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ABSTRACT

Given a high-dimensional dataset, a top-k query can be used to

shortlist the k tuples that best match the user’s preferences. Typ-

ically, these preferences regard a subset of the available dimen-

sions (i.e., attributes) whose relative significance is expressed by

user-specified weights. Along with the query result, we propose to

compute for each involved dimension the maximal deviation to the

corresponding weight for which the query result remains valid. The

derived weight ranges, called immutable regions, are useful for per-

forming sensitivity analysis, for finetuning the query weights, etc.

In this paper, we focus on top-k queries with linear preference

functions over the queried dimensions. We codify the conditions

under which changes in a dimension’s weight invalidate the query

result, and develop algorithms to compute the immutable regions.

In general, this entails the examination of numerous non-result tu-

ples. To reduce processing time, we introduce a pruning technique

and a thresholding mechanism that allow the immutable regions to

be determined correctly after examining only a small number of

non-result tuples. We demonstrate empirically that the two tech-

niques combine well to form a robust and highly resource-efficient

algorithm. We verify the generality of our findings using real high-

dimensional data from different domains (documents, images, etc)

and with different characteristics.

1. INTRODUCTION
Consider dataset D where every tuple dα is a vector 〈dα1, dα2,

. . . , dαm〉 in an m-dimensional space [0, 1]
m. Specified a query

vector q = 〈q1, q2, . . . , qm〉 in this space, the score of a tuple dα
is defined as the dot product S(dα,q) = q · dα. The top-k result
R(q) of this query is a list of the k tuples with the highest scores in
D. An update to any query weight qj may induce a change in the
composition ofR(q) or the ordering among its members, in which
case we say that R(q) is perturbed; otherwise R(q) is preserved.
For each dimension j ∈ [1,m], we define the immutable region as
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Figure 1: Running Example

the widest range of qj values that preserveR(q), assuming that all
other weights qi for i 6= j are kept constant.

To illustrate, consider datasetD = {d1,d2,d3,d4} in Figure 1,
which is indexed by inverted lists L1 and L2. Each tuple dα =
〈dα1, dα2〉 is a vector in two-dimensional space, and the score of
dα with respect to a query vector q = 〈q1, q2〉 is given by function
S(dα,q) =

∑2
j=1 qj × dαj . For q = 〈0.8, 0.5〉, the top-2 result

is [d2,d1]. Any change in query weight q1 inside the range (q1 −
16
35
, q1+0.1) has no effect on the result (provided that q2 retains its

value). As this is the widest range where this holds, we call it the

immutable region for q1. We define the immutable region for query

weight q2 similarly; that is (q2 −
1
18
, q2 + 0.5).

An application of immutable regions is iterative query refine-

ment. In a text retrieval setting, for example, many document and

Web search engines are based on the vector space model [1]. Docu-

ments and queries are represented as vectors in term-space, and the

similarity between a document and a user query is approximated

by their cosine distance, equivalent to the dot product of their re-

spective vectors. If a query result does not satisfy the user’s infor-

mation needs, she may iteratively adjust the weights in the query

vector (e.g., raise the emphasis on a certain keyword). Naturally,

the user wants to avoid trying several minuscule adjustments that

produce no visible impact on the result. On the other hand, neither

does she (always) want to perform a large jump in a query weight

that alters the result entirely. Instead, it would be useful to com-

pute the immutable regions for each dimension, thus specifying to

the user the exact weight values where the result changes. Figure 1

illustrates a slide-bar interface to control weights q1 and q2. The

horizontal marks at positions lj and uj on each bar indicate the im-

mutable region for the corresponding dimension. The marks at l1
and u1 on the left slide-bar could be used to guide an adjustment to

q1. Likewise for q2 and positions l2, u2 on the right slide-bar.

Another application is sensitivity analysis. Consider a system

like tripadvisor.com, where users may browse accommodation op-

tions (e.g., hotels) in a city they plan to visit. In addition to price per

night, the system also maintains for each hotel its average scores

on cleanliness, value for money, convenience of location, service,

etc, based on guest reviews. Assume that a user’s decision criteria
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are price per night, cleanliness, and service. A common decision

making strategy is to specify a weight for each criterion of inter-

est, and apply a linear scoring function on the corresponding hotel

attributes in order to shortlist the k most preferred options. Along

with the top-k recommendation, it would also be useful to provide

a sensitivity measure on the decision variables. In this context, the

immutable regions serve to profile the robustness of the recommen-

dation to deviations in the stated user preferences. A narrow im-

mutable region for cleanliness and a wide one for service suggest

that the result is more sensitive to the former. Thus, a compromise

(or raise of standards) in cleanliness is more likely to alter the top-k

recommendation than reconsidering service expectations.

Immutable regions, as defined so far, indicate weight ranges wi-

thin which no perturbation (i.e., reordering, or inclusion of a hith-

erto non-result tuple) occurs in R(q). A generalization is to com-
pute regions for up to φ perturbations in R(q), for some φ ≥ 0.
Consider the example in Figure 1 again, and assume that φ = 1.
As explained previously, with φ = 0 the immutable region for
query weight q1 is (q1 −

16
35
, q1 + 0.1), which preserves the top-

2 result [d2,d1]. If q1 moves to the right of this range and into
(q1 + 0.1, q1 + 0.2), the result changes to [d1,d2]. On the other
hand, if q1 moves into (q1−0.55, q1−

16
35
),R(q) becomes [d2,d3].

Keeping q1 within the union of ranges (q1−0.55, q1−
16
35
)∪ [q1−

16
35
, q1 + 0.1]∪ (q1 + 0.1, q1 + 0.2) ensures that there are no more

than φ = 1 perturbation in R(q), as long as q2 is fixed. Further-
more, the exact query result in each of these ranges is also available.

Contributions:We consider subspace top-k queries. These queries

score tuples in D via a linearly weighted function on the tuples’

coordinates (values) in a subset of the data dimensions (attributes).

Such queries are common in high-dimensional datasets [17, 23].

We codify the conditions under which deviations in a query weight

invalidate the top-k result, and formulate immutable regions based

on these conditions. We collectively refer to our problem as im-

mutable region computation, but our goal is to additionally report

the specific perturbations (i.e., new query results) at the bounds of

the immutable regions. We observe that the cost of computing im-

mutable regions is dominated by the examination of non-result data

(i.e., tuples in D\R(q)) to ensure that none of them supplant the

current result tuples. To reduce this cost, we introduce the Candi-

date Pruning and Thresholding Algorithm (CPT). CPT incorporates

two complementary techniques – pruning and thresholding.

The first technique, pruning, builds on the insight that when a

query weight varies, there exist two subsets of D\R(q) in which
the tuples always maintain their relative score order. We prove that

only a small number of the leading candidates in the two subsets are

capable of influencing the immutable regions, thus allowing the re-

maining tuples to be eliminated from consideration. The number of

leading candidates needed is determined by φ, and is independent

of k, |D\R(q)|, and the data/query dimensionality.
The second technique, thresholding, assesses the ‘potential’ of

candidates to qualify forR(q) due to weight changes. It processes
them in descending order of potential, and terminates when all re-

maining candidates are guaranteed not to enter the result in the cur-

rent immutable region. The challenge here lies in quantifying the

potential, as well as in deriving a safe termination condition that

will allow un-processed candidates to be disregarded.

Using both synthetic and real datasets (of different types and

characteristics), we evaluate CPT under various settings. The re-

sults confirm the effectiveness of the pruning and thresholding tech-

niques, and show that combined they reduce the number of exam-

ined tuples by 2 to well over 500 times compared to a baseline

approach. This leads to vast improvements in I/O and CPU cost.

