNextNearestUser(q), and adds onlyu4 ∈ F

andu6 ∈ F to R. At this point |R| becomes2 and, thus, the
method returnsR to the user and terminates.

Algorithm 3 (NF3). NF3 is similar toNF2, but instead of invok-
ingGetFriends, it utilizesAreFriends for checking the friendship
between a user retrieved byNextNearestUser andu. In our run-
ning example,NF3(u2, q, 2) iteratively computes usersu1-u6 via
six calls toNextNearestUser , and performs anAreFriends prim-
itive for each of them. During this process, it addsu4, u6 to R

(since only those are friends withu2), and concludes (|R| = 2).

Similar to theRF algorithms, the relative performance of the
NF solutions depends on the implementation, existing indexes, ma-
chine architecture, data distribution, and query parameters. We ex-
perimentally evaluate them in detail in Section 5.

4.3 Nearest Star Group (NSG)
Problem formulation. NSG returns thek nearest groups ofm
users to a query locationq, such that the users in every group are
connected through a common friend. This query is based on the
concept ofaggregate distance[34]. Specifically, the aggregate dis-
tance of a set of usersU = {u1, . . . , un} to a pointq is defined as
adist(q, U) = f(||q, u1||, . . . , ||q, un||), wheref is a monotoni-
cally increasing function1. For example, letU = {u1, u5, u7}. If
f = sum, adist(q, U) = ||q, u1|| + ||q, u5|| + ||q, u7|| = 31.3; if
f = max , thenadist(q, U) = max (||q, u1||, ||q, u5||, ||q, u7||) =
||q, u7|| = 15.

DEFINITION 1. Given a useru and a positive integerm, aStar
Group (SG) of a user u is a set that containsu andm−1 of his/her
friends. The set of all SGs ofu, givenm, is defined as:

SGu,m = {S ∪ {u} | S ⊆ GetFriends(u) ∧ |S| = m− 1}

We can perceive an SG ofu as astar subgraphof the social
network, which hasu as the center vertex (underlined) and them−
1 friends as the pendant vertices. Note thatu may havemultiple
SGs. For instance, ifm = 3, u2 has three SGs, namelySGu2,3 =
{{u2, u4, u6}, {u2, u4, u9}, {u2, u6, u9}}. On the other hand,u1

has only one SG, i.e.,SGu1,3 = {{u1, u5, u7}}.

DEFINITION 2. Given a query locationq and a positive integer
m, theNearest Star Group (NSG) of a user u is a setNSGu,q,m,
such that:

NSGu,q,m ∈ SGu,m ∧ (∄ S
′ ∈ SGu,m :

adist(q, S′) < adist(q,NSGu,q,m))

NSGu,q,m is them-element SG ofuwith the smallest aggregate
distance toq. For example, consideringf = sum as the aggregate
function, NSGu5,q,3 = {u1, u3, u5}. We denote byNSGq,m

the set of all NSGs associated withq givenm, e.g.,NSGq,4 =
{NSGu2,q,4, NSGu4,q,4, NSGu6,q,4} (u2, u4, u6 are the only
users with three friends). When there is no ambiguity onq and
m, we use notationNSGu andNSG instead ofNSGu,q,m and
NSGq,m, respectively.

PROBLEM 3. Given a 2D pointq and positive integersm, k,
a Nearest Star Group (NSG) queryNSG(q,m, k) returns a list
R = (NSGu1

, . . . , NSGuk
) such that, for each1 ≤ i ≤ k:

NSGui
∈ NSG ∧ adist(q,NSGui

) ≤ adist(q,NSGui+1
) ∧

(∄ NSGu′ : NSGu′ ∈ NSG ∧NSGu′ 6∈ R ∧

adist(q,NSGu′) < adist(q,NSGuk
))

As an example, consider a restaurant that wishes to advertise
a table of three. Fork = 1, m = 3 and f = sum, query
NSG(q, 3, 1), whereq is the location of the restaurant, retrieves
the group of three users, such that (i) they form a star subgraph
in the social network, and (ii) their sum of distances to the restau-
rant is minimized. In Figure 2,NSG(q, 3, 1) = (NSGu5,q,3) =
({u1, u3, u5}). The restaurant could send the advertisement to all
1A function f is monotonically increasingiff ∀i : xi ≥ x′

i
→

f(x1, . . . , xn) ≥ f(x′

1, . . . , x
′

n
).
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the users, or just the center vertexu5. The minimization of the ag-
gregate distance of the three users toq is motivated by the fact that
the offer is more likely to attract users in close proximity toq rather
than remote ones.

Observe that, according to the definition of Problem 3, fork > 1,
the SGs inR havedifferentcenter vertices. This choice eliminates
from the result groups with large intersection, i.e., centered at the
same user and differing in only a few pendant users. In an advertis-
ing application, this can minimize duplicate advertisements, while
maximizing the advertising coverage.

The next lemma is useful for proving the polynomial complexity
of NSG, and designing our algorithms.

LEMMA 1. It holds thatNSGu,q,m = {u}∪NF (u, q,m−1).

