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ABSTRACT
A wide range of applications, including bioinformatics, time
series, and log analysis, depend on the identification of rep-
etitions in very long sequences. The problem of finding
maximal pairs subsumes most important types of repetition-
finding tasks. Existing solutions require both the input se-
quence and its index (typically an order of magnitude larger
than the input) to fit in memory. Moreover, they are se-
rial algorithms with long execution time. Therefore, they
are limited to small datasets, despite the fact that modern
applications demand orders of magnitude longer sequences.

In this paper we present RACE, a parallel system for find-
ing maximal pairs in very long sequences. RACE supports
parallel execution on stand-alone multicore systems, in ad-
dition to scaling to thousands of nodes on clusters or super-
computers. RACE does not require the input or the index
to fit in memory; therefore, it supports very long sequences
with limited memory. Moreover, it uses a novel array rep-
resentation that allows for cache-e�cient implementation.
RACE is particularly suitable for the cloud (e.g., Amazon
EC2) because, based on availability, it can scale elastically
to more or fewer machines during its execution. Since scal-
ing out introduces overheads, mainly due to load imbalance,
we propose a cost model to estimate the expected speedup,
based on statistics gathered through sampling. The model
allows the user to select the appropriate combination of
cloud resources based on the provider’s prices and the re-
quired deadline. We conducted extensive experimental eval-
uation with large real datasets and large computing infras-
tructures. In contrast to existing methods, RACE can han-
dle the entire human genome on a typical desktop computer
with 16GB RAM. Moreover, for a problem that takes 10
hours of serial execution, RACE finishes in 28 seconds using
2,048 nodes on an IBM BlueGene/P supercomputer.
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Figure 1: Input string S. # and $ are the start
and end symbols, respectively. h(1, 9), 3i is a maximal
pair of length 3 corresponding to maximal repeat
ABC at positions 1 and 9. h(1, 13), 3i is not a maximal
pair because repeat ABC at positions 1 and 13 can be
extended to ABCY, which corresponds to h(1, 13), 4i.

1. INTRODUCTION
Given string S, a maximal repeat is a substring s that

appears at least twice in S and is maximal (i.e., it cannot be
extended to the left nor right). In the example of Figure 1,
ABC is a maximal repeat because it appears at positions 1
and 9, and the corresponding symbols at the left (i.e., X, Z)
and right (i.e., Y, Q) are di↵erent. A maximal repeat can
appear multiple times in S. Each pair of appearances is a
maximal pair. For example, h(1, 9), 3i is a maximal pair for
maximal repeat ABC of length 3 at positions 1 and 9.

In practice S can be any sequence, such as historical mar-
ket data, where each symbol represents a stock trade; or web
logs, where symbols represent actions (e.g., clicking a URL).
The set of maximal pairs is a superset of other interesting
repetitive structures, such as the supermaximal and tandem
repeats [9]. Hence, computing maximal pairs is crucial in a
variety of applications, such as time series [23], identification
of common functionality in business processes [5], text sum-
marization [15], compression [18], and bioinformatics [24].

The most widely adopted algorithm for finding maximal
pairs was proposed by Gusfield [9] and is based on su�x
trees [19]. A su�x tree is a trie that indexes all su�xes of
S. The algorithm traverses the entire tree top-down and
then returns recursively from the leaves to the root, gener-
ating maximal pairs along the way. The time complexity is
O(|⌃||S| + |z|), where ⌃ is the alphabet and z is the set of
all maximal pairs in S. The value of |z| can be quadratic
to the input size, and much larger than |⌃| and |S|. Hence,
|z| is the dominant factor. Later approaches [1, 14, 16, 22]
utilize di↵erent index structures and some of them reduce
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complexity to O(|z|).
Existing approaches have two limitations: (i) They re-

quire both the sequence and the index structure to be in
memory, hence they are limited to small sequences. Con-
sider sequence alignment, an important tool in bioinformat-
ics, which can be solved e�ciently by concatenating DNA
sequences of di↵erent species and computing the maximal
pairs [10]. The human genome alone contains 2.6G sym-
bols; together with its su�x tree, it needs 35GB to 68GB
of RAM, depending on the implementation. If multiple se-
quences are concatenated, we need 100’s GB to TB of RAM.
Similar problems exist in other domains such as analysis of
stock market data, or web logs. (ii) Existing approaches
support only serial execution on a single machine. Even if
enough memory is available in one machine, the execution
time can be prohibitively long due to the large result size.

In this paper we propose RACE, a parallel system for
computing maximal pairs in very long sequences using lim-
ited memory. RACE decomposes the problem into indepen-
dent tasks that can number in the tens of thousands, and
that require minimal coordination. Therefore, it achieves
good load balance with limited communication cost, and
scales in the cloud (e.g., Amazon EC2) or other massively
parallel infrastructures. For example we have deployed our
system on 2,048 nodes of an IBM BlueGene/P supercom-
puter. RACE implements disk-based structures and does
not need the input sequence S or its su�x tree to fit in
memory. Therefore, it can support very long sequences on
machines with limited memory. For example, we managed
to process multi-gigabyte long sequences on a typical desk-
top computer with only 16GB RAM.

RACE is suitable for the cloud because it supports elas-
ticity. A master node maintains a pool of pending tasks that
can be assigned dynamically to more or fewer machines, if
needed. However, for a specific problem size and computing
infrastructure, using resources beyond a threshold does not
pay o↵ (i.e., the rate of speedup decreases), mainly because
the system cannot achieve load balance. Motivated by this,
we developed a model to estimate the expected speedup,
based on statistics gathered from a sample of the workload.
If the prices of the cloud provider are given, our model can
be used to estimate how many machines should be rented
to meet the user’s deadline and budget. Alternatively, our
model can decide whether it pays o↵ to rent a few large
(in terms of memory and CPU) and expensive machines,
instead of more, smaller and cheaper ones.

In contrast to existing methods that navigate the su�x
tree top-down, RACE follows a bottom-up approach that
has two advantages: (i) Supports e�ciently complex filter-
ing criteria such as periodic multi-ranges (e.g., compute the
maximal pairs of stock market data only on Mondays dur-
ing the past decade), without needing to re-index the input
sequence. (ii) Allows RACE to represent the tree as a set
of arrays, instead of nodes with pointers to children. With
the array representation, tree traversal is implemented iter-
atively as a series of joins between the current level and the
level above. By not using pointers, our approach minimizes
random memory accesses and is more cache-e�cient, which
is important for performance on modern multicore systems
[21]; our experiments show 2 to 5 times improvement.

Our contributions are:

• We are the first to develop a parallel method, called
RACE, for computing maximal pairs. Our method

scales from stand-alone multicore machines to mas-
sively parallel supercomputers. In particular, RACE
can scale elastically on the cloud.

• We implement a cache-e�cient representation of the
index, suitable for modern architectures; and we sup-
port disk-based su�x trees, allowing RACE to scale
to very long sequences using limited memory.

• We propose a cost model to estimate the speedup and
the expected financial cost on various combinations of
cloud computing infrastructure.

• We evaluated our system with large real datasets from
di↵erent application domains. RACE can process the
entire human genome on a single machine with 16GB
RAM. Also, it can solve a problem whose serial exe-
cution takes more than 10 hours, in 28 seconds using
2,048 nodes on an IBM BlueGene/P supercomputer.

