
Hadoop’s Adolescence

An analysis of Hadoop usage in scientific workloads

Kai Ren1, YongChul Kwon2, Magdalena Balazinska3, Bill Howe3

1 Carnegie Mellon University, 2 Microsoft, 3 University of Washington
kair@cs.cmu.edu, ykwon@microsoft.com, {magda,billhowe}@cs.washington.edu

ABSTRACT
We analyze Hadoop workloads from three di↵erent research
clusters from a user-centric perspective. The goal is to bet-
ter understand data scientists’ use of the system and how
well the use of the system matches its design. Our analysis
suggests that Hadoop usage is still in its adolescence. We
see underuse of Hadoop features, extensions, and tools. We
see significant diversity in resource usage and application
styles, including some interactive and iterative workloads,
motivating new tools in the ecosystem. We also observe sig-
nificant opportunities for optimizations of these workloads.
We find that job customization and configuration are used in
a narrow scope, suggesting the future pursuit of automatic
tuning systems. Overall, we present the first user-centered
measurement study of Hadoop and find significant opportu-
nities for improving its e�cient use for data scientists.

1. INTRODUCTION
Hadoop [4], the open-source implementation of Google’s

MapReduce [12], has become a commonly used tool for Big
Data analytics. Due to Hadoop’s popularity, it is natural
to ask the question: How well does Hadoop actually work?
Many papers partly answer this question either by perform-
ing direct comparisons to alternate tools [24] or by carrying
out measurement studies of production clusters [2, 9, 16, 26].
Prior work, however, analyzes primarily the performance of
individual queries and the e�ciency of entire Hadoop clus-
ters, focusing on performance metrics at the cluster or ap-
plication levels such as job resource utilization.

In this paper, we provide a complementary answer to the
question of how well Hadoop works. We study what users
actually do with their Hadoop system: we study behav-
iors and application patterns from a user-centric perspec-
tive. The users that we focus on are called “data scientists”
in the sense that they have large datasets and need to pro-
cess them to extract information. Our goal is to assess how

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,

August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 10

Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

well Hadoop works for data scientists in terms of what they
need to do to write Hadoop applications, execute them, tune
them, and use them to extract knowledge from their data.

Our analysis is based on Hadoop workloads collected over
periods of five to 20 months in three di↵erent clusters. Our
traces comprise a total of more than 100,000 Hadoop jobs.
The clusters that we study come from academic institutions.
Our data scientists are 113 domain experts from various
disciplines as we describe in more detail in Section 2. The
dataset of one cluster is made publicly available for further
study (at this URL: www.pdl.cmu.edu/HLA/).

The goal of our work is to better understand user behav-
ior in a Hadoop cluster: Are users submitting workloads
consistent with what Hadoop has been designed to handle?
Does the MapReduce abstraction work well for the types of
data transformations that users need to perform? Are users
capable of tuning their jobs as needed? To analyze these
higher-level, user-oriented issues, we make use of informa-
tion that is typically too sensitive for commercial Hadoop
users to share, including user information and job specifica-
tions (e.g., user identifier, names of Java classes, input/out-
put directories) and high-resolution application-level statis-
tics (i.e., HDFS [8] and MapReduce counters). We also
report on feedback from a few of the most active users.

We study three aspects of how users leverage their Hadoop
clusters:

• Application Workload (Section 3). We first analyze
how users author Hadoop applications, the resulting
structure of these applications, and how users interact
with their Hadoop jobs over time.

• Tunings (Section 4). We then study when and how
users change configuration parameters and otherwise
tune their Hadoop jobs.

• Resource Usage and Sharing (Section 5). Fi-
nally, we analyze the diverse, aggregate resource-
consumption profiles of users.

In this study, we identify both good uses of Hadoop and
mismatches between the system design and users’ needs that
call for various future improvements to the system. To the
best of our knowledge, this is the first user-centric Hadoop
measurement study, and the first measurement study to
compare three research clusters and do so over periods of
multiple months.

Overall, our analysis suggests that Hadoop usage is still
in its adolescence. We do see good use of Hadoop: All work-
loads are dominated by data transformations that Hadoop
handles well; users leverage Hadoop’s ability to process

853

massive-scale datasets; customizations are used in a visi-
ble fraction of jobs for correctness or performance reasons.
However, we also find uses that go beyond what Hadoop has
been designed to handle:

• There are a significant number of independent, small-
scale jobs that may be amenable to simpler, non-
Hadoop solutions.

• Surprisingly few users are using higher-level declara-
tive frameworks, though some are constructing “man-
ual” workflows.

• Workloads are highly diverse, suggesting the need to
e↵ectively author and e�ciently execute a large variety
of applications.

• We see significant performance penalties arising from
over-reliance on default configuration parameters.

In summary, we thus find that users today make good use
of their Hadoop clusters but there is also significant room
for improvement in how users interact with their Hadoop
clusters: improving the e↵ectiveness of authoring and the
e�ciency of executing diverse workloads, improving inter-
activity, better user education, and automatic optimization
and tuning of complex applications.

2. DATA SETS OVERVIEW
We analyze the execution logs from three Hadoop MapRe-

duce clusters used for research: OpenCloud, M45, and
Web Mining. The three clusters have di↵erent hardware
and software configurations and range in size from 9 nodes
(Web Mining), to 64 nodes (OpenCloud), and 400 nodes
(M45). In addition to the log analysis, we also report on
feedback from a few of the most active users in the Open-
Cloud and Web Mining clusters.

OpenCloud. OpenCloud is a research cluster at CMU
managed by the CMU Parallel Data Lab. It is open to
researchers (including faculty, post-docs, and graduate stu-
dents) from all departments on campus. In the trace that
we collected, the cluster was used by groups in areas that
include computational astrophysics, computational biology,
computational neurolinguistics, information retrieval and in-
formation classification, machine learning from the contents
of the web, natural language processing, image and video
analysis, malware analysis, social networking analysis, cloud
computing systems development, cluster failure diagnosis,
and several class projects related to information retrieval,
data mining and distributed systems.

The 64 nodes in this cluster each have a 2.8 GHz two
quad core CPU, 16 GB RAM, 10 Gbps Ethernet NIC, and
four Seagate 7200 RPM SATA disk drives. The cluster ran
Hadoop 0.20.1 during the data collection.

M45. M45 is a production cluster made available by
Yahoo! to support scientific research [1]. The research
groups that used this cluster during the collection of the
trace covered areas that include large-scale graph mining,
text and web mining, large-scale computer graphics, natu-
ral language processing, machine translation problems, and
data-intensive file system applications [16]. The 400 nodes
in this cluster each contain two quad-core 1.86 GHz Xeon
processors, 6 GB RAM, and four 7200 rpm SATA 750 GB
disks. The cluster ran Hadoop 0.18 with Pig during the data

collection. The first four months of the trace overlap with
the end of the trace analyzed by Kavulya et al. [16].

Web Mining. Web Mining is a small cluster owned and
administered by an anonymized research group. The group
comprises faculty, post-docs, and students. Most users run
web text mining jobs. The 9 nodes in the cluster each have
four quad-core Xeon processors, 32 GB RAM, four 1.8 TB
HDD. The cluster runs Hadoop 0.20.203 with Pig.

Log. Table 1 summarizes the duration of each collected
log and the number of Hadoop jobs that it covers. For each
cluster, our log comprises two types of information for each
executed job. All the data was collected automatically by
standard Hadoop tools requiring no additional tracing tools.

• Job configuration files: Hadoop archives a job config-
uration file for each submitted job, which is an XML
file that carries the specification of the MapReduce job
(e.g., the class names of the mapper and reducer, the
types of the keys and values, etc.).

