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ABSTRACT
This paper examines the problem of computing diverse query
results which is useful for browsing search results in online
shopping applications. The search results are diversified wrt
a sequence of output attributes (termed d-order) where an
attribute that appears earlier in the d-order has higher pri-
ority for diversification. We present a new indexing tech-
nique, D-Index, to efficiently compute diverse query results
for queries with static or dynamic d-orders. Our perfor-
mance evaluation demonstrates that our D-Index outper-
forms the state-of-the-art techniques developed for queries
with static or dynamic d-orders.

1. INTRODUCTION
Consider a user who is shopping online for a new laptop

from a website which can display a result table consisting of
up to 20 laptops that match the user’s specification. As the
number of matching results is typically much larger than
number of display records, it is useful to return a diverse
set of results for the user to browse. For example, instead
of showing the user 20 laptops from only two brands (say
Lenovo and Acer), it would be more interesting to show re-
sults covering a more diverse range of brands (e.g., Lenovo,
Acer, Dell, HP, Asus, Samsung). If Lenovo and Acer are
indeed the only two brands of laptops that satisfy the user’s
query, then it would be better to show a more “balanced”
distribution of the 20 displayed laptops; for example, show-
ing 10 laptops from each of Lenovo and Acer is better than
showing 18 laptops from Lenovo and 2 laptops from Acer.
Similarly, if the user is interested only in laptops from Dell,
then it would be more interesting to show a diverse range
of Dell laptops with different screen sizes instead of showing
all Dell laptops with the same screen size.

In general, the query results can be diversified wrt a se-
quence of attributes, say (brand, screen size, . . .), referred
to as a d-order, where the intention is to first diversify the
results with as many different brands as possible, and for
records that belong to the same brand, we diversify them
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with as many different screen sizes as possible, and so on.
Thus, a d-order determines a priority order for diversify-
ing the query results, where the first attribute has higher
priority to diversify than the second attribute, and so on.

Vee, et al. [8] were the first to study the problem of com-
puting diverse query results. They formally define the no-
tion of query result diversity and show that existing score
based techniques are inadequate to guarantee diverse query
results. They also propose an inverted-list based approach
to evaluate such queries. However, their work addresses on-
ly static diversity queries (SDQ), where the query results
are diversified wrt a static, pre-defined d-order. Clearly, it
would be useful to allow users to customize their diversifica-
tion preference. For example, Alice might be more interest-
ed to diversify the results wrt laptop color first, followed by
brand, whereas Bob might be more interested to diversify
the results wrt the number of CPU cores first, followed by
battery life and screen size.

In this paper, we examine the more general problem of e-
valuating dynamic diversity queries (DDQ) where the query
results are diversified wrt a user specified d-order. A DDQ
can be expressed by the following extended SQL syntax: “S-
ELECT ... FROM R WHERE ... DIVERSIFY BY D1, · · · ,
Dn LIMIT k” which retrieves a diverse set of at most k
matching records from a relation R such that the records
are diversified wrt a d-order (D1, · · · , Dn). The attributes
in the SELECT clause must contain all the attributes in the
DIVERSIFY BY clause.

Our paper makes three key contributions. First, we show
that extending existing techniques designed for SDQs [8] to
evaluate DDQs is inefficient (Section 4). Second, we intro-
duce a novel approach for evaluating diversity queries that
is based on the concept of computing a core cover of a query
(Section 5.1). Based on this concept, we design a new index
method, D-Index, and introduce two index variants, namely,
D-tree and D

+
-tree (Sections 5 and 6). Third, we demon-

strate with an experimental evaluation, which is based on
a PostgreSQL implementation, that our proposed D-Index
technique consistently outperforms [8] for both SDQs as well
as DDQs (Section 7).

In this paper, we use Q to denote a diversity query on a
relation R with d-order δ = (D1, · · · , Dm), a set of (possibly
empty) selection predicate attributes θ, and a limit value of
k. Our running example data for R is shown in Figure 1(a):
the attributes Brand, #Core, ScrnSze, BatLife, and Color
represent, respectively, laptop brand (B), number of CPU
cores (C), screen size in inches (SS), battery life in hours
(BL), and laptop color (LC).
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RID Brand #Core ScrnSze BatLife Color

1 HP 1 13.3 3 Red
2 HP 1 14.1 7 White
3 HP 2 14.1 3 Silver
4 HP 2 14.1 5 Silver
5 HP 2 13.3 7 Black
6 HP 2 15.4 3 Red
7 Acer 2 14.1 6 White
8 Acer 2 15.4 3 Silver
9 Acer 2 15.4 7 Red
10 Acer 4 13.3 3 Black
11 Acer 4 13.3 5 Black
12 Acer 4 14.1 5 Red
13 Acer 4 17.3 5 Black
14 Lenovo 2 14.1 3 White
15 Lenovo 2 14.1 5 Silver
16 Lenovo 2 14.1 7 Black
17 Lenovo 4 13.3 5 Black
18 Lenovo 4 13.3 7 White
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Figure 1: Running Example (a) Relation R (b) D-index on R with key (Brand, #Core, ScrnSze, BatLife)

RID B C SS

1 HP 1 13.3

4 HP 2 14.1

6 HP 2 15.4

15 Lenovo 2 14.1
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Figure 2: Diverse Query Results, d-order δ = (Brand, #Core, ScrnSze)

2. DIVERSE QUERY RESULTS
In this section, we present the definition of diverse query

results used in this paper. Our definition is based on that
from [8], where a query result is diversified wrt a sequence
of attributes δ = (D1, · · · , Dm), referred to as a d-order.
Essentially, δ specifies a priority order for diversifying the
query results with Di having a higher priority than Di+1

such that we maximize the domain values shown for Di be-
fore Di+1. The goal is to maximize the diversity of the at-
tribute domain values shown as well as “balance” the num-
ber of records for each attribute value.

Example 2.1 Consider a query Q on R (Fig. 1) with k =
4 and a selection predicate “#Core ≤ 2”. Figs. 2(a)-(d)
show four possible result sets (S1 to S4) for Q, where only
the attribute values for RID, B, C, and SS are shown. If the
d-order for Q is δ = (B,C, SS), we can organize each result
set Si using a trie Ti (wrt δ) as depicted in Figs. 2(e)-(g)
which provides a more visual and convenient representation
for comparing result diversity. Observe that T1 and T2 are
equally diverse wrt the brand attribute (each has two dis-
tinct brand values), but S2 is more balanced than S1 because
S2 has two records for each brand value, whereas S1 has
three records for HP brand and one record for Lenovo brand.
However, compared to T3, both T1 and T2 are less diverse
wrt the brand attribute. Finally, we note that T4 is more
diverse than T3: while both are equally diverse wrt the brand
attribute (each has three brand values), T4 is more diverse
wrt the #core attribute because T4 has two distinct #core
values for its two records with HP brand, whereas T3 has
only one distinct #core value for its two records with HP
brand. �

In the following, we formalize the above intuition of di-
verse query results.

Definition 2.1 (attribute ordering) An attribute order-
ing of a relation R is a sequence of attributes (A1, · · · , An),
where each Ai is a distinct attribute of R.

Note that an attribute ordering does not necessarily include
all the attributes of R.

Consider an attribute ordering α = (A1, · · · , An) of R.
We use αi to denote the length-i, i ∈ [0, n], prefix of α; i.e.,
αi = (A1, · · · , Ai). We refer to each αi as a α-prefix.

Definition 2.2 (α-tuple, α-prefix tuple) A tuple t is
defined to be an α-tuple if t ∈ πα(R) for some attribute
ordering α. We say that t is an α-prefix tuple if t is an
αi-tuple for some prefix αi of α.

Definition 2.3 (matching αi-tuple) An αi-tuple t, i ∈
[1, n] is defined to be a matching tuple for Q if all the at-
tributes in the selection predicates (i.e., θ) occur in αi and
t satisfies all the selection predicates of Q.

Note that it is not necessary for a matching tuple to contain
all the d-order attributes or all the attributes projected by
the query.

Definition 2.4 (tuple cover) Given a α-tuple ta and a
β-tuple tb, we say that ta covers tb (or tb is covered by ta) if
α ⊆ β and ta.Ai = tb.Ai for each attribute Ai ∈ α. We say
that a tuple t covers a set of tuples S if t covers each t′ ∈ S.