The rest of this paper is organized as follows: Section 2
discusses the related work. Section 3 introduces essential
background. RACE and its cache-e�cient implementation
are introduced in Section 4, whereas Section 5 discusses elas-
ticity and the cost model for the cloud. Section 6 presents
our evaluation and Section 7 concludes the paper.

2. RELATED WORK
This section presents a comparative analysis of the most

important maximal pairs algorithms; Table 1 summarizes
the comparison. Based on the application domain, the set
of maximal pairs can be restricted by di↵erent criteria, such
as repeat length, bounded gap, and range. Repeat length
filters out maximal repeats that are below a user-specified
length. Bounded gap restricts the distance between the two
occurrences of the pair to a minimum width. Range con-
fines the search for maximal pairs in a specific region(s) of
the string. The existing algorithms do not support e�cient
range filtering as they are based on depth-first traversal of
a su�x tree, but the leaves of the tree are not ordered ac-
cording to the input string. The table also indicates whether
the method is disk-based, which is necessary for long inputs;
and whether the method is parallel, which is important as
maximal pairs extraction is computationally expensive.

Gusfield’s algorithm [9] is based on su�x trees; details are
given in the next section. Traversing the su�x tree requires
random accesses to both the input string and the tree, be-
cause logically connected nodes are not physically close in
memory. Therefore, locality is poor and the number of cache
misses is large. The complexity of this algorithm depends
on the alphabet size |⌃|. It needs O(|⌃||S| + |z|) time to
find the maximal pairs of a string of length |S|, where z

is the set of maximal pairs. Gusfield’s algorithm does not
support filtering and is not parallelized. Brodal et al. [6] ex-
tended Gusfield’s algorithm to finding maximal pairs under
the bounded gap constraint. Their method computes the
maximal pairs in O(|⌃||S| log |S| + |z|). Another method,
called REPuter [14], implemented Gusfield’s algorithm us-
ing a space-e�cient su�x tree structure. In some cases RE-
Puter may improve locality. Nevertheless, it still requires
random accesses to the string and the tree during traversal.

A di↵erent implementation of Gusfield’s algorithm uses
enhanced su�x arrays (eSAs) [1]. eSAs reduce the space
requirements compared to the su�x tree. Also, they are
processed in sequential order, which leads to better locality
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Table 1: Comparison of the most important algorithms for finding maximal pairs.
Data structure Extra index Complexity Length Gap Range Parallel Disk-based

Gusfield’s [9] tree O(|⌃||S| + |z|)
Brodal’s [6] tree O(|⌃||S| log |S| + |z|) X
REPuter [14] tree O(|⌃||S| + |z|)
eSAs [1] arrays O(|S| + |z|)
Stehr’s [22] arrays X O(|z|) X
R3 [16] arrays X O(|z|) X
Vmatch [13] arrays O(|S| + |z|) X X
RACE [our’s] arrays O(|S| + |z|) X X X X X

than the previous algorithms. However, there is still random
access of the input string during processing. The method
did not implement any filtering. Another approach, called
Vmatch [13] also utilized eSAs but added filtering based
on repeat length and bounded gap. Note that, when using
eSAs, the time complexity does not depend on the alphabet
size. If extra indices are also constructed, as in the case of
Stehr’s algorithm [22] and R3 [16], complexity is reduced to
O(|z|). Stehr’s algorithm supports bounded gap filtering,
whereas R3 facilitates filtering based on repeat length.

The main drawback of existing approaches based on both
su�x trees and eSAs is the restriction to small sequences
since they are memory resident. Even if there was enough
memory (i.e., in the order of hundreds of GBs to TBs of
RAM), none of the above mentioned methods is suitable
for large-scale parallelization, which is necessary in order to
process large sequences. In contrast, our approach (RACE)
utilizes a disk-based su�x tree and, to the best of our knowl-
edge, is the first parallel method for finding maximal pairs.
Therefore, it scales to very long sequences. Moreover, RACE
supports filtering e�ciently based on length, gap and range.

Recently, RepMaestro [3], Beller et al. [4] and Kulekci
et al. [12] proposed methods for finding various types of
maximal repeats using disk-based indices (note that none of
these methods have been parallelized). Both Beller’s and
Kulekci’s algorithms have time complexity O(|S| log |S|). In
contrast, finding maximal repeats is a less complex problem
than finding maximal pairs, because there can be at most
|S| maximal repeats in a sequence S, but there can be up
to |S|2 maximal pairs [9]. Therefore, in the worst case, any
maximal pairs algorithm will be bounded by O(|S|2). Note
that the set of maximal pairs is a subset of the Cartesian
product of appearances of the maximal repeats, since there
are combinations of appearances of maximal repeats that
do not qualify as maximal pairs. For example, in Figure 1,
maximal repeat ABC appears at positions 1, 9 and 13, but
h(1, 13), 3i is not a maximal pair. Computing e�ciently the
qualifying combinations is not straight-forward, which is the
exact reason for developing the specialized maximal pairs
computation methods described above.

3. BACKGROUND
Let S denote an input sequence of length |S| and alpha-

bet ⌃. We assume S starts with # and ends with $, where
{#, $} 62 ⌃. A maximal pair is denoted as a tuple of three in-
tegers h(p1, p2), leni, where p1 and p2 are two occurrences of
a maximal repeat, whose length is len; as shown in Figure 1.

3.1 Suffix Trees and Disk-Based Indexing
A su�x tree T is a trie that indexes all su�xes in S. T

contains |S|+1 leaf nodes ranging from v0 to v|S|. The leaves
are not at the same level nor sorted. The concatenation of

the edge labels on the path from the root to a node is called
path label. A node, whose path label is !, is denoted as !.
Figure 2 depicts two subtrees for S that index all su�xes
starting with ABC and BC, respectively. A su�x S

i

is the
substring S[i]S[i+1] · · · $, where 0  i  |S|. For each su�x
S

i

there is a leaf node v
i

whose path label is S
i

. For example,
in Figure 2, leaf node v14 represents su�x S14 = BCYRXRX$.

Each internal node of the su�x tree has at least two chil-
dren. Assuming that the path label of an internal node is !,
the path label of each child extends ! by at least one char-
acter, such as !c and !g, where c 6= g. As we will explain
in the next section, this is an important property, because
it guarantees that each internal node is right diverse.

Early su�x tree construction algorithms assumed that
both the input string and the resulting su�x tree could fit
in memory. Such methods are impractical because the suf-
fix tree is more than an order of magnitude larger than the
input string, meaning that even a medium sized input (i.e.,
a few GBs) would require hundreds of GBs of RAM. For
this reason current su�x tree construction methods [8, 11,
20] are disk-based and allow both the input string and the
resulting tree to be much larger than the available memory.

In this paper, we utilize ERa [17] to construct su�x trees.
ERa generates a set of variable length prefixes that decom-
pose the su�x tree into subtrees, each of which fits in mem-
ory. For example, in Figure 2, ABC and BC are the prefixes;
the corresponding subtrees are the ones rooted at nodes u1

and u3, respectively. The advantage of such decomposition
is that each subtree can be processed independently allow-
ing for large scale parallelism, assuming that the shorter
maximal pair is at least as long as the longest prefix1.

