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ABSTRACT
Recent research has shown that crowd sourcing can be used
effectively to solve problems that are difficult for computers,
e.g., optical character recognition and identification of the
structural configuration of natural proteins. In this paper
we propose to use the power of the crowd to address yet
another difficult problem that frequently occurs in a daily
life - answering planning queries whose output is a sequence
of objects/actions, when the goal, i.e, the notion of “best
output”, is hard to formalize. For example, planning the
sequence of places/attractions to visit in the course of a va-
cation, where the goal is to enjoy the resulting vacation the
most, or planning the sequence of courses to take in an aca-
demic schedule planning, where the goal is to obtain solid
knowledge of a given subject domain. Such goals may be
easily understandable by humans, but hard or even impos-
sible to formalize for a computer.

We present a novel algorithm for efficiently harnessing the
crowd to assist in answering such planning queries. The
algorithm builds the desired plans incrementally, choosing
at each step the ‘best’ questions so that the overall number
of questions that need to be asked is minimized. We prove
the algorithm to be optimal within its class and demonstrate
experimentally its effectiveness and efficiency.

1. INTRODUCTION
A planning query is a query whose output is a sequence

of objects or actions that gets one from some initial state to
some ideal goal state. Automated planning is a branch of
artificial intelligence that tries to solve this problem using a
computer [10]. However, there is a large class of planning
queries that we meet in our daily life that is difficult for a
computer to solve, not only because of the involved compu-
tational complexity, but because the goal state (as well as
the consequence of individual actions) is hard or even impos-
sible to formalize. In contrast, in many of these problems,
the goal (and the effect of actions) is intuitively understand-
able by humans, making the planning humanly possible.
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As a simple example, consider a vacation trip planning.
A person may have some tentative start and end dates for
her vacation, a preference of what she likes to do and a geo-
graphic area where she wants to travel. Based on this data
she now needs to compile a potential set of places and at-
tractions to visit and, from this set build a vacation schedule
(essentially an ordered subset of the original set). A typical
goal here may be to enjoy the vacation the most and/or to
expand horizons. Such a goal is naturally subjective and
hard to formalize (relevant factors may include total travel
distances, attractions along the way, price and many more).
However, people sharing similar taste/interests are likely to
have the same notion of objective function and their expe-
rience and opinion can assist in the planning.

In general we are targeting here problems where one has
a large set of items from which she needs to choose a subset
and then order this subset in a sequence that will give the
best value. The ”value” definition is domain-specific, hard
to formalize but easy to comprehend by humans. The vaca-
tion planning example above is one such instance. Another
example is academic schedule planning, where the goal for
instance is to obtain solid knowledge of a given subject area.

Answering such planning queries requires expertise in the
domain of the problem, which is often gained by experience,
solving instances of the same (or similar) problems. Since
many people deal with similar planning problems, it is rea-
sonable to assume that the crowd may provide useful insight
here. Indeed, several attempts were made in this direction.
For example, for academic schedule planning, the CourseR-
ank system1 allows students to rate courses and provides a
convenient tool to compile recommended courses into sched-
ule. Another example is the Cross-Service Travel Engine
for Trip Planning [3] that allows harvesting POIs (points of
interest) from various traveling recommendation sites and
provides a tool to compile a trip schedule from these POIs.
Theses systems however focus on identifying the set of rel-
evant items (courses, POIs), but the non-trivial task of or-
dering them in an ideal way, to form an actual plan, is left
to the user.

Assisting the user in this fairly challenging task is the
goal of the present work. We refer below to an ordered list
of items as a plan and present CrowdPlanr, a system that
employs the crowd to build “good” plans (w.r.t some ab-
stract quality criteria) for specific tasks. It takes as input a
set of relevant items (that can be retrieved from the existing
systems mentioned above) and intelligently asks users from
the crowd series of simple questions (about possible 1-step

1http://courserank.stanford.edu/
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continuations of given partial plans), using the answers to
identify the plans preferred by the crowd.

Intuitively, the set of all possible plans (ordered lists) that
can be built from a given set of items can be modeled as a
tree, where each node is an item, its ancestors are the items
preceding it in the plan and its children are the items that
may follow it. A root-to-leaf path in this tree represents a
plan. One may rate (and correspondingly rank) plans by the
probability of a person to consider a given plan as the best
(w.r.t to the given abstract criteria). As the size of this tree
may be extremely large (exponential in the size of the items
set), it is clearly impractical to ask the crowd about each
possible plan. Instead, we employ in CrowdPlanr a novel
efficient algorithm that traverses this tree incrementally. It
carefully restricts attention to the more promising plans -
ones with highest maximum potential score (to be formally
defined in the sequel) and optimally chooses at each step
the ‘best’ questions (about possibly continuation), so that
the overall number of questions that the crowd needs to be
asked is minimized.

Note that the problem we are solving here can be viewed
as a particular type of sorting. Using the crowd for imple-
menting a sort-by operator is a problem that received much
attention in recent crowdsourcing research [25, 5]. A key
difference is that all these previous works assume the order
between two elements to be independent of preceding ele-
ments, and thus the developed algorithms are based on the
assumption that users can be asked to compared pairs of
individual elements (e.g be asked if A < B). This is not
the case here: the order in which plan items are selected de-
pend not only on their individual value/properties but also
on what precedes them in the plan (e.g. city A may be more
attractive than B, but if in a trip a user first visits C, then
A (being rather similar to it) may be skipped altogether and
B should be visited instead. Consequently a new algorithm
that efficiently provides users with the context relevant for
their choice had to be developed here.

A first prototype of CrowdPlanr was demonstrated in [17].
The demonstration gives only a high level overview of the the
system capabilities and user interface. The present paper
provides a comprehensive description of the formal model
and algorithmic solutions underlying CrowdPlanr.

The technical contributions of this paper can be summa-
rized as follows:

• We introduce a simple generic model for modeling plans
and interpreting crowd’s answers to questions about
them. Based on this model, we develop a formal def-
inition of the planning problem and the identification
of (approximated) best answer.

• We present an effective algorithm for identifying the
(approximately) best answer using the crowd. As the
search space may be extremely large, and consequently
the number of questions that may be posed to user ex-
cessively high, the algorithm builds the desired plan
incrementally, choosing at each step the ‘best’ ques-
tions so that the overall number of questions that need
to be asked is minimized.

• We study formally the efficiency of our algorithm. Fol-
lowing common practice [8], we employ the notion of

instance-optimality, that reflects how well a given al-
gorithm performs compared to all other possible al-
gorithms in its class and show our algorithm to be
instance-optimal for a large common class of planning
queries and data instances. Moreover, we show that
the optimality ratio that our algorithm achieves (to
be formally defined in the sequel) is far by at most a
factor of two from the lowest possible optimality ratio.

