
Permuting Data on Random-Access Block Storage∗

Risi Thonangi
Duke University

rvt@cs.duke.edu

Jun Yang
Duke University

junyang@cs.duke.edu

ABSTRACT
Permutation is a fundamental operator for array data, with appli-
cations in, for example, changing matrix layouts and reorganizing
data cubes. We consider the problem of permuting large quanti-
ties of data stored on secondary storage that supports fast random
block accesses, such as solid state drives and distributed key-value
stores. Faster random accesses open up interesting new opportuni-
ties for permutation. While external merge sort has often been used
for permutation, it is an overkill that fails to exploit the property of
permutation fully and carries unnecessary overhead in storing and
comparing keys. We propose faster algorithms with lower mem-
ory requirements for a large, useful class of permutations. We also
tackle practical challenges that traditional permutation algorithms
have not dealt with, such as exploiting random block accesses more
aggressively, considering the cost asymmetry between reads and
writes, and handling arbitrary data dimension sizes (as opposed to
perfect powers often assumed by previous work). As a result, our
algorithms are faster and more broadly applicable.

1 Introduction
Permutation is a powerful primitive. In contrast to sorting, where
the output address of a record depends on the results of comparing
it with other records, here we are given a function that directly re-
turns the output address of a record given its input address, without
comparing its contents with other records. Below are some exam-
ples where we use permutation to reorganize data in useful ways.

Example 1. Suppose we have a large p × q dense matrix stored
in a file in the row-major layout. To transpose it (or convert it
into column-major), we use a permutation that maps input address
(i, j) to output address (j, i). In terms of linearized addresses
within the file (assuming indices start from 0), this permutation
moves the record at input address i×q+j to output address j×p+i.

We can also convert the matrix into a blocked layout, where the
matrix is stored as a grid of submatrices, say, in row-major or-
der, and entries within each submatrix are stored, say, also in row-
major order. This layout is popular because it provides good local-
ity of access for a wide range of matrix operations. For simplicity,
∗This work is supported by the NSF award IIS-0916027 and an Innovation
Research Program Award from HP Labs.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at the 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 9
Copyright 2013 VLDB Endowment 2150-8097/13/07... $ 10.00.

suppose the matrix is 24×22. We can write an input address in the
original row-major layout as a bit string x5x4x3x2x1x0, where
x5x4x3x2 represents the row index in binary and x1x0 represents
the column index in binary. A permutation mapping x5x4x3x2x1x0
to output address x5x1x4x3x2x0 converts the matrix into a blocked
layout with a 2× 2 grid of 23 × 2 submatrices.

Example 2. Suppose we have precomputed an aggregate for a
sales data warehouse similar to TPC-H [12], where the group-by
attributes include dimensions such as order-date, part-key, supplier-
state, customer-state, etc., and the aggregated measure attributes
include for example the total quantity of sales. The result may have
been computed and stored in (order-date, part-key, supplier-state,
customer-state, . . .) order. Now we want to “resort” it in a differ-
ent order (supplier-state, part-key, customer-state, order-date, . . .),
and use it to simultaneously compute other aggregates whose group-
by attributes are prefixes of the new sort order. This type of reor-
ganization is popular in computing multi-dimensional aggregates
from data cubes (e.g., [1, 15, 8]).

We can regard this type of reorganization as a permutation of
records in an address space formed by the dimensional attributes.
Data can in fact be compactly stored as an array, as is commonly
done in MOLAP [15, 14], with one-to-one mappings between inte-
ger array indices and dimensional attribute values. Records do not
need to store either array indices or dimensional attribute values,
as they are implied by the record addresses.

We study the problem of permuting lots of data (that cannot all fit
in available memory) on secondary, block-based storage with fast
random block accesses. Traditional hard disks are block-based, but
random accesses are significantly slower than sequential accesses.
On the other hand, modern flash-based storage devices can support
random block accesses (reads and non-overwrite writes) as fast as
sequential ones. Distributed key-value stores are another example
designed for fast random accesses, where we can store a block as
a key-value pair. Some of the hash-based key-value stores do not
even provide a range scan interface. These storage solutions are
quickly becoming popular alternatives to traditional hard drives for
a variety of different reasons, ranging from fast speed, low energy
consumption, to ease of maintenance (by being cloud-based).

For these storage solutions, it would seem natural to exploit their
good support of random accesses in implementing permutation.
But doing so effectively is still tricky because, as secondary stor-
age, these storage solutions are still inevitably block-based. A sim-
ple, brute-force strategy would be to go through the output address
space in order; for each output address, we would compute what
input address should map to it, and simply read the record at that
input address and write it out. However, this strategy generates lots
of small, random record reads, which are expensive on block-based
storage where costs are charged by blocks.

721

Another strategy is sorting. We would associate each record with
a key whose comparison order reflects the desired output order,
and simply run the external merge sort algorithm on these key-
carrying records. Sorting is strikingly effective. In fact, it has been
shown [13] that general permutation is as expensive as sorting in
the I/O model of computation (for large enough data). For many
types of permutations encountered in practice, however, permuta-
tion can be cheaper than sorting when conditions are right.

We show, in this paper, that we can indeed do much better than
sorting (and the brute-force strategy) for a large class of useful per-
mutations. The key intuition is that, by analyzing the permutation
function, we can figure out what subset of input records to read into
memory at one time—we call them action records. For each set
of action records, we permute them in memory and write them to
desired output addresses. Each set of action records is chosen care-
fully such that they are clustered in both input and output address
spaces; hence, reads and writes are on the granularity of blocks
instead of records. To illustrate, consider a simple example.

Example 3. Consider a permutation that changes the ordering of
records within each block and the ordering of blocks in the input
file, but does not move any record across block boundaries. Sup-
pose we have only one block of memory. We can choose records
in each input block to be a set of action records. We read in each
input block, permute its records, and write it out to the desired out-
put block address. This strategy is “one-pass” in that it reads and
writes each block only once (albeit in random order). Moreover, it
remains one-pass regardless of how large the input is.

This feat would be difficult to accomplish with external merge
sort, whose number of passes depends on the input size. With some
tweaking, external merge sort can be made one-pass for special
cases (e.g., almost-sorted input). However, its sequential access
pattern makes changing block ordering hard, and it lacks a general
framework for exploiting the properties of a given permutation.

Translating this intuition into a general, practical algorithm is not
as simple. Some permutations require multiple passes to implement
efficiently, with careful choices of action records for each pass. The
realities of “imperfect” data dimension sizes and the performance
characteristics of modern random-access block storage also make it
challenging to achieve optimal performance. Specifically, we make
the following technical contributions:
• We handle address-digit permutations (ADP), which can be de-

fined as functions permuting digits in a mixed-radix representa-
tion of the address space. ADP naturally captures all example
permutations discussed earlier, as well as others such as bit-
reversal (popular for Fast Fourier Transforms) and z-order (pop-
ular as a space-filling curve). We design efficient algorithms
for performing ADP on random-access block storage, charac-
terize the space of execution strategies, and develop techniques
to search for optimal strategies that minimize cost.
• Many types of modern random-access block storage exhibit in-

teresting asymmetries between read and write costs, and be-
tween non-overwrite and in-place write costs. For example,
writes on flash-based storage tend to be more expensive than
reads in terms of time, energy, as well as wear effect; in-place
writes (and hence partial block writes) are even more expen-
sive because they require first clearing a large “erasure block.”
Writes on distributed key-value stores, and especially in-place
writes, also tend to be more expensive than reads because of
replication and consistency. Our approach is fully cognizant of
these performance characteristics. Our algorithms use “nice”
I/O patterns that avoid partial block writes as much as possible.
We build into our algorithms a mechanism called filtered reads

to explore the trade-off between reads and writes—by perform-
ing more reads, we can reduce the number of passes and hence
writes. Our optimization techniques consider this trade-off in
finding execution strategies that minimize the overall cost.

• We show that our approach significantly outperforms external
merge sort on several fronts. For typical block sizes, we only
need a small amount of memory to enable efficient one-pass
permutation of arbitrarily large input. If multiple passes are re-
quired, the number of passes depends on the inherent difficulty
of the permutation, not on the input size; thus, the cost scales
linearly with input size. In contrast, sorting will take more than
one pass in most practical cases, and its cost is superlinear in
the input size. Furthermore, sorting requires key comparisons
and operates on a less efficient data representation, where each
record must carry a key for comparison. For Example 2, the key
includes all dimension attribute values. Our approach, however,
does not require such a key to be stored, as the address of a
record in the input already encodes where it would be in the out-
put. This saving can be substantial with many dimensions, and
it translates to proportionally smaller intermediate result sizes
and lower cost per pass for our approach.

• While there has been some work on permuting data on sec-
ondary storage, our approach is practically more general and
more efficient for random-access block storage. Previous ap-
proaches focus on hard drives, while ours achieves better perfor-
mance by exploiting random block accesses more aggressively
and considering the cost asymmetry between reads and writes.
Furthermore, previous approaches typically assume that input,
memory, and block sizes are all conveniently perfect powers
of 2, and consider permutations defined using address bit per-
mutations. For such approaches to work with an input address
space consisting of d dimensions of arbitrary sizes, padding is
required and may blow up the data size (and hence execution
cost) by a factor exponential in d. We choose to tackle general
mixed-radix address spaces. While doing so requires addressing
a number of nontrivial technical challenges, the resulting solu-
tions are more efficient and have broader practical applicability.

After covering the preliminaries in Section 2, we will begin by
considering a simple case in Section 3, where addresses can be rep-
resented using a single radix, and block and memory sizes are per-
fect powers of this radix. We will then consider the general, mixed-
radix case in Section 4. In Sections 3 and 4, starting with a very
simple algorithm, we will present a series of improvements and
generalizations, each building on the previous. Section 5 presents
our experimental evaluation. We discuss future extensions and re-
lated work in Section 6, before concluding in Section 7.

2 Preliminaries
We consider a class of permutations which we call address-digit
permutations (ADP). It is related to the so-called BPC permuta-
tions [4], which we further discuss in Section 6.

