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ABSTRACT
Solid-state drives (SSDs) are quickly becoming the de-

fault storage medium as the cost of NAND flash memory
continues to drop. However, flash memory introduces new
challenges, as data cannot be efficiently updated in-place.
To overcome the technology’s limitations, SSDs incorpo-
rate a software Flash Translation Layer (FTL) that imple-
ments out-of-place updates, typically by storing data in a
log-structured fashion. Despite a large number of existing
FTL algorithms, SSD performance, predictability, and life-
time remain an issue, especially for the write-intensive work-
loads specific to database applications.

In this paper, we show how to design FTLs that are more
efficient by using the I/O write skew to guide data place-
ment on flash memory. We model the relationship between
data placement and write performance for basic I/O write
patterns and detail the most important concepts of writing
to flash memory: i) the trade-off between the extra capac-
ity available and write overhead, ii) the benefit of adapt-
ing data placement to write skew, iii) the impact of the
cleaning policy, and iv) how to estimate the best achievable
write performance for a given I/O workload. Based on the
findings of the theoretical model, we propose a new prin-
cipled data placement algorithm that can be incorporated
into existing FTLs. We show the benefits of our data place-
ment algorithm when running micro-benchmarks and real
database I/O traces: our data placement algorithm reduces
write overhead by 20% - 75% when compared to state-of-art
techniques.

1 Introduction
Solid State Drives (SSD) are becoming the default stor-

age medium in enterprise applications such as for database
workloads. However, the write behavior of the underlying
NAND flash technology is problematic. Flash memory can-
not be written directly (updated in-place) but needs an erase
operation prior to a program operation (erase-then-write).
While flash pages can be read and programmed individually,
erasures are particularly time consuming (Table 1) and af-
fect large blocks of pages (Table 2). In addition, due to the
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NAND Flash

Table 1: Raw operations
Page Read 80µs

Page Program 200µs

Block Erase 1.5ms

Max. Erasures 5 × 103-105

Table 2: Organization
Page size 512B – 16kB

Block size 32kB – 512kB

Pages per block 64 – 128

elevated voltage required by an erase, a block can withstand
only a limited number of erase cycles before the accumu-
lated physical damage renders it unusable. The slow pro-
gram and erase operations result in low NAND flash write
performance alongside with limited device lifetime. To make
things worse, the hardware trends are discouraging [8]: write
and erase latencies of future NAND chips are expected to
increase, while erase endurance is expected to decrease.

The alternative to performing in-place updates is to use an
extra indirection layer, known in the literature, as the Flash
Translation Layer (FTL) that performs out-of-place writes
and deals transparently with the technology’s constraints.
The FTL redirects incoming writes to unoccupied and al-
ready erased locations, while old data versions are logically
marked invalid and cleaned later, i.e. garbage collected.

The key challenge in implementing an efficient FTL is
to control data placement so that invalid pages can be re-
claimed in bulk. At one extreme, if a block contains only
invalid data, it can be erased immediately and the erase la-
tency is amortized over n future page writes. At the other
extreme, if a block contains a single invalid page, we need
to read out n− 1 valid pages, write them back to a different
location, and finally perform the erase – all to allow for a
single page write. Thus, write performance and device wear
can fluctuate by two orders of magnitude as a function of
the data placement and the cleaning policy.

Unfortunately, due to the large size of an erase block, valid
and invalid data often end up collocated resulting in expen-
sive data moves needed to reclaim space. Experience shows
that an FTL is notoriously difficult to “get right” because
of to the complex dependency of flash cleaning overhead on:
i) I/O workload, and ii) a multitude of FTL design choices
such as the amount of space over-provisioning, data place-
ment algorithm, and cleaning policy. In spite of a large body
of existing research work, the end result is a low and unpre-
dictable SSD write performance [2]. This stands especially
for database I/O intensive workloads that generate small
scattered writes.

In this paper, we give a principled answer the question:
How much can we reduce the writing overhead of an FTL by
leveraging write skew to guide data placement? We model
the cleaning overhead analytically for a set of basic I/O
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write patterns (k-modal update distributions), data place-
ment policies, and cleaning strategies. Based on the analyt-
ical results, we propose a new data placement algorithm that
utilizes update frequency to reduce FTL cleaning overhead,
and thus improves write performance and device lifetime.

This paper makes the following contributions:
1. We model the impact of space over-provisioning, write
frequency, data placement policy, and garbage collection
strategy on FTL cleaning overhead. The model is useful
for validating and guiding the design of FTL data place-
ment algorithms. We verify the analytical results through
detailed simulation.
2. We approximate the minimum cleaning overhead achiev-
able for any given I/O workload within an error margin,
which allows us to quantify the headroom for reducing the
cleaning overhead of any FTL.
3. Based on the modeling results, we propose a data place-
ment algorithm that exploits update frequency in a princi-
pled way and is capable to adapt dynamically to the I/O
write pattern, without relying on workload-specific parame-
ters. The new data placement algorithm can be integrated
into existing hybrid or page-level mapping FTLs (as we
discuss in Section 2.4). Experimental results show that
our algorithm reduces cleaning overhead by 20%-75% com-
pared to state-of-art techniques across a variety of micro-
benchmarks and I/O traces collected from standard DBMS
benchmarks such as TPC-C [24] or TATP [19].

The paper is organized as follows: In Section 2 we present
the challenges of storing data on flash and existing state-of-
art data placement algorithms. In Section 3 we explain the
FTL concepts and notations used throughout the paper. In
Section 4 we model analytically the cleaning overhead for
k-modal update distributions and highlight the important
lessons found. In Section 5, based on the analytical results,
we propose a new data placement algorithm and in Section 6
compare our proposal with existing state-of-art algorithms.
Finally, we conclude in Section 7.

2 Related Work
In this section, we highlight the evolution of data place-

ment algorithms for out-of-place updates and give insight
on why a novel approach can lower FTL cleaning overhead.

2.1 State-of-art Data Placement Algorithms
The concept of out-of-place updates on NAND flash mem-

ory is simple at heart: instead of performing the costly erase-
then-write cycle on a large erase block, introduce an extra
indirection layer between the logical address written and
the physical location (erase block and page number) where
the user data is stored. At an update request, the FTL
can redirect the write to an unoccupied and already erased
location; the old version of the data is logically marked in-
valid and garbage-collected later. No in-place updates are
needed, and, in the most favorable scenario, only one erase
is required for writing a full block worth of new data.

The overhead of reclaiming space, i.e. the number of pages
in a block we need to move before an erase, dictates the
efficiency of out-of-place writes. It is obvious that a good
data placement algorithm groups together pages with similar
update frequencies. Otherwise, if cold and hot data are
collocated, the hot pages are invalidated quickly, while the
cold pages are left behind acting as dead-weight and need to
be relocated when the block is cleaned. Virtually all FTL

data placement proposals try to group data based on its
update frequency.