PROOF. LetS = {u} ∪ NF (u, q,m− 1) = {u, u1, u2, . . . ,

um−1}, i.e.,S contains useru and hism − 1 closest friends toq.
Consider also a setS′ = {u, u′

1, u
′
2, . . . , u

′
m−1}, which is derived

fromS by substituting any subset of{u1, . . . , um−1} of u’s friends
with a different set of friends. Note that||q, ui|| ≤ ||q, u′

i|| for all
1 ≤ i ≤ m− 1, by the definition ofNF (u, q,m− 1). Then, due
to the fact thatf is monotonically increasing, it holds that

adist(q, S) = f(||q, u||, ||q, u1||, . . . , ||q, um−1||)

≤ f(||q, u||, ||q, u′
1||, . . . , ||q, u

′
m−1||)

≤ adist(q, S′)

Consequently, there is noS′ 6= S with a smaller aggregate distance
to q. By Definition 2, this means thatNSGu,q,m = S = {u} ∪
NF (u, q,m− 1), which concludes our proof.

THEOREM 1. NSG runs in polynomial time.

PROOF. Problem 3 states that theNSG result is comprised of
thek user NSGs with smallest aggregate distance. Moreover, ac-
cording to Lemma 1, a user NSG can be retrieved by anNF query.
Hence, in order to answerNSG, we can simply compute the NSG
of everyuser in the social graph (e.g., in a trivial brute-force man-
ner), and select thek best ones. Given thatNF runs in polynomial
time,NSG requires polynomial computational time as well.

Algorithmic skeleton. The brute-force solution given in Theo-
rem 1 is clearly prohibitively expensive for large social graphs and,
thus, we aim at constructing more efficient algorithms. We outline
our main idea in Figure 5 in the form of abstract steps. Weitera-
tively investigate users in ascending distance toq (Line 3), since the
members of the result NSGs are likely to be close toq. For every
retrieved useru, we (partially or fully) construct NSGs thatu par-
ticipates in (Line 4), appropriately updating the resultR (Line 5).
We terminate this process by updating and checking certainlower
bounds; boundbs (resp.bun) contains aggregate distance informa-
tion associated with theseen(resp.unseen) part of the social graph.
Henceforth, we use term ‘seen’ to refer to a user retrieved in Line 3
and associated with a loop iteration (we use term ‘unseen’ for any
other user). The goal is to stop the process (i.e., reachbun ≥ bs) as
early as possible, while guaranteeing that (i) the final result is com-
puted by Lines 1-5, or (ii) we have sufficient information to get the
final result in arefinementstep in Line 6.

We next present three solutions that follow the general algorith-
mic methodology explained above. They essentially differ in the
computation of NSGs, the updating ofbun, and the refinement ofR
(Lines 4-6, respectively). They also utilize different combinations
of primitives. For simplicity, we explain all algorithms fork = 1,
focusing on the case where the aggregate function isf = sum.

Input: Locationq, positive integersm, k

Output: Result setR

1. InitializeR, bs, bun
2. While bun < bs
3. Get the next nearest user toq
4. Construct NSGs
5. Update resultR andbs, bun
6. RefineR // optional step
7. Return R

Figure 5: Skeleton for NSG algorithms

Algorithm 1 (NSGeager ). The main idea is that, for every newly
retrieved userui, the algorithmeagerlyconstructsNSGui

using
any NF algorithm and Lemma 1, and computes its aggregate dis-
tance toq. If adist(q,NSGui

) is lower than the current best dis-
tance attained by theseenusers, held inbs, the process setsNSGui

as the current resultR andbs toadist(q,NSGui
). Next, it updates

a bound on the smallest aggregate distance that can achieved by an
unseenui, stored inbun. Specifically,bun is the sum of distances
of (i) the currently investigatedui to q, and (ii) them − 1 nearest
seenusers toq. The intuition behindbun is that, in thebestcase,
the aggregate distance ofNSGut

of anyunseen userut is ||q, ui||
(as ifut were at the same distance toq as the last userui) plus the
m − 1 smallest possible distances toq (as if ut were friends with
them − 1 nearest users toq). If there are fewer thanm − 1 users
seen so far (i < m − 1), NSGeager adds(m − i − 1) · ||q, ui||,
simulating the missingm−i−1 users as being at the same distance
to q asui. The procedure stops whenbun ≥ bs, as the unseen users
cannot have a better NSG. No refinement step is required. Figure
6 presents the pseudocode ofNSGeager . We prove the correctness
of the algorithm in the long version of this paper [22].

Input: Locationq, positive integerm
Output: Result setR

1. Initializebs = ∞, bun = 0, R = ∅, i = 1
2. While bun < bs
3. ui = NextNearestUser(q)
4. NSGui

= {ui} ∪NF (ui, q,m− 1)
5. If |NSGui

| = m ∧ adist(q,NSGui
) < bs

6. R = (NSGui
), bs = adist(q,NSGui

)
7. bun = ||q, ui||+

∑
(1≤j≤i)∧(j<m) ||q, uj ||

8. If i < m− 1, bun+ = (m− i− 1) · ||q, ui||
9. i++
10.Return R

Figure 6: Pseudocode of NSGeager

Figure 7 walks through all the steps of callNSGeager (q, 3, 1).
The algorithm concludes in7 iterations, where iterationi retrieves
and investigates userui. A dashed circle around a useru indi-
cates that the algorithm constructsNSGu, and the number next to
this circle is the aggregate distance ofNSGu. Bold edges consti-
tute the current resultR, where the underlined user is its center.
The values ofbs, bun appear at the bottom of each iteration. At
iteration 1,NSGeager retrieves the nearest user ofq, u1, and com-
putesNSGu1

= {u1, u5, u7} andadist(q,NSGu1
) = 31.3. It

then setsR = (NSGu1
) as a candidate result, andbs = 31.3 as

the smallest aggregate distance found so far. Moreover, it calcu-
latesbun = (||q, u1|| +