• Job history files: Hadoop also archives a job history file
for each submitted job, which includes for each task
the initialization time, start time, completion time,
and the time of each phase transition. In addition,
this file includes a variety of counters, including the
number of bytes and records read and written by each
task.

3. APPLICATION WORKLOAD
In order to understand how data scientists today utilize

the Hadoop ecosystem of tools, we start by analyzing three
aspects of this usage. First, we examine the interfaces most
used to author Hadoop applications (Section 3.1). We ask
the question: Do users primarily write raw Hadoop
applications or do they rely mostly on higher-level
declarative interfaces such as Pig Latin? Second, we
study in more detail the resulting structures of users’ data
transformations (Section 3.2). We ask the question: Is the
MapReduce abstraction good enough for most data
transformations or do users need to combine multi-
ple MapReduce jobs into complex graphs in order to
get their desired result? Finally, we analyze how users
manage their data analysis tasks over time (Section 3.3).
We ask the question: Is the batch-oriented nature of
Hadoop well suited for the way users seek to inter-
act with their data?

3.1 Application Types
The Hadoop ecosystem of tools today is rich. In this sec-

tion, we analyze how users prepare their MapReduce jobs.
We ask the following key question: Do users primar-
ily write raw Hadoop applications (using the native
Hadoop Java API) or do they rely mostly on higher-
level declarative interfaces such as Pig Latin?

Method: To answer the above question, we examine all
the jobs executed in each of the three Hadoop clusters any
time during the collected traces. If the same job was exe-
cuted multiple times, we consider each execution as a sepa-
rate job (we study distinct jobs in later sections). We classify
each job into one of the following categories:

• Low-level API: The simplest way to write a MapRe-
duce application is to provide map and reduce
functions through the native MapReduce Java API.

854

Cluster Duration Start Date End Date Successful/Failed/Killed Jobs Users

OpenCloud 20 months 2010 May 2011 Dec 51975/4614/1762 78
M45 9 months 2009 Jan 2009 Oct 42825/462/138 30

Web Mining 5 months 2011 Nov 2012 Apr 822/196/211 5

Table 1: Summary of Analyzed Workloads

0.0!
0.2!
0.4!
0.6!
0.8!
1.0!

Exa
mple

s!
Hive

!

Mah
ou

t!

Map
Red

uc
e!

Peg
as

us
!

Pipe
s!

Stre
am

ing
!

Lo
ad

Gen
!

Pig!

Cas
ca

din
g!

Sco
ob

i!

Fr
ac

tio
n

of
 J

ob
s! OpenCloud! M45! Web Mining!

Figure 1: Fraction of jobs per application type.

0.0!

0.2!

0.4!

0.6!

0.8!

1.0!

Exa
mple

s!
Hive

!

Mah
ou

t!

Map
Red

uc
e!

Peg
as

us
!

Pipe
s!

Stre
am

ing
!

Lo
ad

Gen
!

Pig!

Cas
ca

din
g!

Sco
ob

i!

Fr
ac

tio
n

of
 U

se
rs
! OpenCloud ! M45! Web Mining!

Figure 2: Fraction of users per application type.

Streaming allows users to specify map and reduce func-
tions in any programming language. Pipes allows users
to specify the functions in C/C++.

• High-level API: There are a few high-level API
frameworks that help users write more complex appli-
cations by providing APIs with richer semantics than
map and reduce. Cascading and Scoobi provide high-
level APIs for users to easily construct workflows of
map and reduce functions [11, 25]. Pegasus provides
higher-level APIs for graph analysis [15].

• High-level Language: Pig and Hive fall into this
category [22, 6]. A user writes a script in a high-level
language then the runtime system compiles the script
into a directed acyclic graph (DAG) of MapReduce
jobs. Users can include user-defined functions.

• Canned MapReduce Jobs: There are a few pre-
packaged sets of MapReduce applications. In this cat-
egory, the user only changes parameters and/or input
datasets. All map and reduce functions are provided
by the package. Mahout is a package that implements
various data-mining algorithms in Hadoop. Examples
are examples such as wordcount and terasort that are
part of the Hadoop software distribution. LoadGen is
also part of the Hadoop software distribution. It gener-
ates workloads for testing and benchmarking purposes.

Results: Figure 1 shows the fraction of jobs per applica-
tion type in the three clusters. In both the OpenCloud and
M45 clusters, the native MapReduce interface is the most
popular way to program a MapReduce job while Streaming
and Pig are popular in the Web Mining cluster.

Figure 2 shows how many users have used each applica-
tion type. In all three clusters, most users tried the low level
MapReduce API as well as Streaming. In the Web Mining
cluster, one user tried di↵erent high-level APIs (i.e., Cas-
cading, Scoobi) and one user uses Pig.

Finding: Improvement Opportunity These results
have several important implications: First, even though
more powerful tools already exist today, users still prefer
to write their MapReduce jobs in plain Java (or other lan-
guage through the streaming interface). This is the case
even as users need to transform their data through a se-
quence or even a DAG of MapReduce jobs (as shown later
in Table 2). More complex tools thus do not have the ex-
pected uptake in any of the three clusters. Part of the reason
could be user education since di↵erent high-level tools are
popular in di↵erent clusters: Pig for M45 and Web Min-
ing. Another reason is failure recovery. Some users from
the Web Mining cluster complained that high-level tools
that fail in the middle of a complex graph of jobs make
it di�cult to restart and resume from the location where
the failure occurred. Second, legacy code (e.g., unix com-
mands and machine learning packages such as libsvm) and
language familiarity (e.g., python, perl, and ruby) also play
an important role as shown by the prevalence of Stream-
ing. Third, from talking with OpenCloud users, we find
that some users consider these existing tools cumbersome to
implement their algorithms and some users complain about
the steep learning curve of these tools. Some Web Mining
users indicated that certain uses of Hadoop do not focus on
the MapReduce model but rather use Hadoop simply as a
task scheduler.

3.2 Application Structures
Given that users write primarily MapReduce applications

using the native interface, we study the structure of the re-
sulting data transformations. We ask the following key ques-
tion: Is the MapReduce abstraction good enough for
most data transformations or do users need to com-
bine multiple MapReduce jobs into complex graphs
in order to get their desired result?

Method: We call a pipeline a set of related MapReduce
jobs that take one or more datasets as input and produce
one or more datasets as output. We study the structure of
the data transformation pipelines that users execute.

We estimate data dependencies between jobs by looking
at their input and output data paths1. We assume that
input and output data paths are not renamed nor manually

1This approach can not capture map-side joins, for exam-
ple, which may read another input passed through the job
configuration. Thus, we may be missing some dependencies.

855

Cluster Map Single Short Long Iteration DAG
Only Job Chain Chain

OpenCloud 21% 31 % 8% 3% 23% 14%
M45 11% 35 % 17% 9% 23% 2%

Web Mining 8% 70 % 14% 8% 0% 0%

Table 2: Distribution of job structures.

modified by users. If a job A uses another job B’s output
as its input, then we say that job A depends on B. The
dependency relation forms a directed acyclic graph of jobs.
Each connected component forms a pipeline.

Additionally, according to the feedback we received from
some of the users in the OpenCloud cluster, several im-
plemented iterative applications. To discover these iterative
applications, we examined the names of the map and reduce
functions for all applications executed more than 10 times.
If the name was indicative of an iterative application such
as “kmeans”, “clustering”, or “iteration”, we classified the
application into the “iteration” category. These structures
were not captured by the previous data-dependency anal-
ysis, because users indicated that they renamed the input
and output data paths.