Let S ⊆ R be a result set for a diversity query Q on
relation R wrt d-order δ, and T be the trie representation
of S (wrt δ). Each node v in T corresponds to a unique
δ-prefix tuple, which we denote by ptupδ(v). For example,
in Fig. 2(f), if v refers to the rightmost leaf node in T2, we
have ptupδ(v) = (Lenovo, 2, 15.4).
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Given a node v in T , we use Tv to denote the subtrie
rooted at v representing the subset of records S(v) ⊆ S; i.e.,
S(v) is the set of records contained in Tv. For example, in
Fig. 2(f), if v refers to the node labeled “HP” in T2, then
S(v) contains two records with RID values of 1 and 4.

Consider a subtrie Tv where v has c child nodes, v1, · · · , vc.
As a measure of the diversity of S(v), define the metric

F (S(v)) = c|S(v)| − σ

where σ is the standard deviation of the set {|S(v1)|, · · · , |S(vc)|}.
To understand why the above metric is meaningful for

comparing result set diversity, consider a query Q to re-
trieve a result set of k tuples from relation R wrt d-order
δ. Consider the trie representations, T1 and T2, of two pos-
sible result sets, S1, S2 ⊆ R, where |S1| = |S2| = k. Let
F (S1) = c1k − σ1 and F (S2) = c2k − σ2. If S1 is more di-
verse than S2, then either (1) the root node of T1 has more
child nodes than that of T2 (i.e., c1 > c2), or (2) the root
nodes of both T1 and T2 have the same number of child n-
odes, but the child subtrees in T1 are more balanced than
those in T2 (i.e., c1 = c2 and σ1 < σ2). Effectively, F (S1) is
larger than F (S2) if S1 is more diverse than S2.

In other words, given a result set S ⊆ R of Q, if for every
node v in the trie representation of S, F (S(v)) can not be
further increased (by replacing some records in S(v) by an
equal number of some other records from R − S that are
covered by ptupδ(v)), then the diversity of S can not be
increased (without increasing the cardinality of S), and we
conclude that S is a diverse result set of cardinality k. Thus,
we can define a diverse result set S in terms of maximizing
F (v) for each node v in the trie representation of S.

Definition 2.5 (diverse result set) Let T denote the trie
representation of a result set S ⊆ R for a diversity query Q
on R wrt d-order δ. Let Tv denote a subtrie of T rooted
at v. We define S to be diverse wrt ptupδ(v) if F (S(v)) is
maximized over all sets S′ ⊆ R that are covered by ptupδ(v)
such that |S′| = |S(v)|. We define S to be a diverse result
set for Q if S is diverse wrt every δ-prefix tuple in S.

Example 2.2 Consider the trie T4 in Fig. 2(h). Let v0
denote the root node of T4, and v1 denote the node in T4 with
ptupδ(v1) = (HP ). We have F (S4(v0)) = 12 −

√
2/3 and

F (S4(v1)) = 4. S4 is a diverse result set for Q following the
definition: S4 is diverse wrt ptupδ(v0) since there are only
three brand values in R and v0 has three child nodes; S4

is diverse wrt ptupδ(v1) since |S4(v1)| = 2 and v1 has two
child nodes; and for each of the remaining nodes v in T4,
S4 is diverse wrt ptupδ(v) since |S4(v)| = 1. On the other
hand, T1 in Fig. 2(e) is not a diverse result set because S1

is not diverse wrt ptupδ(v0) where v0 is the root node of
T1: F (S1(v0)) can be further increased by making the child
subtrees of v0 more balanced by replacing RID6 with RID14
to obtain T2 in Fig. 2(f). �

Note that our definition of diverse result set is equivalen-
t to one in [8] in that a set is a diverse result set under
our definition if and only if it is also a diverse result set
under the definition in [8]. We have chosen to present the
definition in terms of the metric F () as we believe that it
captures more closely the intuition behind the diversity def-
inition. We should emphasize that our contribution is not
on the definition of diverse query result but on the efficient
evaluation of diversity queries.

3. RELATED WORK
Query result diversification. Search result diversifica-
tion is an active research area that aims to increase user
satisfication in web search and recommender systems (e.g.,
[1, 4]). The area can be broadly classified into content-based
diversification (e.g., [9, 7, 2]) which aims to reduce informa-
tion redundancy in search results, and intent-based diversi-
fication (e.g., [10, 11, 3, 6]) which aims to provide search
results that cover as many facets of the query as possible to
deal with ambiguous queries.

Our work on DDQ evaluation falls under content-based
diversification. We adopt the diversity definition from [8]
which is intuitive to use and only requires an explicit speci-
fication of attribute ordering for diversification. In contrast,
many other diversity definitions require assigning a diversi-
ty score to each record, which could be hard to interpret,
or require specifying a distance function to measure the dis-
similarity between a pair of records.
Static diversity queries. The work that is the most re-
lated to ours is the paper by Vee et al. [8] which introduced
the problem of evaluating SDQs. They showed that existing
score based techniques are inadequate for the problem and
proposed two indexing methods, OnePass and Probe.

To evaluate SDQs on a relation R, OnePass builds an
inverted-list index Ij for each attribute Aj in R, where each
posting list in Ij is organized using a B+-tree with a pre-
determined d-order, α = (A1, · · · , An), which consists of all
the attributes in R, as the index key. Thus, all the B+-trees
in OnePass use α as the index key. The B+-trees are com-
pressed by replacing each key attribute value with a Dewey
encoded value (e.g., replace “Acer” by the value 0). Given a
SDQ Q with a selection predicate “Aj = v”, OnePass eval-
uates Q by an index scan on the B+-tree corresponding to
the value v in Ij . A run-time, main-memory trie structure T
is used to organize the retrieved index key values such that
each root-to-leaf path in T represents a retrieved α-tuple.
Since the index key and query’s d-order are both the same
(i.e., α) for SDQs, the B+-tree index scan ensures that the
retrieved key values are inserted into T “sequentially” by
extending T with a rightmost path. This important prop-
erty enables OnePass to conveniently detect when there is a
sufficient number of α-tuples in a subtrie to form a diverse
result set so that the B+-tree index scan can skip to retrieve
tuples for another subtrie in T . As an example, suppose
that α = (A,B,C,D) and after inserting a newly retrieved
tuple (a1, b1, c1, d1) into T , OnePass detects that the sub-
trie rooted at (a1, b1) has sufficient number of tuples; in this
case, the index scan will skip to search for index keys greater
than (a1, b1, c∞, d∞), where c∞ and d∞ represent the largest
domain values for attributes C and D, respectively.

To deal with multiple selection predicates on different at-
tributes, OnePass invokes a B+-tree index scan for each of
the selection attributes and uses an appropriate merge oper-
ation to combine the index keys retrieved from the multiple
index scans.
Probe is a variant of OnePass that performs a bi-directional

B+-tree index scan instead of the single forward scan adopt-
ed in OnePass. The goal of Probe is to reduce the number of
useless retrieved tuples, which are tuples that are retrieved
into T but are later replaced by other tuples. However,
Probe incurs more random I/Os due to its bi-directional s-
can and the experimental results in [8] indicate that both
OnePass and Probe performed similarly.
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4. CHALLENGES FOR DYNAMIC QUERIES
To motivate the need for a new approach to evaluate D-

DQs, we argue that although existing techniques for SDQs
[8] can be extended to support DDQs, their performance is
expected to be poor due to the need to scan a significant
portion of the index. This is validated by our experimental
results in Section 7.

Let us first consider how to extend the basic technique,
OnePass [8], to form a new variant, termed OnePassD , for
evaluating DDQs. To make the discussion concrete, sup-
pose that the B+-trees in OnePass

D have index key α =
(A,B,C,D,E) and we are using OnePass

D to evaluate a D-
DQ with a d-order of δ = (D,E) and a selection predicate
“A = a1”. Similar to OnePass, OnePassD performs an in-
dex scan on the B+-tree corresponding to the value a1 in the
inverted-list index Ia for attribute A. Each retrieved α-tuple
from the index scan is converted to a δ-tuple to update the
main-memory trie T . Due to the difference between α and
δ, there are two extensions required for OnePass

D to work
correctly. First, the tuples inserted into T are now in a “ran-
dom” instead of a “sequential” order (e.g., the index scan re-
turns (a1, b1, c1, d2, e2) followed by (a1, b1, c2, d1, e1), where
d1 < d2). Thus, the simple scheme adopted in OnePass for
detecting when there are sufficient tuples in a subtrie no
longer works due to this random order and a more sophis-
ticated detection scheme is required. Second, the Dewey
encoding scheme used for compressing index keys does not
work correctly when the α-tuples are mapped to δ-tuples (to
update T ) as the same attribute value could have different
Dewey encodings. The second extension is trivial to fix (en-
code each attribute value with a unique value), but the first
extension is more intricate (Section 5.5).