∑1
j=1 ||q, uj ||) + 1 · ||q, u1|| = 15 (the

sum in the parenthesis is from Line 7, whereas the second factor is
from Line 8). This is the minimum distance that can be obtained
by any unseen user, assuming his distance and that of his friends
is equal to||q, u1||. Sincebun < bs, the algorithm proceeds to
iteration 2, where it retrieves the second nearest useru2, and com-
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Figure 7: Example of NSGeager

Iteration 1 Iteration 3Iteration 2 Iteration 4 Iteration 5 Iteration 6 Iteration 7

u1
u1 u1

u1
u1 u1 u1

bun = 21.8 > bs = 26.8 bun = 22.7 < bs = 26.3 bun = 23.6 < bs = 26.3 bun = 26.4 > bs = 26.3bun = 21.4 < bs = ∞bun = 17.8 < bs = ∞bun = 15 < bs = ∞

u2 u2 u2
u2 u2 u2
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u3
u3 u3
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u4 u4 u4

u6 u6

u7
26.8

31.7 26.3

29

29

31.3
q q q q

q q q

u4
u5

u5 u5

Useen = {u1} Useen = {u1, u2} Useen = {u1, u2, u3} Useen = {u1, u2, u3, u4} Useen = {u1, u2, u3, u4, u5} Useen = {u1, u2, u3, u4, u5, u6} Useen = {u1, u2, u3, u4, u5, u6, u7}

Figure 9: Example of NSGlazy

putesNSGu2
= {u2, u4, u6}, adist(q,NSGu2

) = 29 < bs.
Therefore, it updatesbs to 29, and setsR = (NSGu2

) andbun =
(||q, u2||+

∑2
j=1 ||q, uj ||) = 17.8. The algorithm proceeds simi-

larly until iteration7, wherebun = (||q, u7|| +
∑2

j=1 ||q, uj ||) =
26.4 > bs = 26.3 and, hence, the procedure concludes outputting
NSGu5

as the result. The NSG of any user that has not been seen
must have aggregate distance at least26.4, even if he is a friend
with the two users closest toq (u1,u2).

Algorithm 2 (NSGlazy ). This approach follows a similar algorith-
mic framework toNSGeager . The main difference is that, when
the next nearest userui to q is retrieved,NSGlazy doesnot con-
struct theentireNSGui

, but lazily builds the NSG from the users
seen so far, kept in a listUseen sorted in ascending distance toq.
Moreover,ui contributes to the creation of the NSGs of the users
in Useen . This implies that the algorithm maintainspartial NSGs
for the users inUseen . When an NSG is completed, we updateR

andbs similarly toNSGeager . For simplicity, we use the same no-
tation for the partial and complete NSG of useru (i.e.,NSGu); we
simply check|NSGu| againstm to verify whether it is complete or
partial. Finally,bun is updated in the same manner as inNSGeager .
Figure 8 illustrates the pseudocode ofNSGlazy , whereas [22] in-
cludes its correctness proof.

Input: Locationq, positive integerm
Output: Result setR

1. Initializebs = ∞, bun = 0, R = ∅, i = 1, Useen = ∅
2. While bun < bs
3. ui = NextNearestUser(q)
4. F = GetFriends(ui)
5. For all u ∈ Useen ∩ F // in asc. dist. toq
6. If |NSGui

| < m

7. addu to NSGui

8. If |NSGui
| = m ∧ adist(q,NSGui

) < bs
9. R = (NSGui

), bs = adist(q,NSGui
)

10. If |NSGu| < m

11. addui toNSGu

12. If |NSGu| = m ∧ adist(q,NSGu) < bs
13. R = (NSGu), bs = adist(q,NSGu)
14. addui toUseen // Useen is sorted in asc. dist. toq
15. bun = ||q, ui||+

∑
(1≤j≤i)∧(j<m) ||q, uj ||

16. If i < m− 1, bun+ = (m− i− 1) · ||q, ui||
17. i++
18.Return R

Figure 8: Pseudocode of NSGlazy

Figure 9 depicts a detailed example of the algorithm, for call
NSGlazy(q, 3, 1). We follow the same notation as in Figure 7,
adding setUseen for easy reference. The retrieval ofu1-u3 in the
first three iterations, respectively, does not cause the construction
of any complete or partial NSG, but updatesbun. At iteration
4, the algorithm fetchesu4, who has two friendsu2, u3 ∈ Useen

that have been already seen. Therefore, it completesNSGu4
and

setsR = (NSGu4
), bs = 26.8. In addition, the procedure uses

u4 to construct twopartial NSGs, namelyNSGu2
andNSGu3

,
which containu4 as the only pendant vertex. Iteration 5 causes
the construction ofNSGu5

, andu5 contributes to thecompletion
of NSGu3

. The process continues updatingR, bs andbun, and
concludes at iteration7 (bun > bs) returningNSGu5

as the result.
Comparing with Figure 7, the algorithm performs the same number
of iterations, because it uses exactly the samebs, bun bounds. How-
ever, as opposed toNSGeager, NSGlazy avoids building com-
plete NSGs for all seen users.