Results: Table 2 shows the classification results. Ap-
proximately 46% to 78% of pipelines consist of a single job.
This fraction is highest in the smallest Web Mining clus-
ter. Additionally, 8% to 21% of single-job pipelines consist
of map-only jobs. Another large group of pipelines are it-
erative applications, which correspond to 23% of pipelines
in OpenCloud and M45. Chains of jobs are also popu-
lar. “Short chain” are chains consisting of two or three
jobs. “Long Chain” pipelines consist of more than three
jobs and include possibly additional iterative applications.
Finally, some pipelines take the form of more complex di-
rected acyclic graphs (DAGs) of jobs. By examining ex-
amples, those DAGs include applications that perform join
operations between multiple datasets or run multi-stage ma-
chine learning algorithms.

We also plot the distribution of pipeline structures in each
month to look at the evolution of these structures over time.
Figure 3 shows the result for the OpenCloud cluster (other
clusters follow similar patterns, and therefore are omitted
for brevity). The distribution changes significantly across
months but does not show any particular evolution. Single-
job pipelines and map-only pipelines are most popular dur-
ing the period from 2010-10 to 2011-06, while jobs with com-
plex structures comprised the bulk of the workload during
other periods.

Finding: These results show a consistent pattern in the
OpenCloud and M45 clusters. Both comprise a good mix
of di↵erent types of applications from data transformations
that require a single MapReduce job to applications with
complex structures. The Web Mining cluster is more heav-
ily skewed toward single-job applications. This finding is in-
teresting as it shows that at least 50% of applications in all
clusters can fit in the MapReduce paradigm. At the same
time, the remaining applications, such as iterative applica-
tions and other applications with more complex structures,
need to go beyond the single-job MapReduce abstraction.
The need for abstractions and e�cient implementations be-
yond the basic MapReduce API is thus strong.

3.3 Application Management over Time
In this section, we analyze how users manage their data

0%#

20%#

40%#

60%#

80%#

100%#

20
10
)04
#

20
10
)06
#

20
10
)08
#

20
10
)10
#

20
10
)12
#

20
11
)02
#

20
11
)04
#

20
11
)06
#

20
11
)08
#

20
11
)10
#

Ra
#o

%o
f%S

ub
m
i,
ed

%Jo
bs
%

DAG#

Itera2on#

Long#Chain#

ShortChain#

Single#MR#

Map#Only#

Figure 3: Fraction of job structures in OpenCloud over time.

0.0!

0.2!

0.4!

0.6!

0.8!

1.0!

Exa
mple

s!
Hive

!

Mah
ou

t!

Map
Red

uc
e!

Peg
as

us
!

Pipe
s!

Stre
am

ing
!

Lo
ad

Gen
!

Pig!

Cas
ca

din
g!

Sco
ob

i!

Fr
ac

tio
n

of
 D

is
tin

ct
 A

pp
! OpenCloud! M45! Web Mining!

Figure 4: Fraction of distinct applications per type.

transformation pipelines. We ask the following key question:
Is the batch-oriented nature of Hadoop well suited
to the way users seek to interact with their data?

Method: We first analyze the workload by extracting ap-
plication signatures. Our goal is to determine the frequency
of di↵erent applications: Are most applications one-o↵ ad-
hoc analytics or rather repetitive tasks?

The application signature consists of the pair of names of
map and reduce functions. We extract the names from the
job configuration files and use di↵erent extraction mecha-
nisms for each application type. For example, for a native
MapReduce application, the Java class name is su�cient for
a name. For a streaming application, we parse the com-
mand line and extract the name of the executable file or the
name of the script. By only focusing on the function names,
we can detect a MapReduce application that runs multi-
ple times and processes di↵erent datasets in the same way.
We do not know whether the functions have changed or not
given our limited information (configuration and execution
history). We assume that the same application signature is
meant to process an input dataset in a certain way.

Results: Figure 4 shows the fraction of distinct applica-
tions submitted to the three clusters for each application
type. Comparing with Figure 1, the changes in relative
heights are striking. In all three clusters, streaming jobs
form a large fraction of all distinct jobs (20% to 60%) while
they result in a small fraction of actual job executions, espe-
cially for M45 and OpenCloud (5% and 10%). In contrast,
MapReduce jobs written in native Java API also comprise
many distinct jobs but are comparatively more repetitive.
Manual inspection of a significant fraction of streaming jobs
revealed that most were used for ad-hoc analytics, which
are less repetitive. Interestingly, even Pig jobs are repet-
itive while one would expect Pig Latin to be the tool of

856

Cluster 1 Dataset 2 Datasets � 3 Datasets

OpenCloud 50% 20% 30%
M45 89% 3% 8%

Web Mining 87% 8% 5%

Table 3: Fraction of distinct applications that were executed
with di↵erent numbers of datasets.

Cluster 1 Dataset 2 Datasets � 3 Datasets

OpenCloud 4% 6% 90%
M45 26% 9% 65%

Web Mining 30% 30% 40%

Table 4: Fraction of job submissions for applications that
were executed with di↵erent numbers of datasets.

choice for exploratory analytics.
To further determine the fraction of repetitive tasks and

one-o↵ ad-hoc queries, we also examine, for each application,
how many datasets it processed. Table 3 shows the frac-
tion of distinct applications with di↵erent numbers of input
datasets (distinct applications are di↵erentiated by their ap-
plication signatures as defined in the last section). We find
that 50% to 89% of applications were only executed with one
input dataset. We label those applications as one-o↵ ad-hoc
queries (or one-o↵ ad-hoc data transformations). Interest-
ingly, we find that a large fraction of these ad-hoc queries
are written using the streaming interface: 58% of applica-
tions in OpenCloud, 91% in M45, 88% in Web Mining.
Table 4 shows the fraction in terms of the number of job sub-
missions. Although ad-hoc queries form a large fraction of
all distinct applications, most of the actual job executions
are due to repetitive tasks, especially in the OpenCloud
and M45 clusters.

Finding: The above results show that the bulk of the
use of Hadoop is indeed in repetitive transformations. How-
ever, there is also a large fraction of exploratory analytics.
The implications of this result is that Hadoop schedulers
must be ready to handle both types of workloads: a small
number of exploratory (ideally interactive) analytics and a
bulk of repetitive, batch-oriented jobs. For users perform-
ing exploratory analytics, native Hadoop Java interface may
not be the ideal tool, since the cost of asking each question
is high if each question is to be asked only once or only a
small number of times. Such high development costs may
partly explain the prevailing usage of the streaming inter-
face with which users can rapidly implement map and reduce
functions using a scripting language (e.g., Python) or their
favorite language.

Method: To better understand whether users run batch
or interactive data transformations, we plot the distribu-
tion of the submission interval between separate pipelines
and between jobs in the same pipeline. For two succes-
sive job pipelines A and B from the same user, we mea-
sure submission time of B � finishing time of A. Within a
pipeline, we measure the submission interval of a job Ai as
submission time of Ai � finish time of Ai�1, where Ai�1 is
the job immediately preceding Ai.

Results: Figure 5(a) shows that 35% to 60% of pipelines
are submitted within 10 seconds of an earlier pipeline fin-
ishing. We posit that a user has no time to examine results
within a 10 second threshold. The pipelines thus correspond
most likely to independent and batch executions. At the
other end of the spectrum, 10% to 20% of pipelines are sub-
mitted at least 15 min apart. These are either independent

1 1K 1M
Submission Interval (Seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

OpenCloud
M45
Web Mining

(a) Between Pipelines

1 1K 1M
Submission Interval (Seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

OpenCloud
M45
Web Mining

(b) Within Pipelines

Figure 5: Distribution of the submission interval between
successive pipelines for the same user, and submission in-
terval between jobs within a pipeline. Jobs that share a data
dependency (as defined in Section 3.2) are considered to be
in the same pipeline.

or a user needed a significant amount of time to look at
the results between executions. Both types of workloads
are good fits for the Hadoop batch-oriented scheduler. This
leaves, however, 30% to 50% of pipelines that are executed
between 10 seconds and 15 min one after the other. This
pattern implies that a user was waiting for the results and
took the time to reflect on the execution of one pipeline
before executing another pipeline. This latter type of use
may be better supported by more interactive data analysis
engines.