TA operation t1 t2 threshold R(q) C(q)
1. Initialization 0.8 0.8 1.04 [ ] [ ]
2. Process d1 on L1;
S(d1,q) = 0.8

0.7 0.8 0.96 [d1] [ ]

3. Process d3 on L2;
S(d3,q) = 0.48

0.7 0.6 0.86 [d1, d3] [ ]

4. Process d2 on L1;
S(d2,q) = 0.81

0.1 0.6 0.38 [d2, d1] [d3]

5. S(d1,q) ≥ S(t,q);
Termination

Figure 2: TA Execution in Running Example

2. RELATEDWORK
Top-k Search: Given a collection D of m-dimensional tuples dα
and a scoring function S, a top-k query returns the k tuples in D
with the highest scores S(dα,q). Top-k queries have been stud-
ied in the context of relational databases [12], as well as similarity

search in multimedia repositories [6], ranking in the presence of

expensive predicates [4], joins [25, 11], uncertain or probabilistic

data [10, 14], etc. To accelerate processing, several approaches

have been proposed, including pre-computation [5, 9] and indexing

[22, 24]. Methods also exist for maintaining the top-k result over

dynamic datasets [27, 15], where (unlike our setting) the data are

updated but not the scoring function. In reverse top-k queries [26],

given a set of scoring functions, the problem is to determine for a

specific tuple which of the functions would include it in their result.

Among top-k methods, we elaborate on the threshold algorithm

(TA) [8] for queries with a monotone function S, e.g., of the form
S(dα,q) = q · dα for data vector (tuple) dα and query vector
q. In TA, m lists keep D sorted with respect to each of the m di-

mensions in descending order. TA probes the lists (sorted access

from top to bottom) in a round-robin fashion. For each tuple dα
encountered in a list, its complete vector is fetched via random ac-

cess (either in the remaining lists or in an external file holding the

entire data vectors) to compute its score S(dα,q). The k tuples
with the highest scores encountered during processing are kept, in

descending order of their scores, in a (tentative) result R(q). Let
ti be the sorting key of the next tuple in the i-th list. The search

terminates when the k-th score in the result is no smaller than the

score of the (fictitious) tuple t = 〈t1, t2, ..., tm〉, which plays the
role of a threshold. On termination,R(q) contains the top-k result.
Figure 2 traces the execution of TA in the example of Figure 1. List

C(q) contains all non-result tuples encountered by the algorithm –
it is not used by TA but its role will be discussed shortly. This cor-

responds to random access TA (we focus on this variant due to its

superior performance over the no random access version).

In existing literature, the closest work to our problem is [20]. Al-

though not its main objective, that study formulates a side-problem

(termed STB) where, given a query vector q and a dataset D, the
goal is to compute the maximal radius ρ around q (in the query

vector space) where the top-k result remains the same. The ra-

dius ρ is used as a measure for sensitivity analysis. Consider the

two-dimensional vector q = 〈q1, q2〉 in Figure 3, and assume that
k = 1. Each non-result tuple dβ defines a half-plane in the query
vector space where dβ scores higher than the current result tuple.

Radius ρ is the smallest distance between q and any of these half-

planes, essentially defining a circle where the result is preserved.

Our formulation, on the contrary, isolates each query weight and

devises an immutable region for it, while all other weights remain

fixed; in a real multivariate preference application, the user would

normally consider one weight adjustment at a time. Figure 3 illus-

trates the immutable regions IR1 and IR2 on the two query dimen-
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Figure 3: Query Vector Space

sions. STB does not cater for iterative query refinement – moving

q outside the circle with radius ρ in Figure 3 does not necessar-

ily induce a result perturbation. Our framework not only computes

the exact immutable regions per query dimension, but it also out-

puts the new result past them. Furthermore, it supports more than

one refinement, reporting all immutable regions and respective re-

sults for up to φ > 0 perturbations. Finally, STB requires scan-

ning all non-result tuples to compute the imposed half-planes (or

half-spaces in higher dimensions). This is similar to the baseline

solution to our problem (in Section 4) and leads to poor perfor-

mance. Our advanced techniques reduce the number of processed

non-result tuples and achieve a vast speed-up.

Given the visualization in Figure 3, one could suggest comput-

ing the exact polyhedron in query space that bounds the validity

of the current result. Although this is possible in two or three di-

mensions, the complexity of half-space intersection explodes with

dimensionality. In m dimensions the complexity of the polyhe-

dron is Ω(n m/2!), where n is the dataset cardinality [2]. This

implies not only a prohibitive computation cost, but also an inabil-

ity to effectively construct (not to mention visualize) the faces of

the polyhedron. We therefore isolate query dimensions, and derive

immutable regions for each of them individually.1

Safe Regions: Safe region techniques are used in moving object

databases in order to avoid frequent index maintenance and result

re-computation, and to reduce the communication overhead im-

posed by location updates. Given a set of queries (e.g., ranges),

each data object has an associated safe region. As long as the ob-

ject remains within this spatial region, it is guaranteed not to alter

the result of any query. An object issues a location update to the

processing server only if it exits its safe region [19]. In the context

of moving nearest neighbor (NN) queries, while the query point

(typically, the querying user) remains within the Voronoi cell of its

current NN, no query re-computation is necessary [28, 16]. An al-

ternative approach to achieve the same goal is to provide the user

with more NNs than requested, so that she can locally update the

result without contacting the server [21]. Safe region techniques are

tailored to spatial queries and are inapplicable to top-k processing.

3. PROBLEM DEFINITION
The problem input includes a dataset D, a query vector q, and a

parameter k. Each tuple dα ∈ D is a vector 〈dα1, dα2, . . . , dαm〉
in m-dimensional space [0, 1]m. The query vector comprises m

1Our immutable regions could support concurrent modifications in
multiple weights. Referring to Figure 3, it can be easily seen that
the convex hull of the axis-parallel projections of q on the surface
of the validity-preserving polyhedron (shown as red crosses) lies
fully inside the polyhedron and, thus, preserves the result (albeit,
being only a subpart of the polyhedron). The immutable region for
each dimension essentially defines the two respective projections.

Symbol Meaning

D Database (set of all data tuples)

dα A tuple 〈dα1, dα2, . . . , dαm〉 in [0, 1]
m space

q A query vector 〈q1, q2, . . . , qm〉 in [0, 1]
m space

qlen # of query dimensions (i.e., # of non-zero weights)

qj Weight of j-th dimension

S(dα,q) Score of dα with respect to q

R(q) List of top-k result tuples for q, in decreasing score

C(q) List of candidate tuples, in decreasing score

Lj Inverted list on j-th dimension

IRj Immutable region for j-th dimension

lj , uj Lower and upper bound of IRj

φ Number of tolerable result permutations

Table 1: Notation

weights qj ∈ [0, 1], where j ∈ [1,m]. In high-dimensional datasets,

user preferences typically involve a subset of the dimensions, hence

most of the query weights are expected to be zero. Without loss of

generality and for ease of presentation, we assume that qj > 0
for j ∈ [1, qlen], and qj = 0 for j ∈ (qlen,m], for some qlen

smaller thanm. We call qlen the query length, and the dimensions

with non-zero weights the query dimensions. The score of dα with

respect to q is given by the dot product S(dα,q) = q · dα.

Since tree indices fail in high dimensionality [24], we create an

inverted list Lj for each dimension. Lj contains entries of the form

〈dα, dαj〉 where dαj is the j-th coordinate of tuple dα, and dα
is a pointer into an external file that contains the entire dα tuple.

Lj is sorted in decreasing dαj order. The inverted lists and the

external file of tuples are stored on disk. Posed a query with vector

q, the threshold algorithm (random access TA, described in Section

2) is used to compute the result R(q) that comprises the k tuples

with the highest scores. R(q) is a list [d1,d2, . . . ,dk] sorted in

decreasing score order. Unlike the conventional TA, we keep in a

candidate list C(q) all the tuples encountered but not included in

the top-k result, in decreasing score order. Figure 2 illustrates the

formation of C(q) as TA executes.