Algorithm 3 (NSG∗
eager ). This approach is anoptimizationof

NSGeager with two important differences: (i) after it retrieves the
next nearest userui to q, NSG∗

eager attempts to constructNSGui

using onlyui’s friends in rangebs (the current smallest aggre-
gate distance) toq. This is because, if a friend ofui is outside
rangebs, NSGui

is guaranteed to be worse than the current best.
(ii) NSG∗

eager increases boundbun more aggressivelyto termi-
nate faster. Specifically,bun here is the best distance that can be
achieved by an unseen user without any seen friends, i.e.,bun =
m · ||q, uj || whereuj is the lastly seen user. This looser bound en-
sures that, upon termination of the loop, an unseen userthat is not
friends with a seen usercannot yield a better NSG than the current
best. However, this does not guarantee that the best result has been
found. In particular, arefinement stepis needed to check the case
of unseen users in rangebs with seen friends. The intuition is that
the extra cost of the refinement step may be lower than the savings
attained from the earlier termination.

Figure 10 contains the pseudocode ofNSG∗
eager . The algorithm

needs aninitialization step (Lines 2-3), in order to calculatebs for
the first time before entering the while loop. It next proceeds as in
NSGeager , namely it retrieves the next nearest userui to q (starting
from u1). However, in contrast toNSGeager , in Line 7NSG∗

eager

constructs (potentiallypartial) NSGui
using the friends ofui (re-

trieved in Line 6) that are withinbs distance toq. If NSGui
is com-

plete,R andbs are properly updated similar toNSGeager (Lines
8-9). Thebun bound is set in Line 15. Lines 18-22 constitute the
refinement step, which is facilitated by the information gathered in
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No result change because: 

u1

Figure 11: Example of NSG∗
eager

Input: Locationq, positive integerm
Output: Result setR

1. Initializebs = ∞, bun = 0, R = ∅, Fseen = ∅, i = 1
2. u1 = NearestUsers(q, 1), NSGu1

= {u1} ∪NF (q, u1,m− 1)
3. bs = adist(q,NSGu1

)
4. While bun < bs
5. ui = NextNearestUser(q)
6. F = RF (ui, q, bs)
7. NSGui

= {ui} ∪ them− 1 nearest users toq in F

8. If |NSGui
| = m ∧ adist(q,NSGui

) < bs
9. R = (NSGui

), bs = adist(q,NSGui
)

10. For all u ∈ F

11. If u 6∈ Fseen, addu toFseen

12. If |NSGu| < m, addui toNSGu

13. If |NSGu| = m ∧ adist(q,NSGu) < bs
14. R = (NSGu), bs = adist(q,NSGu)
15. bun = m · ||q, ui||
16. i++
17. i = i− 1 // so thatui is the lastly seen user
18.For all u ∈ Fseen ∧ |NSGu| < m

19. If adist(q,NSGu) + (m− |NSGu|) · ||q, ui|| < bs
20. NSGu = NF (u, q,m− 1)
21. If adist(q,NSGu) < bs
22. R = (NSGu), bs = adist(q,NSGu)
23.Return R

Figure 10: Pseudocode of NSG∗
eager

Lines 10-14. Specifically, all the retrievedfriendsof theseenusers
are put in a listFseen . The algorithm lazily constructs their NSGs
as new usersui arrive in Line 5. If such an NSG is completed,R

andbs may be updated (Lines 13-14). Finally, the refinement step
completes the partial NSGs ofFseen in case the condition in Line
19 holds, updatingR, bs if necessary. We prove the correctness of
NSG∗

eager in [22].
Figure 11 illustrates an example for callNSG∗

eager (q, 3, 1), com-
plying with the notation of Figures 7 and 9, and addingFseen for
easy reference. The initialization step buildsNSGu1

and sets
bs = adist(q,NSGu1

) = 31.3. At iteration 1, the algorithm sets
R = (NSGu1

) andbun = 3·||q, u1|| = 15, preservesbs, and adds
u5, u7 intoFseen . It also creates partial NSGs for the users inFseen

usingu1. At iteration 2,NSG∗
eager constructsNSGu2

, which be-
comes the current best result giving a newbs = 29. The friends
of u2 (u4, u6, u9) join Fseen , and initialize their partial NSGs. The
value of bun becomes19.2; observe that it increases faster than
in the case ofNSGeager andNSGlazy. At iteration 3, the pro-
cedure retrievesu3, createsNSGu3

, and completes the NSGs of
u4, u5 ∈ Fseen . The best among them isNSGu5

that updatesbs
to 26.3. Boundbun becomes30 > bs and, hence, the algorithm
terminates. Next, the refinement step does not need to complete the
partial NSGs ofu6, u7, u9 ∈ Fseen , since the condition of Line 19
is not satisfied. The algorithm returnsNSGu5

as the result. This
example demonstrates the potential superiority ofNSG∗

eager ver-
susNSGeager andNSGlazy ; it performs fewer iterations, while
the refinement step does not incur any additional overhead.

The performance of the three describedNSG solutions depends
on the number of seen users, as well as the number and efficiency of
the primitive queries involved. In the next section we include their
thorough experimental comparison. Some final remarks concern
the case ofk > 1 and the usage of aggregate functionf = max.
The modifications of our pseudocodes fork > 1 are straightfor-
ward: we simply maintain ak-element listR, which contains the
k best NSGs at all times (sorted in ascending aggregate distance
to q), andbs now constitutes thekth smallest distance. Moreover,
NSG∗

eager (Figure 10) constructsk NSGs in Line 2, properly set-
ting bs in Line 3. Finally, the case off = max is supportedonly
for NSGeager andNSGlazy . The sole alteration concerns setting
bun = ||q, ui|| in every loop iteration. Correctness is proved in a
very similar fashion to the case off = sum. We omit the details
due to space constraints.