Figure 5(b) shows the submission interval between jobs
within a pipeline. In OpenCloud and M45, about 10% and
30% of jobs within a pipeline have a submission interval of
less than 1 second. Those jobs are likely being managed by
scripts that automatically execute the workflows. 10% to
as much as 75% are submitted within 10 sec of each other.
While these jobs may not be managed by a script, we posit
again that a user does not have enough time to study the
results. These jobs are submitted manually but the submis-
sions are rather batch-oriented. At the other extreme, 15%
to 80% of the jobs are submitted after at least a 15 min
delay. This leaves only approximately 10% of the jobs sub-
mitted between 10 sec and 15 min, which is much lower than
the same threshold for entire pipelines.

Finding: room for improvement Batches of jobs are
well supported by Hadoop and our results indicate that a
large fraction of jobs within pipelines and entire pipelines
are executed in a non-interactive batch-oriented fashion,
well-suited for Hadoop. There appears to be room for im-
provement in terms of helping users manage their jobs and
pipelines since a large fraction of both jobs and pipelines
are launched one after the other in a manner that appears
to imply manual submissions that could perhaps be auto-

857

mated (whenever jobs or pipelines are submitted within a
few tens of seconds of each other). There also appears, how-
ever, to be some need for more interactive analytics, which
are not well supported by Hadoop today: a large fraction
of pipelines are submitted quickly one after the other but
with enough delay to let a user reflect on an earlier pipeline
execution.

4. TUNINGS
A user can customize a Hadoop MapReduce job by sup-

plying additional functions besides map and reduce. Addi-
tionally, there are many configuration parameters in Hadoop
that are related to performance and fault-tolerance. In this
section, we study how users are exploiting these two fea-
tures, and whether these features are e↵ective in practice.
We ask three key questions: When do users customize
the execution of their jobs? How do users change
the configuration parameters? How frequently do
they make these changes? We ask these questions in the
context of basic job customizations (Section 4.1), customiza-
tions for the purpose of improving load balance (Section 4.2),
and tuning configuration parameters (Section 4.3).

4.1 Job Customization
Most job customizations are related to ways of partition-

ing data and aggregating data from earlier stages. The first
question that we ask is When do users customize the
execution of their Hadoop jobs?

Method: In each cluster, we count the number of users
who performed each type of customization at least once.
Each customization requires that the user supply an extra
function in addition to map and reduce.

Results: We consider each type of tuning separately.
Combiner: The Combiner performs partial aggregation

during the local sort phase in a map task and a reduce task.
In general, if the application semantics support it, a com-
biner is recommended. In OpenCloud, 62% of users have
used this optimization at least once. In M45 and Web Min-
ing clusters, 43% and 80% of users have used it respectively.

Secondary Sort: This function is applied during the re-
duce phase. By grouping di↵erent reduce keys for a single
reduce call, secondary sort allows users to implement an op-
timized join algorithm as well as other complex operations.
In the M45 cluster, no user applied a secondary sort. In the
Web Mining cluster, only one user used secondary sort,
and that was through the use of Pig, which implements cer-
tain join algorithms using secondary sort. In OpenCloud,
14% of users have used secondary sort, perhaps suggesting a
higher level of sophistication or more stringent performance
requirements.

Custom Partitioner: A user can also have full control over
how to redistribute the map output to the reduce tasks using
a custom partitioner. In the OpenCloud cluster, as many
as 35% of users have used a custom partitioner. However,
only two users in the M45 cluster and one user in the Web
Mining cluster applied a custom partitioner.

Custom Input and Output Format: Hadoop provides an
InputFormat and OutputFormat framework to simplify han-
dling of custom data formats and non-native storage sys-
tems. In OpenCloud, 27% of users applied a custom input
format at least once and 10% of users applied a custom out-
put format. In M45, only 4 users applied a custom input
format and only 1 user applied a custom output format. In

Web Mining, only one user applied a custom input format
and none applied a custom output format.

Finding: good use and room for improvement
In general, job customizations help with performance (e.g.
combiners) and correctness (e.g. input/output format), thus
a visible fraction of users leverage them, especially the op-
tional combiners. OpenCloud users tend to use more op-
timization techniques than users of the other two clusters,
which implies that some additional user education could help
a greater number of users get high performance from their
Hadoop clusters.

4.2 Customization for Load Balancing
This section extends the previous analysis of job cus-

tomizations (e.g., custom input format and custom parti-
tioner) to study its e↵ectiveness in balancing load across
map or reduce tasks and reducing the impact of stragglers,
which are tasks that take significantly longer to complete
than other tasks in the same phase. We ask two key ques-
tions: Are load imbalances a significant problem and
are users pro-active in mitigating these problems by
tuning their jobs?

Method: There are many causes of stragglers but one
of the causes is data skew : some tasks take longer simply
because they have been allocated more data. Ideally, if we
assign the same amount of input data to tasks, then all
tasks should take the same time to execute. We evaluate
how close the workloads are to this ideal case by analyzing
the relationship between input data size and task runtime.

For each phase of each job, we compute the ratio of the
maximum task runtime in the phase to the average task
runtime in that phase. We classify phases where this ra-
tio is greater than 0.5 (meaning that at least one straggler
took twice as long to process its data as the average) as Un-
balanced in Time (UT). Otherwise, the phase is said to be
Balanced in Time (BT). We compute the same ratio for the
input data and classify phases as either balanced or unbal-
anced in their data (BD or UD).

Results: We look at load imbalance problems separately
in the map and reduce phases of jobs in the three clusters.

Map Input Format: Figure 6 shows the result for the map
phases. We break the results into four di↵erent types of
applications based on whether the input data and/or the
runtime are balanced or not (i.e., (U)BD(U)BT as defined
in the previous paragraph).

As expected, for the map phase, most jobs are balanced
with respect to data allocated to tasks. However, a signif-
icant fraction of jobs (e.g., more than 20% for all but Ma-
hout in the OpenCloud cluster) remain unbalanced in run-
time and are categorized as BDUT. These results agree with
the result of the previous study in enterprise clusters [10].
Mahout is a machine learning algorithm package built on
top of Hadoop [5]. Mahout is e↵ective at reducing skew in
the map phase, clearly demonstrating the advantage of spe-
cialized implementations. Interestingly, Pig produces unbal-
anced map phases similar to users’ custom implementations.
Overall, allocating data to compute nodes based on data size
alone is insu�cient to eliminate skew.

In Hadoop, the InputFormat mechanism is responsible for
generating InputSplits which describe the input data pro-
cessed by a map task. In our traces, fewer than 1% of jobs
attempt to optimize the partitioning of the map input by
using a custom input format. Additionally, users can man-

858

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=4298)

Example
(N=50)

Hadoop
(N=102)

Mahout
(N=5)

Pegasus
(N=484)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=5794)

Example
(N=259)

Hadoop
(N=310)

Pegasus
(N=14)

Pig
(N=161)

Fr
ac

ti
o

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=219)

Hadoop
(N=9)

Mahout
(N=21)

Pig
(N=119)

Fr
ac

ti
o

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

OpenCloud M45 Web Mining

Figure 6: Distribution of map runtime with respect to # of input records per application. N is the number of successful jobs
that run map functions in each category. The labels indicate the category: (U)BD(U)BT stands for (un)balanced input data,
(un)balanced runtime.

