
The Yin and Yang of Processing Data Warehousing
Queries on GPU Devices

Yuan Yuan Rubao Lee Xiaodong Zhang

Department of Computer Science and Engineering
The Ohio State University

{yuanyu, liru, zhang}@cse.ohio-state.edu

ABSTRACT
Database community has made significant research efforts to
optimize query processing on GPUs in the past few years.
However, we can hardly find that GPUs have been truly
adopted in major warehousing production systems. Prepar-
ing to merge GPUs to the warehousing systems, we have
identified and addressed several critical issues in a three-
dimensional study of warehousing queries on GPUs by vary-
ing query characteristics, software techniques, and GPU hard-
ware configurations. We also propose an analytical model
to understand and predict the query performance on GPUs.
Based on our study, we present our performance insights for
warehousing query execution on GPUs. The objective of our
work is to provide a comprehensive guidance for GPU archi-
tects, software system designers, and database practitioners
to narrow the speed gap between the GPU kernel execution
(the fast mode) and data transfer to prepare GPU execution
(the slow mode) for high performance in processing data
warehousing queries. The GPU query engine developed in
this work is open source to the public.

1. INTRODUCTION
In the past decade, special-purpose graphic computing

units (GPUs) have evolved into general-purpose computing
devices, with the advent of efficient parallel programming
models, such as CUDA [2] and OpenCL [4]. Because of
GPU’s high computational power, how to accelerate vari-
ous workloads on GPUs has been a major research topic in
both the high performance computing area and the database
area [12, 18, 20, 28, 17, 29, 16, 30, 21, 19, 23, 10, 33,
25, 32]. In high performance computing area, GPUs as
accelerators have already been widely deployed to process
performance-critical tasks. For example, according to the
June 2013’s Top 500 list, more than 50 supercomputers
have been equipped with accelerators/coprocessors (mostly
NVIDIA GPUs), compared to less than 5 six years ago.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 10
Copyright 2013 VLDB Endowment 2150-8097/13/10...$ 10.00.

However, in the database area, we can hardly find any ma-
jor data warehousing system (e.g., Teradata, DB2, Oracle,
SQL Server) or MapReduce-based data analytical system
(e.g., Hive, Pig, Tenzing) that has truely adopted GPUs for
productions, despite the existence of many research papers
optimizing various database operations on GPUs which have
already shown the significant performance benefits when uti-
lizing GPUs.

To understand the reason behind this fact, this paper ad-
dresses the following issues with both technical and experi-
mental bases:

• Where does time go when processing warehousing queries
on GPUs? (Section 4.1)

• How do existing software optimization techniques af-
fect query performance on GPUs? (Section 4.2 - 4.4)

• Under what conditions will GPU significantly outper-
form CPU for warehousing queries? (Section 5.1)

• How do different GPU hardwares and their supporting
systems affect the query performance? (Section 5.2)

• How does the advancement of GPU hardware affect
query performance? (Section 6)

1.1 The Framework of Our Study
The key to answering these questions is to fundamentally

understand how the two basic factors of GPU query process-
ing, which we call the Yin and Yang 1 , are affected by query
characteristics, software optimization techniques, and hard-
ware environments. The Yin represents PCIe data transfer,
which transfers data between host memory and GPU de-
vice memory. The Yang represents kernel execution, which
executes the query on the data stored in the GPU device
memory. To characterize these two factors, we have con-
ducted a comprehensive three-dimensional study of query
processing on GPUs as shown in Figure 1. We target at the
star schema queries because they are the typical workloads
in practical warehousing systems [31]. Our study is based
on the following three sets of research efforts.

Implementation of a GPU Query Engine: We have
designed and implemented a GPU query engine using CUDA
and OpenCL which can execute on both NVIDIA/AMD

1In ancient Chinese philosophy, Yin and Yang represent two
opposite forces that are interconnected and interdependent
in the natural world.

817

Figure 1: Research Overview: A 3-Dimension Study of Pro-
cessing Warehousing Queries on GPUs.

GPUs and Intel CPUs. Based on the algorithms proposed
in prior research work, we have made the best effort to im-
plement various warehousing operators.

Experimental Evaluation and Performance Com-

parison: Based on our GPU query engine, 1) we studied
warehousing query behaviors and analyzed effects of vari-
ous software optimization techniques; 2) we compared the
performance of warehousing queries on GPU with MonetDB
[22], which is a representative high-performance analytical
query engine; and 3) we investigated how different GPU
hardwares and programming models can affect the perfor-
mance of warehousing workloads.

Modeling and Predictions: We have proposed an an-
alytical model to characterize and quantify the query exe-
cution time on GPUs. The model accuracy is verified by
detailed experiments with different hardware parameters.
Based on the model, we predict how possible advancement
of future GPU hardwares will improve query performance.

1.2 Contributions of Performance Insights
Our comprehensive study quantitatively demonstrates that:

1) GPU only significantly outperforms CPU (4.5x - 6.5x
speedups) for certain queries when data are prepared in
the pinned host memory; 2) GPU has limited speedups
(around 2x) for queries dominated by selection or by in-
tensive random device memory accesses, or when data are
not in the pinned host memory; 3) The major obstacle to
OpenCL portability is vendors’ subtle implementations of
the specification which can cause both performance and
functional problems for warehousing workloads; and 4) The
peak performance increase in the evolving GPU generations
has limited performance benefits for processing warehousing
queries.

The rest of the paper is organized as follows. In Section
2 we present the implementation of our GPU query engine.
Section 3 describes the experimental environment. We study
the warehousing query behaviors and the effects of software
techniques in Section 4 and conduct detailed performance
comparisons in Section 5. In Section 6 we introduce our
cost model and explore the impacts of GPU hardware ad-
vancement on query processing. We introduce the related
work in Section 7 and conclude our work in Section 8.

2. GPU QUERY ENGINE

2.1 Engine Structure and Storage Format

Figure 2 shows the architecture of our query engine. It is
comprised of an SQL parser, a query optimizer and an execu-
tion engine. The parser and optimizer share the same codes
with YSmart [24]. The execution engine consists of a code
generator and pre-implemented query operators using CUD-
A/OpenCL. The code generator can generate either CUDA
drive programs or OpenCL drive programs, which will be
compiled and linked with pre-implemented operators.

The engine adopts a push-based, block-oriented execution
model which executes a given query plan tree in post-order
sequence. It tries to keep data in GPU device memory as
long as possible until all the operations on the data are fin-
ished.

We choose column-store for our engine since we target
warehousing workloads. In our implementation, each ta-
ble is stored as a collection of columns, where each column
is stored in a separate file on the disk. Our engine uses
the late materialization technique [6] and performs tuple re-
construction through a special GPU kernel when projecting
the final results.

In our engine, the codes executed on CPU are responsible
for allocating and releasing GPU device memory, transfer-
ring data between the host memory and the GPU device
memory, and launching different GPU kernels.

2.2 Query Operators
Our engine implements four operators required by star

schema queries, each of which is implemented with represen-
tative algorithms based on the state of the art of research.

Selection. Selection’s first step is to sequentially scan all
the columns in the predicates for predicate evaluation, with
the result stored in a 0-1 vector. The second step is to use
the vector to filter the projected columns.

