
Extraction and Integration of
Partially Overlapping Web Sources

Mirko Bronzi1, Valter Crescenzi1, Paolo Merialdo1, Paolo Papotti2
1Università degli Studi Roma Tre, Rome, Italy

2Qatar Computing Research Institute, Doha, Qatar

{bronzi, crescenz, merialdo, papotti}@dia.uniroma3.it

ABSTRACT
We present an unsupervised approach for harvesting the data ex-
posed by a set of structured and partially overlapping data-intensive
web sources. Our proposal comes within a formal framework tack-
ling two problems: the data extraction problem, to generate ex-
traction rules based on the input websites, and the data integration
problem, to integrate the extracted data in a unified schema. We
introduce an original algorithm, WEIR, to solve the stated problems
and formally prove its correctness. WEIR leverages the overlap-
ping data among sources to make better decisions both in the data
extraction (by pruning rules that do not lead to redundant informa-
tion) and in the data integration (by reflecting local properties of a
source over the mediated schema). Along the way, we characterize
the amount of redundancy needed by our algorithm to produce a
solution, and present experimental results to show the benefits of
our approach with respect to existing solutions.

1. INTRODUCTION
It is well recognized that the Web is a valuable source of infor-

mation and that making use of its data is an incredible opportunity
to create knowledge with both scientific and commercial implica-
tions. Although the impressive number of sources and domains
on the Web has given rise to several research proposals for auto-
matically extracting and integrating web data, so far extraction and
integration problems have been mainly tackled separately: many
researchers have proposed techniques for extracting data from the
Web [12], while others have concentrated their solutions on inte-
grating the extracted data [5].

Information extraction systems, such as ReVerb [21], tackle the
two issues synergically and aim at extracting and integrating huge
amounts of data from the Web. However, these systems concentrate
on textual corpora: they exploit lexical-syntactic patterns, which
are not suitable for extracting data embedded in HTML pages, and
they cannot handle generic tuples of more than two attributes as
they only extract binary relations.

This paper proposes a novel technique for the automatic extrac-
tion and integration of data from large websites that publish de-
tail pages about objects of vertical domains. As an example con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 10
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

Figure 1: Detail pages of stock quotes from the Reuters and
Google finance websites.

sider Figure 1, which presents pages containing stock quote details.
Given a domain of interest, large sets of detail pages collected from
multiple websites can be considered as data-intensive information
sources, with striking characteristics. As observed in [19] and [27],
these sources partially overlap, i.e., they provide redundant infor-
mation both at the schema level (some attributes are published by
several sources), and at the instance level (some objects are pub-
lished by several sources). In addition, pages from the same collec-
tion share a common structure, as they are generated by scripts that
encode data into a local HTML template. Also, we observe that it
is rather easy to collect detail pages from these websites by means
of a crawler based on set-expansion techniques (e.g., [6]) for the
surface Web, or by using form-filling techniques (e.g., [28]) for the
hidden Web.

The process of extracting and integrating data-intensive sources
can be articulated as follows: (i) transform the set of web pages
from each source into a relation by creating web wrappers, i.e.,
data extraction programs; (ii) integrate these relations by defin-
ing semantic mappings between the data exposed by the wrappers;
(iii) create a mediated schema starting from the mappings and as-
sign a global label (a meaningful name) to each mapping.

Although each task is addressed by several proposals, consider-
able human effort is still needed in each step of the process. As re-
lated to data extraction, in order to craft production-level wrappers,
supervised approaches [18, 22] require annotated pages, whereas
unsupervised ones [3, 16] cannot provide accurate results without
external feedback. Despite recent results [5], the schema match-
ing problem in our context is challenging because web data are

805

inherently imprecise, and sources may provide conflicting infor-
mation for the same objects [27]. Similar issues apply to schema
integration approaches based on clustering, where even a manu-
ally tuned algorithm cannot be applied to every scenario. These
technical challenges are reflected in systems designed for web data
extraction and integration [9, 23, 24, 30], where ad-hoc user input
(such as annotated pages) is required to achieve acceptable results.

Our solution aims at overcoming limits of existing techniques
by leveraging unique characteristics of data-intensive information
sources. Our approach builds on a generative model that assumes
the existence of a hidden abstract relation. According to our model,
each source publishes the detail pages by embedding into a local
HTML template a partial view over the same abstract relation, pos-
sibly introducing imprecise values. From this perspective, the data
extraction and integration issues can be seen as the problem of in-
verting the generative process, i.e., discovering the abstract relation
given the detail pages.

Given an input set sources, a set of candidate wrappers is au-
tomatically generated for each source. Rather than choosing the
output wrappers based only on the local regularities of each source,
as done by traditional unsupervised data-extraction approaches, our
solution relies on the redundancy of data extracted among different
overlapping sources. The main intuition is that a correct wrapper
will most likely extract data that match with those extracted from
at least one other correct wrapper from a different source.

Data redundancy is also exploited by an instance-based cluster-
ing algorithm to define the mappings among the data extracted from
different sources, as done via traditional integration approaches.
However, we propose an original algorithm that relies on natural
constraints caught by our generative model in order to automati-
cally create mappings, without any dependency on external infor-
mation, such as thresholds or domain knowledge. Also, our algo-
rithm is able to identify meaningful labels for the mediated schema.

Contributions. The paper makes the following contributions:
(i) we formulate an abstract generative model that characterizes
partially overlapping data-intensive web sources; (ii) based on the
model, we introduce a formal setting to state the data extraction
and integration problem, exploiting the redundancy of informa-
tion among the sources; (iii) we propose an unsupervised algo-
rithm, WEIR (Web-Extraction and Integration of Redundant data),
to solve the stated problem, and formally study its correctness;
(iv) we show robustness and performance of our approach against
alternative solutions in an experimental evaluation with real-world
websites.

Outline. The paper is organized as follows: Section 2 intro-
duces our abstract generative model for partially overlapping web
sources; Section 3 formally states the problem of extracting and in-
tegrating data from these sources. Then, we present our algorithm,
WEIR, to solve the problem: Section 4 faces the integration issue
assuming that the wrappers are correct, and Section 5 discusses
its extension to real wrappers. Section 6 presents an experimental
evaluation: we compare our approach with other proposals, using
pages from real websites and a public dataset. Section 7 discusses
related work and Section 8 concludes the paper.

2. THE GENERATIVE MODEL
We are interested in extracting and integrating information about

an entity of interest, starting from a set of websites publishing detail
pages containing the attribute values of its instances.

In order to formalize our problem, we introduce the abstract gen-
erative model for data-intensive websites depicted in Figure 2. We
can imagine that an abstract relation H provides data about all the
instances of the entity, and that sources generate their detail pages

TICKER PRICE HIGH LOW VOLUME CAP …

AAPL 256.88 259.40 253.35 29,129,032 506B …

CSCO 20.91 21.09 20.72 34,777,673 111.5B …

CAT 60.76 62.42 60.05 7,709,405 56B …

… … … … … …

TICKER VOLUME CAP …

AAPL 29,1M 506B …

CAT 7,7M 56B …

… … …

 : Google

: Reuters : Yahoo!

TICKER HIGH LOW …

AAPL 259.4 253.4 …

CSCO 21.09 20.73 …

… … …

TICKER PRICE VOLUME CAP …

AAPL 256.9 29,129,000 506B …

CSCO 20.91 34,770,000 226B …

… … … …

Figure 2: The abstract generative model: partially overlapping
web sources as the result of a pipeline of operators that embed
views over an abstract relation into HTML templates.

by publishing data taken from H. We call abstract instances the
tuples of the relation H. Each tuple represents a real-world object
of the entity of interest. For example, in the case of the STOCK-
QUOTE entity, the abstract instances ofH model the data about the
Cisco stock quote, the IBM stock quote, and so on. H has a set of
attributes, called abstract attributes, and we writeA ∈ H to denote
that A is an abstract attribute of H. In our example, they represent
the attributes associated with a stock quote, such as Ticker, Price,
Volume, etc.

Given a set of sources S = {S1, . . . , Sm}, each source can be
seen as the result of a generative process applied over the abstract
relationH. The attributes published by a source S are called physi-
cal attributes of S (or simply attributes), as opposed to the abstract
attributes of H. We write a ∈ A to indicate that a is a physical
attribute associated with the abstract attribute A ∈ H, and ai to
denote that a is a physical attribute published by the source Si. We
call domain, denoted D = (S,H), a pair of elements such that S
is a set of sources publishing attributes of an abstract relationH.

Every source publishes a subset of the abstract attributes, for
a subset of the abstract instances. Sources can change formats,
and they can introduce mistaken values. To model inconsistencies
among redundant sources, we assume that sources are noisy: they
may introduce errors, imprecise or null values, over the data picked
from the abstract relation. Sources can also publish attributes that
do not come from the abstract relation, such as advertisements,
page publication or modification date. However, we treat these at-
tributes as coming from the abstract relation H and published by
exactly one source.