5. EXPERIMENTS
Section 5.1 describes our experimental setup, whereas Section

5.2 presents our results.

5.1 Setup
Storage schemes. We employed two different data storage ap-
proaches for the social (SM) and geographical (GM) module: a
disk-based(with cache), and amemory-based. All schemes were
implemented in C++, under Linux Ubuntu.

The disk-based approach uses MongoDB [17], a popular com-
mercialdocument-oriented database. MongoDB keeps the infor-
mation in documents in the hard disk. At the SM, we store the
social graph as a set of such documents. Every document corre-
sponds to a user, and carries his ID and asortedlist of his friends’
IDs (i.e., an adjacency list). All documents are indexed with a B+-
Tree on user ID.GetFriendsretrieves the user document and re-
turns the friend list.AreFriendsentails reading a user document
and checking his friend list. A social update (i.e., the insertion or
deletion of a graph edge between two users) involves readingtwo
user documents, altering their friend lists, and writing theentire
two lists back in their documents kept in the disk. At the GM, we
create a document for each user, which contains his ID and coordi-
nates. These documents are indexed with a B+-Tree on user ID,
which enables fast answering ofGetUserLocation. RangeUsers
andNearestUsersare readily supported in MongoDB by built-in
functions. To answer such queries, MongoDB exploits efficient
spatial indexing techniques, such asgrids andgeohashing[11]. A
location update entails both a document update and an index up-
date. MongoDB does not have a caching component. Instead, it
uses Linux’s caching mechanism.

In the memory-based approach, we store the social graph at SM
in a main memoryhash table, where the key is the user ID and
the value is asortedlist of his friends’ IDs. PrimitiveGetFriends
is a simple lookup in the table, whereasAreFriendsinvolves a ta-
ble lookup and a binary search over a friend list. A social update
involves finding thetwo users in the hash table, and altering their
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friend lists. At the GM, we store each user (represented by his ID
and coordinates) in a regular300 × 300 grid. We also use a hash
table on the user ID, to facilitate fast execution ofGetUserLoca-
tion. We performRangeUsersin a straightforward manner using
the grid, whereas we adopt the CPM [33] algorithm for answering
NearestUsers. A location update needs a hash table lookup (to find
the user and change his location field), the deletion of the user from
the old grid cell, and his insertion to the new grid cell.

Machine architecture. We conducted our experiments using both
acentralizedanddistributedarchitecture. The centralized scenario
positions the three modules (SM, GM and QM) at a single server.
The distributed setting utilizes a separate server for each module,
where the QM machine communicates with the SM and GM ma-
chines via a 100Mbps Ethernet network. Each server is an Intel
Core 2 Duo, with a 2.33GHz CPU and 4GB RAM.

Datasets. We used both real and synthetic datasets. We derived the
real dataset from Foursquare and Twitter as follows. We first gath-
ered 12,652 users that posted a Foursquare check-in as a tweet on
their Twitter account on thesameday (May 30th, 2012) in New
York City. The check-in coordinates were spread in an overall
area of 1,112km2. This user information was maintained at the
GM. We then extracted their friends from Twitter (where the aver-
age number of friends was 437), yielding a Twitter subgraph of
2,220,627 users (note though that these additional users did not
have any location data). This social graph was kept at the SM.

We also created five differentsyntheticdatasets, containing 1-5
million users, respectively, simulating scenarios in a big city. We
used the Barab́asi-Albert preference model [24] for generating the
edges, setting the average number of friends to 100 (note that this
number is currently 190 in Facebook [2], and was 5-8 in 2011 in
Foursquare [7]). The number of friends in this model follows a
power law distribution, which is in tangent with the current trend
in popular social networks [32]. We assigned locations toall users
respecting the following two principles: (i) two friends are more
likely to check-in at nearby places, and (ii) the distance between
two friends follows a power law distribution [25]. More specif-
ically, starting from a random user at a random location, we tra-
versed the entire graph in a BFS fashion and assigned locations to
the users based on their Euclidean distances to their friends, which
were randomly derived from the distribution of [25]. The resulting
check-in coordinates were spread in an overall area of 7,853km2.
From the above datasets, the social graphs were kept at the SM,
whereas the location data were stored at the GM.

Parameters. Table 1 summarizes the system parameters with their
ranges, wherer is the radius (inkm) in RF, s is the increment step
in NextNearestUser , k is the result size inNF andNSG, m is the
group size inNSG, andN is the synthetic dataset size.

Table 1: System parameters and their ranges
Parameter r s k m N

Range 0.5-5 km 1K-5K 1-10 2-7 1M-5M

Evaluation methodology. Since the two machine architectures are
orthogonal to the two storage schemes described above, we ex-
plored in total four different scenarios; namely,Disk-Centralized,
Memory-Centralized, Disk-Distributed, and Memory-Distributed.
We assessed the algorithms with respect to theirtotal query re-
sponse time, i.e., the time elapsed from the instant a query is is-
sued to its result retrieval. The reported time is the average over
100 random queries. For the disk-based case, we performedcache
warm-upby issuing 50 random primitive queries.

5.2 Results
Range Friends (RF). Recall thatRF1 involves an execution of
GetFriends and subsequent calls ofGetUserLocation for the re-
trieved friends. RF2 performs an intersection of the results of
GetFriends andRangeUsers . RF3 executesRangeUsers and
performs subsequent calls toAreFriends.