Consider the (0-based) address of a record in a file in the mixed-
radix representation with n digits. The n-dimensional space of
such addresses is specified by integer radices r = (rn−1, . . . , r1, r0),
where ri ≥ 2 for all i ∈ [0, n). The lowest-order (least signif-
icant) digit is at position 0. We use 〈xn−1, . . . , x1, x0〉r, where
0 ≤ xi < ri, to denote the (linearized) record address

n−1∑
i=0

(
xi
∏
j<i

rj

)
(1)

within the file. We omit subscript r when the context is clear.
An ADP is a permutation that can be defined as a permutation

722

of digits in the mixed-radix representation of an address. More
precisely, it is defined by a permutation π of the digit positions
0, 1, . . . , n − 1, which maps a digit at position i to position π(i).
This ADP moves the record at input address 〈xn−1, . . . , x1, x0〉r
to output address
π (〈xn−1, . . . , x1, x0〉r) = 〈xπ–1(n−1), . . . , xπ–1(1), xπ–1(0)〉π(r),
where π(r) = (rπ–1(n−1), . . . , rπ–1(0)) denotes the resulting radices
for output record addresses.1 As an example, consider π1 in Fig-
ure 1 of a 6-digit input address space. It maps position 0 to 3,
1 to 1, etc. Effectively, π1 moves a record from input address
〈x5, x4, x3, x2, x1, x0〉 to output address 〈x4, x3, x0, x2, x1, x5〉.
Figure 1 also shows how the output is further permuted by another
ADP π2. Although not shown here, the digits in general can have
different radices, which permutations carry along.

Records are stored compactly in a file consisting of a sequence
of blocks. We assume that all records have a fixed size, and no
records span multiple blocks. Let B denote the block size, as mea-
sured by the number of records. We also assume that the data is
dense in the input address space; i.e., there is a record at every
address 〈xn−1, . . . , x0〉, where xi ∈ [0, ri) for each i. The total
number of records is therefore N =

∏n−1
i=0 ri. For example, Fig-

ure 2 illustrates an input file with a 6-bit address space, as well as
the output file obtained by applying π1 in Figure 1 (ignore for now
the illustration of algorithmic steps between them).

Note that there is no need to store record addresses explicitly for
permutation because they are implied by record positions within
the file. For instance, as discussed, the data cube in Example 2
need not store any dimension attribute values for its records.

We briefly discuss how to handle variable-size records and non-
dense input data in Section 6.

Additional Notation Let S ⊆ [0, n) denote a set of digit posi-
tions in (the mixed-radix representation of) an address. A setting
θS of S assigns each position i ∈ S a value θS(i) ∈ [0, ri). A
setting θS is complete if S = [0, n). Note that a specific record
address is a complete setting. A setting θS is partial if S ([0, n).
When writing a partial setting θS , we use ⊥ for digits whose posi-
tions are not in S. We write xk for a sequence of k digits with the
same value x. For example, 〈1, 1, 0, 1,⊥2〉 denotes a partial setting
that sets the four highest-order digits (positions 5 through 2) to 1,
1, 0, and 1, while leaving the two lowest-order digits unset.

We say that two settings θS1 and θS2 are compatible if for every
position i ∈ S1 ∩ S2, θS1(i) = θS2(i).

Given a setting θS , let ΩS′(θS), where S′ ⊆ S, denote the set-
ting for S′ that is compatible with θS . Think of this operator as
“project.” For example, Ω[2,4)

(
〈1, 1, 0, 1,⊥2〉

)
= 〈⊥2, 0, 1,⊥2〉.

Let 0S′(θS), where S ⊆ S′, denote the set of settings for S′ that
are compatible with θS . Think of this operator as “enumerate.” As
a special case, 0[0,n)(θS) denotes the set of all record addresses
(i.e., complete settings) compatible with θS . As another special
case, 0S(〈⊥n〉) denotes the set of all possible settings for S; we
use 0S as a shorthand for it. For example, if all radices are 2, 0[0,6)

returns all bit strings of length 6. Finally, we let 0∅ = {〈⊥n〉}.
Given an ADP π and a set S of digit positions in the input address

space, we use π(S) to denote the set {π(i) | i ∈ S}, the resulting
positions of the digits in S in the output address space. Given a
setting θS , we use π(θS) to denote the result of applying π to θS ,
which is a setting of π(S) in the output record address that assigns
each digit position j ∈ π(S) the value θS(π–1(j)).

1We overload π so that in addition to as a function acting on digit positions,
we can also interpret it as a function on addresses or a function on radices.

Algorithm 1: ADPbasic
pass (R, π): basic single-pass, single-radix ADP.

Input: R: a file of rn records; π: an ADP where δ(π) ≤ m− b.
Output: a file containing permuted records.
A← [0, b) ∪ F (π);1
A← [0, n) \ A;2
πmem ← g2 ◦ π ◦ g1, where:3
g1 ← i 7→ (i+ 1)-th smallest element ofA, for 0 ≤ i < |A|, and
g2 ← i 7→ number of elements in π(A) smaller than i;

foreach θ
A
∈ 0

A
do // each possible setting ofA4

clear memory;5
foreach θ[b,n) ∈ 0[b,n)

(
θ
A

)
in asc. order do6

read input block with id θ[b,n) and append it to memory;7

permute records in memory by πmem;8
foreach ϑ[b,n) ∈ 0[b,n)

(
π(θ

A
)
)

in asc. order do9
write the next memory block as output block with id ϑ[b,n);10

3 Single-Radix ADP with Perfect-Power Block
and Memory Sizes

Let us start simple. Assume that all radices in an n-digit input
address space are the same (r), so the total number of input records
is N = rn. Assume further that the block size is B = rb, a perfect
power of the radix; and that the size of available memory (also
measured in number of records) is M = rm, where b ≤ m ≤ n.

We need some new terminology to help with exposition. We
call the b lowest-order digits (at positions b− 1, . . . , 1, 0) in-digits
(for in-block digits); they specify the address of a record within
the block storing it. We call the remaining higher-order digits (at
positions n−1, n−2, . . . , b) out-digits (to contrast with in-digits).
A setting of all out-digits identifies a block within the file; we call
this setting the block id. For example, in Figure 2, r = 2 and n = 6,
so addresses are 6-bit strings; b = 3, so a block can be identified by
the n − b = 3 highest-order bits (out-digits) while the remaining
b = 3 bits (in-digits) vary among records within the block; m = 4,
so the memory holds 2m = 16 records or 2m−b = 2 blocks.

Given an ADP π, we are especially interested in those out-digits
in the input address space that are turned by π into in-digits in the
output address space. We call these the entering digits of π. Let
F (π) = {i ∈ [b, n) | π(i) < b} denote their digit positions in
the input address space (“F ” is for “entering From positions”). Let
δ(π) = |F (π)| denote the number of entering digits. For example,
for π1 in Figure 1, there is only one entering digit 5 (position within
the input address space). Thus, δ(π1) = 1. On the other hand, if
we consider the composition of two ADPs in Figure 1, π2 ◦π1 (i.e.,
π1 followed by π2), then F (π2◦π1) = {4, 5}, and δ(π2◦π1) = 2.

As we shall see, given an ADP π, δ(π) gives a measure of how
“difficult” π is. Example 3 has discussed the case when δ(π) = 0;
i.e., π keeps all out-digits out and in-digits in (though π may change
the ordering among out-digits and the ordering among in-digits). In
this case, we can do π in one pass with only one block of memory.

3.1 Basic Single-Radix ADP
Basic One-Pass Single-Radix ADP With more than one block
of memory, we can handle a more difficult ADP π with δ(π) > 0
in one pass. More precisely, we show how, using memory of size
rm (or, equivalently, rm−b blocks), we can perform in one pass an
ADP π where the number of entering digits δ(π) ≤ m− b.

On a high level, ADPbasic
pass (shown as Algorithm 1) works in iter-

ations. Each iteration processes a set of “action records”: it first
reads rδ(π) blocks containing these action records into memory
(they fit because δ(π) ≤ m−b), permutes these records in memory,
and writes them out as rδ(π) output blocks.

More specifically, ADPbasic
pass selects and processes action records

for each iteration as follows. It partitions the input digit positions

723

0

1

2

3

4

5

b = 3

x0

x1

x2

x3

x4

x5

π1
A = {0, 1, 2, 5}

x5

x1

x2

x0

π 1
(0
)
=
3

x3

x4

π2
A = {0, 1, 2, 5}

x5
π2(0)=0

x4

x1

x0

x2

x3

Figure 1: Illustration of ADPs π1, π2, and
their composition π2 ◦ π1, in a 6-digit address
space. Action digits chosen by ADPbasic

pass for π1
and π2 (assuming b = 3) are shown—action
digit positions in the input address space are
marked with strips to their right; in the output
address space they are marked to their left.

input

output

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

*00***

πmem

00****

*01***

πmem

01****

*10***

πmem

10****

*11***

πmem

11****

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

Figure 2: ADPbasic
pass performing π1 in Figure 1; r = 2, n = 6, b = 3, andm = 4. Records are color-coded

by their output ordering. Block boundaries are shown with thick lines. Action digits in input and output
addresses are shown in red. There are a total of 4 iterations. Contents of the memory during these iterations
are shown with the two middle rows; dashed lines separate the iterations.

into two groups:
• Action digits, A, which include in-block digit positions [0, b)

and entering digit positions F (π). For example, Figure 1 shows
the actions digits for π1 and π2.
• Non-action digits, A, which include all remaining digits.

Each iteration of ADPbasic
pass considers a particular setting θA of A

(Line 4). Figure 2, which shows how ADPbasic
pass works for π1 in Fig-

ure 1, serves as an example accompanying the description below:
• The action records are those whose input addresses are compat-

ible with θA. There are exactly r|A| of them, and they occupy
exactly r|A|−b = rδ(π) full input blocks. ADPbasic

pass reads all
these blocks into memory (Lines 6–7).
For example, in Figure 2, where A = {3, 4}, the first iteration
reads two blocks (memory size) of action records whose input
addresses are compatible with 〈⊥, 0, 0,⊥3〉.
• Initially, the ordering of action records in memory is consistent

with their ordering in the input file. ADPbasic
pass permutes them in

memory, in place, such that their ordering becomes consistent
with the desired output ordering. This in-memory permutation,
πmem, is itself an ADP over the memory address space. It is
invariant across iterations, and is precomputed by Line 3.
Figure 2 illustrates how this πmem is applied to action records in
memory consistently across iterations.
• Now, we go through memory blocks in order, and write them to

appropriate locations in the output file (Lines 9–10). The output
blocks have ids that compatible with the setting for A (or more
precisely, π(θA))) in the current iteration of the outer loop.
For example, in the first iteration shown in Figure 2, θA =
〈⊥, 0, 0,⊥3〉, so π(θA)) = 〈0, 0,⊥,⊥3〉, which gives us the
two output blocks whose ids’ two highest-order bits are 0s.