To summarize, the set of pages published by a source Si can be
thought of as a view over the abstract relation, obtained by the fol-
lowing expression: Si = λi(ei(πi(σi(H)))), where σi (selection):
returns a relation containing a subset of the abstract instances; πi
(projection): returns a relation containing a subset of the abstract
attributes; ei (error): returns a relation, such that each value is kept
or replaced with either a null value, or a wrong value; λi (encode):
produces a web page by encoding a tupleinto an HTML template.

From this perspective, as we formalize in Section 3, the extrac-
tion of data from the sources corresponds to invert the λi opera-
tors, for obtaining the relation ei(πi(σi(H))) associated with each

806

source Si. The overall integration problem corresponds to recon-
structH from the data published by the set of sources S.

We conclude the presentation of the generative model with two
important properties that model natural constraints on the data pub-
lished by data-intensive sources. As we shall discuss in the next
sections, we leverage these properties to automatically extract and
integrate data from the sources.

Local consistency. Sources may introduce errors that modify
the original values of the abstract attributes. However, we expect
that a source is locally consistent: if it publishes an abstract at-
tribute more than once, the corresponding physical attributes are
identical. For example, we expect that if a source presents the stock
price for a company in different portions of its pages, all the re-
ported values are identical. To formalize this property, we say that
a domain (S,H) is locally consistent if and only if:

∀a ∈ A, b ∈ B,LC(a, b) : A = B ⇒ a = b

where LC(a, b) denotes that a and b are physical attributes pub-
lished by the same source. This property implies that, whenever
the same source delivers different attributes, we can conclude that
they correspond to distinct abstract attributes.

Separable semantics. We expect that errors introduced by the
sources do not distort data to the extent that attributes with different
semantics have more similar values than attributes with the same
semantics.

To formalize this property, we need to introduce a tool to com-
pare the values of the attributes. We rely on a normalized distance
function d(·, ·) that compares the values of two physical attributes,
and returns a real number between 0 and 1: the more similar the
values, the lower the distance. In Section 4.3 we introduce a con-
crete definition for the distance function.

Based on the distance function over the attributes of a domain,
we bound the errors introduced in the publishing process as fol-
lows: let dA denote the maximal distance among attributes related
to a redundant abstract attribute A ∈ H:

dA = max
ai,aj∈A: ai 6=aj

d(ai, aj);

and let DA denote the minimal distance among an attribute of A ∈
H and any other physical attribute related to a different abstract
attribute B ∈ H:

DA = min
a∈A,b∈B:A 6=B

d(a, b).

We say that a domain D = (S,H) has separable semantics if and
only if: ∀A ∈ H : dA < DA.

Example 1 Figure 3 introduces an example that will be used in the
paper. In Figure 3(a), the physical attributes of two instances, the
fictional stock quotes with ticker symbols X and Y, are represented
as points on a Cartesian plane. The coordinates of each point cor-
respond to the values of an attribute for the two objects. Ideally
the physical attributes associated with the same abstract attribute
should coincide; however, because of the errors introduced by the
sources, they do not.

Figure 3(a) also reports some distances to illustrate the separa-
ble semantics assumption. E.g., even in the presence of publishing
errors, the minimum distance between any pair of attributes formed
by one Low attribute and one High attribute (DHigh = DLow =
d(l1, h2) = 0.133) is greater than the max distance within a pair
of High attributes (dHigh = d(h1, h3) = 0.121).

3. PROBLEM DEFINITION
In this section, we introduce the notions of wrapper and map-

ping; then, we state the problem of recovering the abstract relation
from a set of web sources that publish its attributes.

3.1 Wrappers and Mappings
In our framework, a data source S is an ordered set of pages

S = {p1, . . . , pn} from the same website, such that each page
publishes information about one object of the real-world entity of
interest. A wrapper w is a set of extraction rules (or simply rules),
w = {r1, . . . , rk} over a web page. The value extracted from a
rule r over a page p, denoted by r(p), can be either a string from
the HTML source code of p, or a special null value.

The application of a rule r over a source S returns the ordered set
of values r(p1), . . . , r(pn) denoted by r(S); a wrapper over a page
p returns a tuple t = 〈r1(p), . . . , rk(p)〉; a wrapper over the set of
pages of a source S returns a relation having as many attributes as
the rules of the wrapper, and as many tuples as the pages in S.

Given a domain D = (S,H), a extraction rule r of the source
S ∈ S is correct if there exists an abstract attribute A ∈ H and
a corresponding physical attribute a ∈ A such that r(S) = a. A
correct rule extracts all and only the values of the same abstract
attribute (i.e., values with the same semantics) for all the pages of
its associated source. Therefore, a correct rule extracts an attribute,
and in the following the two concepts are used interchangeably: we
denote a correct rule also with the physical attribute a it extracts.
An extraction rule is weak if it is correct only for a non empty
proper subset of the pages it is applied to.

A wrapper is sound if it includes only correct rules, and complete
if it includes all the correct rules.

Example 2 Figure 4(a) depicts the DOM trees for the pages of a
hypothetical source S publishing attributes of an abstract relation
H = {Ticker,High,CEO,Volume}, and Figure 4(b) reports some
extraction rules expressed as XPath expressions: r1, r2, r3, and
r5 are correct rules for the attributes Ticker, High, CEO and Vol-
ume, respectively. Note that r4 is a weak rule, since it extracts
the Volume only for the right page of Figure 4(a) (for the left page,
it extracts the CEO). The wrapper ws={r1, r5} is sound whereas
wns={r4, r5} is not; the wrapper wc={r1, r2, r3, r5, r6} is com-
plete but not sound, whereas wsc={r1, r2, r3, r5} is sound and
complete.

A mapping, denoted bym, is a set of rules associated with differ-
ent sources (that is, a mapping cannot contain rules from the same
wrapper). Extraction rules are grouped into mappings to express
the semantic equivalence of two or more physical attributes.

A mapping is sound with respect to an abstract attribute A, if
it groups only correct rules that extract attributes related to A. A
mapping is complete with respect to an abstract attribute A if it
contains all the correct rules that extract all the attributes published
in S and related to A.

3.2 Abstract Relation Discovery Problem
Given a set of input sources S, our problem can be stated as

that of finding a sound and complete mapping for every abstract
attribute of its underlying abstract relationH:

Problem (Abstract Relation Discovery) Given the sources S of
a domain D = (S,H), find a set of mappingsM such that:

M = {mA : mA = {a, a ∈ A}, A ∈ H}.

In Sections 4 and 5 we introduce a solution to this problem based
on our generative model. Note that, by definition, behind the prob-
lem of building sound and complete mappings, there is the related

807

S
to

ck
 Y

h
1

0.12
1 2 h

2

h
1

0.121
1 3 h

3

v
1

0.16 v
3

h
3

0.2
3v

2

v
1

0.13
v

2

h
2

0.1
2 3 h

3

l
1

0.11
l
2

… … ...

l
2

0.135
1h

1
2

1 2

1 2

1 3

2

 0: { {l
1
}, {l

2
}, {h

1
}, {h

2
}, {h

3
},{v

1
}, {v

2
}, {v

3
}, {c

4
} }

 1: { {l
1
}, {l

2
},{h

1
}, {h

2
, h

3
}, {v

1
}, {v

2
},{v

3
}, {c

4
} }

 2: { {l
1
, l

2
}, {h

1
}, {h

2
, h

3
}, {v

1
}, {v

2
}, {v

3
}, {c

4
} }

 3: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
}, {v

2
}, {v

3
}, {c

4
} }

 4: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
}, {v

2
}, {v

3
}, {c

4
} }

 5: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
}, {v

3
}, {c

4
} }

 6: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
}, {v

3
}, {c

4
} }

 7: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
}, {v

3
}, {c

4
} }

 8: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
}, {v

3
}, {c

4
} }

…

 i: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
, v

3
}, {c

4
} }

i+1: { {l
1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
, v

3
}, {c

4
} }

…
 j: { {l

1
, l

2
}, {h

1
, h

2
, h

3
}, {v

1
, v

2
, v

3
}, {c

4
} }

High

Cap

Vol

1 Low

Step Mappings M

h
3h

2

l
2

l
1

h
1

v
1

v
2

v
3

D Vo
l

D High
=D Low

d
Low

d
High

d Vol

c
4

D
C
ap

… … ...

c
4

0.33h
2

2 4

Stock X

d
High

:

d
Low

:

d
Vol

:

D
Low

=D
High

:

D
Vol

:

D
Cap

:

(a) (b) (c)

l
1

0.133
2 h

2
1

l
1

0.14
1 h

1
1

Figure 3: Running Example over a domain with abstract relation: H = {Low,High,Vol,Cap} and sources S = {S1(l1, h1,-
v1), S2(l2, h2, v2), S3(h3, v3), S4(c4)}. (a) input physical attributes represented on the Cartesian plane; (b) a subset of the pairs
of attributes ordered by distance as processed by WEIR; (c) tracing of the WEIR algorithm: updated mappings are in boldface;
complete mappings are in italic.

problem of inferring sound and complete wrappers. In Section 5.3,
we also present a complementary technique, which relies on a side
effect of our solution, that faces the practical problem of associat-
ing meaningful labels with the mappings.