3.2 Finding Maximal Pairs Using Suffix Trees
Gusfield’s algorithm [9] is the core algorithm for calculat-

ing maximal pairs using su�x trees. The algorithm traverses
the tree top-down to find repeats that are right- and left-
diverse. A repeat is right-diverse if it cannot be extended to
the right. For example, in Figure 2, ABCY is right-diverse be-
cause the symbols at positions 5 and 17 are I and R, respec-
tively, so ABCY cannot be extended to the right. Left-diverse
repeats are defined in a similar way.

By default, all internal nodes of a su�x tree are right-
diverse (see Section 3.1). Therefore, Gusfield’s algorithm
needs to find left-diverse repeats. To do so, the algorithm
first finds the left character for every leaf ⌫

i

. Recall that ⌫
i

corresponds to su�x S

i

starting at position i in the string.
Let c 2 ⌃ be a character and define f(·) as follows:

(1) f(⌫
i

, c) =

(
{i} if c = S[i� 1]

? otherwise

1In most cases the condition is satisfied, because short re-
peats are very frequent, so they are useless in practice.
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Figure 2: The sub-trees of prefixes ABC and BC in S.

Intuitively, f(·) returns i if the left character of ⌫

i

is
c. In the example of Figure 2, ⌫13 corresponds to S13 =
ABC...$ and the character at the left is S[12] = Q; therefore
f(⌫13, Q) = 13. Similarly, f(⌫2, A) = 2 and f(⌫14, A) = 14.

The output of f(·) is used by the internal nodes to group
together su�xes with the same left character. Let ! be
an internal node and !1, . . . ,!k

be its children. From the
construction of the tree, a node can have at most as many
children as the alphabet size, therefore 1 < k  |⌃|. Define
f(·) for internal nodes as follows:

(2) f(!, c) =
k[

j=1

f(!
j

, c); 1 < k  |⌃|

We have two forms of f(·): Equation 1, which is used
for leaf nodes, and Equation 2, which is applied on internal
nodes and groups the results of the children by left character.
For example, internal node u4 has two children: ⌫2 and ⌫14.
As mentioned before, f(⌫2, A) = 2 and f(⌫14, A) = 14. By
grouping these together, we get: f(u4, A) = {2, 14}. Let us
now define formally the notion of left-diversity:

Definition 1 (Left-diversity). An internal node !

of a su�x tree is left-diverse, if the subtree rooted at ! con-
tains at least two leaves with di↵erent left characters.

For example, internal node u2 is left-diverse because the
left characters of its children (i.e., ⌫1 and ⌫13) are X and
Q, respectively. On the other hand, u4 is not left-diverse,
because the left character of both of its children is A.

Lemma 1. An internal node ! is left-diverse, if any of its
children is left-diverse.

The lemma follows directly from Definition 1. For exam-
ple, internal node u1 is left-diverse, because its child u2 is
left-diverse. Let us focus again on internal node ! and its
children !1, . . . ,!k

, and assume we have calculated f(·) for
each of the children. In order to generate maximal pairs, we
need repeats that are right-diverse, meaning that they come
from two di↵erent children !

i

,!

j

, where i 6= j. The re-
peats must also be left-diverse, meaning that c

n

6= c

m

, where
c

n

, c

m

are characters. Let x 2 f(!
i

, c

n

) and y 2 f(!
j

, c

m

).
The set MP (!) of maximal pairs for node ! is the Carte-
sian product of all x and y values that satisfy the above
conditions. Formally:
(3)

MP(!) =

8
>>><

>>>:

{ h(x, y), |!|i x 2 f(!
i

, c

n

), y 2 f(!
j

, c

m

);

8i, j : 1  i  k � 1; 2  j  k; i < j;

8c
n

, c

m

2 {{⌃},#} } if c
m

6= c

n

,

? otherwise

In Figure 2, node u2 has two children ⌫1 and ⌫13 that gen-
erate f(⌫1, X) = 1 and f(⌫13, Q) = 13, respectively. Since the
lists come from two di↵erent children (i.e., right-diverse) and
the left characters di↵er (i.e., left-diverse), we get one maxi-
mal pair: MP (u2) = {h(1, 13), 4i} that corresponds to maxi-
mal repeat ABCY, whose length is 4. Similarly, for node u1 we
join the lists from u2 with that from ⌫9. The result contains
two maximal pairs: MP (u1) = {h(1, 9), 3i, h(9, 13), 3i}, both
corresponding to maximal repeat ABC. Gusfield’s algorithm
can now be summarized as follows: the algorithm descends
the tree top-down. At the leaf level it calculates Equation 1.
Then it ascends the tree recursively back to the root. At
each internal node, it aggregates the lists using Equation 2.
It also generates maximal pairs using Equation 3.

3.3 RAST: A Naı̈ve Disk-Based Approach
Existing maximal pair approaches are memory resident

methods (see Table 1). None of them is parallel. As we
explained above, this limits existing methods to very small
inputs. To scale to multi-GB long sequences, we developed
an extension of Gustfield’s algorithm called RAST. RAST
uses ERa [17] (see Section 3.1) to construct a disk-based
su�x tree and uses the resulting subtree decomposition as
a set of tasks that can be executed in parallel. Recall that,
by construction, each subtree fits in memory. Therefore, for
each subtree RAST applies Gustfield’s algorithm.

Compared to existing systems, RAST supports much larger
sequences. However, RAST has three main drawbacks: (i)
Tree nodes are scattered throughout the memory, causing
many cache misses that slow down the entire process. (ii)
By construction, the leaves of the su�x tree are not ordered
by the position of each su�x in the string, rendering filter-
ing by range (an important operation in many applications)
ine�cient. (iii) Task decomposition based on the resulting
subtrees may be too coarse and may not utilize e�ciently
the available CPUs for parallel processing.

4. IMPROVING CACHE EFFICIENCY
Next we present our approach, calledRACE2, which solves

the aforementioned problems of RAST. In contrast to exist-
ing methods, RACE navigates the tree bottom-up. Sec-
tion 4.1 presents the CO-Suffix data structure that fa-
cilitates the bottom-up traversal and the e�cient imple-
mentation of range queries. Section 4.2 discusses the COL
data structure that improves cache-e�cient computation of
Equations 1, 2, and 3. Section 4.3 presents the serial version
of our algorithm. Then, Section 5 focuses on the parallel ver-
sion and explains how RACE e�ciently utilizes the available
CPUs and supports elasticity in cloud environments.

4.1 The CO-Suffix Model
Our main objective is to recover the left character lists

without following pointers between scattered nodes to avoid
poor memory locality. A bottom-up navigation is more suit-
able for maximal pairs computation, where we access di-
rectly leaf nodes and their corresponding left character lists.
The su�x tree can be represented as a list of nodes, where
we have direct access to the leaf nodes. Each node contains
the tuple (d, nid, pid, lch, len). d denotes the depth of the
node. nid identifies the node, whose parent ID is pid. len

2RACE: Repeat Analytics in C loud Environments.
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Figure 3: The CO-Su�x representation for the suf-
fix tree shown in Figure 2. ABC and BC are prefixes
sharing di↵erent set of su�xes.

is the length of the node path label. The leaf node has the
su�x starting position as nid, and a left character lch.