There are a total of r|A| iterations. For example, in Figure 2, it
takes four iterations to apply π1.

Overall, ADPbasic
pass reads the entire input once in a specific order,

and writes the output in a specific order. Thus, the I/O cost of
ADPbasic

pass , if we simply count the total number of block accesses,
is exactly 2N/B. Intuitively, ADPbasic

pass permutes digits within A
(which includes in-digits in either input or output address space)
in memory in each of its iterations; it permutes out-digits simply
using random block I/Os.
Basic Multi-Pass Single-Radix ADP ADPbasic

pass allows up tom−
b out-digits in the input address to move to in-digit positions in the
output address. Given an ADP π, if δ(π) > m − b, we cannot
complete π using a single invocation of ADPbasic

pass . In this case, we
adopt a simple multi-pass strategy: we use d δ(π)

m−be passes, each of
which calls ADPbasic

pass to move up to m − b out-digits to in-digit
positions. As a shorthand, we say that a pass admits an out-digit in

the input address if the pass moves this digit to an in-digit position
in the output address.

For example, consider the ADP π = π2◦π1 in Figure 1. Suppose
m = 4 and b = 3. Since m − b < δ(π) = 2 (both 4 and 5 are
entering input digit positions), we cannot perform π in one pass
of ADPbasic

pass . Instead, we would use two passes, as illustrated by
Figure 1: the first pass performs π1 (to admit x5), and the second
pass perform π2 (to admit x4).
Discussion The basic approach outlined in this subsection al-
ready offers compelling advantages over sorting. The cost of multi-
pass ADP, measured by the total number of block I/Os, is d δ(π)

m−be ·
2N
B

.
The number of passes, d δ(π)

m−be, is independent of the input size.
Note that δ(π) ≤ b because the number of entering digits cannot
exceed the number of in-digits. Therefore, as long as m ≥ 2b, we
are guaranteed a one-pass solution. For example, assuming a typi-
cal block size of 8kB and a fairly small record size of 4B, we need
only (8kB

4B)2 · 4B = 16MB of memory to guarantee a one-pass so-
lution for arbitrarily large input and arbitrary ADP. Bigger records
would lower the memory requirement further. In contrast, one-pass
sorting is generally impossible once the input exceeds memory size,
and the cost of multi-pass sorting is superlinear in the input size.

These advantages are possible because of ADPbasic
pass ’s aggressive

use of random block I/Os. To make our approach more practical,
however, we still need to consider additional performance charac-
teristics of modern random-access block storage, as well as arbi-
trary radices that do not “fit” memory and block sizes; both issues
can significantly impact efficiency and applicability.

3.2 Improved Single-Radix ADP
We consider characteristics of modern random-access block stor-
age to improve the basic approach of Section 3.1 in several ways.
First, we can make I/Os “nicer”—instead of accessing random indi-
vidual blocks, we strive to make larger requests spanning multiple
consecutive blocks, and turn writes into appends. While they do
not change the number of block I/Os in the case we consider in
this section (single-radix ADP with perfect-power block and mem-
ory sizes), nicer I/Os can be more efficient if per-request overhead
is high. Furthermore, they will become crucial for bounding the
number of block I/Os in the general case we consider in Section 4,
where I/O requests are no longer aligned with block boundaries.

The second idea, already mentioned in Section 1, is the use of
“filtered reads” to account for the cost asymmetry between reads
and writes. Intuitively, at the expense of reading some unnecessary
data, filtered reads let us admit more digits in each pass, thereby
decreasing the required number of passes (and hence writes).

In this subsection we show how to realize these improvements.
We first present, in Section 3.2.1, an improved one-pass algorithm,
which follows a given “plan” specifying what and how to permute.

724

The plan choice affects performance (e.g., admitting more digits
beyond m− b will incur higher read costs). Thus, in Section 3.2.2,
we discuss how to choose the optimal strategy for performing a
given ADP, which may involve multiple passes and choosing a plan
for each pass to minimize overall cost.

3.2.1 Improved One-Pass Single-Radix ADP
ADPsr

pass (shown as Algorithm 2) is the improved version of ADPbasic
pass .

We describe the improvements in terms of the ideas outlined at the
beginning of this subsection; the corresponding modifications to
ADPbasic

pass are color-coded in Algorithm 2.
Before starting, we note a high-level change: ADPsr

pass takes two
extra input arguments (A, β), which define the plan to be followed
in execution. A is the set of action digits, while β specifies the size
of input segments, which we will explain shortly. We will discuss
how to choose (A, β) intelligently in Section 3.2.2.

Making Reads Bigger ADPbasic
pass reads individual blocks. With

careful choices of action records, however, we may be able to make
fewer, bigger read requests in the unit of input segments. In general,
an input segment contains all records that share a common input
address prefix (i.e., higher-order digit values) and, therefore, lie
consecutively in the input file. Plan parameter β ≥ b specifies the
size of each input segment to be rβ . The rβ records in a segment lie
in rβ−b consecutive input blocks. Line 9 reads each input segment.

Making Writes Bigger We can do the same for writes. Instead of
writing individual blocks, we can write one output flush at a time.
Analogous to an input segment, an output flush contains all output
records that share the same output address prefix and, therefore, lie
consecutively in the output file. Given an ADP π and the set of
action digits A, we determine the output flush size as follows:

φ(π,A) = max{j | [0, j) ⊆ π(A)}. (2)
In other words, we look for the longest output address suffix (i.e.,
lowest-order digits) consisting entirely of action digits. Let ϕ =
φ(π,A) denote the thus computed flush (digit) position (Line 1).
The size of each output flush is rϕ, and all rϕ in this flush lie in
rϕ−b consecutive output blocks. Line 14 writes each output flush.

For example, consider π1 in Figure 1. Examining the destination
positions of action digits in the output of π1, we see that the longest
suffix containing only action digits has length 4, so ϕ = 4. Thus,
we can write 2ϕ−b = 2 blocks (which happen to be all of memory)
as a single output flush. Figure 2 clearly illustrates this possibility.

Why do we compute ϕ by Eq. (2)? Given π andA, we want out-
put flushes to be as large as possible. Recall that all action records
in memory at the same time share the same setting for non-action
digits, but a flush contains records whose output addresses have
different settings for digit positions in [0, ϕ). Therefore, the range
[0, ϕ) cannot contain any non-action digits; Eq. (2) computes the
largest possible ϕ under this constraint.

Turning Writes into Appends In addition to making writes big-
ger, we can in fact ensure that the output file can be written as a
number of partitions, such that we only need to append flushes to
these partitions. To reduce the number of partitions that need to
be kept open simultaneously for appends, we produce partitions in
partition groups. With each memory full of action records, we ap-
pend a flush to each of the partitions in the same partition group.
After completing a group of partitions in this round-robin fashion,
we move on to the next group. Bigger partitions and fewer parti-
tions per group are nicer.

Like a flush, a partition consists of all records sharing a common
output address prefix. Given π and A, we determine the output
partition size as follows:

ρ(π,A) = max{j ≤ n | [φ(π,A), j) ∩ π(A) = ∅}. (3)

Intuitively, in the output address space, starting from the flush po-
sition ϕ and heading toward higher-order positions, we skip over
any non-action digits and stop at the first action digit we encounter
(or n, if no action digit exists in [ϕ, n)). Let % = ρ(π,A) denote
the thus computed partition (digit) position (Line 1). The size of
each partition is r%, and there are a total of rn−% partitions. We
will justify Eq. (3) shortly.

For example, consider π1 in Figure 1. Examining the destination
positions of action digits in the output of π1, we see that no action
digit exists in [ϕ, n) = [4, 6), so % = 6, meaning that the entire
output file is one partition. Next, consider π2. In the output address
space of π2, we see ϕ = 3. We skip position 3 as it is not an action
digit, and stop at position 4, which is. Therefore, % = 4, meaning
that there are 2n−% = 4 partitions of size 2% = 16 each.

Note that we can consider a setting for the output digit positions
[%, n) as a partition number, which is a 0-based sequence number
that identifies a partition within the output file. Each partition con-
tains r%−ϕ flushes. We can consider a setting for the output digit
positions [ϕ, %) as a flush number, which a 0-based sequence num-
ber that identifies a flush within a partition.

To implement group-at-a-time, append-only flushing, we need
to pick an appropriate order for bringing in sets of action records.
The outermost loop of ADPbasic

pass simply steps through all possible
settings for A, leaving the ordering unspecified. In ADPsr

pass, we
break this loop down into a nest of two. Note that we can divide
non-action digits (more precisely, their positions in the output ad-
dress space) into two sets: non-action partition number digits, i.e.,
π(A) ∩ [%, n); and the remaining non-action digits, which are ex-
actly the flush number digits [ϕ, %) (since no digit inA enters [0, ϕ)
by the definition of ϕ).

• The outer loop of ADPsr
pass (Line 4) iterates over the partition

groups by enumerating every possible setting ϑπ(A)∩[%,n) for
non-action partition number digits. Each group thus consists of
partitions whose numbers are compatible with this setting. This
definition is natural, because in the outer loops, we do not have
settings for action digits.
• Then, for each partition group, the inner loop (Line 5) enumer-

ates all settings for A compatible with ϑπ(A)∩[%,n) in order,
which basically involves stepping through flush numbers and
extending ϑπ(A)∩[%,n) with them to form settings for A.

In every iteration of the inner loop on Line 5, the output loop
(Line 13) writes r|π(A)\[0,ϕ)| flushes. Each flush is effectively ap-
pended to its respective partition in the current partition group be-
ing processed. It is straightforward to confirm that the number of
partitions in each group is also r|π(A)\[0,ϕ)|.

Having seen how the algorithm operates, we can now justify our
calculation of partition size in Eq. (3). Consider the output ad-
dress space. Flush number digits, i.e., [ϕ, %), should not come
from action digits, because we need to step through flush num-
bers on Line 5 but cannot control settings for actions digits. Under
this constraint, Eq. (3) computes the largest possible %, in order to
maximize the partition size.
Permuting More Using Filtered Reads Recall that ADPbasic

pass can
admit only m− b digits, so an ADP π with δ(π) > m− b cannot
be performed in one pass. We now show how to make ADPsr

pass per-
form π in one pass. In this pass, ADPsr

pass writes the output exactly
once, as before. However, ADPsr

pass can use “filtered reads”—when
it reads from an input segment, it may keep only a filtered subset
of the records in memory as action records. The net effect is more
reads, but greater flexibility that enables us to permute more.