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=155)

Hadoop
(N=78)

Hash
(N=1195)

Pegasus
(N=4)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=6)

Hadoop
(N=702)

Hash
(N=3306)

Pig
(N=34)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

0.0

0.2

0.4

0.6

0.8

1.0

Hash
(N=219)

Pig
(N=34)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

OpenCloud M45 Web Mining

Figure 7: Distribution of reduce runtime with respect to # of reduce keys per partition function. The labels indicate the
category: (U)BD(U)BT stands for (un)balanced input data, (un)balanced runtime.

0.0

0.2

0.4

0.6

0.8

1.0

OpenCloud
(N=50307)

M45
(N=36616)

Web Mining
(N=749)

Fr
ac

tio
n

of
 J

ob
s

Hash Custom Hadoop Pegasus Pig

Figure 8: Fraction of jobs per partition function. Hash par-
titioning is dominant in all three clusters. The fraction of
jobs using customized partition function is relatively small,
less than 10% in all clusters.

ually specify the number of bytes per split if the input is
stored in HDFS. In our traces, 12% of all jobs from 10 users
in OpenCloud used this optimization. In M45 and Web
Mining, fewer than 1% of all jobs from 1 and 3 users used
the optimization, respectively. It is clear that users only
rarely exploit these opportunities for optimizing the data
allocation.

Reduce Key: We perform a similar analysis for the re-
duce phase using the number of reduce keys as the input
measure. Instead of application types, we group the jobs
by the partition function employed. The partition function
is responsible for redistributing the reduce keys among the
reduce tasks. Again, we find that users rely primarily on
the default hash-partition function (Figure 8) rather than
manually trying to optimize the data allocation to reducers.

Figure 7 shows the analysis per partition function2. Over-
all, Hash partitioning e↵ectively redistributes reduce keys

2In the M45 workload, the number of reduce keys was not
recorded for the jobs that use the new MapReduce API due

among reduce tasks for more than 92% of jobs in all clus-
ters (i.e., BDBT+BDUT). Interestingly, we observed that
as many as 5% of all jobs in all three clusters experienced
the empty reduce problem, where a job has reduce tasks that
processed no data at all due to either a suboptimal parti-
tion function or because there were more reduce tasks than
reduce keys (We observed the latter condition in 1% to 3%
of all jobs).

For the jobs with a balanced data distribution, the run-
time was still unbalanced (i.e., BDUT jobs) for 22% and
38% of jobs in the OpenCloud and M45 clusters, respec-
tively. In both the OpenCloud and M45 clusters, custom
data partitioning is more e↵ective than the default scheme
in terms of balancing both the keys and the computation.
Other partitioning schemes come with Hadoop distribution
do not outperform hash partitioning in terms of balancing
data and runtime. A noticeable portion of UDBT jobs (i.e.,
data is not balanced but runtime is balanced) use the Total
Order Partitioner, which tries to balance the keys in terms of
the number of values. Pig, which uses multiple partitioners,
consistently performs well in both M45 and Web Mining
clusters.

Findings: room for improvement In summary, given
(a) the prevalence of load imbalance problems, (b) the ev-
idence that achieving load balance requires more than uni-
form data distribution, and (c) users’ reluctance to use
the manual tuning features provided by Hadoop to solve
load imbalance problem, we recommend pursuing techniques
that automatically reduce skew to achieve better perfor-
mance [19, 27].

to a bug in the Hadoop API. The a↵ected jobs are not in-
cluded in the figure.

859

4.3 Configuration Tuning
Hadoop exposes a variety of configuration parameters for

tuning performance and reliability. Here we discuss a few
configuration parameters that are typically considered im-
portant for performance and fault-tolerance [12, 14]. We
ask the same question as above, which is How frequently
do users change the configuration of their jobs to
improve performance and reliability?

Method: In each cluster, we count the number of users
who performed each type of tuning at least once.

Results: We consider each type of tuning separately.
Failure Parameters: Users can control how failures are

handled as well as erroneous inputs. InOpenCloud, 7 users
explicitly specified a higher threshold to retry failed tasks, 6
users specified a higher “skip” to ignore bad input records,
and 1 user specified a higher threshold in the number of
tolerable failed tasks. In M45, 3 users set a higher threshold
in the number of tolerable failed tasks. All Web Mining
users stayed with cluster default values.

Java Virtual Machine (JVM) Option: The native Hadoop
MapReduce interface is implemented in Java. If a map or
reduce task requires a large memory footprint, the program-
mer must manually adjust the heap and stack sizes: 29
OpenCloud users, 11 M45 users and 3 Web Mining clus-
ter users have changed default JVM option for their jobs.

Speculative Execution: Speculative execution is the de-
fault mechanism to handle straggler tasks. Only two users
from OpenCloud and M45 have changed the cluster de-
fault value for their applications. By default, speculative
execution is enabled in all three clusters. However, spec-
ulative execution was successful at most 21% of the time
in improving the task completion time. Furthermore, map
speculations did not run significantly faster than the original
attempt (speculated too early). In OpenCloud and M45,
many reduce speculations were late: they ran for less than
10% of the original task time before being killed.

Sort Parameters: Hadoop runs a merge sort at the end
of the map phase and just before the reduce phase. There
are four parameters that directly relate to those sorts. Two
users of the Web Mining cluster adjusted io.sort.mb pa-
rameter to 200. Only one user of the M45 cluster adjusted
io.sort.mb to 10. Other than that, all users used the cluster
default values.
HDFS Parameters: The HDFS block size and replication

factor a↵ect how the final output of a MapReduce job is
written. In OpenCloud, 11 users tried di↵erent values for
the replication factor. In M45, two users adjusted the block
size and only one user tried a di↵erent replication factor.
Other than these, all users kept the cluster default values.
Figure 9 shows the percentiles and average number of con-

figuration changes per-user each month. The trend is stable
over time, but there are always users who tune many con-
figuration parameters. By examining Table 5 in Section 5,
we find that long-term (frequent) users know to tune more
configuration parameters than less experienced users.
Findings: good use and room for improvement In

summary, users tend to tune configuration parameters di-
rectly related to failures. By talking with administrators of
OpenCloud, we learned that many of their users explicitly
tuned these options in response to poor failure behaviors
such as “out of memory” error. In contrast, users rarely
tune parameters related to performance, perhaps because

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Month

0

2

4

6

8

10

12

14

C
on

fig
ur

at
io

n
ch

an
ge

s

Average configuration changes per-user

Figure 9: Percentiles (min, 15%, median, 75%, max)
and average number of configuration changes per-user each
month.

their performance requirements were generally being met,
or perhaps because these parameters are more di�cult to
understand and manipulate.

5. RESOURCE USAGE AND SHARING
The third part of our study focuses on how well Hadoop

enables users to leverage their cluster resources.
We first start by looking at the magnitude of jobs executed

in the various clusters in terms of the amount of data they
need to process and the duration of their execution (Section
5.1). Hadoop is designed to process long-running jobs (since
it has a high start-up overhead) over large input data files
(since it runs across sharded datasets). We ask the following
question: Do users leverage Hadoop for long-duration
jobs over large datasets? Second, we look beyond single
jobs and study how users leverage their clusters in aggregate
over longer periods of time. We ask two key questions: Do
individual users consume large amounts of resources
in aggregate? What are the resource consumption
profiles of di↵erent types of users? Finally, we focus
on data reuse. We ask two questions How frequently are
the same input data files processed and how much
sharing occurs between users? What is the lifespan
of the result files?