• Finally, we discuss the implementation of the Crowd-
Planr and demonstrate, by means of an extensive ex-
perimental evaluation, on both synthetic and real life
data, that our algorithm consistently outperforms al-
ternative baseline algorithms.

Paper organization. In Section 2 we describe our data
model and formally define the planning problem. In Section
3 we present the algorithm we developed to solve this prob-
lem. In Section 4 we discuss the algorithm performance,
define the notion of instance-optimality and prove our al-
gorithm to be instance-optimal for a large class of inputs.
In Section 5 presents experimental results on both synthetic
and real-world datasets. In Section 6 we survey related work.
We conclude and consider future work in Section 7.

2. PRELIMINARIES
We start with an intuitive description of our model, then

proceed to the formal definitions.
We assume that we are given an initial finite set S of po-

tential items to build a plan from. This set already reflects
the preferences the user has defined when she requested a
plan. There are multiple domain-specific tools that can be
used for identifying this initial set S of items, e.g. TripAd-
visor2 for vacation trip planning, and we assume that one
such tool has been employed. We will use this set to suggest
to the user possible answers when we ask a question. Some
of these items may become irrelevant as we progress, which
will be reflected by the users not selecting them as answers.

CrowdPlanr allows users to build plans at different levels
of granularity, zooming in and out between levels. For in-
stance, in a trip to Europe, one can start by planning the
countries to visit, then the cities in each country and the at-
tractions within/between cities. Different granularity levels
are often independent and we thus focus below, for simplic-
ity, on a single level and explain things in this simplified
context. The model extends naturally to the nested case,
by allowing users, when dependencies do exist, to view the
full detailed plan constructed so far, when considering its
continuation.

As a simple running example we will use below the plan-
ning of a vacation in Italy (at the city granularity), starting
from Rome. The set of items S in this case includes com-
monly visited Italian cities, e.g., {Milan, Venice, Verona,
Florence, Pisa, Trento, Bologna, Naples, ...}. Note that, in
general, not every user can answer every question. Indeed
users that have never visited/read/heard vacation stories
about Italy cannot help much in planning a vacation there.
The targeting of questions to relevant users is by itself a
challenging problem that may be addressed by a variety of
methods (e.g. using semantic knowledge about users [1], em-
ploying collaborative-filtering based techniques [1, 2], etc.).

2http://www.tripadvisor.com/
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In principle, any such black-box algorithm can be plugged
into our system and we will assume below that the set of
relevant crowd users has been identified.

Model. Given a set S of items, a plan is an ordered sub-
set of S. We will assume, and use, two special items in S
- † to mark the beginning of the plan and ‡ to mark an
end of the plan. A complete plan is an ordered sequence of
items (†, a1, . . . , ak, ‡), with no repetitions, starting with a
beginning marker and ending with an end marker. We also
consider partial plans - prefixes that can be expanded by
adding new items; these do not have an end marker. The
set of all possible plans may be represented by a tree, called
a decision tree, where the root is labeled by the start marker,
internal nodes are labeled by items from S, leaves are labeled
by the end marker, and each internal node vi represents a
partial plan pi = (†, a1, . . . , ai), corresponding to the labels
of nodes on the path from the root to vi. We use a tree (and
not a graph) to model the dependence of the choice of the
next item on the entire history of preceding choices.

More generally, one may also want to consider plans where
some items are unordered. For instance, when planning
an academic schedule, the set of courses taken in a given
semester may be unordered. This may be naturally incor-
porated into our model by having tree nodes that correspond
to sets of items rather than individual ones. We do not de-
scribe this generalization here.

The decision tree is built iteratively by asking users ques-
tions on its nodes. The question on a node vk is of the
form ”Given a sequence (†, . . . , ak) what should be the next
item?”, where (†, . . . , ak) are the labels of the nodes on a
path from the root to vk. To answer the user selects an
item from S. Thus, with each question a user is presented
with a context of an existing sequence. Answers to these
questions define a probability distribution on the children of
every node. We use these distributions to define a score for
every node - a score of a node is its probability to follow its
parent in node’s partial plan

Formally we define the decision tree as follows:

Definition 2.1 (Decision Tree). A Decision tree T
is a labeled tree T (V,E) with node labels from S. The root
of the tree is labeled by †, leaves may be labeled by ‡, and all
other node labels are from S \ {†, ‡}. For every node v ∈ V
the set of its children is denoted as:

Children(v) = {u|u ∈ V, (v, u) ∈ E}

In addition, two functions are defined on the nodes of tree:

• dT : V → N is a display counter. dT (v) counts number
of questions asked on v.

• cT : V → N is a choice counter. cT (v) counts how
many times v was chosen as an answer. For every
node v it must hold that

∑
u∈Children(v)

cT (u) = dT (v).

For each node v in the tree the combination of its dis-
play counter and the choice counters of its children defines a
conditional probability distribution of users choosing a par-
ticular child to follow v in a sequence. Thus we can easily
define a probability of a sequence to be an optimal one by
combining the conditional probabilities of the nodes com-
posing it. Formally it can be defined as follows:

Rome(=root) 

Florence Naples Milan 

Bologna Naples Milan Venice Florence Trento 

Ferrara Padua 

1/1 1/1 

1/1 1/1 

Figure 1: An example of a tree representing a set of plans

Definition 2.2 (Node score). We define node score
in a tree T recursively:

• For the root (node labeled with †): scoreT (v) = 1

• For a node u with a parent v, scoreT (u) = cT (u)
dT (v)

scoreT (v)

Example: To continue with our running example, a por-
tion of the tree describing (partial) Italy vacation plans is
depicted in Figure 1. The display and choice counts are
depicted as labels on the edges incoming the nodes (for
example let v, u, w be the nodes labeled with “Florence”,
“Bologna” and “Naples” respectively, then d(v) = 10, c(u) =
9 and c(w) = 1). In this figure, 10 questions were asked on
most of the nodes, and 1 question on some. Black dots
represent leafs marked with ‡. The scores of the leaves cor-
responding to some of the sequences are:

• (Rome, Florence, Bologna, Ferrara, ‡) - 4
10
· 9
10
· 1
1
· 1
1

=
0.36

• (Rome, Naples, Milan) - 4
10
· 5
10

= 0.2

• (Rome, Milan, Trento) - 2
10
· 7
10

= 0.14

The previous definitions do not place an upper bound on
the number of users that we need to ask in order to com-
pute the probability distribution for a given node. In prin-
ciple we could ask all available users for each node, but this
exhaustive approach can be prohibitively expensive in prac-
tice. Instead, we expect applications to place a limit on the
number of obtained answers. For this purpose, we define a
threshold N that denotes the desired number of users to be
probed at a node. (This may be determined, e.g., based on
the desired sampling error bounds [11].) Thus, in principle,
by asking N questions on all of the (incrementally added)
nodes (until no more new nodes are added) we can obtain a
complete tree.