A plan (A, β) with filtered reads is one where the range [0, β)
of input address digit positions contain some non-action digits; i.e.,

725

Algorithm 2: ADPsr
pass(R, π,A, β): improved single-pass, single-

radix ADP.
Input: R: a file of rn records; π: an ADP (where δ(π) > m− b is possible);

A ⊆ [0, n): input digit positions identifying the action digits to be used
by the algorithm; β ∈ (0, n): an input digit position specifying the
input segment size to be used by the algorithm.

Output: a file containing permuted records.
ϕ← φ(π,A); %← ρ(π,A); // using Eq. (2) and (3)1
A← [0, n) \ A;2
πmem ← g2 ◦ π ◦ g1, where:3
g1 ← i 7→ (i+ 1)-th smallest element ofA, for 0 ≤ i < |A|, and
g2 ← i 7→ number of elements in π(A) smaller than i;

foreach ϑ
π(A)∩[%,n)

∈ 0
π(A)∩[%,n)

do // each partition group4
foreach ϑ

π(A)
∈ 0

π(A)

(
ϑ
π(A)∩[%,n)

)
in asc. order do // each flush #5

θ
A
← π–1(ϑ

π(A)
);6

clear memory;7

foreach θ[β,n) ∈ 0[β,n)

(
Ω
A∩[β,n)

(
θ
A

))
in asc. order do8

E ← read the segment of input records with addresses9
compatible with θ[β,n);

foreach e ∈ E with input address compatible with θ
A

, in order, do10
append e to memory;11

permute records in memory by πmem;12

foreach ϑ[ϕ,n) ∈ 0[ϕ,n)

(
ϑ
π(A)

)
in asc. order do13

write, as one flush, the next rϕ records in memory to output addresses14
compatible with ϑ[ϕ,n);

[0, β) ∩ A 6= ∅. Let A+ = [0, β) \ A ⊆ A denote the set of
non-action digits in [0, β). In ADPbasic

pass we had [0, b) ⊆ A, which
can be considered as a special case where A+ = ∅.

We just need some small changes to enable filtered reads. For
each possible setting θA of A, our goal is still to read in all records
with compatible addresses as action records. In the loop starting on
Line 8, we still read input by segments. Note that we need to project
θA by ΩA∩[β,n)(·) (Line 8), because if A+ 6= ∅, A 6⊆ [β, n).

More importantly, whenever we read an input segment, we get
records with all possible settings for [0, β). But we only want a
subset as action records—namely, those with addresses compati-
ble with θA, or, more precisely, addresses with the same setting as
θA for digits in A+. Therefore, we only keep one in every r|A

+|

records; others are discarded. We thus call r|A
+| the waste factor.

This filtering step is reflected by the loop on Line 10 (which we
actually implement together with Line 9 in a streaming fashion).

Note that for each θA, ADPsr
pass executes Line 9 r|A|−β+|A

+|

times, because there are exactly |A+| digits in [0, β) that are not in
A. Thus, ADPsr

pass performs a total of r|A|r|A|−β+|A
+| = rn−β+|A

+|

segment reads. The total number of input segments is rn−β , mean-
ing that input is read r|A

+| times—consistent with the waste factor.
As a concrete example, Figure 3 shows how, using filtered reads,

ADPsr
pass is able to handle π2 ◦π1 from Figure 1 in one pass, which

was not possible for ADPbasic
pass . Here, A+ = {2}, so the waste

factor is 2. Therefore, we end up reading each input block twice
(and throwing away half of the data). However, doing so nets us a
one-pass strategy that reads all records twice and writes them once,
which is strictly better than a two-pass strategy that would read
them twice and write them twice.
Requirement and Cost Analysis ADPsr

pass assumes that its given
plan (A, β) meets the following requirements: |A| ≤ m (i.e., ac-
tion records fit in memory); β ≥ b (i.e., input segments are no
smaller than blocks); φ(π,A) ≥ b (i.e., output flushes are no
smaller than blocks). In Section 3.2.2, we ensure that we only gen-
erate plans meeting these requirements.

Because we assume both block and memory sizes to be perfect
powers of the single radix, all input segments and output flushes
align with block boundaries. Thus, we use a simple but effective

Algorithm 3: Optimizesrpass(π): find the best one-pass plan for a
single-radix ADP, which may involve filtered reads.

Input: π: an ADP.
Output: a plan (A, β) with the lowest cost.
A← [0, b) ∪ F (π); β ← b;1
while |A| < m do // make bigger output flushes with all available memory2

A← A ∪ {π–1(min
(
[0, n) \ π(A)

))
};3

while |A| > m do // ensure action records fit in memory4
A← A \ {π–1(ρ(π,A) if ρ(π,A) < n else max(π(A))

)
};5

β ← max{i ∈ [b, n) | [b, i) ⊆ A}; // make bigger input segments6
return (A, β);7

cost model counting block I/Os. The number of blocks written by
ADPsr

pass is N
B

. The number of blocks read is N
B
r|A

+|, where r|A
+|

is the waste factor. To account for the asymmetry between read
and write costs, we model the total cost as a linear combination
of numbers of blocks read and written, where parameter α ≥ 0
represents the cost of reads relative to writes. Recalling that A+ =
[0, β) \A, the cost of ADPsr

pass given plan (A, β) is

cost(A, β) =
N

B

(
α2|[0,β)\A| + 1

)
. (4)

3.2.2 Improved Single-Radix ADP with Optimization
Given an ADP π as well as the amount of memory M = rm,
we need to a find a strategy for performing π with the lowest cost.
Although we can always compete π in one pass using ADPsr

pass with
filtered reads, the best strategy may involve multiple passes instead.
Before showing how to find such overall best strategies, however,
we discuss how to choose the best single-pass plan.
Choosing Plan for One-Pass Single-Radix ADP Given π, we
choose the best one-pass plan (A, β) using Optimizesrpass (Algo-
rithm 3). It starts with a “baseline” plan with A = [0, b) ∪ F (π)
and β = b, the same choice as ADPbasic

pass . There are two cases.
The first case is when δ(π) ≤ m− b. Here, the baseline plan al-

ready meets the memory and segment/flush size requirements with-
out using filtered reads. It is already optimal for the cost model in
Eq. (4). However, if δ(π) < m − b, there is memory to accom-
modate more digits in A. We choose to add those digits that im-
mediately follow [0, φ(π,A)) in the output address space (Line 3).
Doing so makes flushes bigger (even though this improvement is
not modeled by Eq. (4)).

The second case is when δ(π) > m−b. The baseline choice ofA
exceeds the memory requirement, so we must remove δ(π)−(m−
b) digits from A. But which ones? We cannot remove any digit in
F (π) fromA—that would introduce a non-action digit in positions
[0, b) in the output address space, making the output flush smaller
than a block. Therefore, we can only remove from A input address
digit positions in [0, b). The removed digits becomeA+, so |A+| =
δ(π) − m + b. Which digits we remove from A does not affect
the cost computed by Eq. (4). However, we prefer removing the
action digit at the current partition position ρ(π,A) in the output
address space (Line 5), which makes partitions bigger by increasing
ρ(π,A). If |A| is still too big when the entire input is one partition
(i.e., ρ(π,A) = n), we remove the higher-order action digits in the
output address space, keeping ρ(π,A) = n.

Finally, we increase β as much as possible without affecting A
or A+ (Line 6). In other words, we make input segments bigger
without affecting the cost in Eq. (4).

The analysis above leads us directly to the following lemma:

Lemma 1. Give an ADP and the available memory size, Optimizesrpass
finds an optimal one-pass plan for ADPsr

pass (possibly with filtered
reads) under the cost model of Eq. (4). For an ADP π with δ(π) =
δ, the cost of this optimal plan is

cost(δ) = (n− b)
(
α2min{0,δ−(m−b)} + 1

)
.

726

0

1

2

3

4

5

b = 3

x0

x1

x2

x3

x4

x5

π
A = {0, 1, 4, 5}
A+ = {2}

x5

x4

x1

x0
π 1

(0
)
=
3

x2

x3

input

output

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

00

πmem

00****

01

πmem

01****

10

πmem

10****

11

πmem

11****

0
0
0
0
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
0
1
1

0
0
0
1
0
0

0
0
0
1
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
0
1

0
0
1
0
1
0

0
0
1
0
1
1

0
0
1
1
0
0

0
0
1
1
0
1

0
0
1
1
1
0

0
0
1
1
1
1

0
1
0
0
0
0

0
1
0
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
1
0
1
0
0

0
1
0
1
0
1

0
1
0
1
1
0

0
1
0
1
1
1

0
1
1
0
0
0

0
1
1
0
0
1

0
1
1
0
1
0

0
1
1
0
1
1

0
1
1
1
0
0

0
1
1
1
0
1

0
1
1
1
1
0

0
1
1
1
1
1

1
0
0
0
0
0

1
0
0
0
0
1

1
0
0
0
1
0

1
0
0
0
1
1

1
0
0
1
0
0

1
0
0
1
0
1

1
0
0
1
1
0

1
0
0
1
1
1

1
0
1
0
0
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0
1
0
1
1

1
0
1
1
0
0

1
0
1
1
0
1

1
0
1
1
1
0

1
0
1
1
1
1

1
1
0
0
0
0

1
1
0
0
0
1

1
1
0
0
1
0

1
1
0
0
1
1

1
1
0
1
0
0

1
1
0
1
0
1

1
1
0
1
1
0

1
1
0
1
1
1

1
1
1
0
0
0

1
1
1
0
0
1

1
1
1
0
1
0

1
1
1
0
1
1

1
1
1
1
0
0

1
1
1
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

Figure 3: ADPsr
pass performing π = π2 ◦ π1 from Figure 1 in one pass using filtered reads; r = 2, n = 6, b = 3, and m = 4 (same as Figure 2). There are

a total of 4 iterations separated by dashed lines; the last two are clipped. The second row shows the input blocks read by each iteration; keep in mind that they
are simply streamed in and filtered to produce the memory contents shown on the third row.

Overall Optimization of Single-Radix ADP Given π, ADPsr

(Algorithm 4) finds the optimal (possibly multi-pass) strategy and
executes it by invoking ADPsr

pass with an appropriate plan for each
pass. To optimize, we first establish an upper bound on the opti-
mal number of passes to search through. Then, for each particular
number of passes, we consider only the strategy that balances the
numbers of digits admitted in each pass as much as possible.