Figure 12 assesses the query time (inms) of our threeRF algo-
rithms as a function of radiusr (in km) for our real dataset. Figure
12(a) shows the disk-based centralized scenario. The performance
of RF1 is unaffected byr, because its primitives are independent
of r. In contrast, the query time ofRF2 andRF3 increases with
r, because they both callRangeUsers whose processing time rises
with r. RF2 exhibits the best performance (7.67-22.25 ms), out-
performingRF1 by almost up to one order of magnitude (58.94
ms), andRF3 by more than two orders of magnitude (169.46-
547.73 ms). The main reason is thatRF2 entails only two rela-
tively inexpensive primitive operations. On the contrary,RF1 in-
vokesGetUserLocation for every friend (i.e., 437 times on the av-
erage), resulting in a high I/O cost.RF3 has the worst performance,
as it executesAreFriends for every user in the range, which may
include up to thousands of users.
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Figure 12: Query time for RF vs. r (Real dataset)

Figure 12(b) depicts our results for the memory-based central-
ized case.RF2 andRF3 follow the same trends as in Figure 12(a),
but their times are lower because the primitives are faster in main
memory. The most important observation is thatRF1 now becomes
the best algorithm. The reason is thatGetUserLocation does not
incur any I/O cost, which was the dominant overhead in the disk-
based case. As such,RF1 becomes about twice faster thanRF2.
Figures 12(c) and 12(d) demonstrate the query time in the disk-
based and memory-based distributed scenario, respectively.RF3

does not terminate in a reasonable time frame, due to the numerous
AreFriends calls. RF2 outperformsRF1 by up to one order of
magnitude in both settings, maintaining its query time below130
ms. The major reason is thatRF1 pays the considerable network
delay for performing the multipleGetUserLocation calls, which
is the dominant cost in both the disk- and memory-based scenarios.

In Figure 13 we assess the scalability of theRF algorithms us-
ing the synthetic datasets. We vary the dataset sizeN , fixing the
radius tor = 2.5 km. RF1 is practically unaffected byN ; for
all N , GetFriends retrieves the same number of friends (since the
average number of friends in all datasets is fixed to100), whereas
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GetUserLocation is efficiently handled by a B+-Tree whose height
is minimally influenced by the increase inN . The costs ofRF2 and
RF3 rise withN ; larger datasets are denser and, thus,RangeUsers

retrieves more users. Contrary to the case of the real dataset, here
RF1 is always superior toRF2 andRF3, since the smaller average
number of friends (100 vs. 437) makesGetFriends considerably
cheaper, and leads to much fewerGetUserLocation invocations.
Even for the case ofN = 5M in the disk-based distributed sce-
nario, the overhead ofRF1 is in the order of100 ms.
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Figure 13: Query time for RF vs. N (Synthetic datasets)

Nearest Friends (NF). Recall thatNF1 invokesGetFriends fol-
lowed by multipleGetUserLocation operations.NF2 executes
GetFriends, and callsNextNearestUser multiple times.NF3 in-
volves multipleNextNearestUser andAreFriends calls. We first
include a discussion on the increment steps of NextNearestUser ,
which considerably affects the performance ofNF2 andNF3.

Figure 14 plots the query time ofNF2 versuss and result sizek
(the case ofNF3 is similar and, thus, omitted), for the real dataset.
Observe thatNF2 is affected by thecombinationof s andk. In
most settings, a highers leads to better performance. This suggests
that executingfewer NearestUsers primitives at the expense of
retrieving “redundant” users is preferable to multiple calls with a
higher result overlap. However, for smallk (i.e.,1 and2), the value
of s that leads to the lowest query time (5K) lies between the two
extremes. The reason is that theNF result is relatively close toq
for a smallk and, hence, a moderates leads to minimizing both the
“redundant” users and the number of primitive calls. The benefits
are more pronounced in the distributed setting (Figures 14(c) and
14(d)), because the “redundant” users inflict both processing and
network overhead. In the remaining experiments, we fine-tuneds

to its optimal value for every setting and algorithm.
Figure 15 evaluates the threeNF algorithms when varyingk for

the real dataset.NF1 is independent ofk. On the other hand, the
number of calls toNextNearestUser in NF2 andNF3 rises with
k and, thus, performance deteriorates. In the centralized scenario,
NF1 exhibits the best performance. The reason is that, inNF2

andNF3, (i) numerous users are investigated, and (ii) a friendship
test is performed for every retrieved user.NF3 is worse thanNF2

because its numerous calls toAreFriends outweigh the one-time
cost ofGetFriends in NF2. The costs ofNF2 andNF3 in Fig-
ure 14(b) are close, because the overhead ofAreFriends is smaller

(a) Disk-Centralized (b) Memory-Centralized

(c) Disk-Distributed (d) Memory-Distributed

Figure 14: Query time for NF 2 vs. s and k (Real dataset)

than that in the disk-based case. In the distributed case,NF2 be-
comes the best algorithm;NF1 executesGetUserLocation mul-
tiple times which impose great network delay, whereasNF2 per-
forms fewer primitive invocations due to the step-wise prefetching
of NextNearestUser . NF3 does not terminate within a reasonable
time frame, due to its numerousAreFriend queries.
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Figure 15: Query time for NF vs. k (Real dataset)

Figure 16 assesses the scalability of theNF algorithms on the
synthetic datasets, varying the dataset sizeN and settingk = 5.
NF1 is unaffected byN , since, similar toRF1, GetFriends al-
ways retrieves a fixed number of users (100 on the average). On
the other hand, the costs ofNF2 andNF3 increase withN ; all
areas become denser and, hence,NextNearestUser investigates a
much larger number of users until it finds thek nearest friends (e.g.,
∼ 150K users whenN = 3M). Consequently,NF1 is the best al-
gorithm in all settings, with overhead in the order of100 ms even
in the most demanding setting (Figure 16(c)).