The su�x tree of S contains O(|S|) internal nodes and
exactly |S| leaf nodes [17]. Internal nodes do not have left
character, i.e lch is null for internal nodes. Moreover, after
accessing the leaf nodes, bottom-up navigation goes through
a set of internal nodes only. Therefore, CO-Suffix models
the su�x tree as two lists (IList and LList), where IList =
{(d, nid, pid, len)} and LList = {(d, nid, pid, lch, len)}.
LList is sorted by nid. Equation 1 is evaluated by accessing
directly 50% of the su�x tree (leaf nodes only). The other
50% of the su�x tree (internal nodes) is required to evaluate
Equations 2 and 3. In the CO-Suffix sub-tree, each node
in LList represents a su�x tree leaf node combined with its
left character. Therefore, RACE does not need to access S.
That eliminates the random access to the input sequences.
Figure 3 illustrates the sub-trees using CO-Suffix and

the left character lists associated with leaf nodes shown in
Figure 2. The leaf node at depth 3, whose starting position
is 1 and attached with left character list {X, {1}}, is repre-
sented in Figure 3 as h3,1, u2, X, 21i, where u2 is the parent
id, lch = X and 21 is the path label length. The internal
node u2 at depth 2 is represented in Figure 3 as h2, u2, u1, 4i,
where u1 is the parent id and 4 is its path label length.
Sorting numerically the su�x starting positions facilitates

the recovery of leaf nodes lying inside a specific query range.
Therefore, CO-Suffix guarantees a 100% pruning accuracy,
where it accesses only the su�xes lying in the query range.
We use a binary search algorithm to identify the leaf nodes
belonging to the query range. IList and LList are to be
stored in contiguous memory without any pointers. There-
fore, using CO-Suffix avoids the serialization overhead re-
quired to exchange su�x sub-trees among compute nodes.
We utilized ERa [17] to index the input sequence. As

a preprocessing, the constructed disk-based su�x sub-trees
are mapped into CO-Suffix. The mapper traverses each
sub-tree once to generate the corresponding IList and LList.
The mapping is very fast w.r.t the su�x tree construction.

4.2 COL: A Cache Oriented List
Equation 2 collects descendant leaves under a specific in-

ternal node and groups them by the left characters. Each
group represents a left character list. The group mem-
bers are conceptually adjacent; allowing for spatial locality.
Moreover, the descendant leaves collected at the deepest in-
ternal node u

i

is a subset of descendant leaves to be col-

Algorithm 1: Finding Maximal Pairs for a Subtree

Input: subtree, min len, and gap

Output: MP a set of maximal pairs h(posi, posj), leni
1 MP = {}
2 COL is the 8-tuples list

3 counter = 0 // number of active rows

4 removed = 0 // number of removed rows

5 HTable hash table of the internal nodes

6 initialize(subtree.LList,COL)
7 if (SizeOf(COL) > 1) then
8 HTable = buildHTable(subtree.IList)

9 while (SizeOf(COL) > 1 and current level(COL) 6= root) do
10 counter = MoveUp(HTable, COL)
11 removed += FilterByLength(min len, COL, counter)
12 MP = MP + GetMaximalPairs(gap, COL, counter)

13 return MP

lected at its parent node u

j

. This gives an opportunity for
exploiting temporal locality, where the sets maintained for
the children of node u

j

are grouped together without physi-
cal data movement. The properties of spatial and temporal
locality are discussed in Sub-section 4.4. We benefit from
these properties in developing a cache oriented list (COL).

The COL list is a contiguous data structure, which main-
tains the sets of descendant leaves (left character lists) in
contiguous memory. The maintenance of left character lists
is done level by level. We refer to all the descendant leaves
at the current level as active rows and they are candidates
to be part of the maximal pairs set at this level. We model
COL as a 8-tuple list (st, d, na, ca, len, pa, sp, lch), where:

ca current
ancestor

Maximal pairs are computed for
each ca.

d depth Tree level (root is at 0).
sp start pos Corresponds to leaf nid (Figure 3).
lch left

character
lch should be di↵erent to report this
row in maximal pair(s), see Equa-
tion 3.

pa previous
ancestor

pa must be di↵erent since sps of
same pa have the same right char-
acter (see Section 3).

len repeat
length

maintained by moving up from
depth i to i� 1.

na next
ancestor

used to move up by joining na with
IList .

st status of the
tuple

status is n: leaf will be considered
at next levels; or c: leaf is one of
the descendants at the current level
and it represents an active row.

4.3 RACE Serial Execution
The RACE algorithm computes maximal pairs for each

sub-tree (represented as IList and LList). For each sub-
tree, RACE is mainly: (a) fetching the related leaves from
LList into a COL list, (b) building a hash table for IList,
and (c) looping from the deepest level of the sub-tree to the
root to (i) recover the repeat length len of the internal nodes
at this level, (ii) filter the tuples, whose length is less than
the minimum length, and (iii) join the COL list to report
the maximal pairs at this level, Equation 3. Algorithm 1 is
the pseudo code for processing a sub-tree.

We demonstrate Algorithm 1 using query Q targeting the
entire S. Tables 2, 3 and 4 illustrates snapshots of the COL
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list while processing subtree ABC from Figure 3. In line 5 of
Algorithm 1, a hash table for the internal nodes (IList) is
maintained to look up the parent of each row while moving
up. We look up the parent from IList using na. COL is
initialized by fetching all leaves belonging to the query in
the sub-tree. As shown in Table 2, the 3 leaf nodes of sub-
tree ABC shown in Figure 3 are fetched. The COL rows are
sorted descendingly by d. At a certain depth, the leaves
(rows) of related siblings have the same ca value, such as
leaves 1 and 13 at depth 3 shown in Table 2. Since the
initialization fetched leaf nodes, (i) the attributes referring
to next (na) and current (ca) ancestors are assigned the
same value, and (ii) the attribute previous ancestor (pa) is
null. In Table 2, there are only two rows belonging to the
deepest level (d = 3).

st d na ca len pa sp lch
n 3 u2 u2 null null 1 X
n 3 u2 u2 null null 13 Q
n 2 u1 u1 null null 9 Z

Table 2: Trace 1 of query Q.

The su�xes (branches) of the sub-tree are recovered in a
bottom-up fashion. Iteratively, COL is joined with IList to
move from level i to i� 1 until the sub-tree root is reached.
In Table 3, RACE recovers the repeat length of the active
rows at depth = 3 by joining COL shown in Table 2 with
IList shown in Figure 3; There are only two rows moved up
to depth 2, i.e there are two active rows with st = c.

st d na ca len pa sp lch
c 2 u1 u2 4 null 1 X
c 2 u1 u2 4 null 13 Q
n 2 u1 u1 null null 9 Z

Table 3: Trace 2 of query Q.

The active rows are joined to report h(1, 13), 4i as a pair
with a maximal repeat of length 4. The joining conditions
are (i) pa and lch are di↵erent and (ii) ca is the same. That
means leaves coming from di↵erent siblings have di↵erent
left characters and share the same parent, as discussed in
Equation 3. RACE iterates until all tuples in COL reach
the root or COL becomes empty, line 9. To move to level
d = 1, the rows at depth 2 shown in Table 3 are joined with
IList of sub-tree ABC shown in Figure 3. The COL list after
the join is shown in Table 4, where all rows has the root
as na, and activerows = 3. Then, the tuples h(1, 9), 3i and
h(9, 13), 3i are reported as maximal pairs.

st d na ca len pa sp lch
c 1 u0 u1 3 u1 1 X
c 1 u0 u1 3 u1 13 Q
c 1 u0 u1 3 null 9 Z

Table 4: Trace 3 of query Q.