Join. We implement the unpartitioned hash algorithm
that has been proved to perform well for star schema queries
on multi-core and many-core platforms [11, 13, 23]. We
implement the hash table using both Cuckoo hash [9] and
chained hash. For chained hash, hash conflicts can be avoided
by making the size of hash table twice the cardinality of the
input data with a perfect hash function theoretically [26]. In
our study, the chained hash performs well than the Cuckoo
hash. This is because star schema queries have low join se-
lectivities, and Cuckoo hash needs more key comparisons
than chained hash when there is no match for the key in the
hash table.

Aggregation. We implement the hash based aggregation
which involves two steps. The first step is to sequentially
scan the group-by keys and calculate the hash value for each
key. The second step is to sequentially scan the hash value

Figure 2: GPU Query Engine Architecture

818

Table 2: Hardware Specifications

Processors # of Cores GFLOPS Bandwidth(GB/s)
NVIDIA 480 480 1345 177.4
NVIDIA 580 512 1581.1 192.4
NVIDIA 680 1596 3090.4 192.256
AMD 7970 2048 3788.8 264

Intel Core i7 4 112 25.6

and the aggregate columns to generate aggregation results.
Sort. Sort operator will sort the keys first. After the

keys are sorted, the results can be projected based on the
sorted keys which is a gather operation. Since sort is usu-
ally conducted after aggregation, the number of tuples to be
sorted is usually small which can be done efficiently through
bitonic sort.

2.3 Implementation Details
Use of GPU Memory. Our engine utilizes both device

memory and local shared memory. For selection, only de-
vice memory is utilized. For join and aggregation, the hash
table will be put in the local shared memory when its size is
smaller than the local shared memory size. For sort, all the
keys are sorted and merged in the local shared memory.

Data Layout. Each column is stored in a continuous
memory in GPU device memory, which has the Array-Of-
Structure (AOS) format. The Structure-Of-Array (SOA)
format, which can provide coalesced access for scanning ir-
regular data, doesn’t provide performance benefits for our
workloads because the accesses of irregular data (string data
from dimension tables) are dominated by random accesses
during join operations.

GPU Thread Configurations. The thread block size
is configured to be at least 128 and the largest number of
thread blocks is configured to be 4096. Each thread in the
thread block will process a set of elements from the input
data based on its global thread ID. For example, for a config-
uration with 256 threads per block and 2048 thread blocks,
the thread with global ID 0 will process the data with the
index of 0, 2048*256, 2*2048*256 until the end of the data.

GPU Thread Output. Our engine avoids the synchro-
nizations among threads when they write to the same mem-
ory region at the same time. This is achieved by first letting
each thread count the number of results it will generate, and
then performing a prefix sum on the count result. In this
way each thread knows its starting position in the region
and can write to the region without synchronization.

3. EXPERIMENTAL METHODOLOGY

3.1 Workloads
We use the Star Schema Benchmark (SSBM) [27] which

has already been widely used in various data warehousing
research studies [8, 14]. It has one fact table lineorder and
four dimension tables date,supplier,customer,part, which are
organized in a star schema fashion, as is shown in Figure 3.
There are a total of 13 queries in the benchmark, divided
into 4 query flights. Table 1 summarizes the major charac-
teristics of the SSBM queries. In our experiments, we run
the benchmark with a scale factor of 10 which will generate
the fact table with 60 million tuples.

Figure 3: Schema of SSBM

Table 3: GPU Bandwidth Measurement

480 580 680 7970
Read(GB/s) 114.59 129.95 127.65 202.76
Write(GB/s) 138.34 150.41 153.43 116.44

HtoD pageable(GB/s) 6.30 6.30 6.30 9.80
HtoD pinned(GB/s) 6.65 6.65 12.28 11.13

DtoH pageable(GB/s) 6.20 6.20 6.22 9.19
DtoH pinned(GB/s) 6.64 6.64 12.75 11.81

3.2 Experimental Environments

3.2.1 Hardware Platforms
We conduct our experiments on four GPUs: NVIDIA

GTX 480, 580, 680 and AMD HD 7970. NVIDIA GTX 480
and 580 only support PCIe 2.0 while NVIDIA GTX 680 and
AMD HD 7970 support PCIe 3.0. Each GPU will be con-
nected to a PCIe 3.0 bus when conducting experiments on
it. The host device is equipped with the Intel Core i7 3770k
Quad-Core 3.5GHZ processor with 32 GB memory. Table 2
lists the major hardware parameters for these processors.

3.2.2 Software platforms
All the experiments are conducted under Red Hat Enter-

prise Linux 6.4 (kernel 2.6.32-358.2.1). The NVIDIA GPUs
use NVIDIA Linux driver 310.44 with CUDA SDK 5.0.35.
The AMD HD 7970 uses AMD Linux driver Catalyst 13.1
with AMD APP SDK 2.8. We use the query performance
on MonetDB (version 11.15.3) to represent the state of the
art of query performance on CPU. OpenCL query engine on
Intel Core i7 is compiled with Intel 2013 XE beta SDK.

3.3 Measurement

3.3.1 Methodology and tools
When measuring the overall query execution time, we as-

sume that data are already in the host memory and exclude
the disk loading time.

We use NVIDIA’s command line profiling tool nvprof in
CUDA 5.0 toolkit to profile the query behavior on NVIDIA
GPUs. For the OpenCL query engine, we use OpenCL
events to collect the kernel execution time and PCIe transfer
time. When measuring query performance on MonetDB, we
put the data in a ramdisk to exclude the disk loading time.

3.3.2 Measurement of bandwidth
Before conducting detailed experiments on all the GPUs,

we first measure two critical parameters: the PCIe trans-
fer bandwidth and the GPU device memory bandwidth. To
measure the former, we transfer 256MB data between host
memory and GPU device memory. It is worth noting that

819

Table 1: SSBM Summary. The table lists the major operations and the Filter Factors (FF) for each SSBM query. L
represents the fact table lineorder and D, S, C and P represent the four dimension tables: date, supplier, customer and part.

Query Operation FF on L FF on D FF on S FF on C FF on P Overall Selectivity
q1.1 σ(L) ⊲⊳ σ(D) 0.47*3/11 1/7 - - - 0.019
q1.2 σ(L) ⊲⊳ σ(D) 0.2*3/11 1/84 - - - 0.00065
q1.3 σ(L) ⊲⊳ σ(D) 0.1*3/11 1/364 - - - 0.000075
q2.1 L ⊲⊳ σ(P) ⊲⊳ σ(S) ⊲⊳ D - - 1/5 - 1/25 0.008
q2.2 L ⊲⊳ σ(P) ⊲⊳ σ(S) ⊲⊳ D - - 1/5 - 1/125 0.0016
q2.3 L ⊲⊳ σ(P) ⊲⊳ σ(S) ⊲⊳ D - - 1/5 - 1/1000 0.0002
q3.1 L ⊲⊳ σ(C) ⊲⊳ σ(S) ⊲⊳ σ(D) - 6/7 1/5 1/5 - 0.034
q3.2 L ⊲⊳ σ(C) ⊲⊳ σ(S) ⊲⊳ σ(D) - 6/7 1/25 1/25 - 0.0014
q3.3 L ⊲⊳ σ(C) ⊲⊳ σ(S) ⊲⊳ σ(D) - 6/7 1/125 1/125 - 0.000055
q3.4 L ⊲⊳ σ(C) ⊲⊳ σ(S) ⊲⊳ σ(D) - 1/84 1/125 1/125 - 0.00000076
q4.1 L ⊲⊳ σ(S) ⊲⊳ σ(C) ⊲⊳ σ(P) ⊲⊳ D - - 1/5 1/5 2/5 0.016
q4.2 L ⊲⊳ σ(S) ⊲⊳ σ(C) ⊲⊳ σ(P) ⊲⊳ σ(D) - 2/7 1/5 1/5 2/5 0.0046
q4.3 L ⊲⊳ σ(S) ⊲⊳ σ(C) ⊲⊳ σ(P) ⊲⊳ σ(D) - 2/7 1/25 1/5 1/25 0.000091