Definition 2.3 (Complete tree). A complete tree T
is a decision tree in which all leaves are labeled by ‡ and for
each internal node the display counter equals N .

From the user perspective there is a semantic difference
between a complete and partial sequence - a complete se-
quence cannot be extended further (i.e. the users building
it determined that this plan ends here). It makes sense to
rank only complete sequences. This difference is naturally
reflected in our model where ‡ markers are used to distin-
guish complete sequences:
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Definition 2.4. A sequence p = (u1, . . . , uk) is a com-
plete sequence if and only if u1 is marked with † and uk is
marked with ‡. All other sequences are partial. A set of all
complete sequences in a tree T will be denoted as P(T ), and
the set of all partial sequences as P(T ).
The set of complete sequences in T containing node v will
be denoted as Pv(T ).

For example, in Figure 1 the sequence (Rome, F lorence,
Bologna, Ferrara) is a complete sequence, while sequence
(Rome,Naples,Milan) is a partial one.

Now we can formally define a set of top-k sequences as:

Definition 2.5 (Top-k sequences). A set A of com-
plete sequences is a top-k set if |A| = k and for every com-
plete path p′ in P(T ) \A:

∀p ∈ A : scoreT (p) ≥ scoreT (p′)

We call the top-1 sequence an optimal sequence.

By nature, the scores computed by sampling a crowd of
users are imprecise, in the sense that they only capture gen-
eral trends: Sequences having similar scores are likely to
have a similar “value” for the user. Consequently when two
sequences have almost the same score it practically does not
matter which one is returned as answer. Namely, it suffices
to return a sequence whose score is approximately the best.
Two types of approximations are common in the literature:
relative approximation (i.e. approximation up to a constant
multiplicative factor) and absolute approximation (i.e. ap-
proximation up to an added constant). Since we consider
here probabilities and when plan scores get very low they
become by nature not very interesting, we chose to use ad-
ditive approximation. Formally we define:

Definition 2.6 (Approximated top-k). A set A of
complete sequences is an approximated top-k set if |A| = k
and for every complete path p′ in P(T ) \A:

∀p ∈ A : scoreT (p) ≥ scoreT (p′)− ε

The above definitions define a set of optimal (up to a
constant) sequences in terms of the complete tree. Note
however that, since the size of this tree may be extremely
large (exponential in the size of the items set S), it is clearly
impractical to build it fully and ask the crowd about each
of its nodes. Instead, we employ an efficient algorithm that
intelligently traverses the tree and processes only the mini-
mal necessary parts. The algorithm discovers only a partial,
as small as possible, decision tree T , that contains sufficient
information to guarantee that the set of k highest ranked
(up to ε) sequences A in T remains the same in every pos-
sible complete tree that can be built by extending T . We
call such T a proof of correctness for A. We will show in
the sequel that the size of the proof of correctness found by
our algorithm is O( 1

ε
· |S|). Formally, we define a proof of

correctness as follows.

Definition 2.7 (Possible completion). A complete
tree T ′ is a possible completion of a decision tree T if the
following conditions hold:

1. T is a subtree of T

2. ∀v ∈ VT : dT ′(v) > dT (v)

3. ∀v ∈ VT : cT ′(v) > cT (v)

We denote a set of possible completions of T as Compl(T ).

Definition 2.8 (Proof of Correctness). A decision
tree T is a proof of a set A being a top-k set if for all
T ∈ Compl(T ):

∀p ∈ A : ∀p′ ∈ P(T ) \A : scoreT (p) ≥ scoreT (p′)− ε

Example: In the tree presented in Figure 1 the sequence
p=(Rome, Florence, Bologna, Ferrara) is the highest ranked
sequence, however if we take ε = 0.01 then this tree is not a
proof of correctness for the set {p} - indeed, there is a pos-
sible continuation of this tree - T ′, where additional 9 ques-
tions are asked (recall that N = 10) on Bologna node, and
for all these questions we get ”Trento” as an answer. Then,
in T ′, the sequence p will have a score of 4

10
· 9
10
· 1
10

= 0.036,
while a sequence p’ = (Rome, Florence, Bologna, Trento)
will have a score of 4

10
· 9
10
· 9
10

= 0.324.

3. PLANNING USING CROWD
We are now ready to present our algorithm (Algorithm 2)

for finding the optimal, up to ε plan. For brevity we will
omit below the words ”up to a constant” and whenever refer
to an optimal plan we mean optimal up to a constant.

To simplify the presentation we will focus on finding the
Top-1 sequence. Our results naturally generalize to the Top-
k case and we briefly discuss the extension in Section 7 3.

Our algorithm for finding an optimal plan will hold a deci-
sion tree (initially containing only the root) and will expand
it by asking questions on its nodes. To achieve its goal the
algorithm has to solve the two following sub-problems:

• Checking stop condition - i.e. checking whether the
current tree is a proof of correctness for the current
optimal plan

• Deciding which next question to ask in order to reach
stop condition as fast as possible

The algorithm is inspired by the well-known A∗ algorithm
[13] and the key challenge was to find the appropriate solu-
tion for these two points, that guarantee optimality.

3.1 Stoping condition
To solve the first sub-problem we define a notion of uncer-

tainty for a sequence. Uncertainty is the maximum possible
difference between a given sequence score and the highest se-
quence score in all possible completions of the current state
of the tree. Formally it is defined as follows.

Definition 3.1 (Uncertainty). In a tree T , an un-
certainty for a complete sequence p is given by:

U(T, p) = max
T ′∈Compl(T )

[
max

p′∈P(T ′)
scoreT ′(p

′)− scoreT ′(p)
]

Following definitions 3.1 and 2.8 we can use the uncer-
tainty notion to check whether a decision tree is a proof of
correctness for a sequence in it:

Lemma 3.2. A tree T is a proof of correctness for a com-
plete sequence p iff U(T, p) < ε.

3Full details can be found in the technical report [14]

700



A näıve approach to calculating the value of uncertainty
of a given decision tree would be to enumerate its possi-
ble completions. However, this approach is ineffective since
every incomplete node of a tree can be extended with an
arbitrary sub-tree. Instead, we use an efficient algorithm
(Algorithm 1) that traverses the current decision tree only
once in order to calculate the uncertainty.