Our problem is to derive for each query dimension j ∈ [1, qlen]
an immutable region IRj . IRj is defined as the widest range of

qj values that preserve R(q), assuming that all remaining weights

qi for i 6= j are fixed. This means that (1) every pair of con-

secutive dα,dα+1 tuples in R(q) continues to satisfy the condi-

tion S(dα,q) ≥ S(dα+1,q), 1 ≤ α < k; and (2) for every

dβ ∈ D\R(q), the condition S(dk,q) ≥ S(dβ ,q) still holds.
Henceforth, for simplicity, we represent IRj relative to qj , i.e.,

in terms of the deviation δqj . For instance, the immutable region

(q1 −
16
35
, q1 + 0.1) in Figure 1 is expressed as (− 16

35
, 0.1). Each

immutable region IRj serves to guide the user on the minimum

adjustment to the corresponding query weight qj that is necessary

to induce a change in the query result. After refining q, the user

could submit it as a fresh query to the server to produce a new top-

k resultR′(q) and a new set of immutable regions IR′
j .

The above formalization focuses on φ = 0, i.e., when the user is
interested in weight ranges that entirely preserve the result. How-

ever, in many cases the user may want to iteratively refine and re-

submit the query until satisfied, or she may wish to alter the result

more aggressively than inducing a single perturbation per adjust-

ment. Therefore, for responsiveness and scalability reasons, it is

desirable to compute multiple immutable regions (and the top-k

result for each of them) in an one-off process. Specifically, we

may produce regions and results for up to φ ≥ 0 successive query
refinements, where φ is a user-specified or application-dependent

parameter. Table 1 summarizes frequently used notation.
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4. SCAN – A PRELIMINARY SOLUTION
In this section, we describe a preliminary technique to derive im-

mutable regions, called Scan. Assuming that the top-k result has al-

ready been computed by TA, Scan executes in three phases. First, it

derives an interim immutable region for each query dimension that

preserves the relative order within the result R(q). In the second

phase, it refines the immutable region to ensure that the result ele-

ments are not displaced by any tuple in the candidate list C(q). In
the third and final phase, it considers tuples that are neither in the

result nor in the candidate list. Processing builds on Lemma 1.

LEMMA 1. Consider tuples dα,dβ ∈ D such that S(dβ ,q) ≤
S(dα,q) for query q. A change in one of the weights qj in q by

some δqj ∈ [−qj , 1 − qj ] preserves the inequality S(dβ ,q) ≤
S(dα,q) if and only if

δqj(dβj − dαj) ≤ S(dα,q)− S(dβ ,q) (1)

Specifically,

(a) If dβj > dαj , then

δqj ∈

[

−qj ,
S(dα,q)− S(dβ ,q)

dβj − dαj

)

(2)

(b) If dβj < dαj , then

δqj ∈

(

S(dα,q)− S(dβ ,q)

dβj − dαj
, 1− qj

]

(3)

Case (a) is illustrated in Figure 4(a), where the x-axis corre-

sponds to qj values and the y-axis to the scores of the tuples. At the

current qj value (see vertical dotted line at qj), dα scores higher

than dβ . Since dβj > dαj , the score of dβ rises at a steeper in-

cline, which enables it to overtake dα at qj + uj , where uj =
S(dα,q)−S(dβ ,q)

dβj−dαj
. For qj inside interval [0, qj+uj), the two tuples

maintain their relative order. Referring to the running example in

Figure 1 and considering the first query dimension, tuple d2 retains

its lead over d1 as long as δq1 is no larger than u1 = 0.1. Case (b)

is illustrated in Figure 4(b), where lj =
S(dα,q)−S(dβ ,q)

dβj−dαj
. In the

context of Figure 1, this case applies to d1 keeping ahead of d3 for

values of q1 larger than q1 + l1 = q1 −
16
35

(i.e., when δq1 is no

smaller than l1 = − 16
35
).

(a) dβj > dαj (b) dβj < dαj

Figure 4: Immutable Region IRj for qj

Given a top-k query, suppose that TA produces result R(q) and
candidate list C(q). Let tj be the sorting key (i.e., dαj value) of

the tuple immediately after the last tuple processed in Lj . The

termination condition of TA ensures that
∑m

j=1 qj×tj ≤ S(dk,q)

– recall that S(dk,q) is the score of the last result tuple.

Phase 1: In Phase 1 of Scan, we derive an interim immutable re-

gion IRj = (lj , uj) based solely on R(q), i.e., we compute the

widest qj range where the relative order among result tuples is pre-

served. Let εαj (1 ≤ α < k) denote the range of δqj over which dα

remains ahead of dα+1 in R(q), i.e., S(dα,q) ≥ S(dα+1,q). If

dα+1,j > dαj , we have ε
α
j =

[

−qj ,
S(dα,q)−S(dα+1,q)

dα+1,j−dαj

)

by For-

mula 2. If dα+1,j < dαj , then ε
α
j =

(

S(dα,q)−S(dα+1,q)

dα+1,j−dαj
, 1− qj

]

by Formula 3. In the end, we compute IRj =
⋂k−1
α=1 ε

α
j . Phase 1

is summarized by Algorithm 1.

Algorithm 1 Check for Reorderings withinR(q)

1: Let IRj = (lj , uj) where lj = −qj and uj = 1− qj
2: for α = 1 to k − 1 do

3: if (dα+1,j > dαj) then

4: uj = min
(

uj ,
S(dα,q)−S(dα+1,q)

dα+1,j−dαj

)

5: else if (dα−1,j < dαj) then

6: lj = max
(

lj ,
S(dα,q)−S(dα+1,q)

dα+1,j−dαj

)

Phase 2: Starting from the interim region IRj produced by the

above algorithm, Phase 2 further constrains it so that ∀δqj ∈ IRj ,

none of the candidates dβ in C(q) are able to overtake the last

result tuple, dk. Let ε
β
j (k < β ≤ k + |C(q)|) denote the range

of δqj values within which dk remains ahead of dβ in score, i.e.,

the relationship S(dβ ,q) ≤ S(dk,q) is upheld. If dβj > dkj ,

ε
β
j =

[

−qj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

by Formula 2. If dβj < dkj , then

ε
β
j =

(

S(dk,q)−S(dβ ,q)

dβj−dkj
, 1− qj

]

by Formula 3. Eventually, we set

IRj = IRj ∩
⋂k+|C(q)|
β=k+1 ε

β
j (where the original version of IRj is

the immutable region derived in Phase 1). This procedure mirrors

Algorithm 1, skipping line 1, with β iterating from k + 1 to k +
|C(q)| in line 2, and dk,dβ replacing dα and dα+1, respectively,

in lines 3 to 6.

Phase 3: In Phase 3 we refine IRj by examining whether any

tuple outside R(q) and C(q) may still enter the result when δqj
lies within the current IRj and, if so, shrink the immutable region

accordingly. We begin by noting that IRj in the general case spans

both negative and positive values; i.e., by definition lj ≤ 0 and

uj ≥ 0. We distinguish two cases when considering a tuple dβ in

D\R(q)\C(q):

• If dβj > dkj , then tuple dβ can overtake dk only if qj in-

creases, i.e., for some δqj > 0. Hence, dβ may only af-

fect the upper bound uj of the immutable region (but not the

lower).

• Conversely, if dβj < dkj , tuple dβ can overtake dk only if

δqj < 0. Thus, dβ may only influence the lower bound lj of

the immutable region, but not uj .

Having made the above distinction, we now need a mechanism to

identify those tuples dβ ∈ D\R(q)\C(q) that may alter either the

upper or the lower bound of the immutable region (because, clearly,

scanning every tuple outsideR(q) and C(q) is impractical).

Consider the first case and focus on uj . If TA had encountered

the entry of dk in the j-th inverted list via sorted access, any tuple

dβ with dβj > dkj (i.e., any tuple that precedes dk in Lj) would
have already been processed during TA execution and thus included

in either R(q) or C(q). In this case, uj is finalized without any

further consideration in Phase 3. Alternatively (i.e., if TA retrieved

coordinate dkj via random access in the external file), we proceed

as follows. Let S(dk,q) = S(dk,q) + uj × dkj . We resume TA
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(i.e., continue scanning the inverted lists from where top-k compu-

tation stopped), until
∑

i  =j qi×ti+(qj+uj)×tj ≤ S(dk,q). For
each dβ encountered in the process, we update IRj by Formula 2,

setting uj = min
(

uj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

. When the above termi-

nation condition is met, any non-encountered tuple is guaranteed

not to affect uj .