4. ABSTRACT RELATION DISCOVERY
In this section, we present WEIR (Web-Extraction and Integration

of Redundant data), our algorithm for solving the Abstract Relation
Discovery problem. For the sake of presentation, we first discuss
our solution in a simplified setting in which the extraction issues
are ignored to make apparent the underlying integration problem;
we assume that sound and complete wrappers are available for all
sources, and we prove the correctness of our solution. Then, in
Section 5 we consider a realistic scenario, where wrappers are com-
plete, but not sound, i.e., they include also incorrect rules. We show
how the redundancy of information can be exploited to select the
correct rules, and we prove that the overall solution is correct with
respect to the subset of redundant attributes in the abstract relation.

4.1 The Underlying Integration Problem
We consider a simplified setting in which a sound and complete

wrapper is available for each input source. The Abstract Relation
Discovery Problem reduces to that of integrating a set of relations
(one per source) that directly expose the attributes of each website.
To generate mappings among the attributes we resort to an instance-
based approach [5] that aggregates physical attributes with similar
values into the same mapping. If sources published only correct
data, a naive algorithm that merges only identical attributes could
easily solve the problem. However, the task of matching attributes
is not trivial since different attributes can assume similar values and
web sources might introduce errors.

Our algorithm initializes each physical attribute as its own sin-
gleton mapping; then, it greedily processes pairs of attributes with
non-decreasing distances, deciding whether the corresponding map-
pings must be grouped together based on a merging condition. It
can be seen as a hierarchical agglomerative clustering [29] that pro-
cesses all the attributes from the sources. The main difference is
that our solution does not rely on a global stop condition (e.g.,
based on the number of the clusters, or on their distances), but it

Listing 1 WEIR

Input: a set of sources S = {S} and related wrappers {wS , S ∈ S};
Output: a setM of complete and sound mappings;

1: letR← WEAK-REMOVAL({wS , S ∈ S});
2: letM = {m,m = {r}, r ∈ R}; // starts with singleton mappings

3: let P =

(
R
2

)
; // the set of all unordered pairs of elements ofR

4: for {r, s} ∈ P, r 6= s, ordered by d(r, s) do
5: if (∃r′ ∈ m(r), s′ ∈ m(s) : LC(r′, s′) or

m(r) is complete or m(s) is complete) then
6: mark m(r) as complete, mark m(s) as complete;
7: else
8: M← (M\ {m(r),m(s)}) ∪ {m(r) ∪m(s)}; // merge
9: end if

10: end for
11: return M;

computes one local stop condition per mapping by exploiting the
generative model properties.

The algorithm processes all possible pairs of attributes; the dis-
tance between a pair of attributes from the same source represents
an upper bound for the distance of their mappings: the local con-
sistency entails that they have different semantics (a source can-
not publish the same attribute twice, with different values), and the
separable semantics implies that all other attributes at a greater dis-
tance cannot be merged with them, otherwise the local consistency
assumption would be violated.

Listing 1 reports the pseudo-code of our algorithm: it takes as
input the set of sources S and the corresponding wrappers, and
maintains a set of mappingsM (line 2), initialized as a set of sin-
gleton mappings, each composed of one extraction rule. The rules
from the input wrappers are first filtered by the WEAK-REMOVAL
invocation (line 1), which exploits the properties of the genera-
tive model to remove the incorrect rules, as we describe later in
Section 5. In the main loop (lines 4-10), the algorithm iteratively
processes all the unordered pairs {r, s} of distinct rules at non-
decreasing distances, and evaluates whether the associated map-
pings (denoted m(r) and m(s), respectively) refer to the same ab-
stract attribute or not, i.e., whether they should be merged or kept

808

38M

TDTDTDTDTD

High VolumeCEO Dan 16.13

TRTRTRX

TABLEDIV[@id='tkr']

HTML

TD

46M

TDTDTD

High Volume15.06

TRTRY

TABLEDIV[@id='tkr']

HTML

TD

extraction rules values
r1: //div[@id=’tkr’]/text() {X, Y}
r2: //td[contains(text(),’High’)] /../td[2]/text() {16.13, 15.06}
r3: //td[contains(text(),’CEO’)] /../td[2]/text() {Dan, null}
r4: /html[1]/table[1]/tr[2]/td[2]/text() {Dan, 46M}
r5: //td[contains(text(),’Volume’)] /../td[2]/text() {38M, 46M}
r6: /html[1]/table[1]/tr[3]/td[2]/text() {38M, null}

(a) (b)

Figure 4: DOM trees of two pages; some extraction rules working on them and the extracted values.

separated. The properties of the generative model are exploited by
the conditional instruction at lines 5-9: it distinguishes the map-
pings that have to be kept separated from those that should be
merged. Its condition holds whenever the mappings associated with
r and s contain attributes coming from the same source (LC(r′, s′)
holds), or because at least one of them belongs to a mapping that
has been already completed.

In the former case, the local consistency imposes that r and s
belong to different abstract attributes. Since pairs are processed
at non-decreasing distance, in the following iterations any other
addition to m(r) or to m(s) would violate the separable seman-
tics assumption. Therefore, m(r) and m(s) are marked as com-
plete (line 6) to indicate that they cannot accept other attributes
afterwards. Coherently, if the condition at line 5 holds because at
least one of the mappings (m(r) orm(s)) is already completed, the
other mapping has to be considered complete as well.

If the condition at line 5 is false, their mappings are considered
associated with the same abstract attribute and merged (line 8).

Example 3 Figure 3(b) shows a subset of 11 out of the 36 pairs
of attributes, ordered by distance, for the four hypothetical sources
of our running example: S1(l1, h1, v1), S2(l2, h2, v2), S3(h3, v3),
and S4(c4). Figure 3(c) reports the trace of a sample execution of
WEIR over these sources. After the initialization phase that creates
the singleton mappings (step 0), the algorithm processes the pair
{h2, h3} with the lowest distance among all the pairs of rules. The
mappings containing h2 and h3 are merged yielding the configura-
tion of mappings shown at step 1. Similarly, the mappings shown
at step 2 are obtained by merging m(l1) and m(l2), as the pair
{l1, l2} is processed right after step 1.

Then, the algorithm processes pairs of rules at increasing dis-
tances, and merges the associated mappings (steps 3-5) only if not
already marked as complete. At step 6, the elements of the pair
{l1, h2} do not belong to the same source, but the associated map-
pings already contain attributes from the same source (e.g., l1, h1
from S1 and l2, h2 from S2). Therefore, their mappings are kept
separated and marked as complete. Notice that a correspondent
pair of attributes from the same source – e.g., {l1, h1} – is pro-
cessed only later, before step 8. The pairs processed in the mean-
while (steps 6-7), do not produce any change since the involved
mappings are already complete.

After step i, a pair containing the rule h3 of a complete mapping
is processed: this is an hint that also the other mapping (that con-
taining v2) has to be marked complete and that the two attributes
have different semantics.

4.2 Integration Correctness and Complexity
We now discuss the amount of redundancy that WEIR needs to

produce a correct solution.
Consider two extreme cases. If every possible pair of attributes

is published at least by one source, WEIR is trivially correct. Con-

versely, if the redundancy is completely absent, and each abstract
attribute is published by exactly one source that publishes just its
values, then WEIR would output one large mapping containing all
the physical attributes.

Nevertheless, the assumption that every possible pair of attributes
is published at least by one source is unrealistic, even for a large set
of redundant sources. In particular, it is unlikely for pairs of rare
attributes, i.e., those published just by a few sources. However, as
the following example shows, even a small number of pairs suffices
to produce transitive effects on a large number of sources.

Example 4 Consider the running example in Figure 3(c) right be-
fore the step j in which the pair {h2, c4} is processed. There exist
sources that publish both attributes Low and High (S1 and S2).
Also note that Cap is a rare attribute, published only by S4, and
that h2 is, among the other attributes, the closest to it. Although
a source that publishes both Cap and High is not available to di-
rectly enforce their separation, since d(l2, h2) < d(h2, c4), we can
conclude that c4 and h2 are different attributes, otherwise also l2,
which is closer to h2 than to c4, should be merged with l2. But this
is not allowed by the local consistency of their source (S2).