Rosenblum and Ousterhout first encountered the data place-
ment question for out-of-place writes in the context of the
LFS log-structured file-system [23]. In LFS, small scattered
writes are stored sequentially on magnetic disks, resulting in
a high write throughput, while creating the need to reclaim
the invalid data left behind. The authors first noticed that
storing together data with similar update frequencies is key
to minimizing cleaning overhead and introduced a cleaning
algorithm that tries to categorize data as hot/cold and bal-
ance the amount of free space reclaimed and data age.

The initial ideas of LFS were refined over time and adapted
to flash-based systems. Kawaguchi et al. [14] tuned the LFS
cost-benefit heuristic to match NAND flash behavior, and
eNVy [26], the first FTL-like proposal, further improved on
the LFS data placement concepts. eNVy splits space into
fix-sized partitions (log structures in reality) composed of
segments (erase blocks), while pages migrate between parti-
tions in a way that encourages locality of reference. eNVy
aims to equalize the cleaning cost of partitions, defined as
the product of the update frequency and the overhead of
cleaning a partition.

Chiang et al. proposed Dynamic Age Clustering (DAC)
[5], which, similarly to eNVy, shares the overall design of
partitioning to space in regions but, unlike eNVy, uses dif-
ferent page migration policies between regions. Pages are
promoted to a colder region when garbage collected, and to
a hotter region when updated and if their age (measured in
seconds) is smaller than a workload dependent threshold.

More recently, Hu et al. proposed ContainerMarking [12],
a data placement technique with an overall design similar to
eNVy and DAC. Space is partitioned in more fine-grained
regions (also behaving as log structures) and data migrates
between neighboring regions to encourage separation based
on update frequency. Pages are promoted to a hotter par-
tition at every update, and demoted to a colder partition
at garbage collection based on a statistical model. The key
difference over previous approaches is to take into account
the occupancy of the log structures and decreases demotion
rate when occupancy is high.

2.2 Data Placement Challenge
There are two main challenges when moving data between

two regions. Firstly, there is a highly non-linear relationship
between the occupancy of a region and its cleaning cost.
For example, in Section 4.1, we show that the cleaning cost
increases faster than exponentially with occupancy for ran-
dom updates. Secondly, the increase/decrease in the clean-
ing cost of the regions cannot be assessed immediately but is
experienced at a much later time. When pages migrate be-
tween two regions, the valid page counts of the oldest blocks
– the blocks first in line to be cleaned – remain the same
and thus the cleaning cost appear initially unaffected by the
data movement. The full effect of the data movement is
noticed only after writing all the blocks of a region once.

For example, consider two partitions, the first one with a
disproportionately high occupancy and cleaning cost com-
pared to the second. It is clear we need to move some data
from the first partition to the second one; however, it is not
clear how much or which data to move. A static data pro-
motion policy (e.g. trying to equalize cleaning cost between
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the two partitions or a simple always promote/demote strat-
egy) results in data movement swings triggered by changes
in region occupancy rather than changes in the workload
skew. Pages initially move in one direction from the first
partition to the second with a lower cost cleaning cost. At
some point, the cleaning frequency and/or cleaning costs
become comparable and the page migration stops. Unfor-
tunately, by this time, too many pages have been already
moved and the cleaning cost of the second partition contin-
ues to increases. Finally, the migration process reverts in
the opposite direction.

In this paper, we address the limitations of the previ-
ous data placement approaches through a principled under-
standing of the relationship between the cleaning cost and
data placement decisions. We model the cleaning cost ana-
lytically for sufficiently general update distributions that al-
lows us to reason about the fundamental cleaning overhead
of any given I/O workload. Based on the findings of the ana-
lytical model, we then propose a principled data placement
algorithm that is close to optimal within a margin of er-
ror. Our data placement algorithm distinguishes itself from
previous proposals in the following ways:

• No tunable parameters. Previous proposals rely on vari-
able parameters that are workload specific. Examples in-
clude the number of regions [12, 5, 26], the time threshold
to migrate data from one region to the next [5], the empir-
ical probabilistic model of [12].

• No mismatch between region size and the page update
frequency. Previous approaches suggest fixed sized regions
that possible lead to collocating pages with very different
update frequencies; our data proposal determines the opti-
mal number of regions (i.e. log structures) and their opti-
mal size at runtime.

• Accurate page promotion/demotion. A strawman strat-
egy that always promotes pages to a hotter region when
updated and demotes them to a colder region when cleaned
is known to result in suboptimal performance [12]. When
cleaning, we can differentiate if a page is cleaned due to
the region occupancy or because it truly has a lower up-
date frequency. When updating, we can identify the precise
threshold when page is hot enough to justify promoting it
to a hotter region.

These keys differences enable our data placement algo-
rithm to achieve a much lower cleaning overhead than the
state-of-art techniques. We show in Section 6 our data
placement proposal reduces cleaning overhead by 20-75%
for DBMS I/O traces of TPC-C and TATP workloads.

2.3 Other Modeling Approaches
Hu et al.[11] introduce a write performance model for ran-

dom updates and consider various cleaning policies such
as LRU (FIFO), Greedy, and Window-Greedy. However,
as the analytic model has certain weaknesses at low over-
provisioning values, a second empirical model is fitted di-
rectly from simulation results. We propose a different mod-
eling approach for understanding cleaning performance with
an almost perfect accordance with experimental results. Most
importantly, our model is capable of representing much more
general update distributions (k-modal update distributions).

Bux and Iliadis [3] modeled the performance of the Greedy
garbage collection policy for random updates. The authors
propose two different techniques: a precise Markov chain

Table 3: Modeling notations
Symbol Signification
N The total number of logical user pages
C The number of pages in an erase block
α Over-provisioning: α = ExtraCapacity

UserCapacity

pgc The probability a page is valid when
cleaning its block and has to be relocated

GC Cleaning cost: GC =
pgc

1−pgc

fi The update frequency of a page in set i
(e.g. fi = 1/N for random updates)

si The size of set i, i.e. the fraction of pages
updated with frequency fi:

∑k
1 si = 1

fsi The fraction of the total updates experienced
by set i: fsi = fisi∑k

j=1 fjsj
, and

∑k
i=1 fsi = 1.

model applicable to small systems and a statistical analysis
of larger systems. The Markov chain model, different from
our proposal, introduces a state for every flash block, and
is only usable for modeling systems with a few flash blocks.
The statistical analysis yields the most important result,
which quantifies the limit of the probability to relocate a
page as the number of pages per block increase, although no
closed formula is provided. We provide a different technique
to understand the behavior of the Greedy garbage collection
policy, that also applies to any Window-Greedy policy, and
identify an analytic formula to Bux and Iliadis’ limit, as
discussed in Section 4.1.

2.4 Applicability
FTLs are usually categorized based on the unit size of the

logical to physical mapping: page level mapping FTLs [26,
5, 10, 12, 18], hybrid page-block level FTLs [15, 16]), or
variable size mapping FTLs [17, 6].

Recent work (DFTL [10], LazyFTL [18]) shows that page-
based FTLs are superior, even if the mapping meta-data
has to be paged SSD DRAM and flash storage. A page-
level mapping allows maximum flexibility to optimize data
placement and does not have the drawback of block merges
of hybrid FTLs. We share the view that FTL should use a
page-level mapping, especially for enterprise SSDs designed
for write intensive scattered I/O workloads.