The tuples whose len is less than the given minimum re-
peat length must be removed from COL. In line 11 of Algo-
rithm 1, removed is incremented to refer to the total number
of filtered rows. The function getMaximalPairs cartesian
products the COL active rows at line 12. In Table 4, get-
MaximalPairs reports h(1, 9), 3i and h(9, 13), 3i as maxi-
mal pairs, but h(1, 13), 3i is not a maximal pair since the
corresponding tuples have the same pa, see Equation 3.

For queries targeting a specific range hr1, r2i, the function
initialize at line 6 is to have a range parameter and fetch
only leaf nodes, where r1 sp r2. Moreover, the function
GetMaximalPairs is to exclude any pair h(p1, p2), leni,
where (p1 + len) or (p2 + len) > r2. For example, assume a
query targets the range h1, 13i. Although all leaves of sub-
tree ABC will be fetched, the pair h(1, 13), 4i will be excluded
as (13 + 4) > 13. For sub-tree BC, the leaf node, whose
sp = 14, will be excluded.

4.4 Spatial and Temporal Locality
For spatial locality, in COL descendant leaves correspond-

ing to a specific left character list are contiguous in memory.
Intuitively, the cartesian product of these leaves has very
high locality. As shown in Tables 2, 3, and 4, the active
rows are next to each others. For example, cartesian prod-
uct of tuples in Table 4 is done by moving over contiguous
memory. In COL, the conceptually adjacent elements are
also physically adjacent in memory.

For temporal locality, COL is sorted first by st then d.
Hence, the active rows of the current level are on top and
followed by rows to be considered in the upper levels. By
moving up, the rows with d = i are automatically considered
as descendants at level i� 1 without data movement, as
shown in Tables 3 and 4. For example, the 3rd row in Table 3
is added to the descendant set (active rows) at d = 1 in
Table 4 by only updating the value of its st.

The COL list is a maximal pairs compact format for all
leaves joined together at a certain level, see for example the
COL list at depth = 1 shown in Table 4. The attributes,
which are not needed to regenerate the pairs, will be omit-
ted. The compact format w.r.t the set of maximal pairs
demands significantly less space and is computed in less
time. It is useful to re-use the compact format with dif-
ferent queries.

5. UTILIZING CLOUD RESOURCES
This section presents a fine-grained decomposition and

scheduling mechanism that allows RACE to run on large-
scale infrastructures, such as supercomputers or computing
clouds. The goals when using such an infrastructure are
achieving balanced workload and high speedup e�ciency.
We also discuss our elasticity cost model. Existing maxi-
mal pairs methods cannot be trivially parallelized on cloud
infrastructures for the following reasons:

High I/O cost. Existing methods assume that the su�x
trees are memory resident, and they access these trees in a
random-access pattern. If the trees are stored on disk, these
methods incur high I/O cost in order to read the required
data from the disk or through the network. The size of
the su�x tree is significantly larger than the sequence size
(potentially an order of magnitude larger or more). There-
fore, memory resident methods require huge memory budget
that is not available on a single compute node in a super-
computer or cloud, and very expensive to provide in a large
server. Since such memory is typically not be available,
these methods incur substantial I/O cost.

Dependency delay. Existing methods process the su�x
tree level by level from leaves to root. The descendants of
a node at level i become descendants of its parent at level
i� 1. This causes considerable delay as a task at level i� 1
waits for the corresponding tasks at level i to finish.
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Figure 4: Su�x tree decomposition leads to sub-
trees (tasks) of di↵erent height (levels), and width
(number of leaves). The longer the prefix length,
the more sub-trees of arbitrary sizes.

Lack of decomposition support. Existing methods deal
with the su�x tree as one unit without decomposition into
sub-trees. Therefore, it is not easy to parallelize the compu-
tation among multiple compute nodes, since the su�x tree
would need to be copied or compute nodes would need to
communicate with other nodes to exchange lists of descen-
dant nodes.

5.1 Workload and Task Decomposition
RACE decomposes the maximal pair computation into

independent tasks of arbitrary sizes that are processed si-
multaneously in parallel. Each task is represented by a sub-
tree assigned to one processor. RACE utilizes a disk-based
construction method, called ERa [17], that builds the su�x
sub-trees using a set of variable length prefixes. As discussed
in Section 3.1, this set of prefixes is specified such that each
prefix corresponding to a sub-tree fits into the given mem-
ory budget. The bigger the memory budget, the smaller the
number of sub-trees, and the faster the construction time.

RACE uses fine-grained decomposition to generate a large
number of sub-trees (tasks) of small sizes, which is better
for load balancing. Intuitively, fine-grained decomposition
enables more tasks to be performed in parallel and conse-
quently reduces the time required to compute maximal pairs.
One way to ensure that RACE generates su�ciently many
tasks is to use longer prefixes when RACE maps the sub-
trees into the CO-Suffix model. The mapping time is not
significantly a↵ected by extending the prefix length, since
the main factor is the total size of the su�x tree to be tra-
versed. One drawback of this approach is that users will not
be able to find maximal pairs whose length is smaller than
the prefix used. Practically, for very long sequences, users
will not be interested in small repeats, so this is not a severe
limitation.

For example, the su�x tree of the Human Genome can be
divided into 3, 522 or 12, 952 sub-trees with maximum pre-
fix length (PLen) 13 or 20 characters, respectively. A pro-
tein sequence, whose length is equal to the Human Genome,
can be divided into 18, 927 sub-trees with maximum prefix
length of 8 characters; the larger the alphabet the more sub-
trees. These subtrees can be used to process queries with
minimum length that is greater than or equal to PLen. The
fine-grained decomposition is limited by an inherent bound,
which is the length of the smallest repeat of interest.

Having decomposed the su�x tree into sub-trees, the main
challenge in order to achieve e�cient utilization of parallel

computing resources, is to balance the workload among the
di↵erent processors. The fine-grained decomposition gener-
ates sub-trees of di↵erent sizes, as shown in Figure 4. Thus,
it is important to balance the load among the compute nodes
by assigning a di↵erent number of subtrees to each compute
node, such that the total processing time of each compute
node is approximately the same. Finding an optimal as-
signment of subtrees to nodes is an NP-hard problem, but
RACE uses e�cient parallel execution strategies to provide
a good solution, as we describe next.

5.2 Strategies for Parallel Execution
Our parallel execution strategies aim at (i) reducing the

time spent in interacting between di↵erent compute nodes
and (ii) minimizing the time that compute nodes spend
idle, waiting for other nodes to process more tasks. Each
sub-tree represents an independent task whose data can fit
into the main memory of a single compute node. Therefore,
the maximal pair computation per sub-tree does not require
any communication among nodes. The main challenge for
RACE is to minimize idle time by utilizing e�cient schedul-
ing. We propose static and dynamic scheduling algorithms
that balance the workload on all compute nodes.

5.2.1 Static Scheduling
Static scheduling specifies, prior to computation, a set

of sub-trees for each compute node to process. We devel-
oped an inexpensive heuristic algorithm for this assignment,
called Set

robin

, which tries to achieve load balance and re-
duce idle time. Static scheduling leads to totally indepen-
dent tasks with no interaction between the compute nodes,
as shown Figure 5. The Set

robin

algorithm identifies the sets
of sub-trees assigned to each node in a round-robin manner,
so that each set gets non-adjacent sub-trees. Fine-grained
decomposition is the main foundation of Set

robin

, where we
have substantially more sub-trees than the P nodes. Since
Set

robin

distributes the sub-trees among the P compute
nodes in a round-robin manner, it provides the following:
(i) the algorithm is guaranteed to create the required num-
ber of sets, and (ii) the algorithm generates sets of di↵erent
sub-tree sizes, and even if di↵erent sub-trees require di↵erent
processing time, the overall workload should balance out.