The reasoning can be repeated transitively and two attributes can
be kept separated by the local consistency of sources publishing
other attributes by means of an arbitrary number of interposed at-
tributes.

Example 5 Continuing the previous example, if another source
S5 published an attribute about the dividends, d5 ∈ Div, with
d(d5, c4) > d(h2, c4), even if no source publishes both Cap and
Div, we can deduce that d5 6∈ Cap. Otherwise, to merge d5 with
c4, we would also have to add c4 into the mapping containing ev-
ery h ∈ High. Transitively, we would end up by merging, again,
the mapping of the High with that of Low and to violate the local
consistency of the sources S1 and S2 that publish both.

The above concepts are formalized in the following definition.

Definition 1 (Separable Domain) Given a domain D = (S,H),
a pair of abstract attributes A,B ∈ H are separable, denoted
Sep(A,B), iff ∀a ∈ A, b ∈ B,A 6= B:

LC(a, b) ∨ [∃ c ∈ C,C ∈ H : Sep(A,C) ∧ d(a, c) < d(a, b)].

D is a separable domain iff all its pairs of abstract attributes are
separable: ∀A,B ∈ H : A 6= B ⇒ Sep(A,B).

We can now present the following theorem, which characterizes
the amount of redundancy needed to solve the Abstract Relation
Discovery Problem for a domain.

Theorem 1 (WEIR Integration Correctness) In case of correct
wrappers, WEIR is a solution for the Abstract Relation Discovery
Problem if the domain is separable.

809

The proof, which is rather straightforward, can be found in [8].
For the time-complexity analysis of our algorithm we measure

the size of the input with the total number n of extraction rules,
which can be assumed at most linear with the number of input
sources |S|. We also assume constant the cost of computing a
distance between any two rules. Computing the distances among
all the possible pairs of rules is O(n2). With a disjoint-set data-
structure [15, Chapter 21], the operation of finding a mapping,
given a rule, is O(1), and that task of merging two mappings is
O(n). Therefore:

Proposition 1 (WEIR worst case time complexity) The worst case
time complexity of WEIR is O(n3), where n is the total number of
extraction rules.

4.3 A Type-Aware Distance Function
We conclude this section by discussing the distance function on

which the whole integration process is based. On the Web, redun-
dant sources publish data of many different types and with different
unit of measures. Our distance function has been defined consid-
ering these factors that could prevent the redundancy from being
recognized and exploited.

Normalization and Types. The extracted values are associ-
ated with a type taken from a simple hierarchy of common web
data types, such as String, Date, Length, as shown in Figure 5(a).
The most specific data type is preferred, with String used whenever
no other type applies. Type inference is performed by matching the
extracted data with a set of predefined patterns. Figure 5(b) shows
a sample of the patterns used by our system.

For some of these types it is also possible to detect the units of
measure (e.g., for Length: kilometers, centimeters, miles, feet, etc.)
and to convert the extracted values to a reference unit measure. For
example, Length values are converted in centimeters and Weight
values are converted in kilograms.

Distance Functions. To compute the distance between a pair
of rules we adopt an instance-based distance function. In our con-
text it is rather easy to associate every page with a natural identifier
for the object described in the page. In many cases these identifiers
are directly used to harvest the pages (for example, when pages are
obtained by querying a form) or derived during the page collection
phase. Otherwise it is possible to obtain them starting from a small
seed set, as we shall describe in Section 5.4. Therefore, to exploit
this opportunity we rely on instance-based distance functions that
compare pairwise values as follows.1

Given two rules r and s, their distance d(r, s) is computed by
averaging the pairwise distance between the values extracted from
pages publishing data of the same instance. Let I be a set of natural
identifiers of the objects published in the pages; and let (vidr , vids)
denote the pair of values extracted by two rules r, s from the pages
associated with the instance of identifier id ∈ I:

d(r, s) =

∑
id∈I fTr∩Ts(v

id
r , v

id
s)

|I|

where Tr ∩ Ts is the most specific type containing both values
extracted by r and those extracted by s, and fT (·, ·) is defined as:

fT (vr, vs) =

 0 , iff vr = vs;
1 , iff vr 6= vs and (vr = null or vs = null);
dT (vr, vs), otherwise;

1An alternative, not requiring the presence of soft-id, is to adopt
distance functions that compare opaque columns, e.g., [25, 26].

dT () is type-aware pairwise comparison between two non-null val-
ues belonging to the type T .

In the case of String and URL, dT (·, ·) is a standard distance,
namely the Jensen-Shannon distance.2 For the Date, ISBN, Phone
types, the distance function simply returns 0 if the two elements are
equal, 1 if otherwise. For numeric types, the computation is more
involved, as fT (·, ·) measures the ratio of objects that differ more
than a predetermined relative threshold ρ. We compute the thresh-
old ρ with respect to the average size of the compared numbers,
so the greater the values, the larger the tolerated differences. Let

vr =
∑

id∈I |v
id
r |

|I| be the average of the absolute values extracted
by the rule r, and let v = min(vr, vs). We define ρ = v · θ (we set
θ = 0.02 in our experiments). Finally, we define:

dT (vr, vs) =

{
1 , iff |vr − vs| > ρ;
0 , otherwise.

This covers all the rules r extracting numeric values, i.e., Number,
Length, Weight, and Currency.

5. THE EXTRACTION PROBLEM
The formalisms used by state-of-the-art unsupervised wrapper

generator systems, such as ROADRUNNER [16] and EXALG [3],
are expressive enough to define a complete wrapper for a vast ma-
jority of web sources. However, the wrappers produced by these
systems usually are neither complete nor sound. In fact, the induc-
tion engines of these systems have to evaluate several candidate so-
lutions that rank the extraction rules according to their effectiveness
in describing the regularities in the template of the input pages. For
example, EXALG analyzes the co-occurrence of tokens in a large
number of pages sharing a common template, and ROADRUNNER
tries to incrementally align a set of sample pages to separate their
underlying template from the embedded data. Unfortunately, the
sole knowledge associated with the template is not always sufficient
to converge towards the best rules, and the wrappers generated by
these systems have limited accuracy and coverage.

In our approach, the wrappers are created exploiting both the
regularities that locally arise in each source, and the redundancy of
data that globally occurs among the sources. With the objective of
obtaining complete wrappers, we generate several alternative ex-
traction rules, possibly including also weak rules, by analyzing the
HTML regularities of the sources. Then, to achieve the wrapper
soundness, we remove weak rules by leveraging the redundancy of
information. With respect to traditional unsupervised approaches,
the selection of the correct rules is not performed during the infer-
ence phase based on local criteria, but it is based on the matching
of each rule with the data extracted from at least another source.
On the other hand, our technique works only for redundant data.

5.1 Extraction Rules Generation
In the generation of the initial set of extraction rules we leverage

the local regularities that occur among pages of the same source.
For each source, (i) we analyze the DOM tree representations of
the pages to locate nodes that are part of the template; then, (ii) for
every textual leaf node that does not belong to the template, we
generate a set of XPath expressions; finally, (iii) we filter those
that are unlikely to be effective extraction rules.

To discover the template nodes, for each source we compute the
occurrences of the (textual) leaf nodes in the pages. Following the
intuition developed in [3], we classify as template nodes the text

2We use the variant implemented by the Java class com.wcohen.-
secondstring.UnsmoothedJS, described in [14].

810

Currency Length Weight

Number Date

String

ISBN URL Phone

Date \d+ (-|/) \d+ (-|/) \d+
Length (m|cm|km|ft|’|yd|in|’’)\d+ | \d+(m|cm|km|ft|’|yd|’’)
Currency ($|e|EUR|USD) \d+ | \d+ ($|e|EUR|USD)
Number \d+((,|.)\d+)?
ISBN (\d{3}(-)?)?\d{10}

(a) (b)

Figure 5: A type hierarchy, and a sample of the syntactic patterns (expressed as Java Regex expressions) used to infer the types.

leaf nodes that occur exactly once with same value and same root-
to-leaf path (without indices) in a significant percentage (40%) of
pages. The rationale is that it is unlikely that these nodes have the
same path and the same number of occurrences by chance; rather,
it is likely that they comes from a piece of the underlying HTML
template used to create the pages.