Algorithm 1 Calculating U(T, p)

Assuming p = (u1, . . . , um)

1: Deltas← ∅
2: for all {v|v ∈ V, v 6= um, d(v) < N} do

Assuming v is a part of a path
p′ = (u1, . . . , uk, v1, . . . , vn = v) and
(u1, . . . , uk) is a common prefix of p and p′

(v1, . . . , vn) is the remainder of p′

3: maxCommon←
k∏
i=2

cT (ui)+N−dT (ui−1)

N

4: maxPPrime← N−dT (v)
N

n∏
i=2

cT (vi)+N−dT (vi−1)

N

5: minP ←
m∏

i=k+1

cT (ui)
N

6: δ ← maxCommon · (maxPPrime−minP )
7: Deltas← Deltas ∪ {δ}
8: end for
9: return max

δ∈Deltas
δ

This algorithm exploits the fact that the maximum dif-
ference in scores is achieved when one of the sequences gets
its lowest possible score, while some other sequence gets its
highest possible score. The algorithm goes iteratively over
all nodes in T that we can ask more questions on and for
every node v builds a sequence p′ that ends one step af-
ter v (i.e. a shortest complete sequence that contains v).
The algorithm then calculates maximum possible score dif-
ference between p′ and p (line 3-6). The maximal common
prefix of the two sequences is designated as u1, . . . , uk. To
achieve the maximum possible difference the algorithm as-
signs: highest possible score to the common part of p and p′

(line 3), highest possible score to the reminder of p′ (line 4)
and lowest possible score to the reminder of p (line 5). At the
end, the algorithm returns the maximum of the calculated
differences.

Example: While calculating the uncertainty of a path end-
ing by a node labeled “Padua” in a tree presented in Figure 1,
the algorithm will build a sequence p′ for a node “Bologna”:
p′ = (Rome, F lorence,Bologna). The common prefix con-
tains only the root, thus maxCommon = score(root) = 1,
maxPPrime = 9

10
· 4
10
· 9
10

= 324
1000

and minP = 4
10
· 5
10
· 1
10

=
20

1000
, and finally δ = 304

1000
. The same calculation will be per-

formed for all other nodes of the tree and the maximum δ
will be returned.

Theorem 3.3 formally proves the algorithm correctness.

Theorem 3.3. Given a decision tree T and a complete
sequence p in it Algorithm 1 calculates U(T, p).

Proof. The maximum possible score of a complete se-
quence p in any T ′ ∈ Compl(T ) is upper bounded by T ’s
current state - indeed there are only two options for p:

1. p ∈ P(T ), then p = (u1, . . . , uk) will get a maximum
score if for all remaining questions for every ui, ui+1

will be chosen as an answer. In this case,

max
T ′∈Compl(T )

scoreT ′(p) =

k∏
i=2

cT (ui) +N − dT (ui−1)

N

2. p is a continuation of some partial sequence p′ ∈ P(T )
(i.e. p′ is a prefix of p), then the maximum score of
p in T ′ ∈ Compl(T ) is exactly the maximum score of
p′ in T ′ (the maximum is achieved if all users select
p as the only continuation of p′), and thus it can be
calculated as in previous case.

On the other hand, the minimal possible score for a se-
quence p = (u1, . . . , uk) is achieved if for all the remaining
questions on node ui all the answers will be different than
ui+1. And its minimal score would be:

min
T ′∈Compl(T )

scoreT ′(p) =

k∏
i=2

cT (ui)

N

Finally, if we have two sequences p1 = (u1, . . . , uk, v1, . . . , vn)
and p2 = (u1, . . . , uk, w1, . . . , wm) (u1, . . . , uk is the com-
mon prefix of the two sequences) then the difference in their
scores in a possible continuation T ′ is given by:

scoreT ′(p1)− scoreT ′(p2) =(
k∏
i=2

cT ′(ui)

N

)
·

(
n∏
i=1

cT ′(vi)

N −
m∏
i=1

cT ′(wi)

N

)
And thus, it is maximized when one of the sequences gets
all of the remaining votes (including the common prefix part
of the sequence) and the second sequence (except for the
common prefix) gets no more votes.

3.2 Which questions to ask
The second sub-problem any algorithm for finding an op-

timal sequence has to solve is deciding what question to ask
next. We employ a greedy approach to solve this problem
- we ask questions on a sequence with the highest ”poten-
tial”, i.e. a sequence with a highest potential score. This
approach is effective (as we will show in section 5) and can
further be extended for identifying a bulk of ‘best questions’,
e.g. when multiple questions may be posed to users in par-
allel. For clarity we explain next in details how to choose
a single next question, then briefly consider the selection of
multiple questions.

Formally, the notion of sequence potential is defined as
follows:

Definition 3.4 (Potential score). Given a tree T
and a sequence p (partial or complete) in it:

MT (p) = max
T ′∈Compl(T )

scoreT ′(p)

In general, there may be several sequences that have the
highest potential score. Since we do not have any additional
information that allows us to prefer one over the other, we
will consider all of them in a round-robin.

Each iteration of this algorithm finds a node in the cur-
rent decision tree T and asks a question on it. The algo-
rithm stops (condition on line 3) when the uncertainty of
some node p in the tree drops below ε. When this happens,
following Lemma 3.2, T is the proof of correctness for p.
On line 4 we find a sequence (partial or complete) with the
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Algorithm 2 Finding the optimal sequence

1: T ← origin
2: i← 0
3: while P(T ) = ∅ OR min

p∈P(T )
U(p, T ) ≥ ε do

4: Candidates← {argmaxp∈P(T )M(p)}
5: TopNodes← {tN(argmaxp∈P(T )M(p)}
6: maxScore← max

p∈P(T )
M(p)

7: if maxScore > ε then
8: for all p ∈ P(T ) do
9: if M(p) = maxScore then

10: if tN(p) 6∈ TopNodes then
11: Candidates← Candidates ∪ {p}
12: TopNodes← TopNodes ∪ {tN(p)}
13: end if
14: end if
15: end for
16: p← Candidates[i mod |Candidates|]
17: Ask a question on tN(p)
18: i← (i+ 1) mod |Candidates|
19: else
20: p← Candidates[0]
21: Ask a question on lowest node of p
22: end if
23: end while
24: return argminp∈P(T ) U(p, T )

If there is more than one minimum(maximum) item,
argmin(argmax) shall return one arbitrary

maximum potential score. Following the proof of Theorem
3.3, max potential score can be calculated using a simple
formula in linear time (in the length of the sequence).

Given a sequence we have also to choose a node in it to
ask a question, this is done on line 5. We prefer to ask
questions on higher nodes as they affect more paths in the
tree. Formally we define:

Definition 3.5 (Top-node). For a path p = (v1, . . . , vk)
a top node - tN(p) is a node vi, s.t. i is the minimum item
in the set {i|1 ≤ i ≤ k, d(vi) < N} (i.e. the topmost node
at which we have not asked N questions).