 0

 100

 200

 300

 400

 500

1.11.21.32.12.22.33.13.23.33.44.14.24.3

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Transfer
Kernel
Other

Figure 4: Baseline of SSBM queries on NVIDIA GTX 680.

we distinguish the pageable host memory from the pinned
host memory. To measure the latter, we launch two GPU
kernels which read/write 256MB integers from/to GPU de-
vice memory in a coalesced manner. The measured results
are reported in Table 3. As is shown in Table 3, the PCIe
transfer bandwidth becomes higher when the host memory
is pinned (e.g., doubled for GTX 680). The reason is that for
pinned memory, data can be directly transferred using GPU
DMA engine. However, for pageable memory, data need to
be copied to a pinned DMA buffer first before transferred
using GPU DMA engine [1].

4. PERFORMANCE ANALYSIS
In this section we present the characterization of query

behaviors and the effects of software optimizations when ex-
ecuting SSBM queries on NVIDIA GTX 680.

4.1 SSBM Query Behaviors
Figure 4 shows the baseline SSBM performance conducted

on GTX 680 with pinned memory. We breakdown the ex-
ecution time into PCIe transfer (Transfer), kernel execu-
tion(Kernel) and other (Other) which mainly includes time
spent on initializing data structures on CPU before launch-
ing the kernels and allocating and releasing GPU device
memory. As is shown in Figure 4, most execution time
for SSBM queries are spent on PCIe transfer and kernel
execution. To understand the query behaviors, we further
breakdown the execution time and shows the percentage of
the major operations for SSBM queries in Figure 5.

Since the size of fact table is much larger than the size of
dimension tables, the number of columns of fact table used
in the query determines the PCIe transfer time. Queries

Figure 5: SSBM execution time breakdown

in the same query flight have almost the same PCIe data
transfer time since they process the same amount of data
from the fact table.

Query flight 1. The kernel execution time of queries in
flight 1 are dominated by selection operations, as is shown in
Figure 5. Most of the kernel execution are spent on the pred-
icate evaluation of the selection (predicateEval) and gener-
ating selection results (genSelectRes).

Query flight 2. For queries in flight 2, a large portion
of their kernel execution time are spent on the hash probing
operation in the join operator (hashProbe) and generating
join results (genJoinFact and genJoinDim), as is shown in
Figure 5. One key difference among their query character-
istics is the join selectivity, which decreases from Q2.1 to
Q2.3. As higher join selectivity implies higher kernel execu-
tion time, the kernel execution time will decrease from Q2.1
to Q2.3, as is shown in Figure 4.

Query flight 3. The query behaviors in flight 3 can be
divided into two groups: Q3.1 and Q3.2 to Q3.4. The ker-
nel execution time of Q3.1 are dominated by the access of
dimension tables when generating join results (genJoinDim)
while the kernel execution time of Q3.2 to Q3.4 are domi-
nated by hash probing probing operation (hashProbe) and
accessing the data from the fact table when generating the
join results (genJoinFact). We use Q3.1 as an example to
illustrate the differences.

Q3.1 from SSBM:

select c_nation, s_nation,

d_year, sum(lo_revenue) as revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

820

Table 4: Compression ratio for fact table columns when
sorted on different foreign key columns.

Column lo custkey lo partkey lo suppkey
lo custkey 1% 100% 100%
lo partkey 100% 3% 100%
lo suppkey 50% 50% 0.1%
lo orderdate 50% 50% 50%

lo extendedprice 100% 100% 100%
lo quantity 25% 25% 25%
lo discount 25% 25% 25%
lo revenue 100% 100% 100%

lo supplycost 50% 50% 50%

and c_region = ’ASIA’ and s_region = ’ASIA’

and d_year >= 1992 and d_year <= 1997

group by c_nation, s_nation, d_year

order by d_year asc, revenue desc;

Q3.1 has a high join selectivity. The join selectivities for
customer and supplier are both 20%. Each of these two
joins needs to access the data in the dimension tables to
form the results. To be more specific, they access c nation
from customer and s nation from supplier. As the join se-
lectivities are high, there are lots of random accesses to the
dimension tables. In this case, a large portion of the kernel
execution time are spent on this part. For Q3.2 to Q3.4,
they share many characteristics with Q3.1 but with very
low join selectivities. Their execution time are dominated
by the sequential scan of fact table data in hash probing and
generating result operations.

Query flight 4. The execution time of queries in flight 4
are dominated by hash probing and generating join results
from fact table. Q4.1 and Q4.2 both have high join selec-
tivities while Q4.3 has a relatively low join selectivity. Q4.1
has similar query characteristics as Q3.1 but doesn’t spend
much time on accessing the data from dimension tables. The
main reason is that the first executed join for Q4.1 doesn’t
access any column from dimension table while Q3.1 does.

4.2 Effects of data compression
Our GPU query engine supports three light weight data

compression schemes that have already been widely used
in column-store systems: Run Length Encoding (RLE), Bit
Encoding and Dictionary Encoding.

For performance benefits, fact table is stored in multiple
disk copies. Each copy of the fact table is sorted on a dif-
ferent foreign key column. All the sorted columns are com-
pressed using RLE. The rest columns are compressed using
the other two schemes whenever possible. Dimension tables
are not compressed since their sizes are much smaller com-
pared to the size of fact table. Table 4 shows the compression
ratio for the fact table columns used in SSBM queries.

The query engines can obtain significant performance ben-
efits when directly working on the compressed data [7]. Thus
our engine directly operates on the compressed data when-
ever possible. One representative operation that can directly
work on the compressed data is the hash probing operation
in join operator. It directly scans the compressed foreign
keys and probes the hash table. As foreign key columns
are usually compressed with high compression ratios, oper-
ating directly on the compressed data will significantly re-
duce the number of hash probing operations. On the other
hand, some operations have to decompress the data during

their execution, such as result projection operation. The
decompression will generate many irregular device memory
accesses which makes it an expensive operation.

Figure 6(a) shows the speedup of PCIe data transfer, ker-
nel execution and the overall performance after data are
compressed. Disk loading time is not included in the total
execution time. For all queries, data compression can ef-
fectively reduce the PCIe transfer time due to the reduced
amount of transferred data.

For selection dominated queries, as is the case for queries
in flight 1, their kernel execution time cannot benefit much
from the data compression technique. Most of their ker-
nel operations access data in a coalesced manner. Although
some kernel operations, such as generating the filter vec-
tor, can directly work on compressed data, the performance
benefit is not much since GPU can well handle coalesced
memory accesses.