For example, suppose b = 16,m = 19, and δ(π) = 14. Without
filtered reads, each pass can admit m − b = 3 digits. We will
need at most 5 passes. Among the four-pass strategies, ADPsr will
consider the one that admits (4, 4, 3, 3) digits in each of the four
passes. Less balanced strategies, e.g., (3, 3, 3, 5) and (4, 4, 4, 2),
will not be considered.

The following theorem establishes that this optimization method
ensures the optimality of ADPsr under reasonable assumptions about
the cost function. Indeed, the function cost(δ) in Lemma 1 meets
these assumptions. (Because of space constraints, we leave all
proofs in the technical report version of this paper [11].)
Theorem 1. Suppose cost(δ) is the cost to perform an ADP π
with δ(π) = δ in one pass. If cost(δ) is convex in δ and flat for
δ ∈ [1,m− b], then ADPsr finds the optimal number of passes and
the optimal number of digits to admit in each of the passes.

Strategies considered by ADPsr are strict improvement and su-
perset of the those considered by our basic approach in Section 3.1.
Therefore, we inherit all advantages of the basic approach over sort-
ing discussed at the end of Section 3.1: having a number of passes
independent of input size and a running time linear in it, as well
as being able to do one-pass permutation with very small memory
requirement. ADPsr also goes further: it has nicer I/O patterns,
and it can exploit the cost asymmetry between reads and writes
with filtered reads. Interestingly, if this asymmetry is so large (i.e.,
α → 0) that reads are practically free, ADPsr will choose to com-
plete any ADP in one pass, using essentially an improved version
of the brute-force strategy discussed in Section 1.

4 General ADP
We now consider the general case where the input address space has
mixed radices r = (rn−1, . . . , r0), and block size B and memory
size M may not be perfect powers of a single radix. Recall from
Section 2 that we assume data are dense in the original address
space, so the number of input records is N =

∏n−1
i=0 ri. How-

ever, as we will soon see, it is often necessary to “decompose” the
original address space in order to perform a permutation, and data
may become no longer dense in an intermediate address space—
i.e., some seemingly valid addresses may not have records associ-
ated with them. One of the challenges we tackle in this section is

Algorithm 4: ADPsr(R, π): improved multi-pass, single-radix ADP.
Input: R: a file of rn records; π: an ADP.
Output: a file containing permuted records.
∆opt ← ⊥; Copt ←∞;1
for q = d δ(π)

m−b e to 1 step−1 do // search for the optimal number of passes2
// compute the list ∆ of the number of out-digits to move
// to in-digit positions in each of the q passes:
∆← ∅; C ← 0; q1 ← δ(π) mod q;3
for p = 1 to q1 do4

δp ← (δ(π)− q1)/q + 1; ∆.append(δp); C ← C + cost(δp);5

for p = q1 + 1 to q do6
δp ← (δ(π)− q1)/q; ∆.append(δp); C ← C + cost(δp);7

if C ≤ Copt then8
∆opt ← ∆; Copt ← C;9

for p = 1 to |∆opt| do // in each pass, move δp out-digits to in-digit positions10
δp ← the p-th element of ∆opt;11
Denter ← π–1(the δp smallest elements of π(F (π)

)
;12

Dexit ← π–1(the δp smallest elements of T (π)
)

;13
L← [0, b) ∪Denter \Dexit ordered by i 7→ π(i);14
L.append([b, n) \Dexit ∪Denter ordered by i 7→ π(i));15
πp ← i 7→ (0-based) position of i in L, for 0 ≤ i < n;16
(A, β)← Optimizesrpass(πp);17
R← ADPsr

pass(R, πp, A, β);18
π ← π–1

p ◦ π; // compute the “remaining” permutation19

returnR;20

how to keep records compactly stored in files without physically
padding these conceptual holes in the address space.

We first present, in Section 4.1, a general one-pass algorithm,
which builds on ADPsr

pass. We then motivate the need for address
space decomposition and present our solution in Section 4.2. Fi-
nally, in Section 4.3, we discuss how to optimize a general ADP,
which may require a multi-pass strategy.

4.1 One-Pass ADP
ADPpass is our general one-pass ADP algorithm. It uses the same
ideas and follows the same flow as ADPsr

pass (Section 3.2.1). We
process one memory full of action records at a time: they are read
in from input segments, filtered if needed, permuted in memory,
and then written out as output flushes. We go through the sets of
action records in a way such that output is produced in groups of
partitions: for each group, we append flushes to the partitions in
this group in a round-robin fashion. For additional explanation and
examples, see Section 3.2.1. Because of space constraints, we leave
the pseudo code of ADPpass in [11]. Here, we focus on the differ-
ences from ADPsr

pass.
First, ADPpass takes two additional input arguments, T and $,

beyond π, A, and β. (T, $) specifies the input address space,
which in general can be a decomposed one. (T, $ ◦ π–1) speci-

727

fies the output address space after applying ADP π. We will ex-
plain these notations further in Section 4.2; for now, it suffices to
remember what they present respectively.

To deal with the generality of mixed-radix, decomposed address
spaces, we also need a few helper functions (see [11] for a com-
plete list). The most important one, maxSizeT,$(S), returns the
maximum number of records whose input addresses are compati-
ble with a setting of digits not in S. Computing these functions is
simple assuming dense data—e.g., maxSizeT,$(S) would be the
product of the radices of the digits in S. In the general case, how-
ever, calculation becomes non-trivial; we will show how to do it in
Section 4.2, when we discuss decomposed address spaces in depth.

The key difference between ADPpass and the less general ADPsr
pass

is that input segments and output flushes may no longer align with
block boundaries. Since the underlying storage is block-based and
partial block writes are especially expensive, we take some addi-
tional steps to ensure practical efficiency. To avoid partial block
writes, we reserve a block of memory as an output buffer for each
partition in a partition group. The number of buffer blocks (i.e.,
number of partitions in a group) is calculated using the helper func-
tion maxSize(·). Each output flush first goes through the buffer
block for the corresponding partition; an actual append happens
whenever the buffer block fills up (or the partition is complete).
These buffer blocks avoid partial block writes that would have been
incurred by flushes that do not begin or end on block boundaries.
These buffer blocks also allow us to use flushes that are smaller than
blocks, which is more flexible than ADPsr

pass. Of course, memory
required by the buffer blocks must be accounted for and balanced
against memory used for action records, which we consider next
and in Section 4.3.
Requirement and Cost Analysis Suppose ADPpass is invoked
with a plan (T, $, π,A, β). Its memory consumption can be cal-
culated below, as the sum of the number of action records (the first
term) and the total size of buffer blocks (the second term):

mem(T, $, π,A, β) = maxSizeT,$(A)

+B ·maxSizeT,$
(
π–1([ρ(π,A), n)) ∩A

)
. (5)

ADPpass assumes that its plan meets the following requirements:
mem(T, $, π,A, β) ≤ M (memory requirement); β ≥ b (i.e., in-
put segments are no smaller than blocks); ρ(π,A) ≥ b (i.e., output
partitions are no smaller than blocks—a weaker requirement than
ADPsr

pass, thanks to output buffer blocks). In Section 4.3, we ensure
that we only generate plans meeting these requirements.

As with ADPsr
pass, we model the cost of ADPpass as follows,

where Cr is the number of block reads, Cw is the number of block
writes, and α ≥ 0 represents the cost of reads relative to writes:

cost(T, $, π,A, β) = Cr + αCw. (6)
However, calculatingCr andCw is significantly more involved than
the less general case of ADPsr

pass.
First, Cr = (N

B
+ Ur)×maxSizeT,$([0, β) \A). Here, Ur de-

notes the number of input segment boundaries that do not coincide
with block boundaries.2 The multiplier maxSizeT,$([0, β) \A) is
the waste factor of filtered reads (1 if reads are not filtered). In the
general case, where input segment boundaries generally do not co-
incide with block boundaries, we use the number of input segments,
maxSizeT,$([β, n)), for Ur.

Next, Cw = N
B

+ Uw. Here Uw denotes the number of output
partition boundaries that do not coincide with block boundaries.
In the general case, where input segment boundaries generally do
not coincide with block boundaries, we use the number of output

2Intuitively, segment and block boundaries divide the input file into parts.
Each part incurs a block read, and there are a total of N

B
+ Ur parts.

Original 0 1 2 3 4 5 6 7 8 9 101112

13

5 3

T 5,3

〈0
,
0〉

〈0
,
1〉

〈0
,
2〉

〈1
,
0〉

〈1
,
1〉

〈1
,
2〉

〈2
,
0〉

〈2
,
1〉

〈2
,
2〉

〈3
,
0〉

〈3
,
1〉

〈3
,
2〉

〈4
,
0〉

〈4
,
1〉

〈4
,
2〉

13

5

3 2

3

T (3,2),3

〈0
,
0
,
0〉

〈0
,
0
,
1〉

〈0
,
0
,
2〉

〈0
,
1
,
0〉

〈0
,
1
,
1〉

〈0
,
1
,
2〉

〈1
,
0
,
0〉

〈1
,
0
,
1〉

〈1
,
0
,
2〉

〈1
,
1
,
0〉

〈1
,
1
,
1〉

〈1
,
1
,
2〉

〈2
,
0
,
0〉

〈2
,
0
,
1〉

〈2
,
0
,
2〉

〈2
,
1
,
0〉

〈2
,
1
,
1〉

〈2
,
1
,
2〉

13

3 5

T 3,5

〈0
,
0〉

〈0
,
1〉

〈0
,
2〉

〈0
,
3〉

〈0
,
4〉

〈1
,
0〉

〈1
,
1〉

〈1
,
2〉

〈1
,
3〉

〈1
,
4〉

〈2
,
0〉

〈2
,
1〉

〈2
,
2〉

〈2
,
3〉

〈2
,
4〉

13

3 5

2 3

T 3,(2,3)

〈0
,
0
,
0〉

〈0
,
0
,
1〉

〈0
,
0
,
2〉

〈0
,
1
,
0〉

〈0
,
1
,
1〉

〈0
,
1
,
2〉

〈1
,
0
,
0〉

〈1
,
0
,
1〉

〈1
,
0
,
2〉

〈1
,
1
,
0〉

〈1
,
1
,
1〉

〈1
,
1
,
2〉

〈2
,
0
,
0〉

〈2
,
0
,
1〉

〈2
,
0
,
2〉

〈2
,
1
,
0〉

〈2
,
1
,
1〉

〈2
,
1
,
2〉

Figure 4: Different (imperfect) decompositions of the same single-digit
address space with radix 13. The superscripts of T indicate radices of the
decomposed address spaces. T 3,(2,3) is obtained by further decomposing
the lower-order digit of T 3,5; T (3,2),3 is obtained by further decomposing
the higher-order digit of T 5,3. Invalid addresses are shaded.

partitions, maxSizeT,$
(
π–1([ρ(π,A), n))

)
, for Uw. Recall that

unaligned flush boundaries do not incur additional block writes be-
cause of output buffer blocks.