Consider the second case and lower bound lj . Let S(dk,q) =
S(dk,q) + lj × dkj . To retrieve tuples that could affect lj , we re-

sume TA and stop when
∑

i  =j qi× ti+(qj+ lj)× tj ≤ S(dk,q).
For each encountered tuple dβ , we update IRj by Formula 3, set-

ting lj = max
(

lj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

. Once the termination con-

dition is met, non-encountered tuples are guaranteed not to enter

the result for any δqj ≥ lj .

Algorithm 2 summarizes Phase 3. Observe that finalizing lj and

uj can be performed simultaneously, with a combined termination

condition given in line 4.2 This condition also guarantees the over-

all correctness of Scan, ensuring that all tuples that can potentially

affect the result in the j-th immutable region have been processed.

Scan is executed for each query dimension in turn to produce all

immutable regions IRj , j ∈ [1, qlen]. Note that whenever a tuple
is encountered in Phase 3 for some query dimension, it is inserted

into C(q) in line 6, so that it is processed in Phase 2 for the next

query dimension.

Algorithm 2 Check for New Candidates in D\R(q)\C(q)

1: Suppose that IRj = (lj , uj)
2: S = S(dk,q) + uj × dkj
3: S = S(dk,q) + lj × dkj
4: while (

∑

i  =j qi× ti+(qj + lj)× tj > S) or (
∑

i  =j qi× ti+

(qj + uj)× tj > S) do

5: Resume TA to produce the next candidate dβ
6: Insert dβ into C(q)
7: if (dβj > dkj) then

8: uj = min
(

uj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

9: S = S(dk,q) + uj × dkj
10: else if (dβj < dkj) then

11: lj = max
(

lj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

12: S = S(dk,q) + lj × dkj

Figure 5 demonstrates the various phases of Scan in our run-

ning example, after the application of TA (i.e., continuing from

Figure 2). The figure illustrates the comparisons among tuples and

the evolution of immutable regions for both query dimensions.

An extension of Scan to the general case of φ ≥ 0 can be

achieved easily by computing the immutable regions for several

successive perturbations in the result. Specifically, after deriving

the original immutable region IRj , we may conceptually move

qj to uj in order to force the associated result perturbation, and

re-apply Scan in a one-way fashion. This means that we need to

compute only the upper bound of the next immutable region IR′
j ,

since its lower bound coincides with the current uj . The situation

is symmetric for the immutable regions to the left of IRj . Over-

all, we need to perform this one-way procedure φ times to the left,

and φ times to the right of the original immutable region. Although

conceptually simple, dealing with φ > 0 in Scan is costly due to

this iterative re-processing of the immutable region request. That is

2To simplify presentation, the pseudo-code assumes that dkj was
retrieved by TA via random access in the external file, and thus
processing is required for uj (as opposed to the sorted access case).

Phase 1: Check the result tuples inR(q)
To maintain S(d1,q) ≤ S(d2,q),

IR1 = [−0.8, 0.1)
IR2 = (−

1
18

, 0.5]

Phase 2: Check the candidate tuples in C(q)
To maintain S(d3,q) ≤ S(d1,q),

IR1 = IR1 ∩ (−
16
35

, 0.2] = (− 16
35

, 0.1)
IR2 = IR2 ∩ [−0.5,

2
3
) = (− 1

18
, 0.5]

Phase 3: Check the tuples in D\R(q)\C(q)
For IR1:

S = S(d1,q) + 0.1× 0.8 = 0.88
S = S(d1,q)−

16
35
× 0.8 = 0.43

Test: ((0.8− 16
35
)× 0.1 + 0.5× 0.6 = 0.33 < S) and

((0.8 + 0.1)× 0.1 + 0.5× 0.6 = 0.39 < S)
⇒ No need to resume TA to examine new tuples

For IR2:

S = S(d1,q) + 0.5× 0.32 = 0.96
S = S(d1,q)−

1
18
× 0.32 = 0.78

Test: ((0.8× 0.1 + (0.5− 1
18
)× 0.6 = 0.35 < S) and

((0.8× 0.1 + (0.5 + 0.5)× 0.6 = 0.68 < S)
⇒ No need to resume TA to examine new tuples

Figure 5: Execution of Scan on the Running Example

one of the drawbacks of Scan which are overcome by our advanced

algorithm, CPT, described in the next sections.

An important remark regards reporting the top-k result along

with each immutable region. This is achieved easily while the im-

mutable regions are being formed. Take the first immutable region

(i.e., φ = 0) in the j-th dimension for example. For each bound

of IRj (i.e., for each of lj and uj) we record the latest processed

tuple that updated its value. Let dβ be the tuple recorded for uj .

If dβ is already inR(q), then the result in the region immediately

to the right of IRj contains the same tuples, reordered so that dβ
overtakes the one preceding it. On the other hand, if dβ does not

belong to the currentR(q), then the new top-k result is formed by

replacing the last (i.e., the k-th) tuple in R(q) with dβ . Comput-

ing the top-k result in different regions is similar in the techniques

described next, thus the discussion focuses only on deriving the

immutable regions themselves.

Unlike our formulation as stated so far, in certain applications

reorderings among result tuples may not be of interest to users and

applications, i.e., such reorderings should not be counted as result

perturbations. Instead, only changes in the composition of R(q)
would be considered as valid perturbations, i.e., inclusions of new

tuples into the result. Scan, as well as our advanced techniques

in subsequent sections, extend trivially to this scenario by simply

skipping Phase 1 and initializing the immutable region to its widest

possible form (i.e., lj = −qj and uj = 1 − qj) before Phase

2 starts. Although we evaluate performance in this scenario too

(in Section 7.4), unless otherwise specified, in the following we

assume the original problem formulation.

5. CPT – PRUNINGANDTHRESHOLDING
In Scan the first and third phases are relatively inexpensive. Spe-

cifically, running Algorithm 1 onR(q) (Phase 1) is fast because the
number of result tuples k is typically small, e.g., k = 10. Phase

3 is also inexpensive, because after Phases 1 and 2, the immutable

regions IRj are already very tight, so only a few additional tu-

ples from the sorted lists would satisfy the condition in line 4 of

Algorithm 2. In contrast, Phase 2 is the bottleneck, because C(q)
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is one or two orders of magnitude larger than R(q). We verify

this intuition empirically in Section 7. Based on that observation,

we focus on Phase 2, and introduce an algorithm to quickly prune

the inconsequential candidate tuples in C(q), before processing the
remaining ones with a thresholding technique. The resulting algo-

rithm is named CPT, for Candidate Pruning and Thresholding. In

the following we address the φ = 0 case, before generalizing to

φ > 0 in Section 6.

5.1 Candidate Pruning
Here we describe the first component of CPT, i.e., candidate

pruning. To illustrate the rationale behind it, we run a query q with

equal weights on four randomly chosen search terms (i.e., query

dimensions) on the WSJ corpus, described in detail in Section 7.1.

Figure 6(a) plots the score of the top-10 result tuples in R(q) as
blue circles and the candidate tuples of C(q) as red crosses, versus

their coordinates in the first query dimension. The charts for the

other three dimensions show an identical trend and are omitted for

brevity. The key observation is that all the result and candidate tu-

ples in this example appear at the front of one of the four inverted

lists, and have zero coordinates in the other three dimensions.