For queries dominated by join operations, when a large
portion of the kernel execution time are spent on generating
join results, their kernel execution time cannot benefit much
from the data compression technique, as the case for Q3.1,
Q4.1 and Q4.2. These queries usually have high join selec-
tivities and several projected columns from both the fact
table and the dimension tables. When a large portion of
the kernel execution time are spent on hash probing oper-
ations, their kernel execution time can benefit greatly from
the data compression technique, as is the case for queries in
flight 2. When queries have very low selectivities and sev-
eral projected columns from the fact table, as is the case
for Q3.2 to Q3.4, their execution time will be dominated by
the coalesced accesses of the data from the fact table. They
cannot benefit much from the data compression technique.

4.3 Effects of Transfer Overlapping
Both OpenCL and CUDA support a unified address space

for host memory and GPU device memory. The GPU ker-
nels can directly access the data stored in the pinned host
memory. No explicit PCIe data transfer is needed. We use
transfer overlapping to refer to this technique.

The performance benefits of utilizing transfer overlapping
come from two aspects: the increased PCIe transfer band-
width from pageable memory to pinned memory, and the
overlapping between PCIe transfer and kernel execution.

To examine its impact on query performance, we pin the
host memory that is used to store the data from fact table.
Generally there are two reasons for this. First, the host
resident data should be accessed in a coalesced way to fully
utilize the PCIe bandwidth. Second, the size of fact table is
much larger than the dimension table and most of the PCIe
transfer time is spent on transferring data from fact table.

We compare the performance of SSBM queries with trans-
fer overlapping with the baseline. The performance speedup
is shown in Figure 6(b). Since the PCIe transfer operations
become implicit with transfer overlapping, we only present
the speedup of the total execution time.

For queries in flight 1, the performance doesn’t improve.
This is because some columns from fact tables are accessed
more than one time by the kernel. In this case, the relatively
low PCIe bandwidth compared to the bandwidth of GPU de-
vice memory will counteract the benefits of the overlapping
of kernel execution and PCIe data transfer.

When data are accessed only once through PCIe bus, as
for queries in flight 2 - 4, query performance will improve.

821

 0

 1

 2

 3

 4

 5

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Sp
ee

du
p

Transfer
Kernel
Overall

(a) Speedup of data compression

 0

 0.5

 1

 1.5

 2

 2.5

 3

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Sp
ee

du
p

Overall

(b) Speedup of transfer overlapping

 0

 0.5

 1

 1.5

 2

 2.5

 3

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Sp
ee

du
p

Transfer
Kernel
Overall

(c) Speedup of invisible join

Figure 6: Effects of different software optimization techniques

As the performance gains mainly come from the sequential
access of fact table columns, the more time spent on these
operations, the more performance gains the query will get.
So queries with low selectivities, and with more columns
from fact table are more likely to benefit from transfer over-
lapping, such as Q2.2 to Q2.3 and Q3.2 to Q3.4. Increased
selectivity, and more projected columns from dimension ta-
bles will increase the kernel time than spent on hash prob-
ing and accessing of data from dimension tables that cannot
benefit from this technique because of their random access
pattern, as for the rest queries.

4.4 Effects of Invisible Join
Data compression and transfer overlapping can improve

the performance of a wide range of queries. However, they
are not effective for queries dominated by random accesses
to data in the dimension tables, like Q3.1. Invisible join is
an optimization technique that can help improve the perfor-
mance of this kind of queries.

Invisible join was proposed in [8] to improve the perfor-
mance of star schema joins in CPU environments. It rewrites
the foreign key joins into predicates on fact table, which
can be evaluated at the same time before generating the
final results. One benefit of this technique is that the num-
ber of random accesses to dimension tables can be greatly
reduced. When rewriting the joins, a between-predicate-
rewriting technique can be utilized to transform the opera-
tion of probing the hash table into selection operations on
foreign key columns in the fact table if the primary keys lie
in a continuous value range.

Currently our query engine doesn’t support rewriting the
joins automatically at run time. In this case, we manually
rewrite all the queries before examining their performance.
To make the primary keys lie in a continuous range, all the
dimension tables are sorted on corresponding columns. Af-
ter query rewritten, selection on dimension table and hash
join operation are completely replaced with selections on the
fact table for queries in query flight 1. For the rest queries,
selection on dimension tables and hash probing operations
are replaced with selections on the fact table.

Figure 6(c) shows the speedup of PCIe data transfer, ker-
nel execution and overall performance when enabling invis-
ible join. Since invisible join doesn’t change the amount of
transferred data from fact table, it has no impact on PCIe
transfer time.

Whether the kernel execution time of a query can bene-
fit from this optimization depends on whether its execution
time is dominated by hash probing operation or the oper-
ation on data from dimension table. The performance of
queries with high selectivities, and with operations on di-
mension table data are more likely to be improved, as is
the case for Q3.1. On the other hand, for queries with low

selectivities and have multiple foreign key joins, they can-
not benefit much from invisible join technique. In the worst
case, the kernel execution time even degrades, for example,
for Q3.3 and Q3.4. This is because these queries have a
very limited number of accesses to dimension tables. In this
case, the benefit brought by invisible join is so small that
it cannot counteract the increased kernel time by selection
operations on the foreign key columns. For selection dom-
inated queries, as is the case for queries in flight 1, their
kernel execution times remain almost the same.

To apply the invisible join technique, both dimension ta-
bles and foreign keys in fact table need to be reorganized
which may be very costly for general purpose warehousing
systems. Therefore, we do not include invisible join tech-
nique in our following performance studies.

5. PERFORMANCE COMPARISON
Having studied query execution behaviors and software

optimization effects on GPU, we are in a position to com-
pare our GPU query engine with the CPU counterpart under
different conditions. Our purpose is to reveal the advantages
and disadvantages of the GPU engine, as well as the suport
and limitations of the current GPU programming environ-
ments. Specifically, we will answer the following questions:

• Under what conditions will GPU significantly outper-
form CPU for processing warehousing queries? (Sec-
tion 5.1)

• Which programming model is more suitable and more
supportive for programming warehousing queries on
GPU, CUDA or OpenCL? (Section 5.2.1)

• How do different GPU hardwares and their support-
ing systems affect query performance when their basic
harware parameters are similar? (Section 5.2.2)

• With the functional portability of OpenCL, how will
the OpenCL query engine that is designed for GPU
perform compared to MonetDB? (Section 5.3)

5.1 Comparisons of GPU and CPU

• The GPU query engine outperforms the CPU query
engine for processing all SSBM queries. However, the
performance speedup varies significantly depending on
query characteristics and system setups.

• The key to obtain high query execution performance
on GPU is to prepare the data in the pinned memory,
where 4.5x-6.5x speedups can be observed for certain
queries. When data are in the pageable memory, the
speedups are only 1.2x-2.6x for all SSBM queries.

822

 0

 200

 400

 600

 800

 1000

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Ex
ec

ut
ion

 T
im

e
(m

s)

SSBM on Intel Core i7
SSBM on 680 pinned memory
SSBM on 680 pageable memory

Figure 7: SSBM performance comparison. For the perfor-
mance on Intel Core i7, the performance of Q4.1 and Q4.2
are the performance on OpenCL engine while the rest are
the performance on MonetDB.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Sp
ee

du
p

Pinned
Pageable

Figure 8: SSBM performance speedup

• GPU has limited speedups (around 2x) for queries: 1)
dominated by selection operations, and 2) dominated
by random accesses to dimension tables caused by high
join selectivities and projected columns from dimension
tables.