The scalability of RACE relies on balancing the work-
load. Increasing the number of compute nodes reduces the
average number of sub-trees assigned to each node. Thus,
the probability of load imbalance increases. This happens
regardless of the algorithm used for static scheduling, and is
addressed by dynamic scheduling, which we describe in the
next section. Two additional drawbacks of static scheduling
are: (i) The number of leaves (or size of subtrees) is not
the major factor a↵ecting the running time. It is rather the
number of maximal pairs produced, which cannot be pre-
dicted beforehand. The distribution of the maximal repeats
is not uniform, so dividing tasks according to number of
leaves or subtrees does not necessarily guarantee a balanced
workload. (ii) Static scheduling is not flexible in terms of
nodes joining/leaving the network. Such nodes incur the
overhead of rescheduling and sending data to/from them.

5.2.2 Dynamic Scheduling
Dynamic scheduling distributes the sub-trees among com-

pute nodes during the maximal pairs computation to achieve
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Figure 5: Static scheduling partitions the sub-trees
into P sets, with a di↵erent number of sub-trees in
each set, where P is the number of compute nodes.

a better load balancing. We developed a centralized dy-
namic scheduling method, which classifies the compute nodes
into a master node (the dynamic scheduler) that manages
the pool of sub-trees, and worker nodes that rely on the
master to obtain tasks, as shown in Figure 6.

A centralized dynamic scheduler may become a serializa-
tion bottleneck, where workers can become idle while wait-
ing to get a task from the master. In order to avoid this
bottleneck, we need to keep the master as lightweight as
possible. Therefore, in our dynamic scheduler, a worker only
gets the sub-tree ID from the master, not the sub-tree it-
self. The worker fetches the sub-trees from shared storage,
such as a SAN-attached disk or a set of compute nodes act-
ing as storage. The maximal pairs computation requires a
significant amount of time compared to the time to fetch
the sub-trees to the local memory of the worker nodes, so a
serialization bottleneck is unlikely.

The time for the maximal pair computation is determined
primarily by the number of maximal pairs z, plus the se-
quence size |S|, which is usually small compared to z. In
dynamic scheduling, each worker processes a set of sub-trees
based on the actual task running time. Therefore, dynamic
scheduling achieves a better load balance compared to the
static scheduling, especially when we scale to a large num-
ber of nodes. The fine-grained decomposition is important
for dynamic scheduling in order to increase (i) the maxi-
mum number of tasks that can be processed simultaneously,
which we refer to as the maximum degree of concurrency,
and (ii) the average number of tasks per worker. The higher
this average, the more balanced the workload.

Our goal is to run RACE on large-scale infrastructures
such as supercomputers and computing clouds. In these
environments, the availability of resources changes dynami-
cally. Our dynamic scheduling method supports on-demand
elastic scale-up or -down to any number of available com-
pute nodes. As long as the maximum degree of concurrency
allows more tasks to run in parallel, the master can assigns
tasks to the new worker nodes without di�culty. Also, a
worker in scaling-down might leave the system as soon as
it finishes the assigned sub-tree without any overhead, since
there is no need for data communication. We also provide
a cost model that enables us to make decisions about when
to scale up or down. We discuss this cost model next.

5.3 The RACE Elasticity Model
RACE with the dynamic scheduler can run on any num-

ber of compute nodes, and it can elastically scale up and
down as necessary. This raises an interesting question of

Figure 6: Centralized dynamic scheduler identifies
a sub-tree ID for an idle worker node, which fetches
the sub-tree from shared storage.

whether to scale up or down, and by how much. This ques-
tion is of particular interest if there is a monetary cost as-
sociated with using the computing infrastructure. For ex-
ample, cloud service providers such as Amazon EC2 allow
users to rent resources on a time-unit basis (e.g., per hour).
The more resources a user rents for RACE, the faster the
computation can proceed. However, more resources come
at a higher monetary cost. This leads to the question of
how fast should a computation be, and hence what is the
least amount of resources that needs to be rented for this
computation. A user can specify a time deadline for their
maximum pairs query. It is then cost-e↵ective for the user to
identify the minimum required resources to meet this dead-
line. For example, if the deadline is 30 minutes, it is a waste
of budget to rent 1024 machines to accomplish a task within
15 minutes. In contrast, 512 machines that accomplish the
task within 30 minutes with less cost are cost e↵ective. We
provide a cost model forRACE to estimate the cost-e↵ective
resources that are required to complete the task within a
specific time constraint.

Furthermore, cloud service providers adopt di↵erent rev-
enue management strategies, such as bid price control and
dynamic pricing, to reduce unused capacity and increase re-
source utilization [2]. Users could be attracted to rent for
a specific time period more resources if the price goes down
or the application workload increases. RACE furnishes the
users with information assisting in making these decisions.

We estimate cost-e↵ective resources (CER) based on re-
source e�ciency (RE), which specifies the time that re-
sources consume to complete a task. RE is given by the
following equation:

(4) RE(Q,P ) =
AT (Q)

SE(Q,P ) · P

This equation estimates the resource e�ciency of P com-
pute nodes for a specific query Q. This estimation is based
on the approximate time (AT ) that is required to execute
Q on a single node, and the speedup e�ciency (SE) on P

nodes. Speedup e�ciency is defined as ( ⌧1
P⇤⌧P

), where ⌧1 is
the time of serial execution, ⌧

P

is the time achieved using P

compute nodes. It is a measure of resource e�ciency, or the
average utilization of the P nodes. For example, if RACE
complete a task in 10 hours using one machine: (i) with
100% speedup e�ciency on 5 machines RACE would con-
sume 2 hours, and (ii) with 50% speedup e�ciency on 100
machines RACE would consume 0.2 hours. A 100% speedup
e�ciency corresponds to linear speedup, which is not always
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possible for several reasons: (i) contention for shared re-
sources, which causes a significant amount of performance
interference; (ii) communication overhead, which might in-
crease when using more nodes; (iii) load imbalance, which
leads to more idle nodes. Since it is di�cult to totally avoid
these reasons, it is not usual to achieve linear speedup [7].

The RACE speedup e�ciency is a↵ected by imbalance in
the workload, as discussed in previous sections. The aver-
age number of tasks per compute node significantly a↵ects
workload balance; the more tasks, the less imbalance. The
average number of tasks is equal to (Q.NT

P

), where Q.NT

is the total number of tasks (sub-trees) of a query Q. We
estimate SE as follows:

(5) SE(Q,P ) = min

✓
ln

✓✓
Q.NT

P

◆
↵

◆
+

�

ln(P )
, 1

◆

This equation is based on our empirical observation that
a natural logarithmic correlation between SE and both V

and P gives a good fit. Intuitively, P should not exceed
Q.NT . The variables ↵ and � are obtained as follows: We
run a set of experiments on a particular computing infras-
tructure with various queries. On the collected data, we
perform non-linear regression. We transform the data using
a logarithmic function and perform least-square fitting. For
example, using this approach, we experimentally found that
for the IBM Blue Gene/P supercomputer the best values for
↵ and � are 0.1634 and 2.5, respectively. Theoretically, this
process should be repeated for di↵erent infrastructures. In
practice, we got similar results for our Linux cluster, too.
Therefore, for simplicity, in our experimental evaluation we
use the same parameter values irrespectively of the infras-
tructure. Experiment-driven modeling of performance is an
interesting research area in its own right. We have found
that the model structure and parameter fitting approach de-
scribed above result in accurate models in our setting, and
we leave further refinement of this approach to future work.