Although OnePass
D can work correctly to evaluate D-

DQs, its performance could be very inefficient as it might
need to scan the entire index. Continuing with the exam-
ple, suppose that after updating T with a newly retrieved
tuple (a1, b1, c1, d1, e1), OnePass

D detects that the subtrie
rooted at (d1, e1) has sufficient number of tuples. Howev-
er, OnePassD cannot efficiently skip to search for the next
value after (d1, e1) as the B and C attributes preceding D
are not part of the search attributes. Hence, in the worst
case, no index skip operation is possible in the OnePass

D

approach. For similar reasons, Probe could be extended to
correctly evaluate DDQs but would perform even worse than
OnePass

D as the extended Probe would still incur random
I/Os for its bi-directional scan but without the benefit of
reducing useless tuple retrievals due to the absence of index
skip operations.

5. OUR APPROACH
In this section, we present the key ideas behind our ap-

proach of evaluating diversity queries.

5.1 Core Cover
Our approach for computing diverse query results is based

on the concept of computing a core cover for a query.

Definition 5.1 (core cover) A set of δ-prefix tuples C =
{t1, · · · , tℓ}, ℓ ∈ [1, k], is defined to be a core cover for a
diversity query Q on relation R with d-order δ and limit k
if there exists ℓ positive integers (β1, · · · , βℓ) such that (a)
∑ℓ

i=1
βi = k and (b) for each ti ∈ C and for each subset of

βi matching records Si ⊆ R that is covered by ti,
⋃ℓ

i=1
Si is

a diverse result set for Q.

Thus, each tuple in a core cover C covers at least one tuple
in a diverse result set S. We refer to (β1, · · · , βℓ) as the core
cover assignment for Q. For the case where ℓ = k, the core
cover assignment for Q is trivially given by βi = 1 for each
i ∈ [1, ℓ]. If ℓ < k, then there will be duplicate δ-tuples in S
and the core cover assignment essentially allocates the dis-
tribution of the duplicates among the tuples in C to ensure
that S is a diverse result set.

Example 5.1 Consider a query Q on R with δ = (B,SS),
a single selection predicate “#Core = 4”, and a limit of 5.
Consider a set of (B,C,SS)-tuples, C = {t1, t2, t3, t4}, where
t1 = (Acer, 4, 13.3), t2 = (Acer, 4, 14.1), t3 = (Acer, 4, 17.3),
and t4 = (Lenovo, 4, 13.3). Then, C is a core cover for Q
with a core cover assignment (1, 1, 1, 2). That is, there exists
a diverse result set S ⊆ R for Q where each of the tuples in
{t1, t2, t3} covers one tuple in S, and t4 covers two tuples
in S. Based on R in Figure 1(a) and the core cover assign-
ment (1, 1, 1, 2), there are two possible diverse result sets for
Q corresponding to the two sets of RIDs: {10, 12, 13, 17, 18}
and {11, 12, 13, 17, 18}.

RID B SS

10/11 Acer 13.3
12 Acer 14.1
13 Acer 17.3
17 Lenovo 13.3
18 Lenovo 13.3

RID B SS

10 Acer 13.3
11 Acer 13.3
12 Acer 14.1
13 Acer 17.3

17/18 Lenovo 13.3

(a) Diverse result set for Q (b) Non-diverse result set for Q

Note that although there are two tuples in R (with RIDs 10
and 11) covered by t1, (2, 1, 1, 1) is not a core cover assign-
ment for Q as illustrated by the result sets shown above: the
result set in (a) is more balanced than that in (b) wrt Brand
attribute. �

The concept of a core cover provides a useful design frame-
work to consider techniques for computing diverse query re-
sults. Re-examining OnePass [8] with this framework, we
see that the core cover C computed by OnePass, which is
organized using a trie, is characterized by the following two
properties: (P1) |C| = k, and (P2) all the tuples in C are
δ-tuples. As OnePass is designed for SDQs, δ is the same as
a pre-determined index key α, and OnePass uses B+-trees
to retrieve δ-tuples to compute C. This is a reasonable ap-
proach when δ is the same as α. But as we explained in Sec-
tion 4, this index design becomes unacceptable when adapt-
ed to OnePass

D for DDQs as using a B+-tree index scan
(with key α) to retrieve diverse δ-tuples could be extremely
inefficient when α and δ are very different.

To avoid the pitfall of OnePassD , we make the observation
that since the tuples in a core cover are δ-prefix tuples (of
which δ-tuples are just a special case), a better index design
is to support the retrieval of δ-prefix tuples (instead of δ
tuples). Thus, instead of supporting only a single type of
index scan with a single index key α, a more flexible index
design is to support multiple types of index scans using α-
prefixes as keys to efficiently retrieve α-prefix tuples to form
δ-prefix tuples for the core cover.

The rest of this section presents our new index technique
to evaluate diversity queries. Our approach consists of t-
wo data structures: a novel disk-based diversity index or
D-Index, which supports efficient index scans with α-prefix
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keys (Section 5.2); and a run-time, main-memory structure,
called the result trie, to organize the tuples in the core cov-
er and guide the index traversal (Section 5.3). We give an
overview of how these structures operate together to evalu-
ate diversity queries in Section 5.4, and establish a sufficient
condition for a result trie to be a core cover for a query in
Section 5.5.

5.2 Diversity Index
A D-Index I on a relation R with index key α = (A1, · · · , An)

is a height-balanced trie-like structure on the set of tuples
πα(R). The index consists of n + 1 levels, L0, L1, · · · , Ln,
where each Li corresponds to attribute Ai, i ∈ [1, n]. L0

consists of a single root node, denoted by Nroot. Each node
N at Li, i ∈ [1, n], corresponds to a unique αi-tuple, de-
noted by ptupα(N). Thus, each Li contains |παi

(R)| nodes,
i ∈ [1, n]. A node N at Li, i ∈ [1, n− 1], is the parent node
of another node N ′ at Li+1 if ptupα(N) is a proper prefix
of ptupα(N

′).
Each node N at Li, i ∈ [1, n], consists of the following in-

formation: (1) ptupα(N), the α-prefix tuple corresponding
to N ; and (2) the RID, denoted by rid(N), of some tuple
in R that is covered by ptupα(N). ptupα(N) enables the re-
trieval of descendant index nodes of N while rid(N) enables
the retrieval of a tuple that is covered by ptupα(N).

Example 5.2 Figure 1(b) shows the D-Index with index
key (Brand, #Core, ScrnSze, BatLife) on R (Figure 1(a)).
If N denotes the left child node of the node “Acer”, then
ptupα(N) = (Acer, 2) and rid(N) ∈ {7, 8, 9}. �

In addition, the root node Nroot of I also maintains s-
tatistics on the number of distinct values for each attribute
in α, denoted by countNroot (Aj); i.e., for each attribute Aj ,
j ∈ [1, n], we have countNroot (Aj) = |πAj

(R)|. These statis-
tics are used for checking certain property of the result trie
(to be described in Section 6.3).

A D-Index I can be used to evaluate a diversity query
Q if all the d-order attributes α and selection predicate at-
tributes θ occur in the index key α of I .

Definition 5.2 (matching index node) A node N in a
D-Index I is defined to be a matching index node for a di-
versity query Q if ptupα(N) is a matching tuple for Q.

The overall idea of using an index I to evaluate Q is to
retrieve δ-prefix tuples from the matching index nodes ac-
cessed to progressively compute a core cover for Q. Specif-
ically, for each index node N accessed during the traversal
of I , if N is matching index node, the α-prefix tuple cor-
responding to N (i.e., ptupα(N)) is used to update a core
cover for Q. However, since the key α of I and the d-order
δ of Q are generally different attribute orderings, we need
to transform each α-prefix tuple t retrieved from I to its
corresponding δ-prefix tuple to update a core cover for Q.
We refer to this transformed tuple as the maximal δ-prefix
tuple of t.

Definition 5.3 (maximal δ-prefix) Given two attribute
orderings of R, αi = (A1, · · · , Ai) and and δ = (D1, · · · ,
Dm), we define the maximal δ-prefix of αi to be (D1, · · · , Dj),
j ∈ [1,m], if (1) the set of attributes {D1, · · · , Dj} occurs
in αi and (2) either j = m or Dj+1 does not occur in αi.
The maximal δ-prefix of αi is defined to be nil if D1 does
not occur in α.