Our comparisons are based on the following two kinds of
performance numbers. First, the GPU performance is the
performance of the CUDA engine on NVIDIA GTX 680.
Second, the CPU performance for each query is the bet-
ter one between the performance of MonetDB and of our
OpenCL query engine on Intel Core i7. We conduct the ex-
periments under two conditions: 1) data are available in the
pinned memory; and 2) data are available in the pageable
memory. Figure 7 shows the execution time of SSBM queries
and Figure 8 shows the performance speedup of GPU over
CPU.

5.1.1 Data are available in the pinned memory
When data are available in the pinned memory, both the

data compression technique and the transfer overlapping
technique can be utilized to accelerate the query execution
on GPU. As can be seen in Figure 8, GPU outperforms CPU
in all SSBM queries. However, the performance speedup
varies significantly. The performance differences come from
the differences in query characteristics. Whether we can
gain significant speedup when processing query on GPU de-
pends on whether the query can fully benefit from different
software optimization techniques and whether it can utilize
the GPU hardware effectively. We divide the performance
speedup into two categories.

Category of Low speedup. For Q1.1 to Q1.3 and Q3.1,
processing on GPU can only gain around 2x speedup, as is
shown in Figure 8. Queries in flight 1 are dominated by
selection operations. They cannot benefit from the trans-
fer overlapping technique. Although data compression tech-
nique can reduce the PCIe transfer overhead, the kernel ex-
ecution performance cannot be improved. Since selection
doesn’t involve much computation, processing on GPU will

not have significant performance speedup. Q3.1 is domi-
nated by the random accesses of data from dimension tables.
It cannot benefit much from both the data compression tech-
nique and the transfer overlapping technique. Furthermore,
the random accesses cannot effectively utilize the bandwidth
of GPU device memory. In this case, we cannot gain signif-
icant performance speedup.

Category of High speedup. For Q2.1 to Q2.3, Q3.2
to Q3.4 and Q4.1 to Q4.3, processing on GPU can gain a
4.5x to 6.5x speedup , as is shown in Figure 8. The ker-
nel execution time of Q2.1 to Q2.3 are dominated by the
hash probing operation of the join operation. It can benefit
from both the data compression technique and the transfer
overlapping technique. The kernel execution time of Q3.2
to Q3.4 and Q4.1 to Q4.3 are dominated by both the hash
probing operation and the projection of join results from the
fact table. The projection of join results can benefit from the
transfer overlapping technique. In this case, queries which
are dominated by hash probing operation and result pro-
jection operation from the fact table can gain a significant
speedup when processed on GPU.

5.1.2 Data are available in the pageable memory
When data are available in the pageable memory, only

data compression technique can be utilized to accelerate the
query execution on GPU. As can be seen in Figure 8, the per-
formance speedup degrades greatly compared to data in the
pinned memory. Most SSBM queries only gain a speedup of
around 2x. For Q1.2 and Q1.3, the performance speedups
are only 1.15x. The main reason is that the PCIe trans-
fer bandwidth cannot be fully utilized when data are in
the pageable memory. The benefits of GPU’s high mem-
ory bandwidth and high computational power are mostly
counteracted by the high PCIe transfer overhead.

5.2 Impacts of programming models and GPU
hardwares

• From both the performance and programming perspec-
tive, CUDA is more suitable and supportive for pro-
cessing warehousing queries.

• Without using the pinned memory, the NVIDIA OpenCL
query engine can have similar performance with the
CUDA engine. However, NVIDIA OpenCL haven’t
well supported pinned host memory.

• The performance slowdown when porting NVIDIA CUDA
(on GTX 680) to AMD OpenCL (on 7970) is not caused
by the differences in hardware efficiencies (PCIe trans-
fers time or kernel executions), but by AMD’s OpenCL
implementation for GPU memory management.

• The major obstacle to OpenCL portability is not per-
formance slowdown of GPU kernel executions but sub-
tle differences of vendor implementations for the OpenCL
specification.

5.2.1 Comparisons of CUDA and NVIDIA OpenCL
To compare these two programming models, we focus on

the NVIDIA GTX 680 which can run both CUDA programs
and OpenCL programs.

823

 0

 0.5

 1

 1.5

 2

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Sp
ee

du
p

Kernel
Transfer
Other

Figure 9: Normalized OpenCL performance over CUDA

 0

 50

 100

 150

 200

 250

 300

 350

 400

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Ex
ec

ut
ion

 T
im

e
(m

s)

NVIDIA 680
AMD 7970

Figure 10: NVIDIA Versus AMD

Programming differences. Since the design of CUDA
and OpenCL share many concepts in common, the program-
ming efforts are similar for warehousing queries. However,
NVIDIA’s OpenCL implementation makes it impossible to
apply all software optimization techniques when running
OpenCL engine on NVIDIA GPU. The problem is NVIDIA
OpenCL doesn’t well support pinned host memory. In the
experiments we find that on NVIDIA GPU, the sum of regu-
lar allocated device memory and the memory allocated with
flag CL MEM ALLOCATE HOST PTR, which should be
allocated in pinned host memory [5], cannot exceed the to-
tal size of GPU device memory. In this case, we cannot
prepare the data in the pinned memory before query execu-
tion because of the large size of the data and can only utilize
the data compression technique.

Performance differences. Considering the above lim-
itation, we compare the query performance with pageable
host memory and data compression technique. The CUDA
query engine and the OpenCL query engine use the same
thread configurations and the same algorithms. We break-
down the execution time into PCIe transfer (Transfer), ker-
nel execution (Kernel), and other (Other) which mainly in-
cludes allocating and releasing GPU device memory and
other operations on CPU. We normalize the OpenCL per-
formance on CUDA for each part.

As is shown in Figure 9, warehousing queries implemented
in CUDA and in OpenCL have almost the same perfor-
mance. This differs from the results of the HPC applica-
tions where a significant performance difference exists when
simply porting the CUDA implementation into OpenCL im-
plementation [15]. The difference is mainly determined by
the characteristics of the warehousing workloads, the per-
formance of which are not bounded by computing but by
PCIe data transfers and memory accesses. First, both pro-
gramming models don’t affect the PCIe transfer bandwidth.
Second, both programming models can well support GPU
memory hierarchy. The computation-oriented optimization
techniques from CUDA compiler as reported in [15] doesn’t
apply to warehousing workloads.

5.2.2 Comparisons of NVIDIA and AMD GPUs
We compare the performance of SSBM queries on the

CUDA query engine on NVIDIA GTX 680 with the per-
formance of SSBM queries on the OpenCL query engine on

 0

 2

 4

 6

 8

 10

 12

 14

 16

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Sp
ee

du
p

Transfer
Kernel
Other

Figure 11: Normalized SSBM performance on AMD GPU

AMD HD 7970. Both engines have been optimized with
the data compression technique and the transfer overlap-
ping technique. The results are shown in Figure 10.