The loop in lines 8-15 selects all the sequences that have
the maximum potential score. We ask questions on all of
them in the round-robin manner. Finally, on line 7 we check
for a special condition - if all of the sequences in the tree can-
not have score greater than ε, then it does not matter which
sequence we return - all of them are optimal by definition,
thus we just need to discover one complete sequence and
return it. The easiest way to do it is by asking questions on
the lowest possible node - take any sequence and ask a ques-
tion on its last node, if the answer terminates the sequence
- return the sequence, otherwise ask a question on a newly
discovered node.

Example: given a decision tree presented in Figure 1 our
algorithm will ask a question on a node labeled “Bologna”
since it’s the highest non-exhausted node of a sequence with
the highest potential (the potential of a sequence
(Rome, F lorence,Bologna, Ferrara) is 4

10
· 9
10
· 10
10

= 36
100

).
It is clear that the algorithm eventually halts - the number

of questions we can ask is bounded by the size of T (times
N ) which is finite. It is also clear that when it does, there
is a sequence p in T for which U(T, p) < ε and this is the

sequence that is returned (lines 3 and 24). Thus, following
Lemma 3.2 the algorithm returns an optimal sequence. In
Section 4 we perform a detailed analysis of the algorithm’s
efficiency.

Asking questions in bulk. A common problem in crowd-
sourcing applications is assigning a bulk of questions - we
have M users ready to answer questions, so we want to ask
them all at once to prevent wasting a valuable human time.
Algorithm 2 was constructed to ask one question at time,
but it can easily be extended to assign a bulk of questions,
by choosing questions from the following sets:

• On every node that enters Candidates list we may
need to ask up to N questions. All may be asked in
parallel

• The Candidates list may contain several nodes, all
equivalent from the algorithm’s point of view. Ques-
tions on them can thus be asked in parallel

• Finally, the Candidates list contains nodes with cur-
rently maximum potential. If there are users pending
we can also ask questions on nodes that are top-k in
potential.

There is a trade-off between utilizing many users in parallel
and asking the minimal possible number of questions since
every answer we get helps us target next questions better,
thus asking questions one by one helps minimizing the total
number of questions. On the other hand, asking questions
in parallel helps utilizing more users. Detailed analysis of
this trade-off is an interesting direction for future work.

4. EFFICIENCY AND OPTIMALITY
In this section we will discuss the efficiency and the opti-

mality of the algorithm presented above and will also provide
a lower-bound for the possible optimality ratio. To discuss
optimality we need to define a cost measure and a set of in-
puts, based on which we will compare different algorithms.

We use the number of visited nodes in a tree (i.e. number
of nodes we asked questions about) as our cost measure.
This number is in direct correlation to the actual number of
questions asked - indeed we assumed that in order to learn
a probability distribution of a continuation from a node,
one has to ask N questions on this node. Furthermore,
using number of nodes as a cost measure, rather than the
actual number of asked questions, makes reasoning about
optimality much simpler.

The class of inputs we consider is the set of all possible
complete trees composed from items in S where the differ-
ence between the shortest and the longest sequence is at
most k, for some predefined constant k. For a given k we
denote the corresponding class of inputs as Ik. As we saw
in our experiments, typical real-world inputs fall into Ik for
fairly small value of k (comparable plans of the same gran-
ularity usually contain similar number of items).

We use an instance-optimality notion as it appears in [8]:

Definition 4.1 (c-Optimality). For a class of inputs
I and a class of algorithms A, algorithm A ∈ A is c-optimal
if for every input I ∈ I and for every algorithm B ∈ A:

cost(A, I) ≤ c · cost(B, I) + c′

We refer to c as the optimality ratio. c′ is also a constant.
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We will prove next the following two results. The first
proves the instance optimality of our algorithm and the sec-
ond shows its optimality ratio is far by at most a factor of
two from the lower bound.

Theorem 4.2. Algorithm 2 (A) is 1
ε
− optimal on trees

from Ik.

Theorem 4.3. Let B be a deterministic algorithm for find-
ing an optimal (up to ε) sequence which is c − optimal on
trees from Ik. Then c ≥ 2

ε
.

To prove Theorem 4.2 we will first analyze the perfor-
mance of Algorithm 2 and show that it asks questions about
at most 1

ε
− 1 different sequences (later, in Section 5, we

show that in real-life cases our algorithm considers even less
sequences). To do this we will introduce a concept of “Can-
didates pool”, a set of nodes that our algorithm considers
to ask questions about. We will show that during the run
of the algorithm, only a limited number of nodes can enter
the pool, thus limiting the total number of different paths
considered by our algorithm.

Theorem 4.4. Algorithm 2 asks questions about at most
1
ε
− 1 different sequences during its run.

Proof. Let’s call Algorithm 2 A. Only sequences with
potential maximum score greater than ε are considered by
A, A asks questions only on the top-nodes of the sequences
in Candidates. Let Pi be the set (pool) of all top-nodes that
are part of a path with potential maximum greater than ε
after question i. It is clear that the node for question i+ 1
is chosen only from Pi. If a node v was in Pi but is not in
Pi+1 we say that node v has left the pool. Node v can leave
the pool only in one of the following cases:

1. v is no longer a top-node, i.e. all possible questions
on it were asked, but it still belongs to a path with
potential max score greater than ε. In this case one or
more children of v will be in Pi+1.

2. v no longer belongs to a path with potential max score
greater than ε, it means that no descendants of v will
be in Pj for ∀j > i.

It is clear that once a node has left the pool, it cannot re-
turn. Let Out be the set of all nodes that left the pool for
the reason 2, formally Out = {v|∃1 ≤ i ≤ m : v ∈ Pi ∧ v 6∈
Pi+1 ∧ (∀u ∈ Children(V ) : u 6∈ Pi+1)}.
After question m every path that was ever considered by A
has a node that is a part of it in either Pm or Out.
M(p) ≤ scoreT (tN(p)): For every possible completion T ′ of
T , p ∈ PtN(p)(T

′), thus following Lemma 4.6 scoreT ′(p) ≤
scoreT ′(tN(p)), by the definition of top-node, its score is
final (since the display count of its parent equals N ), thus
scoreT ′(tN(p) = scoreT (tN(p)), hence following the defi-
nition of potentially maximum score we get that M(p) ≤
scoreT (tN(p)).
This means that for every v ∈ Pm, score(v) > ε and also for
every u ∈ Out, score(u) > ε (since every node in Out was
once in the pool and its score was already final then).
No two nodes in Pm are a part of a same path (by the defini-
tion of top−node). The same is true for nodes in Out (indeed
if v has moved to Out, its children cannot even enter the pool
so they cannot be moved to Out either). There are also no

v ∈ Pm and u ∈ Out such that u, v are parts of the same
path (for the same reason). Thus all the nodes in Pm ∪Out
are parts of a different sequences. Hence (by Lemma 4.7)∑
v∈Pm∪Out

score(v) ≤ 1. And since for every v ∈ Pm ∪ Out,

score(v) > ε we have that
∑

v∈Pm∪Out
score(v) > |Pm ∪Out| ·

ε. From these two facts we get that |Pm ∪Out| < 1
ε
.