4.2 Address Decomposition
With arbitrary radices and block and memory sizes, there are now
situations where we cannot pick a valid set of action digits A to
perform an ADP (even with filtered reads). For example, consider
transposing a big p × q matrix, where p > M and q > M . If we
model the address space using two digits (row and column num-
bers), including any digit in A at all would exceed the memory
requirement of ADPpass, because every radix is bigger than M .

Conceptually, the solution is straightforward—we simply decom-
pose a digit into multiple “smaller” components such that the prod-
uct of the radices of these components equals the radix of the orig-
inal digit. Then, the task of permuting bigger digits can be accom-
plished by permuting smaller components. In the case of matrix
transpose, for example, if p and q are perfect powers of 2, we can
decompose them into log2 p and log2 q bits, respectively.

In practice, however, we might not be able to find such perfect
decompositions. For example, p and q may not be perfect powers;
worse, both can be prime numbers. In such cases, we have to deal
with imperfect decompositions, where the original radix does not
equal the product of component radices. Imperfect decompositions
complicate address manipulations because data may not be dense
in the decomposed address spaces; Eq. (1) no longer works. For
example, consider imperfect decompositions in Figure 4. We see
that there are (shaded) “gaps” in the decomposed address spaces.
For instance, address 〈0, 1, 2〉 in T 3,(2,3) has no record associated
with it, even though all digit values are less than their respective
radices; however, the same address 〈0, 1, 2〉 is valid in T (3,2),3, a
decomposition with the same radices as T 3,(2,3) but nonetheless
different. Eq. (1) happens to work for T (3,2),3, but not for T 3,(2,3).

One way to cope with imperfect decompositions is padding—
we simply fill gaps in the decomposed address space with dummy
records, essentially blowing up the original address space. For ex-
ample, a 1025 × 513 matrix could be padded and handled as a
2048 × 1024 matrix if we want a decomposed address space con-
sisting of bits. However, dummy records take space in files, making
each pass more expensive; injecting dummy records into the origi-
nal input and removing them from the final output also incur extra
cost. Worse, the space overhead of padding is exponential in the
number of digits—given an n-digit original address space, if all
digits need to be decomposed and if, for each digit, valid addresses

728

make up for a fraction f < 1 of the address space decomposed
from this digit, then only fn fraction of the addresses in the overall
decomposed address space are valid. Therefore, we need a better
approach for making ADP practical in the general case.

In this subsection, we present an approach that keeps records
stored compactly at all times, even if the address space is decom-
posed imperfectly and data become no longer dense. The notion of
address decomposition requires careful formulation—as Figure 4
shows, two decomposed address spaces (T (3,2),3 and T 3,(2,3)) can
come from the same original space, have the same list of radices,
but require very different address mappings. In the following, we
first study what it means to decompose a single digit, and then dis-
cuss how to decompose and permute address spaces in general.

4.2.1 Decomposing a Single Digit
A decomposition of a digit with radix r into two digits with radices
r′′ > 1 and r′ > 1 is valid if r′′r′ ≥ r, (r′′ − 1)r′ < r, and
r′′(r′ − 1) < r. Under this decomposition, value x (radix r) is
mapped to a pair of values x′′ (radix r′′) and x′ (radix r′), where
x′′ = bx/r′c and x′ = x mod r′.

A recursive decomposition of an original digit with radix r into
a sequence of final digits is a node-labeled binary tree T , where:

• Each node u ∈ T represents a digit, and is labeled by rad(u),
its radix. The root of T , denoted root(T), represents the orig-
inal digit. The sequence of leaves in T , denoted Leaves(T),
represents the sequence of final digits, from the highest order to
the lowest.
• A node u ∈ T having left child u′′ and right child u′ represents

the decomposition of the digit corresponding to u into those
corresponding to u′′ and u′. We call u′′ (u′) the higher-order
(lower-order, resp.) child of u.

Indeed, Figure 4 shows the decompositions as trees, whose struc-
tures allow us to distinguish them.

We begin with a crucial observation characterizing the valid set-
tings in a decomposed address space.

Lemma 2. Consider an η-digit address space with radices (rη−1,
. . . , r0) obtained from a single digit with radix r through decom-
position T . Let θ[p,η) denote a valid setting for digits at positions
[p, η) (1 ≤ p ≤ η). The set X of valid addresses that are compat-
ible with θ[p,η) can be partitioned into subsets according to their
values of the digit at position p−1. LetXλ ⊆ X denote the subset
of addresses with value λ for digit position p−1. Let Z0 denote the
set of valid addresses in T compatible with 〈0η−p+1,⊥p−1〉. Then:
1) The set of possible values for λ is [0, t) for some t ∈ (0, rp−1];
i.e., there are no “holes.” 2)X0, X1, . . . , Xt−2 are identical to Z0

modulo their values for digit positions [p−1, η). 3)Xt−1 is a sub-
set of Z0 modulo digit positions [p − 1, η); i.e., for every address
in Xt−1, replacing its values for digit positions [p − 1, η) by 0’s
yields an address in Z0.

Lemma 2 reveals a small but important difference from the spe-
cial case where the entire decomposition T is perfect (i.e., every
binary decomposition in T is perfect). With a perfect T , the set
of valid values for digit position p − 1 is always [0, rp−1); how-
ever, for general T , the set of valid values at digit position p − 1
depends on the prefix setting θ[p,η). For example, for T 3,(2,3) in
Figure 4, given prefix 〈0, 0,⊥〉, the lowest-order digit can be 0, 1,
or 2; however, given prefix 〈1, 1,⊥〉, it can only be 0 or 1.

Lemma 2 prompts us to introduce a useful quantity when work-
ing with decomposed address spaces. Given a prefix setting θ[p,η) =
〈xη−1, xη−2, . . . , xp,⊥p〉 for digit positions [p, η), let κT

(
θ[p,η)

)
denote the number of valid settings for [0, η) compatible with θ[p,η).

For example, for T 3,(2,3) in Figure 4, κT
3,(2,3)

(〈0, 0,⊥〉) = 3 and
κT

3,(2,3)

(〈1,⊥,⊥〉) = 5. For T (3,2),3), κT
(3,2),3)

(〈1,⊥,⊥〉) = 6.
We can calculate κT(·) in time linear in the number of digits.

Because of space constraints, we leave details to [11].
Lemma 3. Given θ[p,η), κT

(
θ[p,η)

)
can be computed in O(|T |).

4.2.2 Decomposing and Permuting an Address Space
A decomposition T of an m-digit original address space is a se-
quence of node-labeled binary trees (Tm−1, . . . , T1, T0), where
each Ti (i ∈ [0,m)) is a recursive decomposition of the digit at
position i in the original input address. A permuted decomposed
address space is defined by a pair (T, $), where T specifies the
decomposition from the original address space and $ maps a digit
position i ∈ [0, n), where n =

∑m
i=0 |Leaves(Ti)|, to a leaf (of

one of the trees) in T. As notational shorthands, let $tree(i) denote
the tree T ∈ T where $(i) ∈ T , and let $lpos(i) denote number of
leaves following $(i) in $tree(i).

We say that a permuted decomposed address space (T, $) is
consistent if $ preserves the ordering of leaves within each tree
in T; i.e., for all k > k′ where $tree(k) = $tree(k′), $lpos(k) >
$lpos(k′). We consider only consistent permuted decomposed ad-
dress spaces (our optimization procedure in Section 4.3 ensures that
it is the case). In the following, unless otherwise noted, all per-
muted decomposed address spaces are consistent.

Consider an n-digit permuted decomposed address space (T, $).
We call a subset P of digit positions [0, n) a component-wise prefix
(or suffix) if for every T ∈ T, those digits in P that correspond to
the leaves of T , if any, form a prefix (or suffix, resp.) of Leaves(T).
Suppose θP is a component-wise prefix (or suffix) setting. Let
ΩT (θP), where T ∈ T, denote a setting for the address space con-
sisting of only Leaves(T) as digits, obtained by removing from θP
all digit i where $tree(i) 6= T . Clearly, ΩT (θP) will be a prefix (or
suffix, resp.) setting.

We now extend the definition of κ·(·) to the permuted decom-
posed address space (T, $). Suppose θP is a component-wise pre-
fix setting for this address space. Let κT,$(θP) denote the number
of valid addresses compatible with θP . This quantity can be readily
computed in a component-wise fashion, as the product of number
of possible suffix settings in the decomposition of each of the origi-
nal digits (recall that these numbers can be computed by Lemma 3).

Theorem 2. Suppose (T, $) is a consistent decomposed address
space and θP is a component-wise prefix setting in this space. Then
κT,$(θP) =

∏
T∈T κ

T(ΩT (θP)).

We now revisit ADPpass in Section 4.1 and fill in the missing
details. The input arguments (T, $) together specify the permuted
decomposed input address space, which may be a decomposition
of the original input address or an intermediate one (if ADPpass is
called by a multi-pass strategy). We can compute maxSizeT,$(S)
as κT,$

(
Ω[0,n)\S(〈0n〉)

)
(for other helper functions, see [11]).

It remains to be shown how to implement the operator 0·(·)
(used throughout ADPpass) efficiently in a permuted decomposed
input address space. That is, given a component-wise prefix setting,
we need to enumerate all valid settings for a bigger component-
wise prefix in ascending order. For this enumeration, it can be
shown that we can compute, for each digit, when to carry over to
the next digit, as follows:

Lemma 4. Suppose P and P ∪ {k} (k 6∈ P) are component-wise
prefixes in (T, $). Given a setting θP , the maximum value for digit
k among valid addresses compatible with θP is⌈
κT(ΩT (θP)) /κT

(
ΩT
(
〈0n−k,⊥k〉

))⌉
, where T = $tree(k).

However, it would be inefficient to pay O(|T |) time to calcu-
late κ·(·) for each digit and for every setting enumerated. Instead,

729

we offer an efficient implementation of 0·(·) that incrementally
maintains relevant κ·(·) results during enumeration. It achieves an
amortized running time of O(1) per setting enumerated. Because
of space constraints, we leave the details to [11].