As can be seen in Figure 10, SSBM queries on NVIDIA
680 outperforms SSBM queries on AMD 7970. The per-
formance gap is almost constant among all SSBM queries.
To understand the performance differences, we remove the
transfer overlapping technique from both engines so that we
can breakdown the execution time. We breakdown the ex-
ecution time into PCIe transfer (Transfer), GPU kernel ex-
ecution (Kernel), and other (Other) which mainly includes
allocating and releasing GPU device memory and other op-
erations on CPU. For each part, we normalize the perfor-
mance on the performance of AMD GPU. The results are
shown in Figure 11.

As is shown in Figure 11, these two GPUs have compara-
ble performance for PCIe data transfer and kernel execution.
Since these two GPUs have comparable hardwares, we ex-
pect that they should have similar performance for SSBM
queries. Considering the Other time, AMD GPU has a much
longer execution time. To more clearly explain why the CPU
time is much longer on AMD GPU, we use a simple data
transfer process to illustrate where the time is spent.

We first allocate a buffer from GPU device memory. Then
we transfer the data to the buffer. We measure the trans-
fer time in two different ways. In the first way the total
time is recoded as the difference between the time when
we launch the PCIe transfer and the time when the trans-
fer is finished, both of which are measure using wall clock
time. In the second way, we measure the transfer time us-
ing OpenCL events. When we examine these two transfer
times, the one that is measured in the second way is what we
expect based on the measurements of PCIe transfer band-
width. However, the one that is measured in the first way is
much longer than the one measured in the second way. This
attributes to the overall performance gap between process-
ing SSBM queries on NVIDIA and AMD. The reason may
relate to AMD OpenCL’s implementation of memory object
management. When allocating a memory from GPU device
memory, AMD driver defers the allocation until the memory
object is first used. When the memory initialization cost is
high, the performance suffers.

5.3 Comparisons of OpenCL query engine on
CPU with MonetDB

• Porting the OpenCL query engine from GPUs to CPU
can work well by changing each thread’s memory access
pattern and thread configurations.

• MonetDB outperforms the OpenCL query engine for
processing selection dominated queries and join domi-
nated queries with low selectivities.

824

 0

 200

 400

 600

 800

 1000

 1200

 1400

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Ex
ec

ut
ion

 T
im

e
(m

s)

OpenCL
MonetDB

Figure 12: SSBM performance comparison on CPU

• The OpenCL query engine has comparable or better
performance for join dominated queries with high se-
lectivities.

Our OpenCL query engine can work on both CPUs and
GPUs. Studying the performance of the OpenCL query
engine on CPUs will help partition the workload among
CPUs and GPUs. We compare the performance of the
SSBM queries on the OpenCL query engines with the per-
formance on MonetDB. For the OpenCL query engine, we
make changes to our GPU based algorithms to adapt to CPU
architectures. We change the access pattern of each thread
when running on CPU. Each thread will access a continuous
range of the data instead of accessing the data in a stride
way. All other algorithms remain the same. The execution
time is shown in Figure 12.

MonetDB significantly outperforms our OpenCL query
engine on CPU for selection dominated queries, such as Q1.1
to Q1.3. The performance gap is caused by the inefficiency of
GPU algorithms when executed on CPU. In the implemen-
tation of GPU algorithms for selection operator, the where
predicates need to be evaluated and the number of results
must be calculated before generating selection results. In
this case, when there are duplicated columns in the where
predicates and the projected columns as is the case for Q1.1
to Q1.3 in SSBM, the GPU selection algorithm will scan
the column twice which is not necessary when executed on
CPU. This will increase the execution time of our OpenCL
query engine when executing on CPU.

The performance gap between our OpenCL query engine
on CPU and MonetDB for join dominated queries is deter-
mined by join selectivities. We observe that the performance
advantage of MonetDB over our OpenCL query engine de-
creases as the join selectivity increases. For example, for
Q3.2 to Q3.4 which have very low selectivities, MonetDB is
more than 2x faster compared to our OpenCL engine. How-
ever, for Q4.1 and Q4.2, which have high selectivities, our
OpenCL engine even outperforms MonetDB. This can be
further proved by Q2.1 to Q2.3, as is shown in Figure 12.
The performance gap between our OpenCL query engine
and MonetDB increases as the query selectivity decreases
from 0.008 to 0.00016. We believe this is because MonetDB
can effectively utilize CPU cache when join selectivities are
low. For our OpenCL query engine on CPU, optimizing for
the CPU cache is our future work.

6. MODEL AND PREDICTION
In this section we first introduce our modeling method-

ology and then show a case study of modeling join. After
presenting the model accuracy evaluation, we use the model
to predict the impact of GPU hardware advancements on
warehousing query performance.

6.1 Model Methodology

Our model focuses on the architecture that GPU is con-
nected with CPU through a PCIe bus. Data must be trans-
ferred to the device memory before the query executes and
results will be transferred back to the host memory after the
query finishes. We assume that data are already available in
the host memory and are laid out in a column-store format.
When estimating the query execution cost, some statistics
like data size and selectivity of the tables are needed. We
assume that these statistics are available and can be directly
used by our model.

The total cost of executing a query on GPU consists of
PCIe data transfer cost and kernel execution cost. While
the PCIe data transfer cost can be estimated based on the
available table statistics, the key is to estimate the query’s
kernel execution cost. As we have already discussed, the per-
formance of data warehousing queries on GPUs are mainly
bounded GPU device memory accesses. Thus we focus on
the estimation of device memory access cost and use device
memory access time as the metric to represent the query
kernel execution cost.

The memory access time of a given query can be calcu-
lated as the amount of actual accessed data in GPU device
memory divided by the bandwidth of GPU device memory.
In our model we view the GPU device memory as a group of
continuous memory segments, each of which is the basic ac-
cess unit of the device memory. We use the concept thread
group to represent the basic threads management unit in
GPU, which is similar to NVIDIA’s warp and AMD’s wave-
front. Threads in the same thread group execute in lockstep
and when they need to access the device memory, the num-
ber of needed memory segments will be calculated and then
the corresponding segments are fetched to the thread group.

With the above abstraction of GPU device, we can esti-
mate the number of actual device memory transactions and
calculate the amount of accessed data. We don’t distin-
guish between the coalesced access and uncoalesced access
to device memory because the memory bus utilization is
determined by the number of actual memory transactions,
not by whether the access can be coalesced or not. For a
given operator, the estimation of the number of memory
transactions depends on the implementation of the query
operator and the distribution of the data. The estima-
tion of the cost of a complex query is based on the esti-
mation of the cost of each single query operator. The to-
tal cost can be calculated as the sum of the costs of all
the single query operators. In the next section, we model
the join operator of our query engine as a case study for
our methodology. Due to limited page space, the models
and evaluation for other query operators are presented in
http://www.cse.ohio-state.edu/~yuanyu/report.html .