Thus algorithm A considers at most 1
ε
−1 different sequences

during its run.

Corollary 4.5. The size of the proof of correctness tree
found by Algorithm 2 is O( 1

ε
· |S|).

Proof. The proof follows from the fact that the tree con-
tains at most 1

ε
different paths, and each path contains at

most |S| nodes.

To complete the proof of Theorem 4.4 we prove the fol-
lowing two lemmas.

Lemma 4.6. For every node v ∈ V ,
∑

p∈Pv(T )

score(p) =

score(v). In particular
∑

p∈P(T )

score(p) = 1.

Proof. By induction on the tree structure. For leaves
the claim is true since Pv(T ) contains exactly one path -
from the root to v, and thus

∑
p∈Pv(T )

score(p) = score(v) by

definition.
Let v be an internal node and assume the claim is true for
its children. Let {u1, u2, ..., un} be the set of v’s children.
For every ui there is a single path from the root to ui -
{w1, w2, ...wk} (where wk is ui and wk−1 is v). Thus:

score(ui) =

k∏
j=2

c(wj)

d(wj−1)
=

c(wk)

d(wk−1)

k−1∏
j=2

c(wj)

d(wj−1)

=
c(ui)

d(v)
score(v)

Since a path containing ui cannot contain uj we can split

Pv(T ) into
n⋃
i=1

Pui(T ), and thus:

∑
p∈Pv(T )

score(p) =

n∑
i=1

∑
p∈Pui

(T )

score(p) =

=

n∑
i=1

score(ui) = score(v)

n∑
i=1

c(ui)

d(v)

Choice counters of the children sum up to a display counter

of the parent, thus
n∑
i=1

c(ui)
d(v)

= 1, and hence
∑

p∈Pv(T )

score(p) =

score(v).

Lemma 4.7. Let A be a set of nodes of a tree T , s.t.
no two nodes in A are a part of a same sequence. Then∑
v∈A

scoreT (v) ≤ 1.

Proof. Let’s build a tree T ′ from T by terminating a
path at each v ∈ A, the rest of the tree remains as is. Now,
for each v ∈ A there is a path pv in T ′ (since all of the
nodes in A are parts of different paths, there is no con-
flict). Also, scoreT ′(pv) = scoreT (v) (since we left the rest
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Figure 2: (a) Scattered-tree of depth 2 (N = 3). (b) Chain-
tree of length 2 (N = 3).

of the tree as is, all the nodes from the root to v in T and
T ′ have the same counter values). {pv|v ∈ A} ⊆ P(T ′),
thus by Lemma 4.6

∑
v∈A

scoreT (v) =
∑

p∈{p|v∈A}
scoreT ′(p) ≤∑

p∈P(T ′)
scoreT ′(p) = 1.

Now we can prove the optimality ratio of Algorithm 2.

Proof of Theorem 4.2. Let T ∈ I be some ground
truth tree and let p be the shortest optimal (up to ε) path in
it, with length l. A will consider at most 1

ε
different paths

during its run, one of them will be p. Each one of these paths
is at most l + k nodes long (following the assumption that
paths length varies by at most k nodes), thus in total the
algorithm will visit at most l+k

ε
nodes. On the other hand

any other algorithm B will have to visit at least l nodes to
discover and return p (or any other optimal path, since p is
the shortest optimal path). Thus:

cost(A, T ) ≤ l + k

ε

cost(B, T ) ≥ l

Combining this we get:

cost(A, T ) ≤ 1

ε
· cost(B, T ) +

k

ε
k
ε

is a constant independent of the input, thus following the

definition, Algorithm 2 is 1
ε
− optimal.

And finally we prove that there is no deterministic algo-
rithm that has optimality ratio better than 2

ε
. To do so,

we will show that for every deterministic algorithm we can
construct an input that will require from it to consider 2

ε
different paths, while an optimal algorithm will have to con-
sider only one path.

Proof of Theorem 4.3. For the sake of the proof we
will first define 2 special types of subtrees:

• A Chain-tree of length k is a subtree consisting of k
nodes u1, . . . , uk, where ui is the only child of ui−1

for every 1 < i ≤ k. In this subtree score(uk) =
score(u1).

• A Scattered-tree of depth k is a subtree rooted in u
of depth k where every node has exactly N children.

Every leaf in this subtree has a score of score(u)

Nk .

Figure 2 illustrates these types of subtrees.
Let’s analyze the performance of B when running on a

set of inputs {Tx|x ≥ 1}. A tree Tx will be constructed as
follows:

• Let k be the largest integer such that
(
1
2

)k
> ε

• Starting from the root, which is considered to be on
level 0, every node on level 0 ≤ i ≤ k will have 2
children, every child will have choice count of bN

2
c (If

N is odd, additional child will be added to every node
with choice count of 1 and a scattered- tree underneath
it).

• After this, on the level k we will have c leaves, each

one of them with a score of s =
(
1
2

)k
.

• By the way of selection of k we ensured that s > ε
and 1

2
s ≤ ε. Since all the leaves have the same score

and their score sum up to 1 (Lemma 4.6) we have that
c ≥ 1

2ε
and since c is an integer, c ≥ d 1

2ε
e. Let’s denote

these leaves as u1 . . . uc.

• Under each one of the ui’s we will put a chain-tree of
length M , where M is an arbitrarily large number, we
will denote the end of each chain-tree as vi

• Under each one of the vi’s except for vx we will put
a scattered- tree of depth T , such that every leaf will
have a score less than s − ε, under vx we will put a
chain-tree of length T .

• Every leaf we have now will be labeled with ‡, making
the tree complete

This tree has exactly one correct answer (under vx). Now,
suppose B does not consider a path under ui during its run,
for some i. Then, Ti is indistinguishable from Tx up until the
discovery of ui and the correct answer is under ui, thus when
running against Ti, B will not discover a correct answer,
contradicting the assumption that B is a correct algorithm.
So B considers at least c different paths during its run. On
the other hand, algorithm Bx that discovers all of the ui’s
and then proceeds asking questions only about ux can return
after asking N questions on every node of the ux chain-
tree (since under each ui all paths have a score of at most
s, discovering one path with score s is enough to return
a correct answer), thus considering only 1 path during its
run. Length of every path in Tx tree equals k + M + T .
B asks questions on at least k + 1

2ε
·M + T nodes, while

Bx asks questions on k + M + T nodes. Since M can be
arbitrarily large the optimality ratio between B and Bx is at
least 1

2ε
.