The next term we need to estimate for Equation 4 is AT .
We estimate the time of processing a queryQ serially against
a sequence S using a sample R extracted from S. We stud-
ied the performance of RACE in terms of time and sequence
size. The results show that RACE has a linear relationship
between the sequence size and processing time, which is cap-
tured by the following equation:

(6) AT (Q) = � · ⌧
R

|Q.S|
|Q.R|

where ⌧

R

is the time to process Q against R. � is a con-
stant that is estimated experimentally, using linear regres-
sion. Theoretically, � depends on the dataset. In practice,
we estimated the parameter only for one dataset (i.e., DNA)
and applied it to all of our datasets without significant error.
The larger the sample, and the closer the ratio of maximal
pairs between S and R, the better the estimated time. An-
other possibility is that users may be aware of the actual
time based on previous executions. In this case, the ac-
tual time is used for AT instead of the estimate. Having
estimated the two components required for estimating RE

in Equation 4, we now turn our attention to using RE to
estimate CER, the cost-e↵ective resources to meet a given
deadline T . This is used to decide the amount of resources
needed beyond a given P , and it is done by finding the min-
imum k � 0 such that RE(Q, P + k)  T . The CER

returned is (P + k).

Table 5: ERA parallel indexing for the Human
Genome using limited memory budgets.

System P CPU RAM/node Time
(GHz) (GB) (min)

Multicore 8 2.6 2 19
Multicore 4 3.33 3 29
Cluster 16 3.33 4 8.3

BlueGene/P 149 0.83 1 41
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Figure 7: The execution time of mapping a su�x
tree to CO-Su�x sub-trees.

6. EVALUATION
RACE serial algorithm is implemented in C. RACE runs

in parallel using two versions one based on MPI3 and another
one based on Hadoop. We used three large real datasets,
specified as follows: (i) DNA4 (Human Genome, 2.6GBps),
from an alphabet of 4 symbols; (ii) Protein5 dataset contain-
ing 3GBps from an alphabet of 20 symbols; and (iii) En-
glish6 text (26 symbols) of size 3GB chars. For the third
dataset we extracted only the English alphabet symbols ex-
isting in an XML file representing Wikipedia in 2011. We
conducted comprehensive experiments on di↵erent architec-
tures: (i) a multicore 32bit Linux machine; (ii) a Linux
cluster of 20 machines; and (iii) IBM BlueGene/P.

6.1 Indexing Sequences with Limited Memory
We start by demonstrating the e↵ectiveness of RACE

with limited memory. Existing maximal pair methods, in-
cluding state-of-the-art tools such as Vmatch [13], require a
large amount of memory to fit the entire input sequence S,
its su�x tree index whose size is about 26|S|, plus the data
structures used for the computation. For example Vmatch
was not able to index the Human Genome on a worksta-
tion with 24GB RAM. On the other hand, RACE works
with limited memory, where both the input sequence and
its su�x tree do not fit into memory. We construct disk-
based su�x sub-trees using ERa [17]. Then, the sub-trees
are mapped into CO-Suffix. Table 5 presents the time to
index the Human Genome with di↵erent memory budgets,
which sometimes is less than the sequence size (2.6GB).

The mapping time increases linearly with the sequence
size, as shown in Figure 7. The concluding remarks of these
experiments are the ability of RACE to process very large
sequences while both the sequence and its su�x tree are out
of core. This allows RACE to work with a limited memory
budget, which is the case in supercomputers (i.e 4GB RAM
per compute node.) and cloud clusters (i.e 68GB RAM is

3http://www.mcs.anl.gov/research/projects/mpi
4http://www.ensembl.org/info/data/ftp/index.html
5http://www.uniprot.org/uniprot/?query=&format=*
6http://en.wikipedia.org/wiki/Wikipedia:Database_
download
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Table 6: Query Q on Human Genome with min length= 100 chars. Strong scalability test using dynamic
and static scheduling implemented using MPI (DY and SR) and Hadoop static scheduling (HSR). The speedup
e�ciency of DY is strongly correlated with the average number of tasks per core (C). Thus, RACE elasticity
model is not sensitive to system architectures, and queries workload (sequence and alphabet sizes).

Run time in min Speedup Efficiency (SE) %
C tasks/C DY SR HSR DY SR HSR
1 3520 120 120 120 100 100 100
32 110 3.92 4.07 5.56 95.66 92.14 67.45
64 55 1.94 2.14 3 96.65 87.62 62.5
128 27.5 1.07 1.26 2.23 87.62 74.4 42
256 13.75 0.66 0.83 2 71.02 56.5 23.44

Run time in min Speedup Efficiency (SE) %
C tasks/C DY SR DY SR
1 12955 581 581 100 100

128 101.2 4.67 5.19 97 87
256 50.6 2.37 2.77 96 82
512 25.3 1.22 1.72 93 65
1024 12.65 0.77 1.08 73 52
2048 6.3 0.47 0.59 60 48
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Figure 8: RACE vs RAST. RACE is faster because
it su↵ers from less cache misses.

the largest capacity for an EC2 instance). Moreover, we do
these preprocessing in parallel.

6.2 Cache Efficiency of RACE and RAST
We used C in implementing both RACE, our optimized

method, and RAST, the naive method that presented in
Section 3. The serial execution performance of both RACE
and RAST is evaluated in terms of time and cache misses,
as shown in Figure 8(a). This experiment was executed on
a Linux machine with a quad-core AMD CPUs at 3.2GHz
and 8GB RAM. In this experiment, both RACE and RAST
were tested against DNA sequences of di↵erent sizes ranging
from 256MB to 2048MB.

RACE is faster than RAST sinceRACE is a cache friendly
algorithm because it utilizes the COL and CO-Suffix mod-
els (Section 4). Figure 8(b) shows the number of cache
misses for RACE and RAST, measured using the Linux
perf tool. RACE incurs fewer cache misses so it outper-
forms RAST by a ratio that increases correspondingly to
the increase in the sequence size.

6.3 Utilization of Large Infrastructures
We developed a parallel versions of RACE using MPI and

Hadoop. Our job scheduling strategies are classified into dy-
namic and static. We utilized a strong scalability test that
computes the maximal pairs with the minimum length of
100 characters in the entire Human Genome using a vary-
ing number of compute nodes (C). The test compares the
di↵erent scheduling strategies in a computer cluster using
MPI and Hadoop version, and in an IBM Blue Gene/P su-
percomputer using the MPI version only.

6.3.1 RACE Speedup Efficiency Based on MPI
Utilizing MPI allows RACE to run on di↵erent architec-

tures, namely multicore systems, computer clusters, and su-

percomputers. DY and SR refer to RACE dynamic and static
strategies implemented using MPI. We used a Linux cluster
consisting of 20 machines, each with 24 AMD Opteron cores
at 2.10GHz and 90GB RAM. The results of the strong scala-
bility test are summarized in Table 6(A). The primary com-
putational resource of IBM Blue Gene/P consists of 16,384
quad-core PowerPC processors @850MHz, with 4GB RAM
per core (64TB distributed RAM). The results of the strong
scalability test on this system is summarized in Table 6(B).