Our data placement proposal can be incorporated either
into page-level FTLs, into a hybrid FTL for the page map-
ping area, or into a variable-sized FTL for small scattered
updates. The page-level mapping area of hybrid FTLs is
small (few percentages of total capacity), thus it is crucial
to use it optimally – precisely what our proposal does best.

3 Notations and Assumptions
In the rest of the section, we introduce the parameters

and metrics used to model and quantify the FTL writing
overhead. The notations are summarized in Table 3.

FTL metrics: The concept of extra FTL capacity is
known in the literature under two names, over-provisioning
(α) or device utilization (µ). Over-provisioning represents
the ratio between extra capacity and user capacity, while
utilization is the ratio between user capacity and total ca-
pacity. We further prefer over-provisioning as utilization
compresses the extra capacity range of real-life SSDs (typ-
ical devices have 10% − 50% over-provisioning). However,
the two concepts are interchangeable as µ = 1

1+α
.
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The overhead of cleaning a block (a.k.a. garbage collect-
ing) is given by the fraction of pages that are valid and need
to be relocated before erasing the block. This fraction, de-
noted as pgc, can be interpreted either as a percentage or
as a probability.

The benefit resulting from the erase operation, the amount
of free space reclaimed, is the capacity of the block minus
the space consumed by the page relocations. Thus, we can
define the concept of Write Amplification as the number of
extra physical writes the FTL makes for every user write:

WA = 1 +
pgc

1− pgc︸ ︷︷ ︸
Cleaning overhead (GC)

(1)

The “1” term denotes the physical write needed to store
the newly written user data and can only be avoided through
compression or deduplication. The second term represents
the actual cleaning overhead due to out-of-place writes. We
further omit the physical write and model only the cleaning
overhead for simplicity.

Both pgc and GC concepts are useful to characterize flash
write performance. From a modeling and reasoning perspec-
tive, pgc is easier to estimate and to reason about. On the
other hand, GC represents the end-to-end cleaning overhead.
Minimizing GC results both in better write performance and
in a longer device lifetime. The frequency of block erasures
is directly proportional to the write amplification and GC
shows how much faster an SSD ages at every user write.

I/O workloads: Throughout the paper we model vari-
ants of k-modal I/O workloads. A k-modal I/O work-
load represents an update distribution where the update fre-
quency of any given page can have only k possible discreet
values (fi, ..., fk). We call all pages with a given update fre-
quency an update set. Each update set has an associated size
defined as a fraction of the total user data si and receives a
fraction fsi of the overall updates. A k-modal workload has
two important advantages: a) it is simple enough to model
analytically; b) it is sufficiently general to approximate a real
I/O workload. A general I/O workload can be abstracted
through a k-modal workload by “binning” together pages
with a similar update frequency. As we will see, pages can
be safely grouped in bins with an exponentially increasing
update frequency.

3.1 Modeling Assumptions
We make the following assumptions when modeling the

cleaning overhead:

1. We exclude sequential writes. Exploiting sequential write
patterns is an orthogonal topic and is relatively easy to im-
plement, e.g. by detecting sequential writes patterns and
storing updates in the same erase block [15]. If the same
pages are written again sequentially, the block is fully in-
validated and can be erased without any data moves. Our
model supports, however, any skewed I/O workloads.

2. We model only the long-term FTL cleaning overhead. A
newly formatted SSD has no immediate cleaning overhead,
as all flash blocks are erased and available for writing; this
results in good but transient write performance.

4 FTL Cleaning Overhead
In this section, we model the cleaning overhead (GC) as

a function of over-provisioning, data placement, and clean-
ing policy for various update distributions. We first model

the cleaning overhead for random updates (a 1-modal work-
load), then introduce update skew by considering a 2-modal
update distribution, and we finally generalize the results
for arbitrary skewed update distributions represented by k-
modal workloads.

4.1 Random Updates (1-Modal Distribution)
We assume a random update workload composed of single

page updates. All pages have the same update probability,
therefore data placement does not matter, i.e. there is no
benefit in storing any pages together, and the cleaning cost
only depends on the block selection policy.

Consider two block cleaning policies introduced initially
in LFS [23]: i) a Least Recently Used (LRU) policy where
the oldest written block is cleaned first, and ii) a Greedy
policy that selects the block with the lowest number of valid
pages. As all pages have the same update frequency and as
updates are uncorrelated, the Greedy policy is optimal (for
a more detailed discussion please see [23] [11]).

We first model GC for the LRU cleaning policy, then show
that the additional benefits of the Greedy policy are negligi-
ble. By viewing the LRU policy as the “worst case” and the
Greedy policy as the “best case” we are bounding the ben-
efits of any intermediary cleaning policy such as Window-
Greedy [11]. Showing that the LRU cleaning policy is close
to optimal is of practical importance. It is the simplest
policy to implement, has the lowest memory and CPU over-
head, and has a perfect wear leveling behavior (blocks are
erased at the same rate). Comparatively, the Greedy policy
is more expensive as it requires a data structure that sorts
flash blocks on the number of valid pages contained.

LRU cleaning policy. The flash device can be consid-
ered a circular log-structure where updates are appended to
the tail and cleaning always starts at the log head with the
oldest block written, whenever space is needed. If a page
has to be relocated for cleaning, we read the page from the
log head and write it to the tail followed by advancing both
head and tail pointers.

Over a full log wrap-around, writes are caused either by
page relocations or by actual user updates. At every user up-
date, the probability that a given page escapes invalidation
is 1 − 1

N
, while the cleaning process produces no invalida-

tions (a block is immediately erased once its valid pages are
relocated). Thus, the probability that a given page remains
valid over a log wrap-around is the probability to escape
invalidation at one update at the power of the total num-
ber of user updates accommodated over a log wrap-around.
Assuming there are (1 + α) · N total physical pages, a pgc

fraction are “wasted” due to relocations from the cleaning
process, while (1 − pgc) physical pages actually store new
user data. We can therefore deduce pgc from the limit of
the equation:

pgc = (1− 1

N
)N(1+α)(1−pgc)

We apply Euler’s limit as N is sufficiently large (there are
217 − 218 pages per GB of NAND flash):

pgc = e−(1+α)(1−pgc) (2)

which accepts the analytic solution:

pgc = −W (−(1 + α)e−(1+α))

1 + α
(3)
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Figure 1: (a) Analytical form, algebraic approximation, and simulation of page cleaning probability pgc; (b)
the associated cleaning overhead GC; (c) the reduction in page cleaning probability for multiple Window-
Greedy policies compared to a LRU policy as a function of over-provisioning and window size (window size
expressed as a fraction of the total capacity).

W is the Lambert-W function [7], the solution to the equa-

tion z = W (z)eW (z). W cannot be expressed as a compo-
sition of algebraic functions. However, W can be computed
numerically (e.g. through a Taylor expansion), although this
is rather cumbersome from a practical perspective.