5.1 Big Jobs and Small Jobs
We first examine the distribution of I/O and runtime for

jobs executed in the three Hadoop clusters. We ask the
following key question: Do users leverage Hadoop for
long-duration jobs over large datasets? We answer this
question by looking at the distributions of I/O and runtimes
within each month of each trace, which gives us both the
data for each point in time but also the evolution of usage
over time.

Method: We compute various percentiles of job dura-
tions and aggregate I/O size of jobs submitted during the
data collection period. Figures 10 and 11 show the statis-
tics collected from the OpenCloud cluster (M45 and Web
Mining show similar trends, and therefore are omitted for
brevity). Figure 10 shows the percentiles of job durations
and Figure 11 shows the percentiles of aggregate I/O size
by summing the amount of data processed during the map
(input), shu✏e and reduce (output) phases.

Results: As both figures show, small jobs dominate the
workload in the OpenCloud cluster (workloads in the other
two clusters are similar). For most months, more than 50%
of jobs touch less than 10 GB of data, and run for less than 8

860

1sec

1min

8mins

1hour

1day

10days

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jo
b

du
ra

tio
n

(lo
g

sc
al

e)

Months
Figure 10: Percentiles (min, 10%, median, 90%, max) of job
durations in the OpenCloud cluster for each month.

1B

1KB

1MB

1GB
10GB

100GB
1TB

1TB

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

To
ta

l I
/O

 D
at

a
Si

ze
 (B

yt
es

)

Months
Figure 11: Percentiles (min, 10%, median, 90%, max) of
aggregate I/O activity (input+shu✏e+output data size) of
OpenCloud jobs each month.

minutes. But outliers exist during the whole data collection
period. At least 1% of jobs during most months process
more than 100 GB and run longer than 5 hours. Open-
Cloud users indicated that the small jobs come from two
sources. First, some small jobs are intrinsic to the appli-
cation implementation and dataset. For example, in many
iterative applications, each iteration is a short MapReduce
job. As another example, some users use Hadoop simply as a
scheduler to launch parallel short tasks that take very small
datasets as input (e.g., short video clips and executable bi-
nary files). Second, some short jobs are for debugging pur-
poses (e.g., finding bugs in programs and validating algo-
rithms on small-scale datasets). We run a clustering algo-
rithm to classify debugging and non-debugging jobs in the
logs, by assuming that debugging jobs of the same applica-
tion always have smaller I/O sizes, and are submitted before
non-debugging jobs. We first group jobs by application sig-
natures and submission times. For jobs having the same sig-
nature and submitted within the same time interval, we use
k-means to cluster them into two groups based on I/O sizes.
If the average I/O size of one group is 10⇥ larger than the
other, the first group is classified as debugging jobs. We find
that approximately 15% of jobs in the OpenCloud cluster
are debugging jobs (including failed and killed jobs). Work-
loads are also diverse across time: the distribution of job
duration and aggregate I/O size changes significantly across
months. Especially the 90th percentile and the maximum
value vary significantly over time. In the other two clusters,
small jobs are also prevalent and the workload also has high
variation over time. The di↵erence is in the median value
of aggregate I/O size, which is less than 1 GB in M45, and
between 10 GB and 100 GB in Web Mining.

Finding: good use and unexpected use: The key

1B

1KB

1MB

1GB
10GB

100GB
1TB

1PB

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

To
ta

l I
/O

 S
iz

e
Pe

r U
se

r (
By

te
s)

Months
Figure 12: Percentiles (min, 10%, median, 90%, max) of
users’ aggregate I/O activity (the sum of data bytes processed
by all jobs of each user) over time in the OpenCloud cluster.

implication of the above results is that users do leverage
Hadoop to execute long-duration jobs that process massive-
scale datasets (100’s of GB to a few TB). However, users
also try to use their Hadoop hammer to process short jobs
over small datasets. In fact, short jobs over small datasets
dominate the workload even when Hadoop is known to be
a suboptimal tool for such workloads. Interestingly, some
Web Mining users indicated that they often break their
large and long-running jobs into smaller ones as a way to
checkpoint intermediate results and ensure that less work is
lost when an entire job fails.

5.2 Aggregate Resource Usage Profiles
Next, we examine the aggregate resource consumption per

user. From the previous section, we know that users exe-
cute primarily short jobs over small datasets. The questions
that we ask next are Do individual users consume large
amounts of resources in aggregate? What are the
resource consumption profiles of di↵erent types of
users?

Method: We first compute three metrics of aggregate
resource consumption for each user: task time, data, and
jobs. The task time metric is the sum of all map and reduce
task durations across all of a user’s jobs. The data metric
is the sum of the bytes processed across the input, shu✏e,
and output phases. The jobs metric is simply the number
of total jobs submitted. We plot the distribution of these
metrics in aggregate and also for each month of the trace.

To further characterize the patterns of user behaviors, we
classify users by how heavily they use the cluster. For this,
we use the K-means [20] clustering algorithm. Each user is
represented as a vector of four features including the num-
ber of submitted jobs, the number of active days, the total
bytes of data processed by the user’s jobs, and the total task
time consumed by the user’s jobs. An active day is a day
when the user submitted at least one job. Each dimension
is normalized to the interval [0, 1] by dividing all values by
the maximum value across all jobs. The K-means clustering
algorithm then groups together the vectors that are close to
each other in the four-dimensional space.

Results: Figure 12 shows the percentiles of users’ aggre-
gated I/O activity for each month. Overall, users process
significant amounts of data each month in spite of the fact
that most of their jobs are short-lived. As the distributions
show, the median user processes hundreds of GB of data
to nearly 1 TB of data in a month. The distributions also
show drastic di↵erences between the top user and the bot-

861

tom users at 1,000X to 100,000X di↵erence in total amount
of data processed for most months, which indicates that dif-
ferent users do indeed have di↵erent resource consumption
profiles. There is no visible trend over time. While the
distributions change from one month to the next, there is
no trend toward increased resource consumption over time-
scales of a few months.

To characterize the di↵erences in resources consumptions
between users and start to identify di↵erent types of users,
we plot the entire cumulative distributions of the three
resource-consumption metrics (jobs, data, and time) over
all users in two clusters OpenCloud and M45. We omit
the Web Mining cluster since it has only 5 users. Figure
13 shows the results. As with many other human activities,
the distribution of resource consumption is a long-tail distri-
bution. All three metrics indicate that about 80% to 90% of
resources are consumed by 20% of the users in both clusters.
Hence, we can at least identify two types of users: the small
fractions of heavy resource consumers and the majority of
users who are light-weight resource consumers.

To further categorize users, Table 5 summarizes the re-
sults of the K-means clustering. The table shows the cen-
troid of each cluster (the feature vector for the user at the
center of each cluster), the size of each user group and also a
list of statistics about each user group. The list of statistics
includes the average number of distinct applications/type-
s/structures used by each user, the median duration/data
size of all jobs submitted by each group, and also the aver-
age number of configuration and customization changes (See
details in Section 4) performed by each user.

Consistent with the CDFs from Figure 13, most users
are clustered into one group since they use the cluster only
lightly. The remaining frequent users are classified into sev-
eral small groups. For example, in OpenCloud, there are
four groups of frequent users. Two groups (G4 and G5) have
the maximal centroid value in one of the dimensions, and
the other two groups (G2 and G3) consume medium-level
cluster resources. We notice that G5 with only two users
submitted most of the small jobs (their median job dura-
tion is less than one minute). In contrast, the median job
duration and I/O size of jobs submitted by users in G1 are
significantly larger than that of frequent users. This behav-
ior also happens in the other two clusters. Another obser-
vation is that frequent users tend to submit jobs with more
complicated types and structures than infrequent users, and
utilize significantly more customizations and configuration
parameters.