Definition 5.4 (maximal δ-prefix tuple) Given two at-
tribute orderings of R, αi = (A1, · · · , Ai) and δ = (D1, · · · ,
Dm), and a αi-tuple t, we define the maximal δ-tuple of t to
be πδj (t), where δj is the maximal δ-prefix of αi.

Given an index node N in I , we use ptupmax
δ (N) to denote

the maximal δ-tuple of ptupα(N).

Example 5.3 Consider α = (A,B,C,D,E) and δ = (C,A,E).
The maximal δ-prefix of α4 is (C,A). Given a α-tuple t =
(1, 2, 3, 4, 5), the maximal δ-tuple of t is (3, 1, 5). Consid-
er a query Q with δ = (B,SS,BL) and let N denote the
parent node of the rightmost leaf node in the D-Index with
α = (B,C, SS,BL) in Figure 1(b). Then ptupmax

δ (N) =
(Lenovo, 13.3). �

5.3 Result Trie
To keep track of the maximal δ-prefix tuples that form a

core cover for Q, we use a main-memory structure called the
result trie (denoted by T ).

The result trie T consists of at most m+ 1 levels, L0, L1,
· · · , Lm, where each Li corresponds to an attribute Di, i ∈
[1, m], in the d-order δ of Q. L0 consists of a single root
node, denoted by Vroot. Each node V at Li, i ∈ [1, m],
corresponds to a δi-tuple, denoted by ptupδ(V ). A node V
at Li, i ∈ [1, m − 1], is the parent node of another node V ′

at Li+1 in T if ptupδ(V ) is a proper prefix of ptupδ(V
′).

Each node V of T consists of the following information:
(1) ptupδ(V ), the δ-prefix tuple associated with V ; and
(2) a set of entries, denoted by entry(V ), where each en-
try e = (ρ, rid) corresponds to an index node N such that
ρ = ptupα(N), rid = rid(N), and ptupmax

δ (N) = ptupδ(V ).
Note that entry(Nroot) = ∅.
Definition 5.5 (tree size) The size of a subtree T ′ of a
result trie, denoted by size(T ′), is defined to be the number
of leaf nodes in T ′.

We use cover(T ) to denote the set of δ-prefix tuples corre-
sponding to the leaf nodes of T ; i.e., cover(T ) = {ptupδ(V ) | V
is a leaf node in T}.
Example 5.4 Figure 3(h) shows an example result trie wrt
a query with δ = (Brand,ScrnSze, BatLife). We have
cover(T ) = {(Acer, 13.3, 5), (Acer, 14.1, 5), (Acer, 17.3),
(Lenovo)}. If V denotes the rightmost child node of the node
“Acer”, then ptupδ(V ) = (Acer, 17.3). �

Note that our result trie differs from the trie used in [8]:
our trie is not necessarily height-balanced, and it requires a
more intricate maintenance procedure (Section 5.5) as the
tuples are inserted into it in a random rather than a sequen-
tial order.

5.4 Overview of Query Evaluation
Our overall approach to evaluate a diversity query Q using

a D-Index I and result trie T works as follows. For each
matching index node N accessed in I , we update T with
ptupmax

δ (N). Thus, the result trie is used to organize the
retrieved ptupmax

δ (N) tuples, which is in turn used to guide
the index traversal to construct a core cover for Q efficiently
with a small number of index node accesses.

If the result trie satisfies a sufficient condition for cover(T )
to form a core cover for Q (discussed in Section 5.5), the in-
dex traversal terminates and cover(T ) is used to derive a
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Figure 3: Sequence of updates to result trie by D-tree evaluation in Example 6.3

diverse result set for Q as follows. Let {V1, · · · , Vℓ} denote
the set of leaf nodes in T and (β1, · · · , βℓ) denote the corre-
sponding core cover assignment for Q. Then the rid entries
from entry(Vi) will be used to retrieve βi tuples to form
the result set for Q. If |entry(Vi)| < βi, then we need to
retrieve additional matching tuples by using the ρ entries
from entry(Vi) to access additional matching index nodes.
The core cover assignment is computed to ensure that the
trie representation of the derived result set is as balanced
as possible so that it is a diverse result set; the details are
given elsewhere [5].

5.5 Sufficient Condition for Core Cover
In this section, we establish a sufficient condition for cover(T )

to be a core cover for a query Q with limit of k.

Definition 5.6 (diverse trie) A result trie T for a query
Q on relation R with d-order δ is a diverse trie if for any set
of matching records S ⊆ R, |S| = |cover(T )|, that is covered
by cover(T ), S is a diverse result set of size |S|. �

Definition 5.7 (expandable node) We say that a node
V in a result trie is expandable if it is possible to add a new
child node to V . The new child node must correspond to a
yet-to-be accessed matching index node.

Definition 5.8 (balanced node) A node V in a result
trie is defined to be balanced if for each child subtree Ti of
V , the difference between size(Ti) and size(T ′) is at most
one, where T ′ is the largest child subtree (in terms of size())
of V ; i.e., size(T ′)− size(Ti) ≤ 1.

Definition 5.9 (balanced-diverse (b-diverse) tree) A
subtree T rooted at a node V in a result trie is defined to be
a balanced-diverse (or b-diverse) tree if one of the following
conditions hold: (1) V is a leaf node, or (2) V is an internal
node and either (a) the number of child nodes of V is equal
to size(T ), or (b) V is balanced and not expandable, and
each child subtree of V is a b-diverse tree.

The following result states that a b-diverse result trie T
is a sufficient condition for T to be a diverse result trie.

Lemma 5.1 If a result trie T is b-diverse, then T is a
diverse trie. In addition, if |cover(T )| = k, then cover(T )
is a core cover for Q. �

Definition 5.10 (k-sufficient tree) A subtree T rooted
at a node V in a result trie is defined to be a k-sufficient
tree if one of the following conditions hold: either (1) V is
the root node and size(T ) = k; or (2) V is not the root node,
the subtree rooted at the parent node Vp of V is k-sufficient,
and the difference between size(T ) and size(T ′) is at most
one, where T ′ is the largest child subtree (in terms of size())
of Vp (i.e., size(T ′)− size(T ) ≤ 1).

The following result states that if a subtree T ′ in a result
trie T is a k-sufficient tree, then increasing size(T ′) will not
improve the diversity of T .

Lemma 5.2 If T is a k-sufficient result trie for a query Q,
then there exists a diverse result set S for Q such that for
each k-sufficient subtree T ′ rooted at V in T , the number of
tuples in S that are covered by ptupδ(V ) is at most size(T ′).

Definition 5.11 (k-optimal tree) A tree T is k-optimal
if T is both b-diverse as well as k-sufficient.

Example 5.5 Consider a D-Index I on R with α = (B,C,
SS,BL), and a query Q on R with δ = (B,SS,BL), a single
selection predicate “#Core = 4” (i.e., θ = {C}), and a limit
of 4. Figure 3 shows a sequence of the states of the result
trie as it is updated with the δ-prefix tuples corresponding
to a specific sequence of accessed index nodes. The node
“Acer” in Figure 3(f) is expandable as it is possible to add a
new child node “17.3” to it; however the node “Acer” is not
expandable in both Figures 3(g) and (k). The root node in
Figure 3(h) is not balanced since the size of its left subtree
is 3 while that of its right subtres is 1; however, the root
node in Figure 3(k) is balanced since the size of each of its
child subtrees is 2. In Figure 3(g), the subtree rooted at
the node “Acer” is 4-optimal as it is both b-diverse and 4-
sufficient; however, the entire trie is 4-sufficient but not b-
diverse. In Figure 3(i), the subtree rooted at the node “Acer”
is 4-optimal, while the subtree rooted at the node “Lenovo”
is b-diverse but not 4-sufficient; the entire trie is 4-sufficient
but not b-diverse. Finally, in Figure 3(k), the entire trie is
4-optimal. �

Based on Lemmas 5.1 and 5.2, we have the following suf-
ficient condition for a result trie to form a core cover for a
query.