For query Q, RACE serial execution consumed 2 hours in
the cluster and 9.6 hours on the supercomputer. RACE par-
allel execution consumed for the same query about 40 sec-
onds using 256 processor of the cluster and 28 seconds using
2048 processors of the supercomputer. RACE decomposes
a maximal pair query into fine-grained independent tasks,
where each task is associated with only one sub-tree. The
independent tasks limits the overall communication cost.
Hence, the main factor to achieve high speedup e�ciency
is to balance the workload among the compute nodes. Our
fine-grained tasks are of unknown and arbitrary sizes. DY

achieves a better balance workload than SR since sub-trees
are distributed at run time based on their actual workload.
Thus, DY shows a better e�ciency. The higher average num-
ber of tasks per node, the less imbalance is. We observed
similar trends on the other datasets.

We decomposed the Human Genome su�x tree into 3520
and 12955 sub-trees, for the cluster and supercomputer re-
spectively. Therefore a similar average number of tasks per
node is achieved in the cluster and supercomputer, as shown
in Table 6. The speedup e�ciency of RACE is similar in
the both system architectures, where the average number is
similar, as shown in Table 6. This shows that our elasticity
model is not sensitive to system architectures nor queries
workload (sequence or alphabet sizes).

The speedup e�ciency of RACE increases proportionally
with the increase of the sequence size, as shown in Fig-
ure 9. The number of sub-trees increases proportionally to
the increase of the sequence (Human Genome of size 2.6 GB
against 512 MB from same dataset). Increasing the number
of sub-trees achieves a higher degree of concurrency, where
more tasks could be processed simultaneously. Therefore,
RACE guarantees very high speedup e�ciencies on thou-
sands of compute nodes in cases of long sequences.

6.3.2 RACE Speedup Efficiency Based on Hadoop
Hadoop has a robust job scheduler due to its high degree

of fault tolerance. Moreover, a large community, ranging
from big or startup companies to research labs, back and
use Hadoop. Therefore, RACE also adopted Hadoop to
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Figure 9: RACE speedup e�ciency increases corre-
spondingly by enlarging the input sequence.
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Figure 10: (a) Estimating the speedup e�ciency
on Blue Gene/P for di↵erent queries over Human
Genome (HG), and (b) Estimating the serial exe-
cution time for Human Genome using samples of
di↵erent sizes on the Linux workstation.

implement its static scheduling. HSR refers to RACE static
strategy implemented using Hadoop.

RACE is implemented using C. Therefore, we utilized
Hadoop Pipes to enable tasktrackers to communicate C/C++
map or reduce processes. The map function for each map-
per processes a set of tasks (sub-trees) predefined using a
round robin mechanism. Then, the mapper emits the num-
ber of pairs generated from these sub-trees. We utilized
only one reducer for aggregating the total number of pairs.
HSR, compared to SR, su↵ers from di↵erent kind of overheads,
such as running over JVM, pipes and mapper initializations.
Moreover, due to fault tolerance support, HSR sometimes re-
schedules few mapping processes. DY and SR do not support
fault tolerance and run without pipes.

6.4 Cost-Effectiveness and Elasticity Analysis
The monetary cost is proportional to the amount of re-

sources utilized to accomplish a task within a given deadline
(these resources could be rented from a cloud provider like
Amazon EC2). We determine the cost e↵ective resources by
estimating the speedup e�ciency and task time. This sec-
tion presents experimental results that analyze the accuracy
of our cost models used to estimate these quantities.

In RACE, the average number of tasks per node is an
important factor, which changes inversely proportional with
the number of nodes. The accuracy of the estimated speedup
may be a↵ected by other factors, such as the task work-
load and interference of accessing shared resources. The
Human Genome index is divided into 12955 sub-trees. Fig-
ure 10(a) compares the estimated speedup of querying Hu-
man Genome to the actual time of two di↵erent queries of
minimum length 100 and 50. On average, the estimation
error in the expected speedup is less than 10%.
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Figure 11: Analyzing HG, Protein and English se-
quences of the same size, 2.6GBps, using 1024 node
of IBM Blue Gene/P Each query takes a maximum
of one minute. The compact format is generated
using serial execution on the Linux workstation.

Approximating the query time is crucial for estimating
resource e�ciency (Equation 4). We estimate the serial exe-
cution time of query Q using Equation 6. A random sample
of the sequence is i) indexed using ERa, ii) mapped into
CO-Suffix, then iii) Q is issued against it. We refer to the
total time of the three operations as overhead. Figure 10(b)
shows the overhead using only one compute node. We got
a very good estimated time using a sample of 32MB, which
consumed about 1% overhead compared to the actual serial
execution time of processing Q against Human Genome.

6.5 A Comprehensive Maximal Pairs System
This section demonstrates the RACE comprehensive sup-

port for finding maximal pairs. The RACE system (i) works
with cloud infrastructures; (ii) is able to filter the pairs us-
ing repeat length, bounded gap and/or range; (iii) supports
di↵erent alphabets ; and (iv) provides a compact format for
the maximal pairs. This format consumes much less time
and space compared to the actual generation of maximal
pairs. The compact format is easy to iterate on while pro-
cessing another string query, such as sequence alignment.

Figure 11 shows maximal pairs analysis on the three dif-
ferent datasets. There is a higher probability to have di↵er-
ent left and right characters with larger alphabets. There-
fore, the number of maximal pairs increases proportionally
to the increase in the alphabet size, as shown in Figure 11(a).
Bounded gap filtering a↵ects the number of maximal pairs
based on the distribution of the maximal repeats in the se-
quence, as shown in Figure 11(b). Figure 11(c) shows queries
of di↵erent range size.

The sequence size is the dominating factor for generating
the compact format. We evaluated the generation of the
compact format and maximal pairs using a minimum length
of 50 characters. The dominating factor for generating the
compact format and maximal pairs is the sequence size and
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number of pairs, respectively, as shown in Figure 11(d). The
compact format classifies the maximal pairs based on the
repeat length (Section 4.2). Thus, the generated compact
format is to used for queries with min length 50 or longer.

7. CONCLUSION AND OUTLOOK
In this paper we focused on the discovery of maximal re-

peats in sequences, an important operator for many applica-
tions ranging from bioinformatics and text mining to com-
pression and analysis of stock market trends. Our solution,
RACE, provides cache-e�cient computation of the maximal
pairs with limited memory. RACE utilizes a fine-grained de-
composition of the problem and a dynamic scheduling mech-
anism to achieve balanced workload and high speedup e�-
ciency. These characteristics render our solution very versa-
tile. It can process very long sequences on a common stand-
alone machine with a few GB of memory, or it can scale
to thousands of nodes (in our experiments we demonstrated
scalability up to 2048 nodes on a supercomputer) and com-
plete in seconds jobs that would otherwise require hours or
days. RACE is also suitable for cloud environments since it
can scale out on the fly, if more resources are needed. We
also developed an elasticity model that assists the user in
selecting the appropriate combination of cloud resources in
terms of price and speed.

In the future we plan to generalize our approach to a
framework for cloud-oriented methods, where the method
is capable of (i) decomposing its task on-demand; and (ii)
estimating the cost-e↵ective resources. We also plan to focus
on applications demanding large-scale maximal pairs com-
putation, such as sequence alignment and assembly.
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