The remaining textual nodes are considered as candidate data to
be extracted; for them, we generate extraction rules. We distinguish
two types of XPath expressions: absolute extraction rules, and rel-
ative extraction rules. Absolute extraction rules specify a linear
path (i.e., a sequence of nodes having a parent-child relationship)
including the indices, that start either from the document root or
from a node having an ‘id’ attribute. Relative extraction rules spec-
ify a path starting from a template node, which we call the pivot
of the rule. A relative extraction rule for the textual node l pivoted
into the template node t is computed by appending three expres-
sions: (i) an expression that matches the pivot node t, (ii) the path
from t to the first ancestor node, nlt, shared by t and l, (iii) the path
from nlt to l (which descends from the shared ancestor node to the
target textual node). To avoid an excessive proliferation of rules,
we bound the length of the relative extraction rules. The length of
a relative extraction rule r, denoted δ(r), is the number of XPath
steps following the first ../ after the pivot.3

Example 6 Consider a set of pages such as those shown in Fig-
ure 4(a). Assuming that nodes ‘High’, ‘Volume’ and ‘CEO’ appear
once with the same root-to-leaf path in many other pages of the
source, they would be considered as template nodes. Figure 4(b)
reports an example of the rules generated by the second step: r1,
r4, and r6 are absolute rules (r4 and r6 start from the document
root, r1 is rooted at the node with an ‘id’ attribute), whereas the
r2, r3, and r5 are relative rules that specify a path starting from
a pivot node. These relative rules have length δ(r2) = δ(r3) =
δ(r5) = 2.

The above step produces several extraction rules, some of which
are useless. We use straightforward heuristics to filter out rules
that are unlikely to extract valuable data. We discard rules whose
extracted values include template nodes, or a large majority (more
than 80%) of null values. Finally, among a group of rules extracting
identical data, we prefer the shortest relative one, i.e., the relative
rule whose pivot is closer to the extracted values.4

The generated wrappers contain several rules, including rules ex-
tracting useless data, as well as weak rules, such as r4 and r6 in
Figure 4(b). As in our setting domain data appear in more than
one source, to select the correct rules we exploit the redundancy of
data across several sources: useless rules can be discarded because
they extract data not matching with any other source. Pruning weak
rules is trickier, as they partially extract correct data. However we
3We observed that producing rules with length greater than 6 does
not produce any benefit.
4On average, for each source the system selects 97 rules out of
1380 generated.

Listing 2 WEAK-REMOVAL

Input: a set of wrappers {wS , S ∈ S};
Output: all and only the correct rules from the input set of wrappers;

1: letR = {r, r ∈ wS , S ∈ S}; // set of all the rules

2: let P =

(
R
2

)
; // the set of all unordered pairs of elements ofR

3: for {r, s} ∈ P : r, s ∈ wS , r(S)∩ s(S) = ∅, ordered by d(r, s) do
4: if (@ r∗ ∈ R, r∗ ∈ wS : (r∗ is correct)∧

(r(S)∩r∗(S) 6= ∅)∧(s(S)∩r∗(S) 6= ∅)) then
5: mark r as correct, mark s as correct;
6: end if
7: end for
8: return the subset of rules marked as correct inR;

observe that it is unlikely that the values extracted by a weak rule,
which works correctly only for a subset of the pages, have the best
match with the values extracted by a correct extraction rule from
a different source. Conversely, correct rules related to the same
abstract attribute extract matching values from different sources.

5.2 Weak Rules Removal
The presence of weak rules can be detected by observing that

there is always a non empty intersection between the nodes iden-
tified by a weak rule and those identified by a correct rule of the
same source.

Example 7 Consider again the rules in Figure 4(b) and the pages
in Figure 4(a): extraction rule r4 is weak, since it mixes the CEO
from the page on the left with the Volume from the page on the right.
The set of nodes it extracts has a non empty intersection with those
extracted by the (correct) rules r3 and r5.

These intuitions are applied in the WEAK-REMOVAL procedure
invocation at line 1 of WEIR; its pseudo-code is shown as Listing 2.
It takes as input a set of wrappers, one per each source, and returns
a subset of all their rules, freed from the weak rules (line 8).

WEAK-REMOVAL processes (line 3) all the pairs of non over-
lapping rules (r(S) ∩ s(S) = ∅) from the same site (r, s ∈ wS)
at non-decreasing distance. The procedure assumes that a pair of
correct rules that refer to the same abstract attributes are closer, and
then processed earlier, than a pair of rules that includes (at least)
a weak rule. Therefore, WEAK-REMOVAL marks as correct a pair
of rules when they are processed for the first time (line 5). When
a pair of rules from the same source is processed, if one (possibly
both) of them has a non empty intersection with the values of some
rule already marked as correct (denoted r∗ in the listing, at line 4),
it is considered weak, and the pair is skipped.

The WEAK-REMOVAL procedure eliminates weak rules based
on the assumption that correct rules from different sources are closer
to each other than weak rules incidentally extracting similar values.
This assumption can be formalized by considering the distance be-
tween weak and correct rules. With an abuse of notation, we write
that r ∈ A to state that an extraction rule r extracts at least one

811

correct value of the abstract attribute A. The error introduced by
weak rules can then be defined as follows.

Definition 2 (Minimum Extraction Error) Given an abstract at-
tribute A ∈ H from a domain D = (S,H), and a set of wrappers
{wS , S ∈ S} over its sources, we call minimum extraction error
for A, denoted eA, the minimal distance between a correct rule r∗

extracting A values and all other non overlapping rules from the
same site:

eA = argmin
S∈S,r,r∗∈wS ,r

∗∈A:r(S)∩r∗(S)=∅
d(r∗, r).

A redundant abstract attributeA satisfies the minimum extraction
error assumption iff dA < eA. The correctness of WEAK-REMO-
VAL is then characterized by the following Lemma:

Lemma 1 (WEAK-REMOVAL Correctness) WEAK-REMOVAL
erases all and only the incorrect rules of the redundant attributes
satisfying the minimum extraction error assumption.

PROOF. It follows immediately by the minimum extraction er-
ror assumption and by the ordered processing of all the pairs of
rules: if a redundant abstract attributeA is such that dA < eA, then
the elements of any pair of its correct rules are closer than a pair of
non overlapping rules including one weak rule of A.

It is worth noting that the two compared quantities, eA and dA,
are related to different aspects: dA is a measure of the maximum
publication error introduced by the sources; eA is a measure of the
minimum extraction error introduced by an incorrect rule.

In the presence of complete wrappers with the minimum extrac-
tion error assumption holding, WEIR receives from the invocation
of WEAK-REMOVAL at line 1 all and only the correct rules. There-
fore, as it immediately follows from Lemma 1 and Theorem 1:

Theorem 2 (WEIR correctness) In case of complete wrappers,
WEIR is a solution for the Abstract Relation Discovery Problem re-
stricted its redundant abstract attributes if the domain is separable
and the minimum extraction error assumption holds.

Note that WEAK-REMOVAL, and namely the computation of the
intersection of the values extracted by two rules at line 4, is com-
puted within the O(n3) complexity of WEIR, i.e., WEIR’s worst-
case time complexity does not increase in presence of weak rules.

5.3 Labeling
We now present a complementary technique to associate each

mapping with a semantic label. The candidate labels for a mapping
are obtained as a side-effect of the rule generation procedure: they
are the texts playing the role of pivots in the relative rules of the
mapping. This approach is not reliable if applied on a single source,
but we leverage the redundancy among the textual nodes that occur
in the HTML templates of different sources.

We have crafted a simple yet effective heuristic method to rank
these texts as candidate semantic labels of the mappings computed
by WEIR: a template text is considered a good candidate label for
a mapping if (i) it is frequently present in the templates of the in-
volved sources, and (ii) it occurs close to the extracted values.

Given a mapping m, let Rl(m) ⊆ m be the subset of its rela-
tive rules based on the same textual pivot l; we define a score (the
lower the better) for any candidate label l of a mapping m, as fol-
lows: score(m, l) = [1 − |R

l(m)|
|m|] · δl(m). It is computed for

any mapping m and label l such that Rl(m) is not empty. The first

factor, [1 − |R
l(m)|
|m|], considers the frequency of a label l in the

mapping m. The second factor, δl(m), is the average length of the
rules r ∈ Rl(m), i.e., δl(m) =

∑
r∈Rl(m)

δ(r)

|Rl(m)| .
Essentially, a label gets a good score if it is both redundant among

the sources and close to the extracted values. Observe that the rank-
ing results of the scoring function becomes more and more effective
as the redundancy of the attributes increases.

5.4 Associating Pages with Soft-ids
We conclude by describing a simple technique to derive the soft-

ids for the objects described in the detail pages of the sources. We
remark that detail pages gathered by means of an ad-hoc crawler or
by filling forms are inherently associated with soft-ids. However,
we applied a simple set-expansion technique to derive soft-id from
the extracted values in the case they are not already available, as it
happens for a dataset used in our experimental activity. The only
requirement is that a small seed set of soft-ids is already available.

Let I be a seed set of strings that identify a few objects in the
sources, and let Q be a priority queue storing all the sources in S.
For example, dealing with sources containing detail pages about
movies, I could contain a few movie titles (e.g., “The Godfather”,
“Full Metal Jacket”, “Hannah and Her Sisters”).