Theorem 5.1 If for each node V in a result trie T , the
subtree rooted at V is k-optimal or V is not expandable, then
there exists a subtree T ′ of T such that cover(T ′) ⊆ cover(T )
and cover(T ′) is a core cover for Q. In addition, if T is k-
optimal, then T ′ = T . �

Example 5.6 Consider a D-Index I on R with α = (B,C,
SS, BL), and a query Q on R with δ = (B,SS), a single
selection predicate “#Core = 4”, and a limit of 4. In the re-
sult trie T shown in Figure 4(a), although T is 4-sufficient,
T is not b-diverse and therefore also not 4-optimal. Howev-
er, observe that Theorem 5.1 applies to T : each node in the
subtree rooted at “Acer” is 4-optimal, and the root node as
well as each node in the subtree rooted at “Lenovo” is not
expandable. Therefore, there exists a subtree T ′ of T (shown
in Figure 4(b)) such that cover(T ′) is a core cover for Q.
Indeed, Figure 4(c) shows a diverse result set for Q that is
covered by cover(T ′). �
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Note that although Lemma 5.1 provides a sufficient con-
dition for cover(T ) to be a core cover for Q, it is not efficient
to use this condition alone to guide index navigation to com-
pute the query results as it can lead to many useless index
access that retrieve δ-prefix tuples that do not contribute
to the final result trie. For efficiency reason, we therefore
combine the balanced-diverse and k-sufficient properties in
Theorem 5.1 as a stronger sufficient condition for cover(T )
to be a core cover for Q. The following example illustrates
this requirement.

Example 5.7 Consider a D-Index I on R with α = (B,C,
SS, BL), and a query Q on R with δ = (SS,BL), a single
selection predicate “#Core = 2”, and a limit of 4. In the
result trie T1 shown in Figure 5(a), the subtree T ′ rooted
at “14.1” is both b-diverse and 4-sufficient (i.e., 4-optimal).
Since T ′ is 4-sufficient, by Lemma 5.2, it is actually un-
necessary to access further index nodes to expand T ′ since
there exists a diverse result set S for Q where the number of
records in S covered by (14.1) is no larger than size(T ′) = 3.
Indeed, Figure 5(b) shows such a diverse result set for Q. If
we had not used this k-sufficient property, then we could have
access other unnecessary index nodes (e.g., (Acer,2,14.1,6))
that are covered by (14.1). �
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Figure 5: Example for the k-sufficient property

6. D-INDEX VARIANTS
In this section, we present the key ideas of two instan-

tiations of D-Index: D-tree is the simpler variant, which
traverses the index in a DFS manner, while D

+
-tree is an

improved variant to address the limitations of D-tree. The
detailed evaluation algorithms for D-tree and D

+
-tree are

given elsewhere [5]. We use I to denote a D-Index on a
relation R with index key α = (A1, · · · , An).

6.1 Relevant Index Levels (RI-levels)
A D-Index I can be used to evaluate Q if all the attributes

in δ and θ occur in α. Note that the ordering of the at-
tributes in δ and θ can be different from α, and α can contain
attributes that do not occur in δ or θ.

In general, not all of the index levels in I are relevan-
t and useful for evaluating Q. We classify an index level
Li (corresponding to attribute Ai) as a relevant index level
(or RI-level) for Q if it satisfies the following four condi-
tions. First, Ai must be relevant for evaluating Q; i.e., Ai

must be a diversity attribute in δ or a selection predicate
attribute in θ. Second, αi must contain all the selection
predicate attributes in θ. This is necessary to enable check-
ing whether ptupα(N) for an accessed index node N at Li

is a matching tuple for Q. Third, if Ai corresponds to a

diversity attribute Dj in δ, then αi must contain all the at-
tributes in δj . Recall that each matching tuple ptupα(N)
needs to be transformed to its maximal δ-prefix tuple to
update the result trie. Therefore, if αi does not contain
some diversity attribute Dr, r < j, then it means that the
maximal δ-prefix of αi is at most δr−1, which implies that
the additional values of attributes {Dr, Dr+1, · · · , Dj} re-
trieved from ptupα(N) are not utilized at all. In this case,
we are better off accessing Lr−1 instead of Li. Finally, if
Ai corresponds to a selection predicate attribute in θ, then
αi must contain the first diversity attribute D1. Otherwise,
the maximal δ-prefix of αi is empty which means that the
index nodes accessed from Li are useless for updating the
result trie.

Example 6.1 Consider a D-Index I with α = (A,B, C,D,
E,F,G) and a query Q with δ = (E,C,G,A) and θ = {B}.
Q can be evaluated using I since α contains all the attributes
in δ and θ. Only L5 and L7 (corrp. to E and G) are RI-
levels. L1 (corrp. to A) violates the second condition, L2

(corrp. to B) violates the fourth condition, L3 (corrp. to
C) violates the third condition, and L4 and L6 (corrp. to D
and F ) violate the first condition. �

Trie implementation. As Example 6.1 illustrates, the RI-
levels for a query Q are not necessarily consecutive levels in
I . Given an index node N , there are two basic access pat-
terns in D-Index: the first is to access the next node after
N at the same index level, and the second is to access the
first descendant node of N at some RI-level. To efficiently
support these access patterns and avoid the overhead of ac-
cessing nodes at non-RI levels, we implement each D-Index
as a collection of B+-trees. Specifically, for each level Li

in I , the entries in Li are indexed by a B+-tree with index
key αi; thus, there is one leaf entry in the B+-tree for each
level-i index node N in I , and the leaf entry contains its
key value ptupα(N) and rid(N). In this way, the B+-trees
corresponding to non-RI levels for Q will not be accessed for
evaluating Q.

6.2 Definitions & Notations
Before we present the ideas behind the two index vari-

ants, we first introduce several additional definitions and
notations.

Definition 6.1 (corresponding T -node of N) Given a
node N in a D-tree index, we say that a node V in the re-
sult trie T is the corresponding T -node of N if ptupδ(V ) is
ptupmax

δ (N).

In this paper, we use N to denote an index node in I and
use V to denote a node in the result trie T . Given a node V
in the result trie I , we use TV to denote the subtree of the
result trie T rooted at V . Given an index node N in I , we
use TN to denote the subtree of the result trie T rooted at
the corresponding T -node of N .

Definition 6.2 (heavy/light leaf node) A leaf node V

in T is defined to be a ⁀heavy (light) leaf node if for each
ancestor node V ′ of V in T , the subtree rooted at V ′ is the
largest (smallest) subtree (in terms of size()) among its sib-
ling subtrees.

Example 6.2 Let N denote the node in the D-Index in
Figure 1(b) with ptupα(N) = (Acer, 4, 14.1, 5). The corre-
sponding T -node of N in Figure 3(g) is the node V with
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ptupδ(V ) = (Acer, 14.1, 5). In Figure 3(g), the two leftmost
leaf nodes are heavy leaf nodes, while the two rightmost leaf
nodes are light leaf nodes. �

6.3 D-tree Index
In this section, we present the key ideas of evaluating a

query Q with a D-tree index I . The D-tree evaluation algo-
rithm traverses the RI-levels of I in a top-down, depth-first
manner. For each matching index node N accessed, we up-
date the result trie with the maximal δ-tuple corresponding
to N (i.e., ptupmax

δ (N)). If the corresponding T -node of N
already exists in T as V , and V is a leaf node in T , then
we add an entry corresponding to N into entry(V ). On the
other hand, if V does not exist in T , we add V into T and
update entry(V ) as described.

If the update would cause size(T ) to exceed k, we first
need to select a “victim” tuple from T , denoted by ptupδ(V ),
where V is some leaf node in T , and decide if replacing
ptupδ(V ) by ptupmax

δ (N) would improve the diversity of T .
To maximize the diversity of T , we should pick V to be a
heavy leaf node. For instance, consider the result trie shown
in Figure 3(g) from Example 5.5, where the two leftmost
leaf nodes are heavy leaf nodes; clearly, replacing any one of
these leaf nodes is better for the diversity of T than replacing
any one of the non-heavy leaf nodes.

Having selected a victim tuple ptupδ(V ), we need to deter-
mine whether the replacement would improve the diversity
of T . We use a simple sufficient condition to detect whether
its diversity would be affected: if V ′ is the corresponding
T -node of N after ptupmax

δ (N) has been inserted into T , Va

is the youngest ancestor node of V with at least two child
nodes, and Va is an ancestor of V ′, then the replacement
does not affect the diversity of T .

Thus, if this sufficient condition holds, we do not up-
date T with ptupmax

δ (N). Continuing with the example
trie Tg in Figure 3(g), our approach would not update Tg if
ptupmax

δ (N) is say (Acer, 13.3, 7) but we would update Tg if
ptupmax

δ (N) is (Lenovo). Thus, size(T ) does not decrease
as the index evaluation progresses and size(T ) is at most k.

For each accessed index node N , we proceed with the
DFS-traversal from N to its next descendant node (at the
next RI-level) if TN is not k-optimal. Thus, when the index
traversal terminates, Theorem 5.1 guarantees that cover(T )
is a core cover for Q. A diverse result set for Q is derived
from cover(T ) as described in Section 5.4.