Nearest Star Group (NSG). Recall that,NSGeager builds the
complete NSGs for users around the query location, until no un-
seen user can lead to a better result.NSGlazy builds partial NSGs
involving only users seen so far.NSG∗

eager involves a more aggres-
sive bound than the previous algorithms, in order to reach an earlier
termination. RoutinesNF (in NSGeager ) andRF (in NSG∗

eager)
were implemented using the fastest algorithms for each setting. We
also appliedf = sum as the aggregate function.
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Figure 16: Query time for NF vs. N (Synthetic datasets)

Figure 17 depicts the performance of theNSG algorithms for the
real dataset, as a function of the group sizem (k = 1). The cost of
every algorithm increases withm, as more users are seen to find the
NSG result. NSGeager exhibits the worst performance (Figures
17(c) and 17(d) omit its costs, as it did not terminate within rea-
sonable time); it involves expensiveNF calls, whereasNSGlazy

andNSG∗
eager invoke the cheaperGetFriends andRF , respec-

tively. In most settings,NSG∗
eager is the best algorithm, whereas

its query time is always smaller than1.2 sec. The largest perfor-
mance gain overNSGlazy reaches up to more than one order of
magnitude (Figure 17(b)). The main reason is thatNSG∗

eager ex-
plores up to one order of magnitude fewer users in the while loop
thanNSGlazy (118 vs. 3,539), while its refinement step is very
fast. Nevertheless,NSGlazy is superior form ≤ 3 (m ≤ 4) in the
centralized (distributed) case; it runs fewer primitives per iteration,
while its number of iterations is comparable to that inNSG∗

eager .

101

102

103

104

105

106

 2  3  4  5  6  7

T
im

e
 (

m
s)

m

NSGeager
NSGlazy
NSG*eager

(a) Disk-Centralized

101

102

103

104

 2  3  4  5  6  7

T
im

e
 (

m
s)

m

NSGeager
NSGlazy
NSG*eager

(b) Memory-Centralized

102

103

104

 2  3  4  5  6  7

T
im

e
 (

m
s)

m

NSGeager did not terminate

NSGlazy
NSG*eager

(c) Disk-Distributed

102

103

104

 2  3  4  5  6  7

T
im

e
 (

m
s)

m

NSGeager did not terminate

NSGlazy
NSG*eager

(d) Memory-Distributed

Figure 17: Query time for NSG vs. m (Real dataset)

Figure 18 assesses the performance of theNSG algorithms for
the real dataset, when varyingk and settingm = 5. For groups of
5 users,NSG∗

eager is the best algorithm for the reasons explained
in Figure 17. The cost of every method naturally increases withk,
since more users must be investigated to construct thek best NSGs
comprising the result. However, the query time ofNSG∗

eager is
below3 sec even fork = 6 in all scenarios.
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Figure 18: Query time for NSG vs. k (Real dataset)

Figure 19 depicts the scalability results of theNSG algorithms
on the synthetic datasets, when varying the dataset sizeN , and
settingk = 3, m = 5. The cost of every algorithm increases
with N . The reason is that all areas become denser and, there-
fore, more users must be investigated before discovering the re-
sult.NSG∗

eager is superior toNSGeager andNSGlazy in Figures
19(a)-19(c), for the same reasons as in the real dataset case. How-
ever, in Figure 19(d),NSGlazy becomes marginally better than
NSG∗

eager. The reason is that the cost ofGetFriends in the main-
memory setting is lower than that in the disk case. Therefore, the
gains ofNSG∗

eager due to the fewer explored users becomes much
less pronounced. Finally, despite the complexity of theNSG query
and our relatively weak machines, the best algorithms yield query
response times in the order of a few seconds, even in the most chal-
lenging settings.
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Figure 19: Query time for NSG vs. N (Synthetic datasets)

Updates. In each experiment, we performed 100,000 social up-
dates, and an equal number of spatial updates. A social update was
a friendship creation between two users, whereas a spatial update
was a check-in that altered the current location of a user to a new
one (see Section 5.1 for the implementation details). We report the
average update times for the real and synthetic datasets, focusing
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only on the centralized setting (the times are the same in the dis-
tributed case, as each update occurslocally at SM or GM).

For the real dataset, in the disk-based scenario, a social update
takes2.3 ms and a spatial update0.17 ms. Observe that a so-
cial update is considerably more expensive than a spatial update,
because it entails reading two long friend lists (each of average
size 437) from the disk, whereas a spatial update involves chang-
ing a single entry in the effective spatial indices of MongoDB. Note
that MongoDB employs Linux’s cache, which significantly reduces
both read and write costs. For the memory-based case, a social up-
date requires3.57 µs, and a spatial update5.4 µs. Here, a social
update is cheaper than a spatial one; the social cost is now very low
(since the I/O cost is eliminated), whereas our grid may contain a
long ID list in the user’s old cell, which must be traversed to locate
his ID and delete it.