The priority associated to a source S inQ corresponds to the car-
dinality of the largest intersection between a rule r in the wrapper
wS inferred by our wrapper generator for that source, and the seed
set, i.e., maxr∈wS |r(S) ∩ I|. Then, the source S with the highest
priority in Q is dequeued; the values extracted by r are elected as
soft-id for the pages in S, and the seed set is expanded by adding all
the new soft-ids. The process iterates until the queue Q is empty,
or neither the seed set nor the queue size change anymore.

It is worth observing that the above method can generate im-
precise ids because weak rules could have been erroneously se-
lected, as well. Anyway, it is unlikely that the wrong ids are prop-
agated (since they do not match with the values extracted by other
sources). Also, our main goal is to obtain a set of top-k soft-id.
As we shall discuss in the next Section, even with a small number
of overlapping instances and with a non negligible error rate in the
pairwise page alignment, WEIR produces accurate results.

6. EXPERIMENTAL RESULTS
We conducted experiments over real world websites to evaluate

the performance of our approach. We first present WEIR extraction
and integration quality results, followed by an analysis of its behav-
ior w.r.t. the amount of redundancy among sources. Then, we com-
pare WEIR against alternative unsupervised solutions, and against a
system requiring human annotations as part of the input [24].

6.1 WEIR Evaluation

Dataset. We collected 40 data sources from the Web over four
domain entities: soccer players, stock quotes, video games, and
books.5 Detail pages for the video games and soccer players do-
mains were gathered by means of a crawler based on a set expan-
sion technique [6]. For stock quotes and books we queried the
forms of 10 finance sites with ticker symbols, and the forms of
10 bookstore sites with ISBN codes.6 For all the sources, pages
are associated with a natural identifier: for the crawled pages, the
identifiers correspond to the terms used by the crawler in the set
expansion phase; for the pages returned from the forms, the iden-
tifiers are the terms used to query the forms. Each detail page of
our dataset contains data about one instance of the corresponding
5The dataset is available at: http://www.dia.uniroma3.it/db/weir.
6Stock quotes pages were collected at the market close.

812

domain entity. Table 1 reports the number of pages (#p) and the
number of distinct instances (#o) for each domain.

At the extensional level, several instances are shared by multi-
ple sources. The overlap is almost total for stock quotes and books
(there are 3 and 2 sources that cover all the instances, respectively),
while it is more articulated for soccer players and video games, that
include both large popular sites as well as small ones: there is no
source that covers more than 33% and 47% of all the instances, re-
spectively. To characterize the extensional redundancy, for each do-
main we consider the overlap graph whose nodes are the sources,
with an edge between two nodes if the corresponding sources share
at least q instances. For all the domains, the corresponding graphs
have one connected component with q = 5. However, while for
the stock quotes and the book domains every source is connected
with all the others (any pair of sources has at least q instances in
common), the same property does not hold for the soccer player
and the video game domains. To describe how the sources overlap,
we report the diameter of their overlap graphs. The diameter d of a
graph is defined as the length of the longest path among the shortest
paths between all pairs of nodes in the graph. Table 1 reports the
diameter (d) of the overlap graphs, with q = 5. For stock quotes
and books, d equals 1 (every source is indeed connected with all
the others); for video games and soccer players d equals 2 and 3,
respectively (many source pairs do not have shared instances: they
are connected indirectly through one or two intermediate sources).

At the schema level, no source publishes all the attributes of a
domain, some attributes are published by all the sources, and oth-
ers occur less frequently. The attributes of the four domains have
interesting and distinctive features. For stock quotes, most of the
attributes are numeric, and several of them have very similar values
(high and low, open and close prices). The soccer players domain
includes attributes of different types with heterogeneous formats in
the various sources. For example, height and weight of players are
expressed in several different units of measure (e.g., meters vs. feet
and inches) and are published according to different formats (e.g.,
m 1.82 vs. 182cm). We counted five different representations for
values of type Date, four for Height, three for Weight. In the video
games and books domains most of the attributes are strings and the
page templates are more irregular than those of the other domains.

Metrics. We compare WEIR output against a golden solution, ob-
tained by manually composing extraction rules and mappings. Fig-
ure 6 details the attributes of our golden dataset and the correspond-
ing occurrences among the sources (we do not report the results for
the attributes used as soft identifiers). We use the standard metrics
of precision (P), recall (R), and F-measure (F), which are com-
puted for each abstract attribute, at the level of the values extracted
by the rules of the mapping. Each attribute Ai is associated with
the computed mapping mj with the best coverage of its values.

The precision and the recall of the output mapping mj are de-
fined with respect to their associated abstract attribute Ai, as fol-
lows: P (mj) =

nij

nj
, and R(mj) =

nij

ni
, where nj is the number

of values extracted by the rules of mj , ni is the number of val-
ues extracted in the golden mapping Ai, and nij is the number
of values extracted by the rules in mj found in the golden map-
ping Ai. As usual, the F-measure of a mapping mj is defined as:
F (mj) = 2 · P (mj)·R(mj)

P (mj)+R(mj)
.

Extraction and Integration Results. Table 1 reports average
precision (P), recall (R) and F-measure (F) for the four domains.
Experiments run with the distance functions requiring at least 5
overlapping instances (when more overlaps were present they were

Domain #p #o d P R F Time
soccer players 5,850 4,178 3 0.90 0.93 0.91 80 s
stock quotes 4,656 573 1 0.90 0.81 0.85 67 s
video games 12,339 5,364 2 0.93 0.90 0.91 204 s
books 1,318 196 1 0.94 0.78 0.84 15 s

Table 1: Dataset features and WEIR performance.

used). The precision is around 0.9 for every domain. Also the recall
is high, ranging from 0.78 (books) to 0.93 (soccer players).

In the stock quotes domain, which is challenging since it includes
several numeric attributes with very similar values, the precision
and recall results testify that our algorithm can integrate data from
different sources by self-tuning its tolerance to the actual errors in
the sources, even if the amount of error changes among attributes
of the same domain.

Most of WEIR errors are caused by mappings that have been con-
sidered complete too early. The most frequently violated hypothe-
sis by real sources is the minimum extraction error. Some pairs of
weak rules resulted closer than pairs of the corresponding correct
rules. The involved weak and correct rules often differ only for a
marginal percentage of the extracted values. This problem occurs
mainly for attributes of type String: by inspecting their values, we
realized that a publication error involving strings can result higher
than the corresponding extraction error, since the string distance
function is less effective in measuring small differences.

Labels Detection Results. WEIR is able to find the right la-
bel for many mappings: 77% of soccer players mappings, 45%
for stock quotes, 100% for video games, and 57% for books. Fig-
ure 6 reports the top-2 candidate labels produced for the attributes
in the golden datasets. There are three main reasons for the errors
in the labels returned by our system. First, for some attributes a
textual label in the template of the pages does not exist: e.g., the
title of a book. Second, some labels are mixed in the same template
node, e.g., ‘high/low’ for a stock quote, or they are split across
multiple leaf DOM nodes, e.g., 52 week<span

color="red">low. Third, as discussed earlier, more re-
dundancy is needed in order to mitigate the noise, for instance due
to tabular templates (in which many attributes are visually close
to each other). The needed redundancy is not available for “rare”
attributes, such as Edition for books and Number for soccer players.

Sensitivity to Extensional Redundancy. We now consider
the extensional redundancy of information among the sources, an
important factor that can affect our approach. We have seen that
WEIR computes the distances between two physical attributes by
comparing a number of aligned instances. Two main aspects may
influence the performances: (i) the number of instances that are
involved to compute the distance between a pair of attributes, and
(ii) the precision of the alignment between them.

Figure 7(a) plots the F-measure over the four domains versus
the number of overlapping instances used to compute the distance
function between two sources. Precision and recall are not shown
for the sake of readability; however, precision is not much affected,
and therefore the F-measure mainly reflects the recall results. With
a small number of overlapping instances, the distances function
is less reliable, leading to a recall loss. When the number of re-
quired overlapping instances is very large, some sources do not
share enough instances to compare their attributes, preventing their
merging. Note how the latter observation does not affect the stock
quotes domain, where all sources share a large set of instances.