Consider the first query dimension in Figure 6(a). As q1 in-

creases, all tuples on the y-axis retain their original scores because

they have zero coordinate in the first query dimension. In contrast,

every tuple on the slope experiences a rise in score that is propor-

tional to its first coordinate. Eventually, the lowest blue circle (i.e.,

result tuple) that lies on the y-axis will be replaced in the result by

the red cross (candidate) that is highest on the slope, followed by

the next-highest red cross on the slope, and so on. Conversely, as

q1 decreases, the blue circles on the slope experience a reduction

in score; eventually, they will be replaced by the top red cross that

lies on the y-axis, then the second red cross on the y-axis, and so

on. Consequently, to compute the immutable region (for φ = 0),
among the red crosses on the slope, it suffices to consider only the

one with the largest coordinate (in the first query dimension). Like-

wise, among the red crosses on the y-axis, we need to take into

account only the one with the highest score.
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(b) Correlated Data

Figure 6: Result and Candidate Tuples

Clearly, Figure 6(a) demonstrates a special (yet common) situa-

tion where the result and candidate tuples have non-zero values in

only one of the query dimensions. However, the key observation

that underlies our pruning technique holds also in the general case,

where there is a third type of result and candidate tuples that have

non-zero coordinate values in two or more query dimensions (apart

from those on the slope and on the y-axis). Specifically, for each

query dimension j ∈ [1, qlen], the candidate tuples in C(q) can be

partitioned into:

• C0j = {dβ |dβ ∈ C(q) and dβj = 0}; the tuples in C0j are inside

C(q) (i.e., were encountered by TA) due to their coordinates in

some query dimension(s) other than j.
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Figure 7: Partitions ofR(q) and C(q)

• CHj = {dβ |dβ ∈ C(q) and dβi = 0 ∀i 6= j}; the tuples in CHj
are in C(q) solely due to their j-th coordinate.

• CLj = {dβ |dβ ∈ C(q), dβj > 0 and ∃i 6= j such that dβi >

0}; the tuples in CLj are in C(q) due to the combined contribu-

tions from dimension j and at least one other query dimension.

The three sets are illustrated in Figure 7. C0j corresponds to can-

didates on the y-axis, CHj on the slope, and CLj to candidates neither

on the y-axis nor on the slope. The figure also illustrates a similar

partitioning of the result tuples.

As we see in Figure 6(a), C0j and CHj could be sizable. By prun-

ing C0j and CHj , we may effectively reduce the processing time to

derive IRj . Unlike Scan, CPT eliminates many candidates without

consideration based on the following lemmata.

LEMMA 2. Consider a query q, its top-k resultR(q), and can-
didate tuples C(q). For any j ∈ [1, qlen], the lower bound lj of

immutable region IRj cannot be affected by any tuple in C
H
j . Also,

lj can be affected by only one tuple in C
0
j ; namely, the one with the

highest current score.

PROOF. First, we show that no candidates in CHj may enter the

result as qj decreases. Let dβ be a tuple in CHj , and dα be any

member of R(q). If dβj > dαj , dβ undergoes a larger reduction

in score than dα, and cannot overtake it. If dβj ≤ dαj , dβ cannot

score higher than dα for any decrease in qj , because by definition

dβ has zero values in all other query dimensions, and therefore all

its coordinates of interest are smaller than those of dα.

Regarding the second part of the lemma, lowering qj reduces the

score of result tuples dα with non-zero dαj values. As reductions

in qj may cause result tuples to drop out of R(q), the candidates

dβ in C0j will qualify for inclusion in order of their current score

(which is independent of qj since their dβj values are zero). Hence,

only the top-scoring tuple in C0j may affect the lower bound lj .

LEMMA 3. Consider a query q, its top-k resultR(q), and can-
didate tuples C(q). For any j ∈ [1, qlen], the upper bound uj of

immutable region IRj cannot be affected by any tuple in C
0
j . Also,

uj can be affected by only one tuple in CHj ; namely, the one with

the highest value in the j-th dimension.

PROOF. If qj increases, the result tuples’ scores will either in-

crease or remain constant. The scores of all tuples in C0j , on the

other hand, do not change (as they are independent of qj) and there-

fore they cannot enter the top-k result.

Regarding CHj , as qj increases, the candidates dβ ∈ CHj may

enter the result. Since their score increases proportionally to their

dβj value, the tuple with the highest dβj in CHj will enter the result

first. Therefore, it is the only tuple in CHj that could affect uj .

Lemmata 2 and 3 suggest that IRj computation needs a single

tuple from each C0j and CHj , which significantly reduces processing
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time. Note that pruning could be performed on the fly during TA

execution, by maintaining in C(q) only the top-scoring C0j tuple

encountered so far, and only the CHj tuple with the highest j-th

coordinate. This lowers the memory overhead for keeping C(q).

5.2 Candidate Thresholding
Pruning reduces the size of C0j and C

H
j . However, C

L
j (i.e., the re-

maining constituent of C(q)) may also be sizable, especially when
the query dimensions are correlated. To illustrate, we run a query

q with equal weights on four randomly chosen dimensions using

a dataset with positively correlated coordinates; the dataset is de-

scribed in detail in Section 7.1. Figure 6(b) plots the scores of result

and candidate tuples against the first query dimension – charts for

the remaining three dimensions are similar. The top-10 tuples are

plotted as blue circles and the candidates as red crosses. In con-

trast to Figure 6(a), here C0j = ∅ and |CLj | # |CHj |. Note that the

members dα of CHj lie on the line S(dα,q) = qj × dαj since by

definition they have zero values in the other query dimensions.

In this section, we propose a technique that vastly reduces the

number of CLj candidates considered. Our approach leverages on a

geometric reduction of the problem used in tandem with a thresh-

olding strategy.

We introduce the crux of our technique using Figure 8. The fig-

ure plots the score-coordinate space for tuples dα in C(q), i.e.,
the x-axis corresponds to dαj values and the y-axis to S(dα,q).
The horizontal line indicates the score of the k-th result tuple, y =
S(dk,q). The tuples inR(q) lie on or above this line, while candi-
dates lie below it (without loss of generality, assume that there are

no ties with dk). Let (lj , uj) demarcate the (interim) immutable
region IRj derived in Phase 1, i.e., after processing the tuples in
R(q). The immutable region is represented by the two solid lines
sloping down from dk. The left line has a gradient of lj , whereas

the gradient of the right line is uj . Consider a candidate dβ with

coordinate dβj > dkj , as illustrated in the figure. By Formula 2

it follows that if dβ lies below the right bound line (corresponding

to uj) it cannot overtake dk within the current immutable region.

The situation is similar for candidates with j-th coordinate smaller

than dkj , with the line at gradient lj playing the role of the bound.

In other words, any candidate below the lines that correspond to lj
and uj cannot affect the immutable region. Processing such tuples

is unnecessary and we aim to avoid it.

Figure 8: Intuition behind Candidate Thresholding

By the same geometric intuition, any tuple above the bound lines

necessitates shrinking the immutable region, i.e., raising the corre-

sponding line (depending on whether it is on the left or the right of

dk in the score-coordinate plane) to pass through it. One such tuple

is dγ , which requires updating (raising) lj to the dashed line. The

task in Phase 2 is to raise the bound lines toward the horizontal line

y = S(dk,q) just enough to keep all candidates below, thus effec-
tively tightening lj and uj in the process. Raising the lines early on

in Phase 2 implies disqualifying more candidates from considera-

tion, and hence faster termination. This rationale leads to a second

design direction, i.e., to process the candidates in order of their po-

tential to affect IRj .
Consider the region on the right of dk in the score-coordinate

plane. This region corresponds to candidates with j-th coordinate

larger than dkj and concerns uj only (not lj). Candidates with a

high potential to affect uj (i.e., with more chances to raise the right

bound line) are those with a large score and a large j-th coordi-

nate. This fact motivates our thresholding technique, which takes

into account the aforementioned two-fold criterion to decide the

processing order among candidates.

Specifically, based on Lemma 3 and the pruning described in

Section 5.1, our set of candidates in the right region includes CLj
appended by the tuple in CHj with the highest j-th coordinate. Ob-

serve that some of the tuples in CLj do not fall in the right region,

but this is an issue we ignore for now. CLj is already sorted on

score – with the addition of the extra tuple from CHj , we form a

list of the candidates SLS sorted in decreasing score order. We

also form list SLj with the candidates sorted on their j-th coordi-
nate (in decreasing order). We probe the two lists in a round-robin

fashion. For each popped candidate we apply Formula 2 and lower

uj accordingly. Let tS be the score of the next tuple in SLS , and
tj be the j-th coordinate of the next tuple in SLj . These values
play the role of thresholds; the slope of every non-considered can-

didate further down in the lists is lower-bounded by
S(dk,q)−tS
tj−dkj

,

i.e., this is the minimum value they can update uj to. Therefore,

we stop probing the lists (i.e., considering new candidates for uj)

when
S(dk,q)−tS
tj−dkj

rises above the current value of uj , in which case

uj becomes the final upper bound of Phase 2. Another termination

case is when tj ≤ dkj , which means that candidates in the right

region have been exhausted, and thus we cannot further reduce uj .