Example 6.3 Consider again Example 5.5. There are three
RI-levels corresponding to attributes C, SS, and BL. Fig-
ure 3 shows the sequence of updates to the result trie as the
D-tree is traversed to evaluate Q. In each of Figures 3(a)
to (f), T is not 4-sufficient. The insertion of (Acer,17.3) in
Figure 3(g) causes T to become 4-sufficient, but T is not b-
diverse as Vroot is still expandable. In Figure 3(h), the inser-
tion of (Lenovo) replaces (Acer,13.3,3); and in Figure 3(i),
the insertion of (Lenovo,13.3,7) replaces (Acer,13.3,5). At
this point, T is 4-optimal as it is both 4-sufficient and b-
diverse. �

To check if a level-i node V in T is expandable, we use the
following sufficient condition: if the number of child nodes of
V in T is less than the number of distinct values of attribute
Di+1, which is obtained from the statistic countNroot (Di+1)
stored in the index’s root node, then V is expandable. For
the remaining properties (i.e., balanced node, diverse tree,

and k-sufficient tree), they can be checked directly based on
their definitions or checked more efficiently by incremental-
ly maintaining additional information with each node (e.g.,
maintaining a flag to indicate whether a node is balanced).

6.4 D+-tree Index
One drawback of D-tree is that the DFS-traversal of the

index nodes could result in the retrieval of many matching
index nodes that do not contribute to the eventual query’s
core cover; we refer to such index nodes as useless index
nodes. For instance, in Example 6.3, the three index nodes
retrieved to form the result subtrie rooted at (Acer, 13.3) in
Figure 3(d) turn out to be useless index nodes as the subtrie
was replaced in the final result trie in Figure 3(k).

To reduce the number of useless index node access, we
propose an improved variant of D-tree, called the D+-tree,
which differs from D-tree in three key ways. First, D+-tree
traverses the index nodes in a level-wise manner to alleviate
the drawback of a DFS-traveral of the index nodes.

Second, D+-tree uses additional statistics information to
optimize the update of the result trie T so that for each ac-
cessed index node N , it is possible to not only add a new
node V in T (i.e., V is the T -node corresponding to N) but
also know about the number of child nodes of V (but not
their contents) in T . We refer to such child nodes as virtual
child nodes (or child vnodes). This “look-ahead” capabili-
ty essentially provides a cost-effective means to construct a
larger and more informative result trie (with vnodes) with-
out having to first pay the cost to access the index nodes
corresponding to these vnodes. If if turns out that a vnode
is subsequently replaced (i.e., its correponding index node is
actually useless), we would have saved the index access cost
for the replaced vnode.

Third, unlike the D-tree where it traverses from one RI-
level to the next immediate RI-level, D+-tree uses a cost
model to determine the next “best” RI-level to access from
a given index node. In this way, D+-tree is able to fur-
ther optimize performance by judiciously accessing a select-
ed subset of RI-levels.
Additional statistics. To support the look-ahead capabil-
ity in D

+
-tree, we extend the statistics information that is

stored only with the root node in D-tree to every node in
D
+
-tree. Specifically, for each level-i node N in a D

+
-tree,

we maintain statistics on the number of distinct values for
each “descendant” attribute in the index subtree rooted
at N , denoted by countN (Aj); i.e., for each attribute Aj ,
j ∈ [i+1, n], we have countN (Aj) = |{t.Aj | t ∈ R, ptupα(N)
covers t}|. Note that the statistics stored at the index root
node are the same for both D-tree and D

+
-tree.

Example 6.4 Let N denote the node labeled “Acer” in the
D
+
-tree index I in Figure 1(b). We have countN (C) = 2,

countN (SS) = 4, and countN (BL) = 4. �

Level-wise traversal. In D
+
-tree, the top-down traversal

of selected RI-levels of the index is carried out in two phases.
In the first phase, D+-tree selects a starting RI-level (say
level ℓ) to traverse (based on a cost model) and scans for
matching level-ℓ index nodes. For each accessed index node
N , the result trie is updated with ptupmax

δ (N) similar to
what is done in D-tree. Let V denote the corresponding T -
node of N after the update of T . If TV is not k-optimal, the
evaluation algorithm will determine the maximum number
of child nodes of V , denoted by MC, for cover(T ) to be a
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core cover for Q, and insert an appropriate number of child
vnodes for V so that the total number of its child nodes in
T is MC. Note that vnodes must be leaf nodes in T .

At the completion of the first phase, the result trie T con-
structed is height-balanced up to level j, where δj is the
maximal δ-prefix of αℓ, with possibly some vnodes at level
j + 1. If T contains vnodes or it is not k-optimal, we begin
the second phase of scanning other RI-levels of I which oper-
ates by performing a top-down, breadth-first traversal of the
result trie starting with level j. Suppose that the algorith-
m is currently scanning level-i of the result trie, i ∈ [j,m),
and Di occurs as attribute Ar in α. For each level-i result
trie node V accessed, if TV is not k-optimal or V has child
vnodes, then we will start an index scan wrt an index node
N . The goal is to retrieve a sufficient number of descendan-
t index nodes of N from I so that their maximal δ-prefix
tuples will be inserted into TV to make V k-optimal (if TV

is not k-optimal), or replace the child vnodes of V (if TV

has child vnodes). To determine N , we pick any one entry
(ρ, rid) from entry(V ), and let N be the node such that
ptupα(N) = ρ. Given N , we use a cost model to select the
next “best” RI-level (say ℓ′) to access. As before, we update
the result trie for each matching level-ℓ′ index node N ′ ac-
cessed and if V ′ is the corresponding T -node of N ′ and TV ′

is not k-optimal, we insert an appropriate number of child
vnodes for V ′.

Since T might have leaf nodes that are vnodes, each up-
date of T should replace a vnode whenever possible. For
example, consider the result trie in Figure 6(d) where the
two leaf nodes of node (Lenovo, 13.3) are vnodes (indicat-
ed by ◦ nodes). When T is updated with (Lenovo, 13.3, 5)
in Figure 6(e), the update replaces one of the vnodes of
(Lenovo, 13.3).

At the completion of the second phase, T does not con-
tain any vnodes, if T is k-optimal, Theorem 5.1 guarantees
that cover(T ) is a core cover for Q, and the diverse result
set is constructed following the same procedure described in
Section 5.4. Otherwise, Theorem 5.1 guarantees that there
exists a core cover cover(T ′), cover(T ′) ⊆ cover(T ), and the
details of generating a core cover are given elsewhere [5].

Example 6.5 Consider again Example 5.5 but using D+-tree
as the D-Index. Figure 6 shows the sequence of updates to
the result trie as the D

+
-tree is traversed to evaluate Q,

where the vnodes are indicated by ◦ nodes. The first RI-level
that D+-tree chooses to access is the level corresponding to
attribute SS; i.e., the RI-level corresponding to attribute B
is skipped. Thus, for the evaluation of Q, only two (i.e.,
corresponding to SS and BL) out of the three RI-levels are
accessed. Figure 6(h) shows the result trie at the completion
of scanning index nodes at the level for SS. Observe that
the D+-tree evaluation incurs only one useless index node
access (i.e., (Acer, 13.3))) compared to three useless index
node access using D-tree in Example 6.3. �
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Figure 6: Sequence of updates to result trie by D
+-

tree index evaluation in Example 6.5

Besides using the additional statistics to determine the
number of child nodes of a result trie node, the addition-
al statistics can also be used to more accurately determine
whether a trie node is expandable. Instead of using the ap-
proximate statistics in the root node for this purpose (as in
D-tree), we perform the following for D

+
-tree: whenever

we update the result trie with ptupmax
δ (N) to create a new

level-j leaf node V in T , we copy the statistic countN (Dj+1)
from N to V for this purpose, which is more accurate than
countNroot (Dj+1).
Cost model for RI-level selection. We now outline how
D+-tree uses a cost model to select the next “best” RI-
level to access wrt a level-ℓ index node N . This RI-level
selection problem arises in three cases: (C1) N is the index
root node (i.e., selection of the starting RI-level); and (C2)
N is the index node corresponding to some trie node V
accessed during the breath-first traversal of T , where (a)
TV is not k-optimal or (b) V has some child vnodes. For
(C2b), since TV is already k-optimal, we can simply select
the next RI-level below the level of N . For (C1) and (C2a),
the procedure is more elaborate as the goal is to pick an RI-
level to minimize the overall index access cost to retrieve a
target number of index nodes (denoted by num). For (C1),
num is equal to the query limit k, while for (C2a), num is
equal to maximum possible size of TV for cover(T ) to be
a core cover for Q. The maximum subtree size is derived
by finding the minimum size of the subtree such that it is
k-sufficient; the details of this procedure are given elsewhere
[5].