5. EXPERIMENTAL EVALUATION
In this section we will present the results of the experimen-

tal evaluation of our algorithm. During the evaluation we
explored its behavior on different data sets (both synthetic
and real) with different parameters. We also explored the ef-
fect of the algorithms parameters (such as allowed error and
the required number of answers per node). We compared
our algorithm to several baseline algorithms.

5.1 Evaluation setup
To conduct the experiments we have implemented Crowd-

Planr in C# and PHP while using MySQL as the database
engine. Its architecture is presented in Figure 3. For the
evaluation purposes the User Interface was replaced with a
simulator (called the Oracle in the sequel) that returned an-
swers to queries either from a synthetically generated dataset
or a dataset recorded from the interaction with real users.
Other parts of the system are: Plan Builder which executes
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Figure 3: CrowdPlanr architecture

the algorithm for finding the optimal sequence, Crowd Man-
ager which formulates the questions for users (by preparing
a set of possible answers) and Database which holds all the
information gathered by the system.

Algorithms. In our experiments we compared the number
of visited nodes (and the number of questions asked) by our
algorithm (as defined in Chapter 3, from now on it will called
CrowdPlanr) to the number of nodes visited by the baseline
algorithms running on the same input (since the problem
presented in this work has not been studied before, we can’t
compare our algorithm to other solutions). The baseline
algorithms that were considered are:

• Random - a näıve algorithm that randomly chooses
which question to ask next, from all possible questions
(nodes of the tree that are not exhausted yet). This
algorithm showed extremely poor performance (asked
significantly more questions than all other algorithm),
and thus we will not include this algorithm in our com-
parisons

• Greedy - an algorithm that employs a trivial greedy
approach: ask a question on a sequence that currently
has the maximal score, try to extend it as much as
possible (i.e. ask a question on a lowest node possible
of the selected sequence).

• CrowdPlanr− - compared to the greedy, our algorithm
is different in two ways, first we choose a sequence
with the highest potential score (not the highest cur-
rent score) and second we ask questions on a highest
node possible (not always trying to extend the selected
sequence). CrowdPlanr− is an algorithm that is half-
way between the Greedy and the CrowdPlanr algo-
rithms: it selects a sequence with the highest current
score (like the Greedy) and asks questions on a highest
node possible of that sequence (like the CrowdPlanr).

The halting condition for all the algorithms is the same:
they can return a sequence only if the tree they had discov-
ered so far forms a proof of correctness (recall Definition 2.8
for that sequence. The algorithms use uncertainty calcula-
tion we presented in Section 3 to check this condition.

Synthetic Data. For evaluating the effect of various prop-
erties of the input on the number of questions asked by the
algorithms we generated a synthetic datasets simulating an
input with desired properties. These datasets were repre-
sented by complete trees accessible by the Oracle. In each
experiment we changed only one property of the input while
all the others had a default value. We considered the fol-
lowing properties of the input:

• Tree depth is ranged from 5 to 10, with default value of
7. Trees that have more than 10 levels are less impor-
tant for two main reasons: first, human factor reason,
in the real world scenarios it is hard for the user from
the crowd to hold in her mind more than 10 items as a
context and give a good recommendation for continu-
ation of the sequence (usually when one wants to plan
a longer sequence, she will do the planning on different
granularity levels). Second, since we use probabilities
and the final score of the answer is a multiplication
of the probabilities of the nodes, for sequences longer
than 10 nodes the scores get very small in our setup
and hence all the sequences will be optimal up to ε
(Definition 2.6).

• Depth difference (k) is the difference in levels between
the highest and the lowest leaf in the tree. This prop-
erty shows the balance of the tree. The default value
is 0, which means that all the sequences have the same
length. We also ranged k values up to TreeDepth

3
. Our

experiments showed that this parameter also does not
affect the number of questions asked by the algorithms,
thus we will not discuss these experiments in detail.

• Skewness is a percent of votes that go in favor a specific
child of each node in tree (for example if the Skewness
is 60% then for every node that will be a child that
gets 60% of the votes). The default value for skewness
is 60%, we also checked skewness of 50% and 70%.

Real Data. To ensure that our algorithm performs well in
real life we evaluated the number of questions asked by it
(and its baseline competitors) on two datasets coming from
different real-world applications:

1. A Large dataset containing a record of 20,000 vacation
trips in Europe. The trips included 10 different cities
and were approximately of the same length (in terms
of visited cities). This dataset was obtained from a
traveling agency, we omit its name for privacy reasons.

2. A Medium size dataset containing answers to a ques-
tion ”In which order to watch Star Wars films?”. It
was obtained by comparing the popularity of the pro-
posed orders on various web sites. This question is
asked frequently on the internet and has 100,000,000
results in web search engines. It has 6! (=720) possible
answers (some of them, of course, completely wrong).
An important property of this dataset is that there are
only a small number of “good” orders, while the rest
have very little support.

All the datasets initially contained the ranking of the se-
quences and were translated into a complete tree that was
used by the Oracle to answer queries. We believe this is a
good approximation of a real-life interaction with the users,
because we assume that the users know the rating of a com-
plete sequence and thus their rating of the partial sequence
(i.e. the answer to our questions) will be consistent with it.

Algorithm parameters. In addition to the properties of
the input we evaluated how the parameters of the algorithm
affect the number of nodes visited by it (and the number
of questions asked by it). We evaluated the effect of the
following parameters:

705



80

160

320

640

1280

2560

5120

10240

5 6 7 8 9 10 11

# 
o

f 
q

u
e

st
io

n
s 

Tree depth 

CrowdPlanr

CrowdPlanr-

Greedy

(a) Varying tree depth

1

10

100

1000

10000

10 25 50 100

# 
o

f 
vi

si
te

d
 n

o
d

e
s 

N 

CrowdPlanr

CrowdPlanr-

Greedy

(b) Varying N

0

500

1000

1500

2000

0.01 0.02 0.05 0.07 0.1

# 
o

f 
q

u
e

st
io

n
s 

as
ke

d
 

Allowed error (ε) 

CrowdPlanr

CrowdPlanr-

Greedy

(c) Varying ε

0

100

200

300

400

500

600

700

800

900

5 6 7 8 9

# 
o

f 
q

u
e

st
io

n
s 

as
ke

d
 

Tree depth 

50%

60%

70%

(d) Varying skewness, CrowdPlanr

0

200

400

600

800

1000

1200

1400

1600

5 6 7 8 9

# 
o

f 
q

u
e

st
io

n
s 

as
ke

d
 

Tree depth 

50%

60%

70%

(e) Varying skewness, CrowdPlanr−

0

5000

10000

15000

20000

25000

5 6 7 8 9

# 
o

f 
q

u
e

st
io

n
s 

as
ke

d
 

Tree depth 

50%

60%

70%

(f) Varying skewness, Greedy

Figure 4: Experiments results

• Allowed error (ε) The default value of an allowed error
in our experimens was 0.01, in addition we ranged it
from 0.002 to 0.1.