To overcome such limitations we propose a simplified ap-
proximation. We note that −(1+α)e−(1+α) ⊂ (−e−1, 0) for
any α ∈ R+. Thus, we need to approximate W for a rather
small interval. We plot (1 +α)e−α, −W (−(1 +α)e−α), and
pgc(α) and observe that the three functions converge to zero
for α > 1 and are all similar in shape to a negative expo-
nential. We fit the W (..) component of Equation (3) to the
ec1α+c2 family of exponentials and obtain the algebraic ap-
proximation:

pgc ≈
e−0.9α

1 + α
(4)

Equation (4) gives us a quantitative trade-off between al-
locating extra capacity and cleaning performance – it shows
that pgc decreases slightly faster than exponentially as over-
provisioning increases. We show in the Section 4.2.1 that
a similar dependency exists even if we collocate pages with
distinct update frequencies.

We validate the model experimentally. In Figure 1(a) we
show how the analytic predictions from Equations 3, and 4
compare against each other and against the pgc found by
simulation (the simulation setup is described in Section 5).
The difference between any of the three methods is virtually
zero for any over-provisioning value (TotalError represents
the difference between Equation 4 and the simulation re-
sults). Figure 1(b) shows the associated cleaning overhead.

Greedy cleaning policy. To quantify the benefit of a
Greedy cleaning policy we need to consider more than the
average pgc value as given by Equation 4: we also need to
model the distribution of valid pages across the erase blocks.

Consider a generalization of the LRU and Greedy policies:
whenever we need to reclaim space, we pick the block with
the lowest number of valid pages in the oldest written B
blocks. When B = 1 the cleaning policy becomes LRU;
when B = (1 + α)N/C it becomes Greedy. We further
explain how to model: i) the pgc probability distribution
function (PDF) as a function of α, ii) the PDF change as a
function of the block’s position in the cleaning window, and
iii) how to compute the benefit obtained by increasing the
B window.

i)PDF. The number of valid pages in a block follows a
discreet binomial distribution – any two pages in a block

have an equal and uncorrelated pgc probability to be valid.
Thus, the probability a block has exactly k valid pages is:

p(k) =

(
C

k

)
· pgc

k · (1− pgc)
C−k (5)

Please note that pgc(α) is given by Equation 4 and the
probability distribution function PDF (pgc) is a vector:

PDF (pgc) = [p(C) p(C − 1) · · · p(1) p(0)]

and has the associated standard deviation:

stddev =
√
C · pgc · (1− pgc)

ii)PDF variation over the cleaning window. The easiest
way of modeling the pgc PDF at a specific location in the
log structure is by using a Markov chain model. The process
of invalidating pages can be represented with the following
Markov chain transition matrix:

M =


N−C
N

C
N

· · · 0
0 N−C−1

N
C−1
N

· · ·
...

...
. . .
1
N

C−1
N

0 0 0 1


M(i, i) represents the probability that all pages of a block

escape invalidation at an update and the block stays in the
same state with C− i valid pages. M(i, i+ i) represents the
probability of migrating to the next state defined by having
C − i − 1 valid pages. The PDF change after n updates is
simply PDFnew = PDFold ·Mn. The number of updates
n is in turn determined by the position of the block in the
cleaning window.

iii)Greedy benefit. We could not deduce an analytic for-
mula to give a concise relationship between pgc and window
size B, however, the pgc decrease can be computed as:

Benefit =

B∑
i=2

(PDFold − PDFi) · [C C − 1 · · · 1 0]′

Benefit represents the average number of valid pages
saved from relocation by making the cleaning window of
size B. Please note all terms are vectors and the last ele-
ment represents the number of valid pages for the states of
the Markov chain model.

The overall findings are that the Window-Greedy policy
adds little benefit, as noticed experimentally also by pre-
vious work [23] [26] [11]. The gist of why this happens
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Figure 2: (a) The average page cleaning probability pgc; (b) The corresponding cleaning overhead GC; (c) Rel-
ative increase of cleaning overhead due to random placement compared to the minimum overhead possible.

is twofold. First, pgc increases exponentially as we move
through the window B from the oldest written blocks to-
ward the youngest, as can be noticed from Equation 4 when
α is decreased. In other words, the window where we can
find a block with a lower number of valid pages than in the
LRU block is narrow. Second, PDF (pgc) does not have a
high variance, meaning that even when blocks with a lower
number of valid pages are present, the difference is small.

We also note that Bux and Iliadis’ page cleaning proba-
bility limit [3] accepts an analytic solution, also in terms of
the Lambert-W function, and is precisely Equation 3. This
provides additional evidence that the performance of the
Greedy policy is equivalent to a LRU policy.

We finally validate the findings by simulation and show
in Figure 1(c) the pgc decrease as we vary over-provisioning
and the window size. Overall, pgc decreases by at most 2%;
we therefore conclude that the Greedy or Window-Greedy
policies are unnecessary for random updates.

4.2 2-modal Distribution
In this section, we model the cleaning overhead of a 2-

modal workload (pages are either hot or cold) in two differ-
ent scenarios: a) when pages are randomly collocated, and
b) when pages are stored separately based on their update
frequency.

4.2.1 Random Data Placement
Using the notations from Table 3, the update frequency

of a page is either f1 or f2, the sizes of the two sets are
s1 and s2, and let fr = f1/f2 be the relative page update
frequency between the two update sets. We assume pages
are randomly collocated and blocks are cleaned using a LRU
policy, i.e. a log-structured data placement.

Let pgc1, pgc2 be the probabilities that pages of update set
1 and update set 2 respectively are valid at garbage collec-
tion and let pavg be the probability that a page selected at
random is valid. pgc1, pgc2 can be expressed using a similar
logic as in Section 4.1:

pgc1 = (1− 1

s1N
)N·fs1·(1+α)·(1−pavg) (6)

pgc2 = (1− 1

s2N
)N·fs2·(1+α)·(1−pavg) (7)

After some manipulations (substituting fsi, using Euler’s
limit, applying the logarithm, and dividing the two equa-

tions), we finally obtain:

log (pgc1)

log (pgc2)
= fr ⇔ pgc1 = pfrgc2 (8)

Equation 8 summarizes the relationship between the valid
page probabilities of the two sets and shows that the proba-
bility of having to relocate colder pages at garbage collection
grows towards 1 with the fr-th root. For example, if set 2
is “cold” then fr > 1 and thus pgc2 = fr

√
pgc1.

The relationship between pavg and pgc1, pgc2 is deduced
from the condition that the total cleaning overhead equals
the sum of the partial cleaning overheads associated with
each update set. It can be showed that:

pavg = 1− (1− pgc1)(1− pgc2)

fs1(1− pgc2) + fs2(1− pgc1)
(9)

Equations 6, 7, 9 do not accept a solution in terms of
the Lambert-W function as Equation 2 does. However, the
probabilities can be determined numerically using an itera-
tive algorithm (e.g. by choosing any initial value for pgci and
repeatedly substituting until Equations 6, 7, 9 converge).
We validate the analytic predictions through simulation and
find a good match: the difference between the numerically
computed pavg and simulated pavg is virtually zero for any
si, fr, and α ∈ (0, 1).