813

SOCCER PLAYERS
Position (10/10) Birthplace (6/7) Height (6/6) Nat. Team (6/6) Club (4/5) Weight (4/4) Birthdate (7/8) Nationality (3/2) Number (2/2)

1 / 1 / 1 1 / 0.86 / 0.92 1 / 1 / 1 0.98 / 0.98 / 0.98 0.86 / 0.69 / 0.77 1 / 1 / 1 1 / 0.88 / 0.93 0.67 / 1 / 0.8 0.67 / 1 / 0.8
position 2.0 place of birth 3.0 height 2.33 born 1.5 current club 1.0 nationality 1.0 date of birth 3.0 nationality 2.5 ... club 5.0

dob 3.0 weight 3.0 born 4.0 nationality 1.5 ...nederlands 3.0 weight 2.0 place of birth 5.0 ... name 4.0

STOCK QUOTES
Last value (10/10) Day high (8/10) Day low (7/9) 52 wk high (9/9) 52 wk low (7/9) Change % (5/6) Open (8/8) Volume (7/8) Change $ (5/5)

1 / 1 / 1 1 / 0.8 / 0.89 0.61 / 0.48 / 0.54 0.8 / 0.8 / 0.85 0.99 / 0.77 / 0.87 0.83 / 0.69 / 0.76 0.89 / 1 / 0.94 1 / 0.88 / 0.93 0.58 / 0.81 / 0.68
high 2.0 ask size 3.0 eps 3.0 52 week high 2.0 low 1.0 date 3.0 previous close 2.0 volume 4.0 today 1.0

3.0 date 3.0 earnings 3.0 260 days 2.0 year low 2.0 market cap 4.0 open 2.0 share volume 4.0 last trade 3.0

BOOKS
Author (8/10) Title (9/10) Publisher (7/6) ISBN13 (5/7) Binding (4/6) Publication date (6/5) Edition (2/3)

0.97 / 0.78 / 0.86 0.94 / 0.85 / 0.89 0.99 / 0.85 / 0.91 1 / 0.71 / 0.83 0.91 / 0.61 / 0.73 0.83 / 1 / 0.91 0.96 / 0.64 / 0.77
by author 3.0 link 3.0 english 2.0 isbn-13 1.0 binding 1.0 published 2.0 amazon price 3.0

author 3.0 by author 3.0 publisher 2.5 isbn 1.0 ...details 5.0 publication date 3.0

VIDEOGAMES
Publisher (9/10) Developer (8/8) ESRB (7/8) Genre (8/8)
0.93 / 0.93 / 0.93 0.86 / 0.86 / 0.86 1 / 0.87 / 0.93 0.94 / 0.94 / 0.94
publisher 2.25 developer 2.6 esrb rating 2.0 genre 2.3

release date 3.5 see tech... 4.0 see tech... 4.0 n. of player 3.0 Legenda:

DOMAIN
Attribute (#w/#g)

P / R / F
label1 score1
label2 score2

Figure 6: The abstract attributes of the golden dataset, and the corresponding WEIR results: occurrences of the physical attributes
in the mapping computed by WEIR, and in the golden dataset (#w/#g); Precision, Recall, F-measure (P / R / F); the top-2 labels and
their associated scores (lower scores are better, correct labels are in boldface).

Figure 7: WEIR F-measure sensitivity to: (a) number of over-
lapping instances; (b) page alignment error-rate.

As described in Section 4.3, our instance-based distance func-
tion relies on the presence of soft identifiers to align the pages. To
test the robustness of the approach with respect to alignment er-
rors, we run the system after introducing a certain amount of errors
in the alignment of the instances. Figure 7(b) shows that, the per-
formances decrease with an increasing error rate. However, it is
worth observing that even with a significant error rate (40%) the F-
measure is still higher than 0.7 for all domains. With higher error
rates, the loss of alignment among pages is partially compensated
by aggregate characteristics of data: value ranges and types. Note
that the stock quotes domain exhibits the worst degradation, since
most of attributes are numeric with very similar values. Conversely,
for soccer players, the type richness of the attributes and their dif-
ferent ranges of values attenuate the loss.

6.2 Comparison with Other Approaches
To compare WEIR against other fully automatic approaches, we

conducted experiments by using a traditional unsupervised wrap-
per inference system for the extraction phase, and a hierarchical
agglomerative clustering algorithm for the integration phase.

As wrapper generator system, we used the most recent imple-
mentation of ROADRUNNER [16]. For the integration phase we
implemented a standard hierarchical agglomerative clustering al-
gorithm (HAC, in the following), with a distance-r stopping crite-
rion, i.e., it merges only pairs with distance at most r. We manually
tuned the threshold r to the value 0.7 to achieve the best results.

Using ROADRUNNER and HAC we assembled three alternative
systems. First, a system where both the extraction and the integra-

tion phases are performed with the traditional approaches. We call
this solution the “waterfall” approach (this is indicated as the WF
configuration): the extraction is completed before the integration
starts, and the two phases are completely separated. To evaluate
the specific impact of our techniques, we also use the standard ap-
proach for one of the two phases, and our approach for the other
one. More specifically, we set the following configurations: (i) we
rely on ROADRUNNER to infer the wrappers, and on our algorithm
to compute the mappings over the relations produced by the wrap-
pers (this is the RR configuration); (ii) we infer rules with our ap-
proach (running also the WEAK-REMOVAL procedure), and com-
pute the mappings with the HAC algorithm (HAC configuration).

Figure 8 summarizes the obtained results: WEIR always outper-
forms the alternative approaches, in every domain. The better pre-
cision obtained by the waterfall approach with the video games has
to be considered together with the low recall. WEIR is more effec-
tive than ROADRUNNER in choosing the correct rules, thus being
able to achieve better precision and recall. Observe that in the stock
quotes domain our integration algorithm (which is used also in the
RR configuration) has a strong impact on the precision: there are
many attributes with similar values, and an algorithm with a fixed
threshold (even if manually tuned) is not flexible enough to distin-
guish all of them correctly.

6.3 Comparison with a Human Bootstrapped
Approach

Finally, we compared WEIR against a state-of-the-art approach
that takes as input human annotations to bootstrap the process [24].
The approach aims at extracting the data for a set of attributes from
all the sources of a vertical domain. The user specifies the set of
attributes to be extracted by manually annotating one input source.

Since the code is not public, we used their dataset (SWDE, avail-
able at http://swde.codeplex.com) in order to conduct the compari-
son: it includes about 124K detail pages from 80 websites related
to 8 different domains (10 sites per domain, 200–2,000 pages per
website). For each domain there are 3–5 target attributes (32 in to-
tal), for which SWDE provides a golden set of values extracted (by
means of handcrafted rules) from all the pages. We used the dataset
“as-is” and, to be comparable with the results reported in [24], we
used their performance metrics that are based on precision and re-
call over the expected values in the golden dataset.

814

Figure 8: Comparison of different extraction and integration approaches over several domains.

0.
94

0.
72

0.
94

0.
87 0.
95

0.
96

0.
96

0.
87 0.
97

0.
80 0.

98

0.
83 0.
99

0.
97

0.
99

0.
86

0.
87

0.
69

0.
88

0.
86

0.
79 0.

90

0.
33

0.
84 0.
89

0.
78 0.
83

0.
81 0.
97

0.
94

0.
94

0.
810.
90

0.
70

0.
91

0.
87

0.
86 0.
93

0.
49

0.
85 0.
93

0.
79 0.

89

0.
82 0.
98

0.
95

0.
97

0.
83

0.25

0.5

0.75

1

WEIR SWDE WEIR SWDE WEIR SWDE WEIR SWDE WEIR SWDE WEIR SWDE WEIR SWDE WEIR SWDE

AUTOS
(Model)

BOOKS
(ISBN)

CAMERAS
(Manufacturer Part #)

JOBS
(Title)

MOVIES
(Title)

NBA PLAYERS
(Name)

RESTAURANTS
(Phone)

UNIVERSITIES
(Name)

P

R

F

Figure 9: Comparison of WEIR vs [24] over the SWDE dataset: AUTOS (Model, Price, Engine, Fuel), BOOKS (Title, Author, ISBN, Publisher,
Date), CAMERAS (Model, Price, Manufacturer), JOBS (Title, Company, Location, Date), MOVIES (Title, Director, Genre, MPAA), NBA PLAYERS

(Name, Team, Height, Weight), RESTAURANTS (Name, Address, Phone, Cuisine), UNIVERSITIES (Name, Phone, Website, Type).

We have derived the soft-ids by applying the set-expansion tech-
nique discussed in Section 5.4 on the attribute reported below the
domain name in Figure 9. Note that all these domains have a nat-
ural identifier except jobs. We then computed the overlap of the
sources: for q = 1, all the domains with a soft-id have an over-
lap graph composed of one connected component. By manually
inspecting the pages, we realized that job sources do not overlap.
We used the job Title as a soft-id just to complete the experiments.

Results in Figure 9 show that WEIR has better performance in all
domains except the jobs and the cameras domains. In the former
case we correctly extract only the job Title. As related to the cam-
eras domain, the loss of recall is due to one attribute (out of three),
i.e., Model. This attribute actually represents a description of the
item rather than the model name (which is actually present in the
pages): its values are heterogeneous and long textual descriptions
(even more than 20 terms and 100 characters), for which our string
distance function is not effective.