The process is similar for the lower bound lj of the immutable

region. The set of candidates that may affect (raise) lj in Phase 2

comprises CLj and the top-scoring tuple in C0j (according to Lemma
2). The thresholding process is similar to that for uj . The differ-

ence is that candidates with high potential to update lj are those

with high score but small j-th coordinate. Therefore, we use SLS
as before, yet follow a reverse access order in SLj ; we access it
from bottom to top (i.e., in increasing j-th coordinate order). Let t′j
be the j-th coordinate of the next tuple in SLj (i.e., the one with the
immediately larger j-th coordinate than the last candidate drawn

from the list). Termination occurs when (i)
S(dk,q)−tS
t′
j
−dkj

drops be-

low the current lj value or (ii) t
′
j ≥ dkj .

A way to implement Phase 2 is to perform thresholded process-

ing twice, once for each of lj and uj . However, this way we scan

(the top part of) SLS twice. Also, when considering candidates

for uj , for instance, some tuples drawn from SLS may fall in the

region to the left of dk (i.e., the region that affects lj but not uj).

To save computations we perform both searches concurrently.

This is achieved by a 3-list thresholded probe. SLS is used as

is, while SLj is treated as two virtual lists:

• SLj↑ for j-coordinates smaller than dkj sorted in ascending or-
der, for which we maintain threshold t′j .

• SLj↓ for j-coordinates greater than dkj sorted in descending

order, keeping track of threshold tj .

We probe the lists in a round-robin fashion. Candidates drawn from

SLj↑ are considered for raising lj , those drawn from SLj↓ for low-
ering uj , while those pulled from SLS are considered for either

of the two bounds, depending on whether their j-th coordinate is
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Algorithm 3 Candidate Thresholding Method

1: Let IRj = (lj , uj) be the interim region from Phase 1.

2: Set Search(lj) = ACTIVE; set Search(uj) = ACTIVE

3: while (Search(lj)=ACTIVE) or (Search(uj)=ACTIVE) do

4: Pull top candidate dβ from SLS
5: if (dβj < dkj) and (Search(lj) = ACTIVE) then

6: lj = max
(

lj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

7: else if (dβj > dkj) and (Search(uj) = ACTIVE) then

8: uj = min
(

uj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

9: if Search(lj) = ACTIVE then

10: if (
S(dk,q)−tS
t′
j
−dkj

≤ lj) or (t′j ≥ dkj) then

11: Search(lj) = COMPLETE

12: else

13: Pull top candidate dβ from SLj↑

14: lj = max
(

lj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

15: if Search(uj) = ACTIVE then

16: if (
S(dk,q)−tS
tj−dkj

≥ uj) or (tj ≤ dkj) then

17: Search(uj) = COMPLETE

18: else

19: Pull top candidate dβ from SLj↓

20: uj = min
(

uj ,
S(dk,q)−S(dβ ,q)

dβj−dkj

)

lower or higher than dkj . The dual termination condition for each

of the two searches is checked whenever considering a candidate

in its region. If reached for one of the two searches, say for uj ,

then SLj↓ is no longer probed, and only the search for lj contin-

ues. Algorithm 3 summarizes the complete thresholding technique.

Boolean flags Search(lj) and Search(uj) indicate whether the

search for lj and uj , respectively, is ongoing or completed.

We experimented with alternative probing heuristics, such as

pulling candidates from SLS twice as frequently as the other two

lists (since SLS is used for two searches, whereas each of the other

lists is used for one), as well as heuristics based on estimates of the

potential of the 3 tuples at the top of each list. We found round-

robin to perform better (or at least comparably well) and prefer it

because of its robust performance across all datasets tried.

Since Phase 2 dominates the processing cost of CPT, an impor-

tant note regards its complexity. Assuming that the query dimen-

sions are independent, [7] proves that the expected cardinality of

C(q) is O(k
1

qlen n
1− 1

qlen ), which is sublinear to dataset cardinal-

ity n. In the worst case, pruning will disqualify no candidate, leav-

ing the entire C(q) to thresholding. The latter sorts the candidates

that remain after pruning. Updating IRj for a tuple via Lemma

1 takes constant time. Hence, the total complexity of Phase 2 per

query dimension is O(k
1

qlen n
1− 1

qlen log(k
1

qlen n
1− 1

qlen )).

6. CPT EXTENSION TO φ > 0
The description of CPT so far focused on φ = 0, i.e., on im-

mutable regions that allow no result perturbation. Here we extend

CPT to φ > 0, starting with Phase 1. For simplicity, we focus on

positive deviations δqj > 0 and the φ immutable regions to the

right of the current qj value. These regions are essentially defined

by φ+1 upper bounds urj for 0 ≤ r ≤ φ. Processing is symmetric

for negative deviations, unless otherwise specified.

Phase 1: We treat each result tuple as a line in score-coordinate

space. Consider Figure 9 where k = 3 and φ = 3. Note that

Figure 9: Processing Example when φ > 0 (for δqj > 0)

the x-axis starts at the current qj value and extends to 1, since we

focus on positive deviations δqj . The current top-3 result (at the

beginning of the x-axis) includes d1,d2,d3, shown as the 3 solid

lines. The φ+1 leftmost intersections of the result lines correspond

to the interim upper bounds urj . The intersections in a set of lines

can be found with the plane-sweep algorithm [2]. To save time,

not all intersections between result lines need to be computed; as

plane-sweep scans the score-coordinate plane from left to right, we

stop after encountering the first φ+1 intersections. In our example

there are only 3 intersections, indicated by crosses. Since they are

fewer than φ + 1 = 4, the interim bound u3
j takes its maximum

possible value, i.e., u3
j = 1− qj .

Phase 2 (Pruning): In Phase 2 we first disqualify (i.e., prune) can-

didates based on the following generalization of Lemma 2.

LEMMA 4. Consider a query q, its top-k resultR(q), and can-
didate tuples C(q). For any j ∈ [1, qlen] and φ > 0, the im-
mutable regions to the right of qj cannot be affected by any tuple in

C0j . Also, they can be affected by a maximum of φ+1 tuples in CHj ;

namely, those with the φ+ 1 highest values in the j-th dimension.

PROOF. As qj increases, the result tuples’ scores either increase

or remain constant, while the scores of all tuples in C0j remain con-

stant. Hence, no tuple in C0j can enter the result. On the other hand,

as qj increases, the candidates dβ ∈ CHj may enter the result in

order of their j-th coordinate (since their score is equal to qj×dβj ,

their relative order is preserved). Thus, only the first one could af-

fect u0j , only the first two could affect u
1
j , and so on. Overall, only

the first φ+ 1 of them could affect the φ immutable regions to the

right of qj .

Lemma 4 applies to positive deviations in qj . For negative de-

viations, pruning is similar: the φ immutable regions to the left of

qj are independent of CHj , and can be affected by a maximum of

φ + 1 tuples in C0j (those with the φ + 1 highest current scores).

The corresponding lemma and its proof are omitted for brevity.

Phase 2 (Thresholding): To explain thresholding, we continue the

example in Figure 9. After Phase 1, the lower envelope of the three

result lines (i.e., the broken line shown in red and bold) indicates

the boundary of the result, i.e., it represents the score of the k-th

result tuple at different qj values3. If a candidate line intersects

the lower envelope, this candidate enters the result at the qj value

of the intersection. Thresholding considers candidates (that pass

the pruning criteria) by the same round-robin probing of SLS and

3We borrow the term lower envelope from computational geome-
try. Deriving it over k lines can be done in O(k log k) time [2].
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SLj↓. The difference lies in (i) the update of the immutable regions

when candidates are considered and (ii) the termination condition.