4.3 General ADP with Optimization
Given input data in a mixed-radix address space, we now discuss
how to carry out a given ADP, with block size B and memory size
M . We assume the cost model in Section 4.1. In general, an opti-
mal strategy may require multiple passes: each pass may choose
to decompose its input address space, and may employ filtered
reads. The original address space may undergo multiple decom-
positions and permutations. Because of space constraints, we will
only briefly discuss our approach; see [11] for details.

We begin with the task of finding an optimal single-pass plan for
ADPpass. Given (T, $) and π, algorithm Optimizepass finds a plan
(T?, $?, π?, A, β), where (T?, $?) represents an address space that
is possibly further decomposed from (T, $), and π? encodes the
permutation equivalent to π in (T?, $?). On a high level, Optimizepass
searches through all viable input segment sizes between B and M .
Given digit position β in (T, $) that determines the segment size,
we decompose the digit at position β − 1 in order to consider ad-
ditional choices of segment sizes. It can be shown that an optimal
plan includes in its action digits A all “out-digits”3 in [0, β) fully
(i.e., with no decomposition). Thus, we consider, as a choice of
A+, every subset of in-digits or components from their decom-
positions. Finally, we enumerate all choices for A given β and
A+. This task turns out to be easy because the best choices can
be enumerated by filling the gaps between action digits in the out-
put address space, a complete gap at a time, from lower-order to
higher-order. Optimizepass always finds an optimal plan. See [11]
for the detailed algorithm and proofs.

To find a multi-pass strategy, algorithm Optimizemulti-pass takes
a greedy approach. It chooses a plan (not involving filtered reads)
for the current pass that leads to a remaining permutation with the
lowest estimated “difficulty” which is measured by the memory re-
quired to complete the remaining permutation. The key to narrow-
ing the search space for the current pass is the observation that only
“in-segment” digits in the input address space and “in-flush” dig-
its in the output address space are worth decomposing. How to
ensure optimality for strategies involving multiple passes remains
an interesting problem for future research. However, in most ex-
periments we conducted, problems required one or two passes (see
Section 5). Hence, to better optimize the two-pass case, we have al-
gorithm Optimize2pass which searches through all viable input seg-
ment sizes and selects a plan based on cost.

Finally, the overall algorithm ADP (see [11]) calls the three al-
gorithms above and chooses the least-cost plan found among them.

The optimization overhead of ADP is very low in practice. For
all experiments of Section 5, optimization took under one second.

5 Experiments
We now evaluate ADP experimentally. Its main competitor will
be a sorting-based implementation of permutation, which we refer
to as SORT.4 SORT uses the external merge sort algorithm, with
the following modifications. When producing intermediate runs,

3Here, a position i is out-digit if maxSizeT,$([0, i)) ≥ B.
4There are two other candidate competitors: Cormen’s BPC algorithm [4],
and the brute-force strategy mentioned in Section 1. As discussed in Sec-
tion 6, ADP is consistently better than BPC by a factor of at least 2, so the
comparison would not be interesting. The brute-force strategy incurs too
many reads and is one to two orders of magnitude slower than ADP for
typical problems (see [11] for details), so we do not discuss it here.

0 2 4 6 8 10
0

1000

2000

Size (GB)

T
im

e
(S

ec
)

 SORT

 ADP

(a)
10

0
10

20

1000

2000

3000

Memory (MB)

T
im

e
(S

ec
)

 SORT

 ADP

(b)Figure 5: DTPC-H on SSD.

100 200 300 400
0

500

1000

1500

Size (MB)

T
im

e
(S

ec
)

 SORT

 ADP

(a)

2000 3000 4000 5000 6000
0

5

10

15

20

Size (in blocks)

B

lo
ck

 W
rit

es
 (

10
00

s)

 SORT

 ADP

(b)Figure 6: DTPC-H on cloud.

SORT writes out the input address of each record as a part of this
record (so that these address can be used for comparison in sub-
sequent passes). When producing the final result, SORT does not
write these addresses. During merge phases, SORT fully utilizes
the available memory to read and write in units as large as possi-
ble. For in-memory sorting, SORT uses an optimized quick-sort
library. We implemented both ADP and SORT in C++.

We conduct experiments in two hardware settings. The first one
is a single workstation (Intel i7 8-core 2.8GHz CPU, 8GB RAM,
Linux kernel version 3.2.0) with several storage options: an In-
tel X25-E 32GB SSD, an Intel 320-S 80GB SSD, and a Samsung
840 Pro 256GB SSD. To access the SSDs, we use an ext4 file sys-
tem without journaling but with direct I/O using the flag O DIRECT.
The block size is 4KB. Since experiments on all SSDs show simi-
lar results, we will only report results for X25-E here (see [11] for
other results). In the following, “SSD” refers to this setting.5

The second hardware setting we consider is the “cloud.” Specif-
ically, we use an m1.medium machine from Amazon EC2 to per-
mute data stored in S3. We access S3 data through the s3ql file
system, which stores files in the unit of blocks on S3. We set the
block size to 64KB.

We use primarily two datasets. The first one, DTPC-H, derived
from TPC-H [12], has following base dimensions:
order-week part-key supplier-state customer-state order-priority

574 100 50 50 2
The dimension sizes are chosen to reflect reality (e.g., 574 is the
number of weeks during years 1995–2005). They are not perfect
powers, and they provide a good mix of small and large dimen-
sions. When needed, we vary the dataset size by scaling order-
week and part-key. The second dataset, Dv-dim is designed to study
the effect of the number of dimensions: given desired input size N
(in the number of records) and number of dimensions d, we select d
radices (each between b d

√
Nc and d d

√
Ne) whose product is closest

to N . The record size for both DTPC-H and Dv-dim is 8 bytes.

DTPC-HDTPC-HDTPC-H on SSD We begin by comparing ADP and SORT with a
set of experiments forDTPC-H on SSD. Figure 5a shows the running

5Besides SSDs, we have also experimented with a traditional hard drive—a
Seagate Barracuda 7200-RPM 250GB HD. While this setting is not what
ADP targets, it helps illustrate, through comparison, how ADP exploits the
characteristics of SSDs for efficiency. Because of ADP’s random accesses,
the expectation is that a pass in ADP is much slower than a pass in SORT—
we indeed see this issue for some permutations. Interestingly, it turns out
that for many permutations, this issue is ameliorated because ADP is able
to read segments and write partitions that are much longer than a block.
Overall, for the same setup in Figure 5a but with HD, ADP has comparable
average performance as SORT (but may be better or worse for a partic-
ular permutation). For Figure 5b with HD, ADP still beats SORT when
memory is limited because of fewer passes.

730

0 1 5.3 53 530 5.3K 53K
0

20

40

60

80

100

Size (Millions of Records)

P

er
m

ut
at

io
ns

1−pass

2−pass

3−pass

4−pass

5−pass

6−pass

Figure 7: Percentage of permuta-
tions requiring specific numbers of
passes. Darker shades mean more
passes. For each input size, the left
bar shows the breakdown for ADP;
the right bar shows SORT.

0 128 384 640 896 1152
0

2

4x 10
8

Memory (KB)

I/O
 C

os
t

 write−cost

 read−cost

Figure 8: Best single-pass strat-
egy with filtered reads (left bar)
vs. best two-pass strategy (right
bar) when memory size varies, for
ADP (2, 3, 4, 0, 6, 1, 5) of radices
(13, 7, 9, 35, 29, 8, 17).

times when we vary the input size (by changing f) while keeping
memory at 5% of the input size; Figure 5b varies the amount of
memory while keeping the input size fixed at 4GB. Each data point
for ADP shows the average running time across five random per-
mutations (SORT is oblivious to the permutation being performed).

From Figure 5a, we see that ADP’s lead over SORT improves
as input size increases: for the smallest input, SORT is around 2.5
times slower than ADP, and for the largest input, it is around 3.6
times slower. Although SORT takes two passes throughout this
figure, the culprit is the CPU time spent on sorting, which is still
superlinear. In contrast, not only does ADP require only a single
pass, it also spends no CPU time on comparisons.

From Figure 5b, we see similar advantages of ADP. For the two
smallest memory sizes (460KB and 918KB), ADP uses 2 passes
for four of the five randomly chosen permutations, and 1 pass for
the last one, while SORT requires 4 and 3 passes respectively; on
average, ADP is 2.7 and 2 times faster for these two memory sizes.
For all other memory sizes tested, ADP takes only 1 pass, whereas
SORT takes 2. Overall, SORT is 2 to 3.3 times slower than ADP.
DTPC-HDTPC-HDTPC-H on Cloud We run a similar set of experiments for DTPC-H

on the cloud. Figure 6a shows the running times when we vary the
input size while keeping memory at 5% of the input size. Here,
the advantage of ADP is similar to what we saw for the SSD set-
ting: for the smallest input size, SORT is around 3.8 times to 2
times slower than ADP. The running times for both algorithms
is markedly slower than on the SSD setting because S3’s through-
put is much lower even with a block size that is 16 times larger.
However, like in the SSD setting, there is little difference between
random and sequential I/O for S3, so ADP shows similar gains.
SORT’s running time increases in an almost linear fashion as we
increase the input size, whereas ADP has some zig-zags because it
chose different number of passes for some permutations.

Finally, we note that running time alone may not be the correct
cost metric for this setting, because Amazon S3 actually charges
by the amount of data stored and requested. Therefore, to get a
clearer picture, we also show, in Figure 6b, the numbers of block
I/Os performed for the same set of experiments in Figure 6a. Here,
we again see a clear advantage of ADP over SORT.
All Permutations on DTPC-HDTPC-HDTPC-H As the performance of ADP de-
pends on the given permutation, here we study the behavior of ADP
for all 119 non-identity permutations for DTPC-H. Figure 7 shows
the percentage of the permutations requiring a specific number of
passes. We fix the memory size at 128KB and vary the input size.
We see that the majority of the permutations are “easy” (requiring 1
or 2 passes) for ADP, and they do not get much harder with larger
inputs. In contrast, unable to exploit easy permutations, SORT
always requires a high number of passes (invariant across permuta-
tions) compared with ADP, and even more with larger inputs.
Exploiting the Read/Write Cost Asymmetry Figure 8 compares
the costs of the best single-pass strategy (with filtered reads en-

0 5 10
0

100

Digits

T
im

e
(S

ec
)

 SORT

 ADP

(a)
0 5 10

0

50

100

Digits

C
P

U
 T

im
e

(S
ec

)

 SORT

 ADP

(b)
0 5 10

0

200

400

Digits

B

lo
ck

 W
rit

es
 (

10
00

s)

 SORT

 ADP

(c)
Figure 9: Effect of varying the number of dimensions d in Dv-dim on
performance on SSD.

abled) and the best two-pass strategy, as we vary available mem-
ory. Here, α = 1/16. In this case, it turns out that the minimum
memory needed for a single-pass strategy without filtered reads
is around 1.5MB; thus, for all memory sizes plotted in Figure 8,
single-pass strategies are only possible with filtered reads. As we
decrease memory, more aggressive use of filtered reads (i.e., with
bigger waste factors) are needed to stay within a single pass. Thus,
we see in Figure 8 that the read portion of the cost of the single-pass
strategies continues to rise as memory gets smaller. Eventually (at
the smallest memory size plotted in Figure 8), two-pass strategies
become favorable again. The optimization built into ADP automat-
ically picks the best strategy in all cases.