Analytic approximation. To ease understanding of the
cleaning overhead, we also propose a closed formula approx-
imation for pavg, pgc1, pgc2. The approximation is based on
counting the number of pages belonging to each update set.
If we take a ”snapshot” of all the pages in the log-structure,
a s1+s2

1+α
fraction of the log contains the valid user pages of

set 1 and 2. The rest of the pages in the log, representing the
α

1+α
over-provisioned capacity, contain invalid pages. The

rate of creating invalid pages for a set is dictated by its to-
tal update frequency. Thus, the over-provisioned capacity
can be thought as to be split between the two update sets
according to the fsi set update frequencies and the page
cleaning probabilities can estimated using Equation 3:

pgci = −W (−(1 + αi)e
−(1+αi))

1 + αi
; αi =

fsi · α
si

pavg = pgc1 ·
s1 + fs1α

1 + α
+ pgc2 ·

s2 + fs2α

1 + α

The analytic approximation tends to slightly underesti-
mate the cleaning overhead; however, it is within 5% the
actual cleaning overhead measured by simulation.
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Practical implications. In order to interpret the impli-
cations of the analytic results, Figure 2(a) shows pavg as a
function of the update frequency ratio fr and set size si for
an over-provisioning value α = 0.3 (middle range for today’s
SSDs). For example, at value 10 on the x-axis, the page up-
date frequency of the first set is 10 times higher than the
update frequency of the second set; a legend value of 0.1
means that the first set contains 10% of the total user data.

As expected, the probability of having to relocate a page
when collocating data with different update frequencies is
minimized when both update sets have the same update
frequency (fr = 1) and then grows to either left or right de-
pending on which update set is dominant (is larger). What
is not expected is the large fr interval where pavg is close
to minimum – the update frequencies can differ by ∼2×
with little penalty. The practical implications are twofold:
Firstly, pages should be grouped in “bins” with an exponen-
tially increasing update frequency. Secondly, the frequency
range of each “bin” is relatively large as page update fre-
quencies can vary by up to ±50%.

We show in Figure 2(b) the corresponding cleaning over-
head. The GC shape is similar to pavg, except that the
region of minimum penalty tends to be slightly wider. Fi-
nally, Figure 2(c) shows the relative GC increase compared
to an optimal data placement (as discussed in the next sec-
tion) and represents the benefit of skew-aware data place-
ment. The relative GC shows how many times the cleaning
overhead increases if data is naively collocated compared
to separating pages based on update frequency. Overall,
pavg, GC, and the relative GC increase are all minimized
for fr ∈ (0.5, 2).

4.2.2 Frequency-Based Data Placement
Intuitively, the cleaning overhead can be reduced by sep-

arating pages based on their update frequency, as was also
observed by previous work [22], [23], [26], [12]. In Section
4.2.1 we identified the point where the relative difference be-
tween the hot and cold data justifies separating pages based
on their update frequency. We show next how to optimally
separate data and calculate the minimum cleaning overhead.

Assume the same 2-modal update distribution as in Sec-
tion 4.2.1, and following the same notations. The only dif-
ference in this scenario is that the two update sets are stored
in two distinct regions cleaned using a LRU cleaning policy.
We assume to have perfect knowledge of the update fre-
quency of each page, and therefore no pages are misplaced.

Let β · N (β < α) be the number of over-provisioned
pages allocated to the first log structure. The second log
structure receives the rest of the capacity budget of (α−β)·N
pages. The new pgc1, pgc2 page cleaning probabilities can be
calculated using Equation (4) as pages have a single update
frequency inside each log. The global cleaning overhead,
GCavg, is the sum of the individual cleaning overhead for
each region weighted by the update frequency of the regions:

GCtot = fs1
pgc1

1− pgc1
+ fs2

pgc2
1− pgc2

(10)

As pgc1, pgc2 depend on the allocation of extra capacity,
the remaining challenge is how to optimally distribute the
extra capacity budget to each update set, i.e. how to select
β in order to minimize GCtot.

By differentiating Equation 10 we find β where GC(β) has
the global minimum (GC(β) is a convex function). After
substituting Equation 3 in 10, we express the derivative as:

∂GCtot

∂β
=

fs1W1

s1(W1 + 1)(W1 + z1)
−

fs2W2

s2(W2 + 1)(W2 + z2)
(11)

using the simplifying notations:

z1 = 1 +
β

s1
; z2 = 1 +

α− β
s2

; Wi = W (−zie−zi)

The optimal β is the point where the derivative is null
(i.e. ∂GCtot

∂β
= 0), which holds when:

fr
W1

(W1 + 1)(W1 + z1)
=

W2

(W2 + 1)(W2 + z2)
(12)

Equation 12 has no analytic solution but we can, however,
solve it numerically and deduce its practical implications.
Three parameters influence the optimal β value: the amount
of over-provisioning (α), the relative update frequency ratio
(fr), and the sizes of the two update sets (si).

Figure 3(a) shows the optimal space allocation as a func-
tion of s1 (s1 determines s2) and fr for an over-provisioning
value of 0.3. The optimal space allocation is strongly corre-
lated with si, while fr has a smaller influence on the optimal
over-provisioning value. Figure 3(a) suggests a logarithmic-
like contribution of fr to the optimal β value.

In Figure 3(b) we see the corresponding cleaning overhead.
The shape of GCtot is mirrored by a plane passing through
fr = 1 and parallel to the z-axis – the notations of the
two update sets can be interchanged (i.e. by “renaming”
update set 1 to set 2 and vice-versa). GCtot varies by an
order of magnitude with both si and fr and has a maximum
when fr = 1. This implies that random updates impose the
largest writing overhead once pages are separated according
to update skew. The lowest cleaning overhead is seen close
to the points (0.05, 1), (100, 0.05), where a small fraction of
pages sees a large number of the total updates (heavy skew).

Finally, Figure 3(c) shows the ratio between the clean-
ing overhead associated to randomly collocating pages and
the cleaning overhead achieved by separating pages based
on update frequency – i.e. it shows how many times GC
is reduced. The decrease in GC is also symmetric, simi-
lar to the inverted surface in Figure 3(b) but with higher
peaks. The highest benefit of separating data is, as ex-
pected, in case of heavy skew. As skew increases, i.e. as
fr grows for fixed α, si values, the cleaning overhead of ran-
dom collocation increases approximately with the logarithm
of fr, while the cleaning overhead achieved by separating
pages decreases also approximately with the logarithm of
fr. This two trends explain the position and height of the
peaks shown in Figure 3(c). Fortunately, database work-
loads exhibit a significant amount of skew, as can be seen
also in the I/O traces presented in Section 6.

Practical space allocation. As mentioned, solving Equa-
tion 12 numerically requires an iterative optimization algo-
rithm (e.g. Newton’s method) to find β, while each itera-
tion of the optimization algorithm computes the Lambert-
W function in multiple points. Such a process might be
too computational intensive to be used online in a FTL. In
practice we want to find the solution to Equation 12 using
a small bounded number of elementary operations.