Figure 20 illustrates the update time when varying the dataset
sizeN for the synthetic datasets. In general, the cost of spatial
updates in both the disk- and memory-based setting increases with
N , since the dataset cardinality affects the size and performance of
the spatial indices. On the other hand, the social updates are rather
minimally impacted byN , since their cost is mainly influenced by
the average number of friends. The observed fluctuation in Figure
20(a) is due to the ID lookups during the updates and the random-
ness of the datasets. Finally, a spatial (social) update is more costly
than a social (spatial) update in the memory-based (disk-based) sce-
nario for the same reasons as in the real dataset scenario.
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Figure 20: Update time vs. N (Synthetic datasets)

Summary. We derive three main conclusions from our empiri-
cal analysis: (i) the best algorithm for each query type depends
on the setting (data management method and system architecture),
(ii) the performance of our algorithms is excellent even under the
most challenging scenarios (e.g., forNSG queries, in the disk-
based case, for largem andk), and scales well with the dataset
size, and (iii) our implementations can handle hundreds of updates
per second even for large dataset sizes (N = 5M).

6. CONCLUSION
In this paper we conducted the first systematic study of GeoSN

query processing. In particular, we introduced a general framework
that segregates the social, geographical and query processing mod-
ules, enabling flexible data management and algorithmic design. A
GeoSN query is processed via a combination of primitive opera-
tions issued to the social and geographical modules. We also intro-
duced novel GeoSN queries, and designed various solutions based
on different sets of primitives. Finally, we performed an exhaustive
experimental evaluation on real and synthetic datasets with realistic
implementations, which confirmed the viability of our framework
and the practicality of our GeoSN queries and algorithms.

Acknowledgements
This work was supported by grant HKUST 6174/12 from Hong
Kong RGC.

7. REFERENCES
[1] Agora.http://agora-app.heroku.com/ .
[2] Facebook anatomy.

https://www.facebook.com/notes/facebook-data-team/
anatomy-of-facebook/10150388519243859/ .

[3] Facebook Places.https://www.facebook.com/about/location/ .
[4] Factual.http://www.factual.com/ .
[5] Foursquare.http://www.foursquare.com/ .
[6] Foursquare downtime problem.http://blog.foursquare.com/2010/

10/05/so-that-was-a-bummer/ .
[7] Foursquare friendships.http://vimeo.com/22641902 .
[8] Foursquare statistics.https://foursquare.com/about/ .
[9] Fullcircle. http://www.fullcircle.net/ .

[10] Geoloqi.http://www.geoloqi.com/ .
[11] Geospatial indexes in MongoDB.http:

//docs.mongodb.org/manual/core/geospatial-indexes/ .
[12] Glancee.http://www.glancee.com/ .
[13] GroupOn Now! deals available on Foursquare.

https://blog.groupon.com/cities/
groupon-now-deals-available-in-foursquare/ .

[14] Hotlist. http://www.hotlist.com/ .
[15] Linking Foursquare with Facebook and Twitter.

http://support.foursquare.com/entries/
21738953-linking-foursquare-with-facebook-and-twitt er/ .

[16] Memcached.http://memcached.org/ .
[17] Mongodb.http://www.mongodb.org/ .
[18] Neo4j.http://neo4j.org/ .
[19] Scaling MongoDB at Foursquare.

http://www.10gen.com/presentations/
mongonyc-2012-scaling-mongodb-foursquare .

[20] Twitter: Real-time Geo.http://www.slideshare.net/
raffikrikorian/rtgeo-where-20-2011 .

[21] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K. Wampler. Buddy
tracking - efficient proximity detection among mobile friends.Pervasive and
Mobile Computing, 3(5):489 – 511, 2007.

[22] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general framework for
geo-social query processing. Full version of this paper, available online at
http://www.cse.ust.hk/ ˜ nikos/geosns/GeoSNs-long.pdf ,
2013.

[23] J. Bao, M. F. Mokbel, and C.-Y. Chow. GeoFeed: A location aware news feed
system. InICDE, 2012.

[24] A. L. Barab́asi and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[25] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement
in location-based social networks. InSIGKDD, 2011.

[26] Y. Doytsher, B. Galon, and Y. Kanza. Querying geo-social data by bridging
spatial networks and social networks. InLBSN, 2010.

[27] Y. Doytsher, B. Galon, and Y. Kanza. Managing socio-spatial data as large
graphs. InWWW, 2012.

[28] Q. Huang and Y. Liu. On geo-social network services. InGeoinformatics, 2009.
[29] A. Khoshgozaran and C. Shahabi. Private buddy search: Enabling private

spatial queries in social networks. InCSE, 2009.
[30] N. Li and G. Chen. Analysis of a location-based social network. InCSE, 2009.
[31] W. Liu, W. Sun, C. Chen, Y. Huang, Y. Jing, and K. Chen. Circle of friend

query in geo-social networks. InDASFAA, 2012.
[32] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.

Measurement and analysis of online social networks. InSIGCOMM, 2007.
[33] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning:

An efficient method for continuous nearest neighbor monitoring. InSIGMOD,
2005.

[34] D. Papadias, Y. Tao, K. Mouratidis, and C. Hui. Aggregate nearest neighbor
queries in spatial databases.ACM Transactions on Database Systems (TODS),
30(2):529–576, 2005.

[35] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. InVLDB, 2003.

[36] C. Ruiz Vicente, D. Freni, C. Bettini, and C. S. Jensen. Location-related privacy
in geo-social networks.IEEE Internet Computing, 15(3):20–27, May 2011.

[37] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora. Distance matters:
Geo-social metrics for online social networks. InWOSN, 2010.

[38] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On socio-spatial group
query for location-based social networks. InSIGKDD, 2012.
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