6.2 Cost Model for Join
The notations related to join query are list as follows,

while other used notations are listed in Table 5.

r - join selectivity,
||R|| - cardinality of the fact table R,
||S|| - cardinality of the dimension table S,
n - number of projected columns from fact table,
m - number of projected columns from dimension table,
Ri - the attribute size of the ith projected column from fact
table, and

825

Table 5: Notations for the Cost Model

Notations Descriptions
Br The read bandwidth of the device memory
Bw The write bandwidth of the device memory
Bi The transfer bandwidth from host memory to device memory
Bo The transfer bandwidth from device memory to host memory
Cr The read segment size of the device memory
Cw The write segment size of the device memory
Si The size of input data
So The size of result
W The number of threads in a thread group
Ti The device memory access cost of the ith step to finish the query on GPU
Tt The data transfer cost

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
 T

im
e

 (
m

s)

Actual Transfer
Actual Kernel
Estimated Transfer
Estimated Kernel

(a) Selectivity (%)

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
 T

im
e

 (
m

s)

Actual Transfer
Actual Kernel
Estimated Transfer
Estimated Kernel

(b) # of fact columns

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
 T

im
e

 (
m

s)

Actual Transfer
Actual Kernel
Estimated Transfer
Estimated Kernel

(c) # of dim columns

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9

E
xe

cu
tio

n
 T

im
e

 (
m

s)

Actual Transfer
Actual Kernel
Estimated Transfer
Estimated Kernel

(d) Dim column width

Figure 13: Evaluate join model for different query characteristics
Si - the attribute size of the ith projected column from di-
mension table.

When calculate the join cost, we assume the join keys are
4-byte integers and are not projected by the join operator,
as is the case for all SSBM queries.

When building the hash table, the primary keys of the
dimension table are scanned twice. The first scan is to cal-
culate the start output position for each hash key. The sec-
ond scan is to write the primary keys to the hash table with
the tuple ids. While primary keys are sequentially scanned,
writes to the hash table can be considered random. Then
the approximate cost of memory access is:

T1 = 2 ×
||S||

W
× ⌈

4 × W

Cr

⌉ ×
Cr

Br

+||S|| × ⌈
4 × 2

Cw

⌉ ×
Cw

Bw

.

When probing the hash table, the foreign keys of the fact
table are sequentially scanned. For each foreign key, its hash
value is calculated and the number of hash entries for the
corresponding bucket is read. If the number is greater than
0, the position and the actual value of the ids of the corre-
sponding dimension tuple is read. The filter is sequentially
written either with the ids of the dimension table or 0. The
scan of foreign keys, and the read and write of filter are
sequential, while other requests can be considered random.
Thus the approximate memory access cost is estimated as:

T2 = (
||R||

W
× ⌈

4 × W

Cr

⌉ + ||R|| + 3 × ||R|| × r × ⌈
4

Cr

⌉) ×
Cr

Br

+ ⌈
4 × W

Cw

⌉ ×
||R||

W
×

Cw

Bw

.

When projecting the join results, the filter is sequentially
scanned. The read of the fact table depends on the data
distribution of the foreign keys while the read of the dimen-
sion table can be considered as a total random read. We
consider the worst case that the foreign keys are uniformly

-20

-15

-10

-5

 0

 5

 10

 15

 20

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Er
ro

r R
at

e(
%

)

Kernel
Transfer

Figure 14: Error rate of estimated performance on 680.

distributed. Then the approximate cost of memory access
is calculated as:

T3 =

n
X

i=1

(⌈
4 × W

Cr

⌉ ×
||R||

W
+ ⌈

Ri

4
⌉ ×

||R||

W
) ×

Cr

Br

+ (
m

X

i=1

⌈
4 × W

Cr

⌉ ×
||R||

W
+ ||R|| × r ×

m
X

i=1

⌈
Si

Cr

⌉) ×
Cr

Br

+ ||R|| × r × (

n
X

i=1

⌈
Ri

4
⌉ +

m
X

i=1

⌈
Si

4
⌉) ×

Cw

Bw

.

The input data size and the result size can be calculated
as:

Si = ||R|| ×

n
X

i=1

Ri + ||S|| ×

m
X

i=1

Si + 4 × (||R|| + ||S||).

So = (||R|| ×
n

X

i=1

Ri + ||R|| ×
m

X

i=1

Si) × r.

The data transfer cost can be calculated as:

Tt =
Si

Bi

+
So

Bo

.

6.3 Model Evaluation
We evaluate our cost model both for the join operator and

for the SSBM queries. We use the NVIDIA GTX 680 with
pinned host memory as the platform. For join operator, we

826

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

GTX480
GTX580
GTX680

Figure 15: Normalized kernel execution time on GTX 480

 0

 50

 100

 150

 200

 250

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Ex
ec

ut
ion

 T
im

e
(m

s)

Base
Device BW x2
PCIe x2

Figure 16: Estimated SSBM performance with different
GPU hardware configurations
compare the estimated and actual performance of join oper-
ator under various query characteristics. When evaluating
our model for SSBM queries, we define the error rate as:

error rate =
measured time − estimated time

measured time

Figure 13 and Figure 14 present the evaluation results.
As shown in the figures, the estimated performance are very
close to the actual performance in most cases, which demon-
strates the effectiveness of our cost model. Considering the
differences between the estimated and actual performance,
generally two factors account for this. First, many work ex-
ecuted on GPU need to be initiated by CPU. In this case in-
formation and some data must be transferred between CPU
and GPU. Second, GPU is inefficient in handling irregular
data accesses. For example, in GTX 680, the GPU memory
transaction must be aligned on 32. When threads inside the
warp issue unaligned memory access requests, more memory
transactions will be generated even if the threads access the
data in a coalesced manner. In this way, it is difficult to
accurately estimate the memory access, which can be seen
from Q3.1 and Q4.1 in Figure 14.

6.4 Impacts of hardware advancement
To study the impact of GPU hardware on query per-

formance, we run SSBM queries on three generations of
NVIDIA GPUs: GTX 480, 580 and 680 with pinned mem-
ory. We focus on the kernel execution time which is deter-
mined by the GPU internal architectures. We normalize the
kernel execution time on the kernel execution time of SSBM
queries running on GTX 480. The results are shown in Fig-
ure 15. As can be seen, the differences of kernel execution
time are around 10% from most queries when running on
these three GPUs. Compared to the improvement of GPU’s
peak performance (more than 2 times from GTX 480 to 680),
the performance gain is very small. The reason is that the
performance of warehousing queries are mainly bounded by
GPU device memory accesses. They cannot benefit much
from the increased computational power.

To predict the possible impact of the advancement of GPU
hardwares on query performance, we use our model, which
has been proved effective in estimating query performance
on GPUs, to estimate the query performance with different
GPU hardware configurations. We double PCIe transfer

bandwidth and GPU device memory bandwidth indepen-
dently based on GTX 680’s hardware parameters to see how
the overall SSBM performance change. We use the perfor-
mance of SSBM queries on GTX 680 as the baseline.

The result is shown in Figure 16. Doubling the PCIe
transfer bandwidth is more effective than doubling the de-
vice bandwidth for most queries. as most queries are still
dominated by PCIe data transfer. But as the PCIe trans-
fer bandwidth increases, the query execution time spent
on PCIe transfer and kernel execution become comparable.
However, in the real world scenario, the bandwidth of GPU
device memory grows at a much slower pace compared to the
improvement of its peak performance. In this case, the per-
formance of data warehouse queries is not likely to benefit
much from the advancement of GPU hardwares.