We propose to avoid solving Equation 12 and use instead

an approximation of the solution β̃ ' βopt. We computed
numerically βopt and tried to fit the results to various fam-
ilies of three dimensional functions such as combinations of
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Figure 3: (a) The optimal allocation of over-provisioned capacity β; (b) The associated cleaning overhead
GC; (c) The reduction in cleaning overhead possible when separating pages according to update frequency
(i.e. GC random placement/GC frequency-based placement).

polynomials, logarithms, exponentials, etc. We could not
find a satisfactory fit, therefore we decided to reduce the
number of dimensions to two, si and α, and consider fr con-
stant. As mentioned, fr can be approximated as constant if
pages are grouped in exponential decreasing frequency bins
(e.g. fr = 2, 4, ..., 2n). Moreover, if the fr ratio between two
sets of pages is constant, a single approximation for a fixed
fr value suffices.

Once the number of dimensions is reduced, βopt can be ap-
proximated using a polynomial function that is both feasible
to compute at run-time and also offers a good fit (error less
than 0.1% and root mean square error of 0.001 for any values
of α, si). To balance complexity and precision, we suggest a
1-degree polynomial for the α dimension and 3-degree poly-
nomial for the si dimension, although higher degrees reduce
further the approximation error:

β̃(si, α) = c00 + c10α+ c01si + c11αsi + c02s
2
i + c12αs

2
i + c03s

3
i

Optimal cleaning policy. Equation 11 can also be used
to implement an efficient cleaning policy. Whenever we need
to select a victim block for cleaning and have a choice be-
tween two sets of pages, it is sufficient to know whether
the derivative of GCtot is positive or negative. For exam-
ple, if the right-hand side of Equation 12 is smaller than
the left-hand side, then we select a block from the first log
structure and vice versa. Such a policy converges to the op-
timal allocation of space and minimizes cleaning overhead.
Equally important, the policy does not depend on monitor-
ing past cleaning overhead; rather, the analytic equations
predict and minimize future page relocations. Please note
that the Lambert-W values from Equation 12 can be approx-
imated as in Section 4.1 by using −W (−ze−z) ' e−0.9(z−1).

4.3 k-modal Distribution
In this section, we first show how to extend the modeling

results from a 2-modal to a k-modal update distribution,
then explain how to approximate a general I/O workload
through a k-modal distribution and analytically compute
the minimum cleaning overhead achievable. We assume the
same type of workload and notations as in Section 4.2, the
only difference being that the number of update sets in-
creases to k.

4.3.1 Random Data Placement
Consider the case where pages are randomly collocated

irrespective of their update frequency and cleaned using a

LRU policy. Using the same logic as in Section 4.2.1, we can
express the relation between the page cleaning probabilities
of the k update sets as:

p
1/f1
gc1 = p

1/f2
gc2 = ... = p

1/fk
gck

Thus, the point where the difference between update fre-
quencies justifies separating pages remains the same as for
the 2-modal workload: pages should be grouped in bins with
update frequency increasing exponentially, while the range
of frequencies in a bin can vary by ∼2×. All the results from
Section 4.2.1 can be straightforwardly extended to k update
sets.

4.3.2 Frequency-Based Data Placement
Similarly to Section 4.2.2, assume now that the k update

sets are stored separately. The total cleaning overhead is
thus:

GCtot = fs1
pgc1

1− pgc1
+ · · ·+ fsk

pgck
1− pgck

(13)

When the over-provisioned space is optimally allocated,
GCtot is minimized and all the partial derivatives of GCtot
with respect to all the β1..k dimensions are zero. The partial
derivative with respect to a βi dimension is:

∂GCkmod
∂βi

=
∂GC1

∂βi
+ ...+

∂GCi
∂βi

+ ...+
∂GCk
∂βi

There are k − 1 degrees of freedom for partitioning space
between the k logs, therefore only two components of the
partial derivative depend on βi. Considering βj to be dic-
tated by the other space allocation values (βj = α−

∑
i 6=j βi),

the βi derivative becomes:

∂GCkmod
∂βi

=
∂GCi
∂βi

+
∂GCj
∂βi

Thus, every partial derivative has the same form as the
derivative of the cleaning overhead for a 2-modal update dis-
tribution, while the overall optimal space allocation is the
solution to a system of k− 1 such equations. Equation 12 is
sufficient for deciding space allocation also for this update
workload and can be interpreted as a way of partitioning a
local space budget between any two update sets. More im-
portantly, the same practical methods for distributing space
and cleaning the log-structures, as described as in Section
4.2, also holds for k-modal update distributions.
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Algorithm 1 Analytical Estimation of Write Overhead

1: Group pages in bins with ±50% update frequency
2: Set number of logs := number of bins
3: Set β1, · · · , βk := s1, · · · , sk
4: // Iterative space allocation
5: repeat
6: for i=1:k do
7: re-distribute space between log i and (i+ 1) mod k
8: end for
9: until no βi change

10: Calculate GCtot

4.3.3 Estimate Cleaning Overhead
In practice we want to leverage the modeling results ob-

tained so far to estimate the cleaning overhead of a real
workload. Computing the minimum achievable cleaning over-
head is useful both for validating new data placement algo-
rithms and for computing the headroom for improving ex-
isting FTL implementations.

We present Algorithm 1 as a method for estimating the
lowest achievable cleaning overhead of a workload. The al-
gorithm first bins together pages based on update frequency
(Line 1). Binning can rely on either I/O traces, a statistical
description of the workload, or high-level access statistics
from the DBMS buffer pool replacement policy. Next, the
number of logs is initialized to the number of non-empty
bins (Line 2), and the initial βi values are set to the size
si of each log (Line 3). As mentioned, si has the biggest
influence on βi and βi = si is a good starting point that
allows the algorithm to converge faster. Next, we iterate
through all the logs and use Equation 11 to set the optimal
βi values (Lines 5-9). We repeat until all βi converge and,
finally, compute GCtot using Equation 13.

5 Frequency-based Data Placement
In this section, we show how to apply in practice the

theoretical results found so far. We propose a new data
placement algorithm, rather than a full FTL implementa-
tion, that can be used by any page-level FTL or hybrid
mapping FTL for the page level mapping area.

The data placement algorithm is depicted in Figure 4.
The high-level idea is to split pages in update sets based on
update frequency. Each set is stored as a log structure, the
log number and log size being determined dynamically. The
update sets hold pages with update frequencies decreasing
in powers of two (Section 4.2.1). The update set with the
hottest data is logically represented on top, while the coldest
is at the bottom. If a page becomes cold it “sinks” accord-
ing to its update frequency, while if it becomes hotter is
“rises”. The design is intuitive, however, it raises a number
of questions that we address in the rest of the section:

1. How to estimate update frequency?

2. How to migrate data between logs?

3. What cleaning policy to use?

4. How to determine the optimal log number and their size?

5.1 Estimating Update Frequency
We do not make any assumptions about the algorithm

used to estimate update frequency, and our data placement
proposal works with any existing algorithms, either general
purpose or especially designed for flash memory [20, 21].
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Figure 4: MultiLog data placement

When measuring update frequency, there is a trade-off be-
tween higher accuracy (requiring finer grained access statis-
tics) and CPU and memory overhead. As discussed, we can
tolerate a high degree of uncertainty when estimating up-
date frequency, ±50% from the real value, and it is an open
problem if existing algorithms can be further tuned for the
accuracy we are interested in.