As a conclusive note, WEIR found a meaningful label for 57%
of the mappings corresponding to the above attributes. In addi-
tion, it was able to extract and integrate more attributes than those
specified in the SWDE dataset, such as (we report one example per
domain): Transmissions for Autos, ListPrice for Books, MegaPixel
for Cameras, RunningTime for Movies, BirthDate for NBA Players,
Website for Restaurants, and Address for Universities.

7. RELATED WORK
Web data extraction involve several tasks: source discovery, wrap-

per generation, data integration, and data cleaning. In this work we
focus on extraction and integration, but we developed an end-to-
end system that covers crawling [6] and data cleaning [7] as well.

Web data extraction has been addressed in multiple works in the
last decade (see [12] for a survey). An approach related to ours
is TurboWrapper [13], which introduces a composite architecture
including several wrapper generator systems aiming at improving
the results of the single participating systems taken separately.

Information extraction systems aim at extracting collections of
facts (binary relations, such as born-in〈scientist, city〉) from mas-
sive corpora of plain text collections. Early approaches (such as

Snowball [1]) take a seed set of facts as input, then interleave pat-
tern inference and relation extraction steps to expand the seed set.
Recently, so called “open” information extraction approaches [4,
21] have been developed: they automatically discover phrases to
extract new facts from sentences, and they are not constrained to
learn an extractor only for the target relations specified by means
of training samples. We share with them the ability of discover-
ing new attributes. However, as argued in [4], these systems are
designed for textual corpora, and they cannot extract data from in
HTML templates, which conversely represent our target.

A large body of works has tackled the challenge of extracting
and integrating structured data from the Web [9, 23, 30]. One dis-
tinguishable feature of our work is the ability to gather and lever-
age domain knowledge at runtime to automatically tune the inte-
gration process. The massive exploitation of the structured Web
has been studied for data published in HTML tables and lists [10,
20]. However, these works focus on the extraction of rich rela-
tional schemas, without addressing the issue of integrating the ex-
tracted data. OCTOPUS [9] and CIMPLE [30] support users in the
creation of datasets from web data by means of a set of operators
to perform search, extraction, data cleaning and integration. Such
systems have a more general application scope than ours, but they
heavily involve users in the process. Similarly, [22, 23, 24, 31] re-
quire labeled examples to bootstrap the extraction process and, with
the notable exception of [31], they can extract only data from the at-
tributes annotated in the input pages (i.e., no new attributes are dis-
covered in the integration process). In [31] the extraction process
is propagated to several sources by adapting a previously learned
wrapper to new unseen sites. During this process, new training ex-
amples are produced to learn wrappers tailored to the new sites.
This system discovers new attributes by assuming that they share
some formatting feature with an attribute of the same site learned
by means of the training examples. As clarified by their experimen-
tal evaluation, this technique fails on pages containing spurious text
fragments similar to those related to domain attributes.

DEIMOS [2] is an end-to-end system that, given a seed website
and some background knowledge of the domain, discovers related
websites and builds semantic web services from them. The sys-
tem relies on different techniques due to the goal of dealing with

815

services instead of sources as in our case. The different setting
leads to different solutions: instead of learning simple matchings
(element correspondences), it automatically learns Datalog map-
pings between websites [11]. Moreover, it assumes that the current
knowledge suffices for describing new sources, while we can al-
ways easily extend the abstract relation by adding new attributes.

Our integration technique may be seen as a specialized agglom-
erative, hierarchical clustering algorithm [29]. The domain-separa-
bility allows us to define, locally to each abstract attribute, a stop
condition that guarantees the correctness for our setting.

The problem of finding labels for web data has been studied
in [17], which exploits the redundancy of information on Web. But
their approach mostly applies for categorical values.

8. CONCLUSIONS AND FUTURE WORK
Web data extraction and integration is still an expensive process,

which needs human supervision in many steps to achieve high qual-
ity results. In this paper we introduced WEIR, a new algorithm that,
given a collection of detail pages from several web sources, is able
to automatically extract and match their data even in presence of
partial overlap and errors. Ours is a principled approach based on
reasonable assumptions on the input websites. Experiments over
real web sources show that it is more effective than traditional ex-
traction and integration approaches with comparable running time.

We assume that entities described in the detail pages can be as-
sociated with an identifier, which is used to align the pages. On
the Web, for many domains this is a natural assumption, and the
identifiers can be derived during the page harvesting phase, or auto-
matically extracted from the page collections starting from a small
seed set. As we mentioned, for other domains where such an as-
sumption does not hold, we will need to generalize WEIR by relying
on distance functions for opaque columns, such as those developed
in [25, 26], which do not require to align the columns’ elements.

Our approach focuses on detail pages with a single entity. How-
ever, there are many sites where data about many instances appear
in the same page, e.g., in tables. How to extend our algorithms to
handle these pages is left to future work.

9. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: extracting relations

from large plain-text collections. In DL ’00, 2000.
[2] J. Ambite, S. Darbha, A. Goel, C. Knoblock, K. Lerman,

R. Parundekar, and T. Russ. Automatically constructing
semantic web services from online sources. In ISWC, 2009.

[3] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In SIGMOD, 2003.

[4] M. Banko, M. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the web. In
IJCAI, 2007.

[5] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema
matching, ten years later. PVLDB, 4(11), 2011.

[6] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti.
Supporting the automatic construction of entity aware search
engines. In WIDM, 2008.

[7] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti.
Probabilistic models to reconcile complex data from
inaccurate data sources. In CAiSE, 2010.

[8] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti.
Extraction and integration of partially overlapping web
sources. Tech. rep., DIA - Roma Tre - TR201, Dec. 2012.

[9] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. PVLDB, 2(1), 2009.

[10] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on the
web. PVLDB, 1(1), 2008.

[11] M. J. Carman and C. A. Knoblock. Learning semantic
definitions of online information sources. J. Artif. Int. Res.,
30(1):1–50, 2007.

[12] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A
survey of web information extraction systems. IEEE Trans.
Knowl. Data Eng., 18(10):1411–1428, 2006.

[13] S.-L. Chuang, K. C. Chang, and C. X. Zhai. Context aware
wrapping: Synchronized data extraction. In VLDB, 2007.

[14] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-matching
tasks. In IIWeb, 2003.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[16] V. Crescenzi and P. Merialdo. Wrapper inference for
ambiguous web pages. Applied Artificial Intelligence,
22(1&2):21–52, 2008.

[17] A. da Silva, D. Barbosa, J. M. Cavalcanti and M A. Sevalho.
Labeling Data Extracted from the Web. In OTM, 2007.

[18] N. N. Dalvi, R. Kumar, and M. A. Soliman. Automatic
wrappers for large scale web extraction. PVLDB, 4(4), 2011.

[19] N. N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis
of structured data on the web. PVLDB, 5(7), 2012.

[20] H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvesting
relational tables from lists on the web. PVLDB, 2(1), 2009.

[21] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam. Open information extraction: The second
generation. In IJCAI, 2011.

[22] P. Gulhane, A. Madaan, R. R. Mehta, J. Ramamirtham,
R. Rastogi, S. Satpal, S. Sengamedu, A. Tengli, and
C. Tiwari. Web-scale information extraction with vertex. In
ICDE, 2011.

[23] P. Gulhane, R. Rastogi, S. H. Sengamedu, and A. Tengli.
Exploiting content redundancy for web information
extraction. PVLDB, 3(1), 2010.

[24] Q. Hao, R. Cai, Y. Pang, and L. Zhang. From one tree to a
forest: a unified solution for structured web data extraction.
In SIGIR, 2011.

[25] A. Jaiswal, D. Miller, and P. Mitra. Uninterpreted schema
matching with embedded value mapping under opaque
column names and data values. IEEE Trans. Knowl. Data
Eng., 22(2):291–304, 2010.

[26] J. Kang and J. F. Naughton. On schema matching with
opaque column names and data values. In SIGMOD, 2003.

[27] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava.
Truth finding on the deep web: Is the problem solved?
PVLDB, 6(2), 2013.

[28] J. Madhavan, L. Afanasiev, L. Antova, and A. Y. Halevy.
Harnessing the deep web: Present and future. In CIDR, 2009.

[29] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval, Cambridge University Press, 2008.

[30] W. Shen, P. DeRose, R. McCann, A. Doan, and
R. Ramakrishnan. Toward best-effort information extraction.
In SIGMOD, 2008.

[31] T.-L. Wong and W. Lam. Learning to adapt web information
extraction knowledge and discovering new attributes via a
bayesian approach. IEEE Trans. Knowl. Data Eng.,
22(4):523–536, 2010.

816