7. OTHER RELATED WORK
There are already a set of research papers on optimizing

various database operations on GPUs [12, 18, 20, 28, 17, 29,
16, 30, 21, 19, 23, 32, 10, 33, 25]. Our unique contribution in
this paper is presenting a comprehensive study for complex
data warehousing queries with different software optimiza-
tions and hardware configurations. Several existing research
work are related to our software optimization study. Data
compression on GPU has been studied in [16], and transfer
overlapping has been studied in [23, 28]. Compared to these
work, our work focus on how these techniques can optimize
different types of complex queries.

A cost model for GPU query processing was proposed
in [19]. The essential difference between it and our model
is how to estimate the time spent on GPU device mem-
ory access, which is the most important step to accurately
estimate the cost of GPU query processing. The previous
model assumes a fixed uncoalesced bandwidth that is ap-
plied to all different uncoalesced memory accesses. However,
this assumption is not consistent with the current NVIDIA
GPU where uncoalesced accesses with certain patterns can
have a 100% memory bus utilization [3]. Our model takes a
hardware feature oriented methodlogy to estimate the acu-
tal memory transations in GPU device memory, which can
better estimate the GPU memory bus utilization.

8. CONCLUSIONS
We have comprehensively evaluated GPU query execu-

tion performance with detailed analysis and comparisons be-
tween GPUs and CPU. We conclude that the reasons why
GPUs have not been adopted in data warehouse systems in-
clude: 1) GPUs only significantly outperform CPU for pro-
cessing certain kinds of queries when data are available in
the pinned memory; 2) considering both performance and
portability, current programming models are not support-
ive enough for warehousing workloads; and 3) the perfor-
mance of warehousing queries doesn’t increase correspond-
ingly with the rapid advancement of GPU hardwares.

However, our analysis and comparisons give two clear
R&D directions for adopting GPUs in the fittest way. First,
a CPU/GPU hybrid query engine can maximze the hard-
ware combination efficiency with task scheduling either in
the query level or in the operator level. Second, GPUs
should run query engine for the purpose of real-time busi-
ness intelligence analytics for main memory database sys-
tems with minimal interference for transactions executed on

827

CPUs. Furthermore, the role of GPUs could also change
considering the potential NVIDIA GPUDirect technique,
which allows more efficient communication among GPU de-
vices and storage devices. An important future research
topic is to study how to make GPUs directly process data
stored in the permanent storage medias.

The query engine is open to the public and can be accessed
at http://code.google.com/p/gpudb/.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive

comments. This work was supported in part by the National
Science Foundation under grants of CNS-0834393 and OCI-
1147522.

10. REFERENCES
[1] Amd accelerated parallel processing opencl

programming guide (v2.8). http://developer.amd.
com/download/AMD_Accelerated_Parallel_

Processing_OpenCL_Programming_Guide.pdf.

[2] Cuda c programming guide 5.0. http://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[3] Global memory usage and strategy.
http://developer.download.nvidia.com/CUDA/

training/cuda_webinars_GlobalMemory.pdf.

[4] Opencl. http://www.khronos.org/opencl.

[5] Opencl programming guide for the cuda architecture.
http:

//www.nvidia.com/content/cudazone/download/

OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf.

[6] D. Abadi, D. Myers, D. DeWitt, and S. Madden.
Materialization strategies in a column-oriented dbms.
In ICDE, pages 466–475, April 2007.

[7] D. J. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented
database systems. In SIGMOD Conference, 2006.

[8] D. J. Abadi, S. Madden, and N. Hachem.
Column-stores vs. row-stores: how different are they
really? In SIGMOD Conference, pages 967–980, 2008.

[9] D. A. Alcantara, A. Sharf, F. Abbasinejad,
S. Sengupta, M. Mitzenmacher, J. D. Owens, and
N. Amenta. Real-time parallel hashing on the gpu.
ACM Trans. Graph., 28(5), 2009.

[10] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang,
X. Liu, J. Liu, and S. Lin. Efficient parallel lists
intersection and index compression algorithms using
graphics processing units. PVLDB, 2011.

[11] C. Balkesen, J. Teubner, G. Alonso, and T. Ozsu.
Main-memory hash joins on multi-core cpus: Tuning
to the underlying hardware. In ICDE, 2013.

[12] N. Bandi, C. Sun, A. El Abbadi, and D. Agrawal.
Hardware acceleration in commercial databases: A
case study of spatial operations. In VLDB, 2004.

[13] S. Blanas, Y. Li, and J. Patel. Design and evaluation
of main memory hash join algorithms for multi-core
cpus. In SIGMOD, pages 37–48, 2011.

[14] G. Candea, N. Polyzotis, and R. Vingralek. A scalable,
predictable join operator for highly concurrent data
warehouses. PVLDB, 2(1):277–288, 2009.

[15] P. Du, R. Weber, P. Luszczek, S. Tomov, G. D.
Peterson, and J. Dongarra. From cuda to opencl:

Towards a performance-portable solution for
multi-platform gpu programming. Parallel Computing,
38(8):391–407, 2012.

[16] W. Fang, B. He, and Q. Luo. Database compression
on graphics processors. In VLDB, 2010.

[17] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
Gputerasort: high performance graphics co-processor
sorting for large database management. In SIGMOD,
2006.

[18] N. K. Govindaraju, B. Lloyd, W. Wang, M. C. Lin,
and D. Manocha. Fast computation of database
operations using graphics processors. In SIGMOD
Conference, 2004.

[19] B. He, M. Liu, K. Yang, R. Fang, N. Govindaraju,
Q. Luo, and P. Sander. Relational query coprocessing
on graphics processors. ACM Transactions on
Database Systems, 34(4), December 2009.

[20] B. He, K. Yang, R. Fang, M. Liu, N. Govindaraju,
Q. Luo, and P. Sander. Relational joins on graphics
processors. In SIGMOD, pages 511–524, 2008.

[21] B. He and J. X. Yu. High-throughput transaction
executions on graphics processors. PVLDB, 2011.

[22] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[23] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk.
Gpu join processing revisited. In DaMoN, 2012.

[24] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and
X. Zhang. Ysmart: Yet another sql-to-mapreduce
translator. In ICDCS, pages 25–36, 2011.

[25] M. D. Lieberman, J. Sankaranarayanan, and
H. Samet. A fast similarity join algorithm using
graphics processing units. In ICDE, 2008.

[26] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[27] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. Star
schema benchmark.
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF.

[28] H. Pirk, S. Manegold, and M. Kersten. Accelerating
foreign-key joins using asymmetric memory channels.
In ADMS, 2011.

[29] N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee,
D. Kim, and P. Dubey. Fast sort on cpus and gpus: a
case for bandwidth oblivious simd sort. In SIGMOD,
2010.

[30] E. Sitaridi and K. Ross. Ameliorating memory
contention of olap operators on gpu processors. In
DaMoN, pages 39–47, 2012.

[31] M. Stonebraker, C. Bear, U. Çetintemel,
M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos,
J. Lifter, J. Rogers, and S. B. Zdonik. One size fits
all? part 2: Benchmarking studies. In CIDR, 2007.

[32] K. Wang, Y. Huai, R. Lee, F. Wang, X. Zhang, and
J. H. Saltz. Accelerating pathology image data
cross-comparison on cpu-gpu hybrid systems. PVLDB,
5(11):1543–1554, 2012.

[33] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili.
Kernel weaver: Automatically fusing database
primitives for efficient gpu computation. In
MICRO-45, 2012.

828