Regarding (i), for each candidate tuple pulled from SLS or SLj↓
we check whether it intersects the lower envelope (for any δqj ∈

[0, uφj )). If so, it enters the result at the point of intersection, and

might induce additional perturbations (result reorderings) later. We

identify the candidate’s intersections with all result lines on or above

the lower envelope and update the immutable regions accordingly.

In Figure 9, if the dashed line corresponds to a candidate tuple dβ ,

then it causes 2 perturbations, one for each of the intersections

marked by ellipses. This lowers u2
j and u3

j to the x-axis projec-

tions of these two intersection points – the new u2
j and u3

j values

are shown by arrows on the x-axis. The lower envelope is updated

accordingly in order to reflect the new k-th result tuple at different

qj values, i.e., it now passes through the intersections caused by

dβ , because dβ is the k-th top tuple in the range between the new

u2
j and u3

j . Note that the lower envelope does not extend further

than u
φ
j because perturbations beyond the first φ are irrelevant, i.e.,

the updated envelope extends only until the new u3
j .

For point (ii), the termination condition also utilizes the lower

envelope. Thresholds tS and tj (on lists SLS and SLj↓, respec-
tively) represent a line that caps the potential of each unseen can-

didate. This line, termed threshold line, is expressed by y = tS +
tj × x, where y represents the score dimension and x is δqj . In the

context of Figure 9, for example, this line would intersect the y-axis

at tS and have a slope equal to tj . The threshold line is guaranteed

to lie above (the line representing) any non-encountered candidate

further down in SLS or SLj↓. Therefore, thresholding terminates

when the threshold line lies entirely below (i.e., does not intersect)

the lower envelope for any δqj ∈ [0, uφj ).

Phase 3: Phase 3 considers candidates (and updates the immutable

regions accordingly) from deeper in the inverted lists like Algo-

rithm 2, but with a new termination condition. It uses a threshold

line expressed by y =
∑qlen

i=1 qi× ti+ tj ×x, where y is the score

dimension and x is δqj . All non-encountered candidate lines lie

below the threshold line, and hence Phase 3 (and CPT) terminates

when the threshold line is below (i.e., does not intersect) the lower

envelope for any δqj ∈ [0, uφj ).

7. EXPERIMENTS
Here we evaluate the effectiveness of the pruning and thresh-

olding techniques, both individually and in combination. We first

examine the case where φ = 0 (computing a single immutable re-

gion) followed by experiments with φ > 0. Finally, we study a

scenario where only changes in the result composition are consid-

ered to be valid perturbations (i.e., reorderings among result tuples

are disregarded in immutable region formation).

7.1 Experiment Set-Up
Methods: The CPT algorithm comprises two techniques – prun-

ing and thresholding – which may also be used separately. This

gives rise to four alternative methods: (i) Scan, described in Sec-

tion 4, processes all the candidates in C(q), and provides a baseline
to assess the effectiveness of our advanced techniques; (ii) Prune

enhances Scan via pruning (presented in Section 5.1), after which

all the remaining candidates in C0j , C
L
j and CHj are examined to

tighten IRj ; (iii) Thres improves on Scan by applying threshold-

ing (introduced in Section 5.2) on all the candidates in C(q); and
(iv) CPT, i.e., the complete Candidate Pruning and Thresholding

Algorithm, prunes the candidate list before applying thresholding.

Datasets: We run the methods on two real and one synthetic

dataset. The default dataset is WSJ, including 172,891 articles pub-

lished in the Wall Street Journal from December 1986 to March

1992. Following standard practice in document retrieval, we re-

moved stopwords (i.e., common words like ‘the’ and ‘a’ that are not

useful for differentiating between documents) and those that appear

in only one article. We treated the remaining 181,978 search terms

Tj as dataspace dimensions. For each of them, we created an in-

verted list Lj of entries 〈dα, dαj〉, where dα is a pointer into an ex-

ternal file that contains the entire dα tuple, and dαj is the term fre-

quency (TF) of Tj in document dα, multiplied by the inverse doc-

ument frequency (IDF) of Tj [1]. Queries on WSJ are formed by

randomly selecting qlen terms as query dimensions. The weight qj
of each query term is set according to the TF-IDF scheme. This for-

mulation corresponds to classic similarity-based text retrieval. In a

real application, immutable regions would provide the user a finer

control over the relative importance of the query terms (instead of

having to repeat in her query the terms she wishes to stress).

To verify the generality of our approach, we use a second real

dataset from a different domain. KB [13] contains 28,452 images,

each represented by a 9,693-dimensional feature vector (tuple). An

image database can be queried on various features, e.g., average

color, texture, image quality, etc. Here, the immutable regions

could help the user control/adjust the weights of query features.

The third dataset, ST, is synthetic. Since WSJ and KB have lit-

tle and moderate correlation among their dimensions, respectively,

with ST we explore the case of highly correlated distributions. Such

data are a standard benchmark for preference-based querying and

occur often in multi-criteria decision making [3]. ST is generated

by the ‘mvnrnd’ function in Matlab, using correlation coefficients

of 0.5. This means that ST tuples are clustered along the line from

[0, 0, . . . , 0] to [1, 1, . . . , 1]. ST contains one million tuples in a 20-

dimensional space. Queries in KB and ST are formed by randomly

selecting query dimensions and their weights.

System Model: Each dataset D and its inverted lists Lj are stored
on disk. Upon receiving a user query q, the server runs TA to re-

trieve the top-k result R(q). Instead of a round-robin strategy, we

follow [18] and enhance TA by probing the list Lj with the largest

product qj × dαj , where dα is the last document pulled from Lj .
Along with R(q), the server also retains the list of encountered

tuples C(q) – to conserve memory, it caches only the score of en-

countered tuples, not their full information. The server runs Redhat

Linux, and is equipped with a dual Intel Xeon 3GHz CPU.

Metrics: Our primary performance metrics include the number of

candidates evaluated per query dimension, and the total I/O and

CPU costs to compute the immutable regions for all query dimen-

sions. Every reported result is the average over 100 queries.

The CPUmeasurements by themselves also indicate performance

in an alternative setting where the dataset and inverted lists are

cached in main memory (instead of disk).

7.2 Experiments for φ = 0

Effect of Query Length: In the first experiment we use WSJ, set

k = 10, and vary qlen from 2 to 10 (to simulate short web queries

as well as longer full-text queries). Phases 1 and 3 are identical in

all compared approaches. The total cost of Phase 1 ranges from 60

µsec to 140 µsec, and that of Phase 3 is around 40 msec, which are

both at least one order of magnitude smaller than the cost of Phase

2. Since Phase 2 is the main performance determinant, hereafter

we focus on the costs of Phase 2 only.

Figure 10 considers Phase 2 in the same experiment. A larger

qlen requires TA to search deeper in the query lists. This produces
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Figure 10: WSJ Corpus, k = 10, varying qlen

more candidates in C(q) and explains the increased I/O and CPU

costs for all methods. The effect is more severe for Scan which

processes all tuples in C(q).
As shown in Figure 6(a), in the WSJ dataset most tuples in C(q)

have a large coordinate in one query dimension, and zero values

in all others. Hence, C0j and CHj account for most or even all of

the tuples in C(q). Prune is very effective in this case, because

it processes a single candidate from each of C0j and CHj . Figure

10(a) shows the number of evaluated candidates, i.e., those checked

against the k-th result tuple dk for potential lj or uj update via

Lemma 1. At qlen = 2, Prune processes 1.9 candidates/dimension

on average, compared to 49.8 for Scan. At qlen = 10, the differ-
ence widens to 6.6 candidates/dimension for Prune and 646.4 for

Scan. The number of evaluated candidates is the main determinant

of CPU cost (Figure 10(c)). Likewise for I/O (Figure 10(b)), since

the exact coordinates of evaluated candidates are fetched from disk.