6.5 Implementation Issues
Insufficient RID problem. Note that it is possible that
the D-Index might not have sufficient RIDs to answer a
query even though there are adequate number of records
in the relation R being indexed. This is due to the design of
D-Index which stores only a single RID in each index node.
To address this problem, one way is to change the design
of the last index level (i.e., Ln) so that each level-n index
node N now stores the RIDs of all the records in R that
are covered by ptupα(N) instead of just a single RID. With
this design, we can retrieve more RIDs associated with a
leaf node V in T by first accessing some entry (ρ, rid) from
entry(V ) and use the α-prefix tuple ρ to retrieve appropriate
level-n descendant nodes in I to obtain their RID-lists.
Index key compression. To optimize the performance
of the constituent B+-trees of a D-Index, we compress each
index’s key values by using a mapping table to map the
original attribute values of the keys into compressed forms.

7. PERFORMANCE STUDY
We conducted an experimental study to evaluate the ef-

fectiveness of our proposed techniques. Sections 7.1 and 7.2
compare the performance of SDQs and DDQs, respectively,
using synthetic datasets. Section 7.3 reports the comparison
using real datasets.

Our results show that D+-tree has the best performance.
For synthetic datasets, D+-tree is on average 2× and up
to 4.4× faster than OnePass for SDQs, and on average 5×
and up to 35× faster than OnePass

D for DDQs. For real
datasets, D+-tree is on average 1.8× and up to 2.7× faster
than OnePass for SDQs, and on average 2.2× and up to 3.5×
faster than OnePass

D for DDQs.
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Data sets. We generated four synthetic tables, R1, · · · , R4,
by computing the join of the lineitem, part, customer, and
orders relations from the TPC-H benchmark using four dif-
ferent scale factors (SF). The properties of these tables are
as follows:

Relation SF Size (GB) No. of tuples (million)

R1 0.75 1.03 4
R2 4.4 4.83 18.73
R3 16 9.9 38.35
R4 36 15 56.35

Each Ri consists of 10 attributes; for convenience, we use
A, · · · , J , respectively, to denote the attributes linenumber,
discount, tax, returnflag, container, shipinstruct, shipmode,
linestatus, nationkey, and orderstatus.

The synthetic datasets are evaluated using the following
5 SDQs (Q1 to Q5) and 5 DDQs (Q6 to Q10):

Query θ

Q1 A
Q2 C
Q3 F
Q4 C,F
Q5 A,C,F

Query θ Diversity Ordering, δ

Q6 A A,F,B,C,D,E,J,G,H,I
Q7 A B,C,D
Q8 A B,D,C
Q9 A C,D,B
Q10 A D,B,C

All the SDQs share the same d-order δ = (A,B,C, D,
E,F ,G,H, I, J). Recall that θ represents a query’s set of
selection predicate attributes (SPA). To be fair to OnePass

[8], we used only equality selection predicates for all queries.
Algorithms. We compared our proposed D-tree and D

+
-tree

against OnePass [8] and OnePass
D . Recall from Section 4

that OnePassD is an extended variant of OnePass to evalu-
ate DDQs; we incorporated D-Index’s result trie structure
into OnePass

D to support the random order of trie updates.
Since Probe performed similarly to OnePass for SDQs [8]
and is expected to be worse than OnePass

D for DDQs (Sec-
tion 4), we omit the comparison against Probe and its exten-
sion. We also evaluated the performance of two sequential s-
can techniques: TableScan scans the relation while DIndexS-
can scans the last RI-level of a D-Index. However, as these
two techniques performed significantly worse than D

+
-tree

(D+-tree is about 50× and 100× faster than DIndexScan
and TableScan, respectively), we omit these two techniques
in this paper.

All the algorithms were implemented in PostgreSQL 9.0.2:
we extended PostgreSQL’s GIN index to support the skip
operations for OnePass [8] and OnePass

D , and both D-tree

and D
+
-tree were implemented as a collection of B+-trees

(Section 6.1).
For each table Ri, we built a D-tree and D+-tree with

index key α = (A, · · · , J), and built the B+-trees of OnePass
and OnePass

D with α as the index key. Our implementation
shows that D+-tree index is about 4 times smaller than the
GIN index used in OnePass and OnePass

D : As an example,
for the 15GB table, the size of the D+-tree is only 1.9GB
while the size of the GIN index is 8.5GB.
Parameters. We varied the following four experimental
parameters: (1) the size of dataset with the default size of
10GB using R3, (2) the query limit k with a default value of
10, (3) the number of selection predicate attributes (SPA)
with a default value of 1, and (4) the position of a SPA with
a default value of 1.

For comparing DDQs, we also varied two additional pa-
rameters: (1) length of query d-order (i.e., |δ|), and (2) the
ordering of the attributes for a given set of diversity at-
tributes.

The experiments were conducted on a PC with a Qual-
Core Intel Xeon 2.66Ghz processor, 8GB of memory, one

500G SATA disk and another 750GB SATA disk, running
Ubuntu 10.04.4. Both the operating system and PostgreSQL
were built on the 500GB disk, while the database was stored
on the 750GB disk.

In our experiments, each execution time reported refers
to the total running time for a query. Each running time is
measured with the query running alone in the database sys-
tem, and the database system is restarted between queries.
Each query is run 5 times, and the reported running time
is the average of 3 values excluding the minimum and max-
imum values.

7.1 Static Diversity Queries
Effect of data size. Fig. 7(a) compares the performance
for different data sizes onQ1. The results show that D+-tree
gives the best performance and it outperforms OnePass by
an increasing factor of 1.7, 2.4, 2.7, and 3.0 as the data size
increases. Observe that while D

+
-tree performs similarly

for the different data sizes, OnePass’s performance worsen-
s with increasing data size. The results demonstrate that
D+-tree’s level-wise index traversal is more effective and s-
calable than the depth-first traversal of D-tree. The results
also show that D-tree generally outperforms OnePass: the
reason is that while it is possible for D-tree is to termi-
nate its DFS-traversal at any index level, OnePass can only
terminate its scan at the leaf level. The results for the oth-
er SDQs show similar performance trends and are reported
elsewhere [5].
Effect of query limit, k. Fig. 7(b) compares the per-
formance for different values of the query limit k on Q1.
Here again, the results show that D

+
-tree gives the best

performance which outperforms OnePass by up to a factor
of 3. The number of index entries accessed by OnePass in-
creases from 211 to 17723 as k increases from 10 to 150,
while that for D+-tree only increases from 11 to 297. Note
that the performance fluctuations for D-tree is due to the
fact that as k increases, although the number of accessed
pages increases, the I/O access pattern also becomes more
sequential. The results for other SDQs, available in [5], show
similar performance trends.
Effect of number of SPA. Fig. 7(c) compares the per-
formance as the number of selection predicate attributes is
varied. We used queriesQ3, Q4 and Q5, which have 1, 2, and
3, SPAs, respectively, and query selectivity factors (denoted
by sel) of 20%, 2%, and 0.5%, respectively.

The results show that D+-tree gives the best performance
and it outperforms OnePass by an increasing factor of 1.7,
4.1, and 4.4, as sel decreases. For both D-tree and D

+
-tree,

their performance improves (as expected) when sel decreas-
es. However, OnePass actually performs worse when sel
drops from 20% to 2%, and then improves when sel drops
further to 0.5%. There are two factors affecting the perfor-
mance of OnePass when there are multiple SPAs: one is the
increase in number and cost of index scans with more SPAs,
and the other is the more effective index skips with more S-
PAs. Thus, OnePass performs worse for Q4 compared to Q3

as the first factor dominates the second factor; however, it
performs better for Q5 compared to Q4 as the second factor
dominates the first factor.
Effect of SPA position. Fig. 7(d) compares the perfor-
mance of 10 SDQs with the same d-order of δ and a single
SPA whose position varies from 1 to 10. The results show
that OnePass performs similarly for all of the 10 queries
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Figure 7: Comparison with synthetic datasets and real datasets

as it is insensitive to the SPA position. In contrast, while
both D-tree and D

+
-tree perform similarly for the first six

queries (i.e., with SPA position between 1 and 6) their per-
formance deteriorate significantly for the last three queries
(i.e., when the SPA position is at least 8). The reason is
that the size of the first RI-levels for the last three queries
are very large.