Finding: Good use and room for improvement
Overall, users thus process significant amounts of data in
aggregate in their Hadoop clusters, but with highly uneven
resource consumption between users. On the more negative
side, large numbers of users do not leverage their Hadoop
clusters much, which implies room for improvement in terms
of getting these users to exploit the available resources. By
clustering users into groups, we also found that some users
have extreme behaviors (e.g., submitting many small jobs).
These behaviors might not cause problems to other users
in under-utilized clusters, but definitely waste resources in
busy clusters if the schedulers are not designed to tolerate
such use cases.

5.3 Data Sharing and Reuse

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative Distribution of Users

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
es

ou
rc

e
U

sa
ge

TaskTime
Data
NumJobs

(a) OpenCloud

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative Distribution of Users

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
es

ou
rc

e
U

sa
ge

TaskTime
Data
NumJobs

(b) M45

Figure 13: Aggregated resource usage over users under three
metrics. 20% of users consume about 90% of the resources.

We finally focus on the data being processed in the
Hadoop clusters and ask two key questions How fre-
quently are the same input data files processed and
how much sharing occurs between users? What is
the lifespan of the result files? We study the implica-
tions of design enhancements such as caching and manage-
ment of short-lived files.

Method: As in Section 3.2, this analysis assumes that
input and output paths are not renamed nor manually mod-
ified by users. We compute the frequency with which var-
ious input data paths are accessed and output data paths
are over-written.

Results: Figure 14 (a) gives the distribution of access fre-
quency of all paths in the three workloads. The output paths
with the same path name are considered as di↵erent datasets
when they are generated by di↵erent MapReduce jobs. For
OpenCloud and M45, fewer than 10 percent of paths are
responsible for more than 80% of all accesses. Further anal-
ysis in Figure 14 (b) indicates the 90% of data re-accesses
happen within 1 hour in these two clusters. By examining
the input and output file paths recorded in the configuration
files of all MapReduce jobs, we found that only 1% datasets
are shared across users. Therefore, the re-accesses shown in
Figure 14 are due to users repeatedly processing the same
data. However, the small fractions of “hot” datasets and
their frequent and rapid re-accesses indicate that caching
may help reduce I/O overheads.

Therefore a cache policy can possibly bring considerable
benefit, which has also been observed in prior work on in-
dustry workloads [10, 3]. To analyze the e↵ect of a global
cache, we run a simulation to calculate the cache hit ra-
tio. The simulation assumes that every node in the cluster
uses a portion of its memory (with size ↵) to cache input
and output data of MapReduce jobs. Thus the total size of
the global cache is ↵ ⇥ the number of nodes in the cluster.
The simulation only considers the input and output data as
a whole instead of caching data at the block level, as sug-
gested in previous work [3]. That means the global cache
only keeps and evicts the entire input or output data of a
MapReduce job. The cache policy we use is Least Frequently
Used (LFU) with a sliding window. Items that are not re-
accessed within a 1 hour window are evicted. Table 6 shows
the global cache hit ratio in the three workloads, when tun-
ing the cache size ↵ at each node. For OpenCloud and
M45 workloads, since small files are prevalent, their cache
hit ratios are higher than 69% even when using only 512 MB
memory at each node. Caching can thus e↵ectively reduce
disk I/O requests wasted by accesses to small files.

We also analyze how quickly a job’s output data is over-
written by successive jobs. Figure 14 (c) shows the distribu-
tion of time intervals between data overwrites. For Open-

862

Centroid of Feature Vector Statistics of User Cluster
Cluster Grp. #Jobs Active Total I/O Total #App #Type #Struct Median Median #Config. #User

Num. Days (GB) Task·Hour (avg.) (avg.) (avg.) Duration I/O Size &Custom.

Open G1 40 6 556 2653 5 1 1 26 mins 54 GB 5 59
Cloud G2 373 30 3482 29716 31 2 4 5 mins 12 GB 12 8

G3 2593 66 40907 59320 24 2 2 3 mins 4 GB 11 4
G4 1105 89 79376 221486 38 2 4 3 mins 15 GB 11 3
G5 16423 72 21465 103425 46 2 4 0.6 min 0.1 GB 9 2

M45 G1 325 10 8498 9998 30 1 2 111 mins 112 GB 8 26
G2 11538 55 4281 64 10 2 2 2 mins 0.1 GB 23 2
G3 11287 38 189340 1364524 40 2 6 0.6 min 2 GB 16 1

Web G1 140 19 14398 22818 8 2 2 65 mins 44 GB 11 3
Mining G2 388 47 3747 17759 118 3 5 3 mins 7 GB 10 1

Table 5: Clustering users in each workload using K-means. Each user is a vector with four dimensions: the number of jobs,
the number of active days, total data size processed by all jobs, and the total task time. Active day is the day when user
submitted jobs. Total task time denotes the total running time of all tasks of all jobs.

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative distribution of input paths

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 p
at

h
ac

ce
ss

es

OpenCloud
M45
WebMining

(a) Accesses

1 Sec 1 Min 1 Hour 1 Day 1 Year
Reaccess Interval

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 a
cc

es
se

s

OpenCloud
M45
WebMining

(b) Re-access

1 Sec 1 Min 5 Min 1 Hour 1 Day 1 Year
Overwrite Interval

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 fi

le
 o

ve
rw

rit
te

n

OpenCloud
M45
WebMining

(c) Overwrite by file

1 Sec 1 Min 1 Hour 1 Day 1 Year
Overwrite Interval

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 s

pa
ce

 u
se

d
by

 fi
le

s

OpenCloud
M45
WebMining

(d) Overwrite by space

Figure 14: Distribution of access and overwrite patterns. (a) shows the distribution of access frequency of data paths; (b) shows
the distribution of re-access frequency of input and output data. (c) shows the distribution of time intervals between output
data with the same data paths; (d) shows the distribution of space used by overwritten data within di↵erent time intervals.

CachePerNode (↵) OpenCloud M45 Web Mining

512 MB 68% 78% 11%
1 GB 69% 81% 18%
2 GB 71% 84% 20%
4 GB 72% 86% 25%
8 GB 73% 88% 28%
16 GB 74% 89% 39%

Table 6: Percentage of jobs whose entire inputs hit cache
under di↵erent cache size ↵ per node.

Cloud and M45, 50% of jobs have their output data over-
written within 5 minutes, and 90% of jobs’ output data are
overwritten within 1 hour. Figure 14 (d) shows the space
used by overwritten data within various time intervals. For
OpenCloud, most overwritten output data are small files
which only occupy a small portion of the storage space. For
M45, large output data files are also overwritten within 1
hour. These results suggest that many reduce output files
(especially files with small sizes) have a life span of less than
an hour. Additionally, shu✏e data generated at the map
output stage are also short-lived objects in the local storage
system, and they compose a considerable portion of disk
tra�c.

Findings: room for improvement These observations
suggest that there is potential room to improve cluster per-
formance through simple data caching policies. Addition-
ally, space allocation and reclamation algorithms in the lo-
cal filesystems can also be improved by explicitly grouping
short-lived files. So short-lived files can be cleaned together
without causing fragmentations on storage devices, and this

policy would be helpful for modern storage devices (such
as flash device and shingled disks) which have high perfor-
mance penalties with bad space reclamation policy.

6. FUTURE WORK
In this paper, we examine how more than 100 data scien-

tists from a variety of domains and in three academic clus-
ters use their Hadoop systems. Looking at the more than
100,000 jobs executed by these users, we identify important
requirements for the next generation Big Data systems that
want to go beyond what Hadoop o↵ers today.