We use two methods to measure the page update fre-
quency in our experiments. The first algorithm is a LRU-1
metric that estimates update frequency based on the dis-
tance between two consecutive writes to the same page (fre-
quency is the inverse of the update distance). This algorithm
is simple enough to implement in any FTL as it does not re-
quire storing additional access statistics and has a low CPU
overhead. No additional meta-data is required as the logical
to physical FTL mapping associates anyway a logical page
ID with its last up-to-date physical location (erase block
and page offset), while each erase block has an associated
version number (write sequence number) for recovery and
consistency reasons. Comparing the current version number
(write sequence number) with the previous value estimates
the update distance, the inverse of the update frequency.
We expect more complex frequency estimation methods to
be more accurate.

The second algorithm is an “Oracle” that gives us the ex-
act update frequency. Combined, the two algorithms bound
the impact of the update frequency estimation algorithm
on the data placement proposal and show the improvement
headroom over the basic LRU method. The Oracle works by
analyzing the workload in advance, both for micro-benchmarks
and DBMS I/O traces, and by computing the exact update
frequency of each page. For example, in a random update
workload, pages have an equal theoretical update probabil-
ity, but when sampling from the uniform distribution, the
number of updates per page are not exactly equal (they fol-
low a Gaussian distribution). Thus, the Oracle measures
perfectly the update frequency.

5.2 Page Migration
Page migration raises two questions: i) when to perform

page migration, and ii) what pages to move.
Page promotion. We “promote” pages, i.e. move a page

to a hotter log when the page is updated. This is desirable
as we incur no additional writes – when updating a page,
we need to write a new page version and have the liberty to
redirect the write to any location on flash. The decision to
migrate pages, however, is not based on a simple heuristic
such as “promote” any page when updated, or “demote”
any page when relocated. Such a strategy is known to fail
to separate data according with update frequency [12].

Given a log structure of s ·N pages, a page is invalidated
on average after s ·N/2 logical updates to that log. Out of
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Figure 5: Cleaning cost (GC) as a function of over-provisioning (α) for different update distributions.

the physical writes to the log, the logical writes account for a
1−pgc fraction. Thus, the average expected update distance
is: dstexp = s · N · (1 − pgc)/2. If the measured update
distance is lower, we promote the page with probability:

ppromote =
dstexpected − dstmeasured

dstexpected

The rationale is that the further the measured distance de-
viates from its expected value, the higher the probability the
page has an update frequency significantly higher than the
update set average.

Page demotion. Pages are “demoted” when the cleaning
process needs to relocate them and, as for the case of page
promotion, we avoid additional writes. We estimate the
probability that a page is cold enough for demotion starting
from the pgc computed from Equation 4. When pages of
a block are relocated inside the same log we “pack” and
store them together, i.e. preserve their locality. Cold pages
tend to accumulate in clusters and increase the percentage of
valid pages of a block compared to the expected pgc fraction.
When a block with a cluster of cold pages is cleaned, we use
pgc to identify the probability that the cluster appeared by
chance. The probability that the cluster is made of cold
data and needs to be promoted is simply the inverse. For
example, if pgc = 25%, the probability of having a cluster of
two valid pages is 6.25%, of three pages is 1.56%, etc.; the
inverse probability that the cluster is made of cold pages is
83.73% and 98.44% respectively. Thus, the page demotion
process has a low false positive rate and accounts implicitly
for log occupancy.

5.3 Cleaning Policy
We use a LRU cleaning policy as it is the lightest policy

to implement in terms of computation, meta-size, and has
the best wear-leveling behavior (erasures are spread evenly
across the erase blocks of a log). Policies such as Greedy,
Greedy-Window, or Cost-Benefit [23] do not yield significant
benefits if pages are stored according to update frequency.

5.4 Number and Size of Log Structures
The number of log structures is automatically decided at

run-time. Initially there is a single log where all pages are
collocated. A new log is created any time pages are demoted
from the last level, provided the size of the last log level is
bigger than a minimum value needed to justify the book-
keeping overhead. The minimum log size is set to 10MB in
all of the experiments.

Space is re-distributed incrementally at run-time. When-
ever log i needs to store an update, we use Equation 13 to
clean the LRU block of one of the neighboring logs (either
i− 1, i, or i+ 1) and append the newly erased block to log i

to accommodate new updates. The donor log is selected by
comparing the GC derivatives as described in Section 4.2.2.
The space distribution converges at runtime to the optimal
theoretical partitioning that minimizes cleaning overhead.

6 Experimental Results
In this section, we show how our data placement proposal

compares with other state-of-art data placement algorithms
by using a set of micro-benchmarks and DBMS I/O traces.

6.1 Simulation Setup
Performance metric. We base our comparison on sim-

ulating data placement on flash memory and measure the
associated cleaning overhead for various data placement al-
gorithms. All figures use a logarithmic y-axis as a linear in-
crease in over-provisioning lowers exponentially the cleaning
overhead. As mentioned, GC represents the average number
of extra physical writes per logical write. For example, a GC
of 0.5 means that final SSD write performance and life are
at least 33% lower than the raw aggregate performance and
life of the flash chips of the device.

Simulation goal. We do not emulate a whole SSD but
only model the cleaning overhead of out-of-place writes on
flash memory. An SSD is a very complex mix of hardware
and software; we aim to understand data placement on flash
memory and thus we need to separate it from other FTL
concerns. The actual performance of an SSD depends on a
multitude of hardware and software parameters [1].

The only difference between the model validation, micro-
benchmarks, and I/O replay traces is how updates are gener-
ated. For the model validation and for the micro-benchmarks,
we generate updates according to a theoretical distribution,
while the traces are the actual I/O write requests collected
by running DBMS benchmarks.

Scheduling garbage collection. FTLs usually discon-
nect cleaning – a high latency process – from servicing I/Os
by reclaiming blocks in the background or when the load is
low enough. Latency-wise, garbage collection scheduling has
a significant impact on the I/O latency, however, it is orthog-
onal to the problem of data placement. Throughput-wise,
any initial reserve of erased blocks is eventually exhausted
and write performance becomes limited by the speed of the
garbage collection process. We therefore trigger cleaning –
for all data placement algorithms – on demand when no free
erased blocks are available.

Wear leveling. A possible concern is that blocks belong-
ing to the hotter log structures wear faster than blocks of
colder logs. We consider wear leveling an orthogonal topic
for two reasons.