However, this performance issue with using a single D-
Index to evaluate a set of workload queries can be addressed
by selecting a set of indexes (wrt to some space constraint)
to evaluate the workload. Indeed, we have developed an ef-
ficient heuristic for this index selection problem [5], and for
this workload of ten queries, it turns out that building an ad-
ditional D-Index with index key α′ = (A,F, B,H, J,G, I, C
,D, E) is sufficient to address the performance issue. The
total size of the two D-Indexes is only 36% of the size of
the single index used by OnePass. Fig. 7(e) shows the per-
formance comparison with both D-tree and D

+
-tree using

this two-index configuration (i.e., each query is evaluated
using the more efficient index between the two). The results
show that D+-tree is consistently the most efficient method.
Note that since all the static queries have the same d-order
δ, the index key used in the single OnePass index (which is
equal to δ) is already the optimal index key for evaluating
each of the static queries. Therefore, unlike the D-Index,
the performance of OnePass will remain the same even if
additional indexes are created for the OnePass approach.

7.2 Dynamic Diversity Queries
Effect of query limit, k. Fig. 7(f) compares the perfor-
mance for different values of the query limit k on Q6. The
results show that D+-tree outperforms OnePassD by up to
a factor of 35. Comparing Fig. 7(f) for DDQs with Fig. 7(b)
for SDQs, we observe that the performance of both D

+
-tree

and D-tree do not vary too much, but the performance of
OnePass

D for DDQs is worse than that of OnePass for SDQs.
This demonstrates that it is not effective to extend OnePass,
which was designed for SDQs, to handle DDQs. For exam-
ple, when k = 10, OnePassD scans a total of 1761346 index
entries of which only 61 of them are used to update the result
trie. This result concurs with our explanation of OnePassD ’s
expected poor performance in Section 4. The performance
results for other DDQs show similar trends and are reported
elsewhere [5].
Effect of length of query d-order, |δ|. In this exper-
iment, we examine the effect of varying the length of the
query d-order. We generated 8 DDQs, Q3

1, · · · , Q10
1 , from

Q1, where each of these queries is the same as Q1 except
that the d-order of Qi

1 is the length-i prefix of that of Q1;
thus, Q10

1 is the same as Q1.
The results in Fig. 7(g) show that D

+
-tree consistently

outperforms OnePass
D by up to a factor of 2.2. Observe

that the performance of D+-tree is very similar for all the
queries; indeed, D+-tree selects the same initial RI-level of 3
for all the queries. The performance of OnePassD is also not
too sensitive to |δ| as it does not seriously affect the num-
ber of index pages accessed. For D-tree, its performance
becomes worse for the last four queries due to an increase
in the number of index node access: the number of index
pages accessed by D-tree for the 8 queries are 3, 4, 8, 10,
20, 27, 37, and 47, respectively.
Effect of ordering of diversity attributes. In this ex-
periment, we examine the effect of different orderings of a
same set of diversity attributes. Fig. 7(h) compares the per-
formance for the queries Q7, Q8, Q9, and Q10 which all
share the same set of diversity attributes {B,C,D}. In the
following discussion, we use δQi to denote the d-order for
Qi.
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The results show that the performance of both D-tree and
D
+
-tree are not sensitive to the attribute ordering. This is

because the number of RI-levels for these four queries are
small: they are 3, 2, 2 and 1 levels, respectively. More
importantly, the sizes of these RI-levels are also small. In
contrast, the performance of OnePassD varies rather widely.
OnePassD performs the best for Q7 with δQ7 = (B,C,D) be-
cause together with the selection attribute A, (A,B,C,D)
forms a proper prefix of the index ordering α which en-
ables OnePass

D to perform efficiently. For Q8 with δQ8 =
(B,D, C), the performance of OnePassD is slightly worse rel-
ative to that for Q7 because δQ8 with selection attribute A
now forms a shorter proper prefix (A,B) of α and its evalua-
tion now requires more skip operations compared to that for
Q7. However, for queries Q9 and Q10, the performance of
OnePass

D becomes significantly worse because both δQ9 as
well as δQ10 are ordered drastically differently from α which
is not conducive at all for the performance of OnePassD as
explained in Section 4. Thus, OnePassD performs equally
poorly for the last two queries.
Effect of SPA position. Fig. 7(i) compares the perfor-
mance of 10 DDQs with the same d-order as that of Q6 and
a single SPA whose position varies from 1 to 10. Comparing
the performance for DDQs in Fig. 7(i) with that for SDQs
in Fig. 7(d), we have two key observations. First, the per-
formance behaviour of D-Index (i.e., D-tree and D

+
-tree)

is similar for both SDQs and DDQs; and OnePass
D outper-

forms D-Index when the SPA position is 9. Second, while
OnePass performs efficiently for for all the SDQs in Fig. 7(d),
OnePassD performs poorly for DDQs in Fig. 7(i). Note that
the performance of D-Index depends very much on the size
of the starting RI-levels while that of OnePassD depends on
the size of the selected inverted lists. Thus, if the size of the
starting RI-levels is much larger than that of the inverted
lists, OnePassD could outperform D-Index.

However, similar to our discussion for SDQs in Fig. 7(e),
the performance for evaluating a set of queries could be
improved by using more than one index. In Fig. 7(j), we
compare the performance of the methods using a set of
two indexes. For OnePass

D , the optimal index has key
(A,F,B,C,D,E,J,G,H,I), while for both D-tree and D+-tree,
the optimal set of two indexes have keys (A,F,B,C,D,E,J,G,H,I)
and (A,J,F,G,H,B,I,C,D,E). Comparing the results in Figs. 7(i)
and (j), it is clear that the performance of each of the meth-
ods improve with an additional index, and D

+
-tree signif-

icantly outperforms OnePass
D in Fig. 7(j). Note that the

total size of the two D-Indexes is only 26% of the size of the
single index used by OnePassD .

7.3 Comparison on Real Data Sets
In this section, we present performance results using a

real dataset on laptop products extracted from eBay. The
original dataset (denoted by Laptop1) is a relation with 11
attributes containing 39,411 laptop records (24MB). We cre-
ated a larger dataset (denoted by Laptop2) from Laptop1

by duplicating it 100 times. For each of these two dataset-
s, we created four indexes, OnePass, OnePassD , D-tree, and
D
+
-tree, all with the same index key (B, T,C,M,D, S, P,O),

where B, T , C, M , D, S, P , and O denote attributes brand,
type, condition, memory, disk, screen size, processor type and
operating system, respectively. We used the following nine
diversity queries for this experiment: queries Q1 to Q4 are
SDQs, while queries Q5 to Q9 are DDQs.

The performance results in Figs. 7(k) and (l) shows that
the performance gain of D+-tree over OnePass and OnePass

D

increase with the data size. For the Laptop1 dataset, Fig. 7(k)
shows that D+-tree outperforms OnePass by up to a factor
of 1.5 for SDQs and outperforms OnePassD by up to a factor
of 1.6 for DDQs. For the Laptop2 dataset, Fig. 7(l) shows
that D+-tree outperforms OnePass by up to a factor of 2.7
for SDQs and outperforms OnePass

D by up to a factor of
3.5 for DDQs.

Q Selection Predicates Diversity Ordering, δ k

Q1 B = ’HP’ B, T, C, M, D, S, P, O 10
Q2 B = ’HP’ B, T, C, M, D, S, P, O 20
Q3 C = ’New’ B, T, C, M, D, S, P, O 10
Q4 B = ’HP’ and C = ’New’ B, T, C, M, D, S, P, O 10
Q5 B = ’HP’ T, M, C, S, D, P 10
Q6 B = ’HP’ T, M, C, S 10
Q7 B = ’HP’ M, D, S, C, T, P 10
Q8 B = ’HP’ and C = ’New’ T, M, S, D, P 10
Q9 B = ’HP’ T, M, C, S, D, P 20

8. CONCLUSION
In this paper, we have examined the problem of comput-

ing diverse query results. We have proposed a novel indexing
technique, D-Index, that is based on the concept of comput-
ing a core cover, for evaluating both static as well as dynamic
diversity queries. We also have designed two instantiations
of the D-Index, D-tree and D+-tree. Our comprehensive
performance study comparing against the state-of-the-art
technique for static diversity queries, OnePass, and its ex-
tended variant for dynamic diversity queries, showed that
D
+
-tree outperforms existing techniques on average by a

factor of 2.
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