First, and most important, we find that Big Data analysis
comes in a large variety of forms. A good fraction of applica-
tions follow the single-job, large input, long-duration tasks
form for which MapReduce was designed. The needs, how-
ever, extend significantly beyond this pattern: many jobs
are iterative with short-duration inner-loops, some applica-
tions require complex combinations of jobs to produce a de-
sired result, others yet are embarrassingly parallel and can
be spread almost arbitrarily across cluster resources. The
next-generation Big-Data systems must thus cater to this
extensive variety, rather than optimize for a single type of
applications as some systems do today (e.g., [21]).

Second, debugging and tuning Big-Data analysis appli-
cations is a great challenge. While there exist important
research from automatic tuning [7] to correctness debug-
ging [23] and even performance debugging [18], these tools
still need to make their way into widespread use. An in-
teresting observation is that users are willing to work with
the engine to overcome performance challenges and avoid

863

failures, but the complexity of the settings is overwhelming
and possibly not the most e↵ective interface to seek input
from users about their applications. Informative monitor-
ing tools and novel interactive debugging tools are urgently
needed by Hadoop users.

Finally, our analysis points to several possible optimiza-
tions to current Hadoop systems. One optimization is to
use an in-memory cache to speed up repetitive tasks and
iterative applications, since their data sets typically fit in
memory. Another possible optimization is to improve the
disk block allocation and defragmentation algorithm of the
local filesystems for Hadoop workloads, by explicitly group-
ing small short-live files to reduce fragmentation.

7. RELATED WORK
The closest related work are the studies of the Facebook

and Cloudera cluster traces by Chen et al [10, 9]. Their
studies focus on cluster-level and job-level metrics, as well
as the usage of SQL-like programmatic frameworks. They
also find that a wide range of diversity exists in their work-
loads, and small jobs and temporal locality in data accesses
are common. In contrast to our workloads, SQL-like pro-
gramming frameworks are popular. Kavuly et al. [16] also
study logs from the M45 cluster, but they focus on cluster-
level workload characterization and performance prediction.

Work on optimizing MapReduce and Hadoop is also rel-
evant. PACMan [3] studies the e↵ects of di↵erent global
cache policies for HDFS and finds that in some produc-
tion cluster traces, the majority (96%) of active jobs can
fit into a fraction of the cluster’s total memory. DiskRe-
duce [13] analyzes file systems workloads of several Hadoop
and high-performance computing clusters. They find that
small files are prevalent in large clusters. Ke et al. [17]
find that load imbalance problems are prevalent in a vari-
ety of industrial applications. Mantri [2] studies the causes
of outlier tasks and ways of mitigating outlier tasks caused
by data imbalance or resource contentions. SkewTune [19]
proposes run-time repartition to mitigate skew problems.
Starfish [14] investigates automatic tuning configurations for
Hadoop MapReduce programs. Our analysis shows users are
typically only tuning configuration parameters for failures,
suggesting that automatic tuning is an important feature.

8. CONCLUSION
We studied workloads from three Hadoop clusters used

for academic research. These new Hadoop cluster traces
contain richer information than previous studies by record-
ing user behaviors and application specifications, both criti-
cal for understanding requirements of Big-Data systems. In
these workloads, we find that applications are highly diverse
in styles, structures, and performance characteristics and
that higher-level tools (e.g., Pig) do not satisfy users’ needs.
We also find that users tend to optimize their applications
at the algorithmic level by using Hadoop customizations,
and only tune configuration parameters related to failures.
Default configurations result in some performance degrada-
tions (e.g., load imbalance). Our conclusion is that the use
of Hadoop for academic research is still in its adolescence.
Easing that use, especially for sophisticated applications,
and improving the system to tolerate workload diversity and
facilitate tuning are important future research directions.

9. ACKNOWLEDGMENTS
We thank N. Balasubramanian and M. Schmitz for help-

ful comments and discussions. We also thank the owners of
the logs from the three Hadoop clusters for graciously shar-
ing these logs with us. This research is supported in part
by The Gordon and Betty Moore Foundation, National Sci-
ence Foundation under awards, SCI-0430781, CCF-1019104.
Qatar National Research Foundation 09-1116-1-172, DOE/-
Los Alamos National Laboratory, under contract number
DE-AC52- 06NA25396/161465-1, by Intel as part of ISTC-
CC. We thank the member companies of the Parallel Data
Lab Consortium for their feedback and support.

10. REFERENCES
[1] Yahoo! reaches for the stars with M45 supercomputing project.

http://research.yahoo.com/node/1884.
[2] G. Ananthanarayanan et al. Reining in the outliers in

Map-Reduce clusters using Mantri. In OSDI, 2010.
[3] G. Ananthanarayanan et al. PACMan: Coordinated memory

caching for parallel jobs. In NSDI, 2012.
[4] Apache Foundation. Hadoop. http://hadoop.apache.org/.
[5] Apache Foundation. Mahout: Scalable machine learning and

data mining. http://mahout.apache.org/.
[6] Ashish Thusoo et. al. Hive: a petabyte scale data warehouse

using Hadoop. In ICDE, pages 996–1005, 2010.
[7] S. Babu. Towards automatic optimization of mapreduce

programs. In SoCC, pages 137–142, 2010.
[8] D. Borthakur. The Hadoop distributed file system:

Architecture and design.
http://lucene.apache.org/hadoop/hdfs_design.pdf, 2007.

[9] Y. Chen et al. The case for evaluating MapReduce performance
using workload suites. In MASCOTS, pages 390–399.

[10] Y. Chen et al. Interactive query processing in big data systems:
A cross-industry study of MapReduce workloads. PVLDB,
5(12):1802–1813, 2012.

[11] Concurrent, Inc. Cascading. http://www.cascading.org/, 2012.
[12] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. In OSDI, 2004.
[13] B. Fan et al. DiskReduce: RAID for data-intensive scalable

computing. Technical Report CMU-PDL-11-112, PDL,
Carnegie Mellon University, 2011.

[14] H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of MapReduce programs. PVLDB,
4(11):1111–1122, 2011.

[15] U. Kang et al. PEGASUS: A peta-scale graph mining system
implementation and observations. In ICDM, pages 229–238,
2009.

[16] S. Kavulya et al. An analysis of traces from a production
MapReduce cluster. In CCGRID, pages 94–103, 2010.

[17] Q. Ke et al. Optimizing data partitioning for data-parallel
computing. In HotOS, 2011.

[18] N. Khoussainova et al. Perfxplain: Debugging mapreduce job
performance. PVLDB, 5(7):598–609, 2012.

[19] Y. Kwon et al. SkewTune: mitigating skew in mapreduce
applications. In SIGMOD, pages 25–36, 2012.

[20] S. P. Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137, 1982.

[21] G. Malewicz et al. Pregel: a system for large-scale graph
processing. In SIGMOD, pages 135–146, 2010.

[22] C. Olston et al. Pig Latin: a not-so-foreign language for data
processing. In SIGMOD, pages 1099–1110, 2008.

[23] C. Olston et al. Generating example data for dataflow
programs. In SIGMOD, pages 245–256, 2009.

[24] A. Pavlo et al. A comparison of approaches to large-scale data
analysis. In SIGMOD, pages 165–178, 2009.

[25] Scoobi Team. A Scalar productivity framework for Hadoop.
https://github.com/NICTA/scoobi, 2012.

[26] B. Sharma et al. Modeling and synthesizing task placement
constraints in Google compute clusters. In SoCC, pages
3:1–3:14, 2011.

[27] R. Vernica et al. Adaptive MapReduce using situation-aware
mappers. In EDBT, pages 420–431, 2012.

864