Wear leveling can be split in two categories: reactive and
pro-active wear leveling. Reactive wear leveling is needed in
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case there is write cold data. If a block sees no updates, it is
never cleaned, and therefore it does not age. The content of
young cold blocks needs to be swapped periodically with the
content of older hot blocks to prevent uneven wearing. Such
an activity is needed in all FTLs, no matter their implemen-
tation. Pro-active wear leveling happens at writing when
updates to hot logical pages are re-directed to young blocks
in the hope of evening out future erasures. A straightfor-
ward implementation of such wear leveling for our MultiLog
proposal, considering that each log structure has a reserve
of a few erased blocks, is to simply logically swap hot log
blocks with cold log blocks after cleaning. Such an approach
results in no extra cleaning overhead.

Also, optimal wear leveling is hardware-specific as the fail-
ure patterns of NAND flash chip vary form one generation
from the next [9] and also depend on the type of flash mem-
ory type (e.g. SLC, MLC, TLC) [4]. Spreading writes uni-
formly across all erase blocks is beneficial but not sufficient
for maximizing device life.

Data placement algorithms. We compare the Multi-
Log data placement proposal with the LRU and the Greedy
cleaning policies, with the Cost-Based policy proposed in
FFS [14], with the eNVy proposal (the Hybrid data place-
ment algorithm) [26], and an optimized version of the Con-
tainerMarking [12] scheme with the wear-leveling overhead
removed for a fair comparison.

We compare with the Greedy cleaning policy as it repre-
sents the most straightforward way to clean flash memory
(i.e. pick the block with the lowest number of valid pages for
cleaning). DFTL assumes a Greedy cleaning policy, there-
fore DFTL’s cleaning overhead is strictly higher than of the
Greedy cleaning policy as DFTL incurs extra overhead for
paging data between RAM and flash memory.

We compare with the hybrid eNVy data placement pro-
posal as it offers a practical heuristic for separating data
according to access frequency. We could not run all eNVy
experiments at lower over-provisioning values (< 0.2) as
eNVy’s cost-metric that guides cleaning and page migration
can create situations when the cleaning collection process is
unable to find additional space.

Simulation parameters. For all experiments we use
a page size of 4kB and erase blocks of 64 pages and the
size of the flash memory was set to 100GB for the micro-
benchmarks plus the varying over-provisioning (the actual
size of the flash memory has no influence on the final results).
For the I/O traces, the size of flash memory was set to the
maximum database size plus over-provisioning.

I/O traces. The I/O traces were collected by running the
TPC-C [24] and the Nokia TATP [19] standard benchmarks
on the Shore-MT[13] DBMS storage engine. The buffer pool
size was set at 10% of initial database size.

6.2 Micro-benchmarks
The micro-benchmark results are presented in Figure 5.

We use three access distributions: a uniform distribution
(random updates), a Zipf distribution with skew factor 1
(80% of accesses target 20% of pages), and the TPC-E [25]
non-uniform distribution.

Random updates (Figure 5(a)). For random updates,
the MultiLog-Optimal data placement algorithm is equiva-
lent to the LRU cleaning policy as there is no update skew
to justify separating data. At the same time, the LRU pol-
icy has a cleaning overhead virtually indistinguishable from
the Greedy policy. We thus omit both LRU and MultiLog-
Optimal for clarity. The MultiLog cleaning cost follows
closely the one of the Greedy policy, and is significantly
lower (up to 50%) compared to the other data placement
proposals. Please note that the Greedy cleaning policy is
optimal [11].

Zipf accesses (Figure 5(b)). The importance of data
placement grows as update skew increases. Compared to
Figure 5(a), all skew-aware data placement algorithms achieve
a lower cleaning overhead. For both ContainerMarking and
eNVy, the cleaning cost tends to increase sharply at low
over-provisioning values and the Cost-Based policy, although
theoretically inferior, achieves initially a lower cleaning over-
head. We note that eNVy is especially unstable compared to
the ContainerMarking and Cost-Based policies. Finally, the
LRU and Greedy cleaning policies have the worst behavior
as no attention is paid to update skew. It is interesting to
note that for the Greedy policy, pgc is determined by device
occupancy: All blocks tend to accumulate the same amount
of hot and cold data and are cleaned around the same pgc

value. As update skew is high and as most updates target
a low number of pages, the cold data is spread relatively
evenly over all blocks acting as dead-weight when cleaning.

TPC-E accesses (Figure 5(c)). The TPC-E distribu-
tion skew can be thought of as an in-between case between
the random distribution and the Zipf distribution. Thus,
the cleaning overhead of MultiLog increases compared to
the Zipf micro-benchmark as there is less skew to exploit.
However, MultiLog significantly outperforms the other data
placement techniques. eNVy and ContainerMarking have a
more robust performance than expected; they achieve a sim-
ilar or lower cleaning cost compared to the Zipf experiment
although update skew decreases.

6.3 DBMS I/O Trace Replay
We show in Figure 6 the high-level statistics of the TPC-

C and TATP I/O traces. The high update skew is perhaps
surprising as updates in the two workloads are logically uni-
form at the table level; however, this does not translate in
uniformly distributed writes over all the pages. When two
objects of different sizes are cached, updates to the smaller
object cause a lower number of I/Os as more of the smaller
object can be buffered. The same arguments extend to B-
Trees where we see the compounded effect of updates being
naturally skewed due to the logarithmic nature of the data-
structure.

The cleaning overhead is presented in Figure 7(a) for the
TPC-C I/O trace, and in Figure 7(b) for the TATP trace.
The overall trends are similar to the micro-benchmark and
we point out the important differences. The TPC-C work-
load has a partially shifting working set, as hot newly cre-
ated data becomes cold over time (mostly due to inserts
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Figure 7: Cleaning cost as a function of over-provisioning for the TPC-C (a) and TATP (b) I/O traces.

to the OrderLine table). The shifting hot set poses the
most problems to eNVy, even at high over-provisioning val-
ues. Comparatively, ContainerMarking performs much bet-
ter. Multi-Log achieves on average a 30% GC cleaning over-
head reduction compared to ContainerMarking. The reduc-
tion is especially significant in the practical 0.1-0.5 over-
provisioning range.

The TATP I/O trace is more skewed than the TPC-C
trace: around 10% of the pages see 80% of the updates,
while updates in the 10% hot set are relatively uniform and
constant over time. MultiLog performs comparatively better
to the TPC-C traces as it can efficiently exploit the higher
update skew. All other data placement algorithms perform
equal or worst to the TPC-C workload. For TATP, the key
to a low cleaning cost is to be able to fully separate the hot
set from the rest of the cold data.

Overall, MultiLog achieves consistently a lower cleaning
overhead and reduces garbage collection overhead by 20%−
75% at all over-provisioning values for both I/O traces.

7 Conclusions
This paper demonstrates how to reduce FTL cleaning

overhead and improve SSD life by using the write skew of
I/O workloads to guide data placement. We developed an
analytical model that explains the important trade-offs in-
volved when updating data out-of-place on flash memory.
Based on the modeling results, we then proposed a princi-
pled data placement algorithm that exploits write skew close
to optimally and reduces cleaning overhead by 20%-75% for
both synthetic workloads and real DBMS I/O traces.
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