Dv-dimDv-dimDv-dim on SSD In this set of experiments, we fix the input size at
512MB and memory at 5% of the input size, and vary the number
of dimensions d in Dv-dim. Figure 9a compares the running times
of ADP and SORT on SSD. We see that the number of dimen-
sions affects the SORT much more than ADP. ADP is around 2.1
times faster than SORT when d = 2 (this setting is of particular
importance as it corresponds to matrix transpose, which has many
applications). As d increases, this gap widens—SORT becomes
progressively slower, while ADP remains efficient. When d = 11,
ADP is around 3.1 times faster. Overall, ADP is around 2.1 to 3.4
times faster than SORT.

To further understand where the time is spent, we show in Fig-
ure 9b the CPU portion of the running times. While ADP has more
complicated address calculation, SORT spends extra time in seri-
alizing/deserializing addresses as keys and comparing them. Over-
all, we see SORT’s CPU time rising linearly with d. We believe
we can further widen this gap, since our current implementation of
address calculation ADP leaves more room for improvement than
the already optimized libraries used by SORT.

Another advantage of ADP is that it writes smaller intermediate
results, while SORT has to write keys. This advantage is clearly
visible in Figure 9c, which shows the amounts of data written by
ADP and SORT. As d increases, SORT writes more because keys
are larger. When d = 11, for example, SORT needs to perform
30% more block writes than it does when d = 2. Larger interme-
diate results can also lead to more passes for SORT, although Fig-
ure 9c does not show this behavior. On the other hand, ADP’s write
size remains flat because ADP stores no keys; it is much lower than
SORT also because ADP always takes one pass in this experiment.

6 Discussion and Related Work
Variable-Size Records We have so far assumed fixed-size records,
which simplify the translation of linearized record addresses into
locations within files. There are two methods to deal with variable-
size records. The first method is to pad each record to its maximum
size, which is simple and efficient if most records are near the max-
imum size. The second method is to add a level of indexing, e.g.,
B-tree, to enable translation of logical record addresses to physical
locations. Instead of indexing each record, however, we only need
to index each segment of records. Moreover, because our writes are
appends in the granularity of blocks, we can index an intermediate
result file efficiently like a bulk-loading procedure, thereby avoid-

731

ing inefficiencies of random inserts. During optimization, if record
sizes are very skewed, we may use the average record size instead
of the maximum size when deciding whether a set of action records
can fit in memory. During execution, our algorithms can be adapted
to handle unlucky situations when a large number of especially big
action records overflow the available memory, but efficiency will
suffer. Therefore, sorting may be more appealing in this case.

Sparse Data Section 4.2 shows how to deal with originally dense
data that have become sparse because of address space decomposi-
tions. But what if data are already sparse in the original input ad-
dress space, e.g., sparse matrices and data cubes? Analogous to the
methods for handing variable-length records, there are two methods
for handling sparse data—after all, one can think of a non-existent
record as a record of size 0.

Related Work ADP is inspired by a class of well-known permu-
tations called BPC (bit-permute complement). BPC is essentially
a special case of ADP6 where all radices are 2. In his disserta-
tion [4], Cormen showed how an asymptotically optimal algorithm
for BPC in the parallel disk model. Each step of Cormen’s algo-
rithm makes two passes: one to permute blocks into an intermediate
order, and one to permute data within each memory worth of con-
secutive blocks. In comparison, our work targets storage solutions
with better support for random accesses. By exploiting random
reads more aggressively, we are able to complete such a step in a
single pass, effectively reducing the number of I/Os by a factor of 2.
We also consider optimizations such as filtered reads to further im-
prove cost. Although our algorithms do not change the asymptotic
complexity, we consider our constant factor improvement of 2 to be
a very significant one, especially when it allows more problems to
be solved in a single pass instead of two. As a special case of ADP
(and BPC, if dimensions are powers of 2), matrix transpose has
been studied extensively in the out-of-core setting [5, 6, 4, 10, 7].
Again, the target has been traditional hard drives.

Another major difference between our work and all previous
work on BPC and matrix transpose is our handling of arbitrary
radices and block/memory sizes. Almost all previous work conve-
niently assumes they are perfect powers of 2. Handling the general
case requires padding, which, as we have argued in Section 1, will
incur significant overhead in high dimensions. To the best of our
knowledge, the only discussion of how to handle arbitrary radices
efficiently is by Cormen [4] in the context of matrix transpose. He
showed how, by carefully partitioning a matrix into 4 padded sub-
matrices whose dimensions are powers of 2, the overall overhead
of padding can be reduced. It is not clear how to generalize the
technique to higher dimensions, where a small overhead in any two
dimensions can still be blown up exponentially. We propose and
evaluate a more general and robust solution.

As discussed in Example 2, one motivation for “resorting” data
is computing multi-dimensional aggregates (e.g., [1, 15, 8]). This
line of work mostly focused on optimizing the sharing of compu-
tation of multiple aggregates with one reorganization of data (e.g.,
using sorting, hashing, or traversal of a data array [15]). In general,
multiple data reorganizations are still needed to compute all aggre-
gates for a data cube—which is where our work can help in reduc-
ing the cost of the reorganizations themselves. Interestingly, Ross
and Srivastava briefly mentioned [8] an optimization where sorting
by dimensions (C,A,D) can benefit if data is already sorted by
(C,D), because we only need to further sort (consecutive) records
with the same C value. Our work can be seen as a more general

6BPC also allows an address bit to be complemented. The analogy in gen-
eral ADP would be to allow addresses to be sorted by particular digits in
descending instead of ascending order. This extension is straightforward.

framework that systematically exploits such opportunities and other
less obvious ones—such as using data sorted by (C,D) to produce
data sorted by (D,C) more efficiently. Recent work on coopera-
tive sorting [3] shares a similar motivation. The main idea there
is to perform multiple sorts simultaneously in order to share work;
the approach is still sorting-based and targets hard drives.

Finally, interest in radix sort and radix join continues to grow,
especially on modern architectures (e.g., [9, 2]). Like our work,
these algorithms operate on keys in radix-based representations.
However, a fundamental difference is that for sort and join, the
address or presence of an output record cannot be inferred from
its key alone. Therefore, unlike our algorithms for ADP, they can-
not escape the additional cost factor logarithmic in the input size.
Nonetheless, recent work on efficiently implementing these algo-
rithms may give insight on how to improve the CPU cost of ADP.

7 Conclusion
In this paper, we have introduced the notion of address-digit permu-
tation (ADP), which captures a useful class of data reorganizations.
We have shown how to perform ADP efficiently on modern block-
based storage solutions that support random accesses better than
traditional hard drives. By exploiting the characteristics of such
storage, and by removing assumptions of previous work involving
permutation, we have made ADP a better alternative to sorting in
many practical settings.

An obvious direction of future work is more efficient implemen-
tations of ADP, especially its in-memory permutations on modern
multicore architectures. Intuitively, ADP is perfectly suited to par-
allelization, because every record can be processed independently
of all others. However, the effect of the memory hierarchy must be
carefully considered. Another interesting problem for future work
is how to combine the advantages of ADP and sorting. ADP works
best when data are dense or uniformly sparse, while sorting han-
dles skewed sparsity with ease. There may be a way to get the best
of both approaches by judiciously choosing one of them for each
subset of data or each step in an overall algorithm.

References
[1] Agarwal, Agrawal, Deshpande, Gupta, Naughton, Ramakrishnan, and Sarawagi.

On the computation of multidimensional aggregates. VLDB 1996.
[2] Balkesen, Teubner, Alonso, and Özsu. Main-memory hash joins on multi-core

CPUs: Tuning to the underlying hardware. ICDE 2013.
[3] Cao, Bramandia, Chan, and Tan. Optimized query evaluation using cooperative

sorts. ICDE 2010.
[4] Cormen. Virtual Memory for Data-Parallel Computing. PhD thesis, MIT, 1993.
[5] Eklundh. A fast computer method for matrix transposing. IEEE Transactions on

Computers, 21(7):801–803, July 1972.
[6] Kaushik, Huang, Johnson, Johnson, and Sadayappan. Efficient transposition

algorithms for large matrices. Supercomputing 1993.
[7] Krishnamoorthy, Baumgartner, Cociorva, Lam, and Sadayappan. On efficient

out-of-core matrix transposition. Technical report, Ohio State University, 2003.
[8] Ross and Srivastava. Fast computation of sparse datacubes. VLDB 1997.
[9] Satish, Kim, Chhugani, Nguyen, Lee, Kim, and Dubey. Fast sort on CPUs and

GPUs: A case for bandwidth oblivious SIMD sort. SIGMOD 2010.
[10] Suh and Prasanna. An efficient algorithm for out-of-core matrix transposition.

IEEE Transactions on Computers, 51(4):420–438, 2002.
[11] Thonangi and Yang. Permuting data on random-access block storage. Tech-

nical report, Duke University, 2013. http://www.cs.duke.edu/dbgroup/
papers/ThonangiYang-13-permute_storage.pdf.

[12] The TPC benchmark H, 1993. http://www.tpc.org/tpch/.
[13] Vitter. External memory algorithms and data structures. ACM Computing Sur-

veys, 33(2):209–271, 2001.
[14] Zhao. Performance Issues of Multi-Dimensional Data Analysis. PhD thesis,

University of Wisconsin at Madison, 1998.
[15] Zhao, Deshpande, and Naughton. An array-based algorithm for simultaneous

multidimensional aggregates. SIGMOD 1997.

732