Regarding candidate thresholding, its essence is to focus on high-

potential candidates, and (safely) disqualify the rest. This enables

Thres to reduce the number of evaluated candidates by around 60%

at qlen = 2, and over 90% at qlen = 10, relative to Scan. Fur-

thermore, thresholding complements pruning successfully – CPT

reduces evaluated candidates by an additional 35% to 50% relative

to Prune. The reduction in processed candidates explains the I/O

and CPU savings (although not visible due to the scale in Figure

10(c), CPT reduces CPU time by over 30% compared to Prune).

In Figure 10(d) we plot the memory footprint of the methods.

Scan maintains a score and a pointer (into the external file) for ev-

ery tuple in C(q). Thres additionally keeps the SLj lists, built on
all candidates. Prune is enhanced with the space optimization de-

scribed at the end of Section 5.1, and has the smallest footprint.

CPT uses the same optimization and its extra overhead is due to the

SLj lists (built on the candidates remaining after pruning). The

memory footprint of all methods is in the order of Kbytes.

In Figure 11 we repeat the same experiment on ST. Since the I/O

cost follows the number of evaluated candidates, we omit the I/O

charts. The most important difference from WSJ is that Prune is

not effective here. The reason is that, unlike WSJ, candidate sub-

sets C0j and CHj include too few tuples to begin with, so there is

little room for improvement by pruning them. On the contrary, CLj
accounts for the majority of candidates, as demonstrated in Fig-

ure 6(b), which allows Thres to shine. The best method is again

CPT, owing primarily to its thresholding component in this case.

Figure 12 examines the effect of query length using KB. Here

qlen varies between 2 and 48 image features. As all three candidate

subsets (C0j , C
H
j , and CLj ) are sizable, pruning and thresholding are

both effective, especially when combined into CPT. Although not

easily visible in Figure 12(b), the CPU cost in CPT is 37% to 40%

smaller than in the runner-up, Prune.

Effect of Result Size: In Figure 13 we study the effect of k on

performance, varying it from 10 to 80 while setting qlen = 4. We

e f g h i ji j ki j li j m
n o p q r s p t u v w x y z p t {|} ~�� ��� ��� ����� �� ����� � � � � t� w q p �� q o t p� � �

(a) # Evaluated Candidates

e f g h i jjefg
h

n o p q r s p t u v w x y z p t {����� ��� ���� � � � t� w q p �� q o t p� � �
(b) CPU Cost

Figure 11: Synthetic Data, k = 10, varying qlen
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Figure 12: KB Dataset, k = 10, varying qlen

present results only forWSJ and ST as they represent two extremes;

those for KB resemble WSJ more closely.

Figures 13(a) and 13(b) plot our measurements for WSJ. As ex-

pected, a larger k causes TA to reach deeper into the query lists,

raising the size of C(q) and in turn Scan’s overheads. Interestingly,
the other three methods improve with k. For Prune the reason is

that in WSJ, the inverted lists have uneven lengths; popular terms

have longer lists and rare ones shorter. For query dimensions j that

correspond to rare terms, as k rises progressively to 80, there is a

higher chance that all tuples with non-zero j-th coordinate are al-

ready in R(q), leaving CHj empty. This is why Prune processes

fewer candidates with increasing k. For Thres the reason is differ-

ent. As the result size increases, the interim immutable regions af-

ter Phase 1 get tighter (due to reorderings within the result), which

allows the termination condition of Thres to be met earlier.

Figures 13(c) and 13(d) correspond to the synthetic dataset. Sim-

ilar to Figure 11, Prune fails to disqualify almost any candidate

(due to the correlation in data) and performs similarly to Scan; thus

the increase in cost with k. Here CPT relies primarily on Thres,

whose termination condition gets tighter with k.

7.3 Experiments for φ > 0
Next, we consider φ > 0, i.e., when up to φ perturbations are

tolerable in the result. Due to lack of space, we focus on WSJ data.
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Figure 14: WSJ Corpus, k = 10, qlen = 4, varying φ
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Figure 13: WSJ and ST Data, qlen = 4, varying k

In Figure 14, we fix k = 10 and qlen = 4, and vary φ from 0

to 40. The costs of all methods increase with φ, and their relative

performance is similar to Section 7.2 for φ = 0. While a larger

φ increases the number of evaluated candidates in Scan and Thres,

Prune and CPT need only to cope with a slightly larger subset of C0j
and CHj (each including φ+ 1 tuples). This is why Scan and Thres

deteriorate much more rapidly than Prune and CPT in Figures 14(a)

and 14(b). At φ = 0, Scan and Thres evaluate 55.6 times and 6.8

times, respectively, more candidates than CPT. At φ = 40, the gap
widens to 228 times and 28 times. The experiment highlights the

effectiveness of pruning for large φ settings.

Another key observation is that, although Thres examines fewer

candidates (and incurs fewer I/Os) than Scan, it has a higher CPU

cost. This is due to its overheads in forming sorted lists and repeti-

tively checking the termination condition. Nevertheless, threshold-

ing offers CPT a 25% to 80% reduction in CPU time compared to

Prune; the difference between CPT and Prune in this experiment is

clearer in Figure 15, described next.

Figure 15 compares our one-off computation approach for φ > 0
against the straightforward, iterative re-evaluation of single region

requests (i.e., repetitive calls of the φ = 0 versions of the algo-
rithms). We repeat the previous experiment for the two most ef-

ficient approaches, Prune and CPT. The dashed lines correspond

to the iterative versions of the methods. The charts reveal that the

techniques in Section 6 inherently share processing for neighboring

immutable regions, i.e., avoid unnecessary repetition of operations.
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Figure 15: One-off versus Iterative Processing for φ > 0

7.4 Disregarding Reorderings withinR(q)
In previous experiments we considered that every change in the

result, be it an update in the composition or a reordering of tuples

in R(q), constitutes a valid perturbation. In this section, we eval-
uate the methods under the assumption that the user/application is

only concerned about the composition of the top-k result, and thus

reorderings in R(q) are ignored. In Figure 16 we present results
on the WSJ corpus in this case, setting φ = 0, k = 10 and varying
qlen. Recall that processing by all algorithms is the same as pre-

viously, the difference being that Phase 1 is skipped and Phase 2

commences straightaway.

The performance here is similar to Figure 10. The most notice-

able difference is that the effectiveness of Thres is reduced. The

reason is that initialization with the widest possible IRj makes the
thresholding condition tougher to meet, causing Thres to perform

additional iterations and examine more candidates. This in turn

translates to higher I/O and CPU costs. Although Thres remains

preferable to Scan in terms of I/O, its CPU time is longer, i.e., the

reduction in candidates evaluated is outweighed by its overheads

(mainly in list formation/probing and threshold checking). How-

ever, thresholding still enhances CPT, which achieves smaller I/O

and CPU costs compared to Prune.

7.5 Summary of Experiment Results
The main conclusions drawn from the evaluation are:

1. Candidate pruning is most effective when there is no significant

correlation among the query dimensions.

2. Candidate thresholding successfully reduces the number of eval-

uated candidates in all scenarios.

3. Candidate pruning and candidate thresholding complement each

other, rendering CPT the best performer.

4. Although we used disk-resident data, the CPU charts indicate

that our techniques achieve significant performance improve-

ments in a memory-based setting as well.
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Figure 16: WSJ Corpus, Disregarding Reorderings, φ = 0, k = 10, varying qlen

8. CONCLUSION
This paper is the first study on immutable regions for top-k qu-

eries. The immutable regions define ranges of adjustment to the

weights of the various decision variables, inside which the query re-

sult remains unchanged. We consider subspace top-k queries over

high-dimensional data indexed by inverted lists. We observe that

the costs incurred in computing immutable regions are determined

primarily by the examination of non-result tuples (in order to en-

sure that after weight adjustment their scores do not exceed that of

any result tuple). To reduce these costs, we introduce pruning and

thresholding techniques that allow immutable regions to be derived

correctly by processing just a small fraction of non-result tuples.

The two techniques are combined into a robust algorithm, CPT,

with superior performance for various data distributions. Experi-

ments on real datasets from different domains, as well as on syn-

thetic data, show that CPT incurs 2 to 500 times smaller I/O and

CPU costs compared to a baseline approach.
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