• Number of questions per node (N ) is chosen based on
a statistical data, reliability of the crowd and budget
constraints. We use a default value of 10, but also run
experiments with N = 50 and N = 100.

5.2 Synthetic data evaluation results
In every experiment for each of the algorithms we mea-

sured the number of nodes visited (node is considered visited
if there was at least one question asked about it) and the
total number of questions asked. For each experiment we
executed the algorithms on 3 datasets with the same prop-
erties and averaged the results.

The experiments were modeled in the following way: gen-
erated datasets were read by the Oracle and all the questions
asked by the algorithms were redirected to the Oracle which
answered them basing on an input data set in a determin-
istic way (i.e. several run using the same oracle would yield
the same results). The Oracle also collected statistics about
asked questions from which we derived the results of the
experiments.

The results of the experiments are summarized in Figure
4, next we will breifly describe every experiment.

Varying the depth of the tree. In this experiment we eval-
uated the effect of a tree depth. All other parameters re-
mained default. The results are presented in Figure 4(a).
Note that the Y axis has a logarithmic scale and it rep-
resents the number of questions that were asked. The X
axis represents the depth of the tree. We can see that the
Greedy algorithm performs significantly worse than both the
CrowdPlanr and the CrowdPlanr− algorithms. Also, we can

see that the difference between the CrowdPlanr and the
CrowdPlanr− grows with the depth of the tree.

Varying the data skewness. In this experiment we exam-
ined the effect of data skewness on the number of questions
asked by the algorithms. We tested skewness levels of 50%,
60% and 70%. All other parameters had default values. The
results of the experiment are presented in Figure 4(d-f). As
can be seen in this graph, the more data is skewed the easier
it is for the algorithm to find a correct answer. The most
prominent effect skewness has on the Greedy algorithm.

Varying the number of questions per node. In this exper-
iment we evaluated the impact of different values for N (10,
25, 50, 100) on the number of nodes visited by the algorithms
(the total number of questions is less interesting since it is
expected to be linearly dependent on N ). All other param-
eters had a default value. The results of this experiment are
shown in Figure 4(b). Theoretically we have proven that our
algorithm is instance-optimal and its optimality ratio does
not depend on N , that means that CrowdPlanr algorithm
is expected to visit the same number of nodes for any value
of N . In practice it means that CrowdPlanr can be used for
different approaches with different audience, crowd size and
system needs. The graph shows that the reality meets the
expectation.

Varying allowed error. In this experiment we evaluated
the effect of the allowed error value on the number of ques-
tions asked by the algorithms. For this we left all the pa-
rameters with default values and ranged ε from 0.01 to 0.1.
The results are summarized in Figure 4(c). Here again, the
Y axis has a logarithmic scale and represents the number of
questions asked by the algorithm. The X axis represents the
value of ε. We can see that the effect of the allowed error
is much larger on the Greedy algorithm than on the other
two. One possible explanation to this is that the Greedy
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strategy causes the algorithm to “jump” all over tree with-
out really reducing the uncertainty. Increasing the allowed
error sets the uncertainty bar lower, thus saving the algo-
rithm work. Another interesting property of this graph is
that the number of questions asked by the CrowdPlanr− al-
gorithm decreases relatively slow with the increase of ε. A
possible explanation for this can be that the selection crite-
ria of the sequence to work on is wrong, which causes the
algorithm to ask questions on a wrong sequence, and since
it asks questions on a highest possible node, the mistake is
not revealed fast enough.

Additional experiments. In our last experiment we ex-
plored the behavior of all of the algorithms - how many
questions were asked on every level of a decision tree. This
tells us how “focused” each one of the algorithms is. For
this experiment, we fixed the tree depth to be 10 and left
all other parameters to have default values. The results are
presented in Figure 5.
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Figure 5: Questions asked on each level

In this graph the X axis represents the level in the tree
(0 represents the root, 9 represent leafs) and Y axis rep-
resents the normalized number of nodes discovered by the
algorithms (the normalization is done by dividing the re-
sult of each algorithm by the result of the worst algorithm).
This can show how many unnecessary questions were asked.
When CrowdPlanr and CrowdPlanr− are compared to the
Greedy we can see that on the higher levels Greedy performs
better than CrowdPlanr and CrowdPlanr−. In this case the
greedy strategy to go after the local maximum seems to be
a good choice, however starting from the level 4, Greedy’s
performance gets dramatically worse.

5.3 Real data evaluation
In this experiment we analyzed the number of nodes vis-

ited by each one of the algorithms when executed on a real-
world data sets. The parameters of the algorithms were set
to default values. The experiment was performed on two
real-world data sets: trip planning and star wars watching
order. The results are shown in Figure 6.

Here the Y axis represents the number of visited nodes.
As we can see, the CrowdPlanr algorithm is slightly better
than the CrowdPlanr− algorithm and both are significtanly
better than the Greedy algorithm. We conclude from this
experiment that the behavior of all the algorithms seems to
be the same as on synthetic data.

6. RELATED WORK
Using the crowd as a source of knowledge, and for solving

problems that computers fail to solve, has attracted much
research in recent years [7]. The planning problem that we
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Figure 6: Real-world datasets

consider here is such an instance, as the goal, i.e, the notion
of ”best output”, is hard to formalize.

Much research was directed to find ways to effectively col-
lect data from crowd, for example using games (e.g. [6], [26],
[18]) or via payment (e.g. [20]). Others considered the de-
velopment of unified model to allow uniform data collection
from both humans and machines [22]. In particular, research
has been directed in the Databases community to develop-
ment of DB systems that allow to specify which parts of the
data should be crowdsourced (e.g. CrowdDB [9], Deco [23],
Qurk [19]). Crowdsoucing was also suggested as method for
data cleaning, integration and analytics, entity resolution,
schema expansion (e.g. [12], [24], [27], [16]). Crowdsourcing
attracted also interest from the AI community with research
aiming at dynamic workflow executions that optimally use
the crowd for accomplishing a given complex task (e.g. [4],
[15]). This is complementary to our work where users are
used to identify and order the items (potentially the to-be-
executed workflow components) needed to best accomplish
an informally specified goal.

Minimization of the cost (measured in terms of the num-
ber of questions that are posed to the crowd) and of the
expected error are important goals in crowd-based query
processing ([2], [21]). Closest to our work are works that
consider max and top-k query processing with the crowds,
that involve ordering of query results using the crowd. For
example, the problem of finding maximum element has been
investigated in [12], considering how, given set of comparison
results, one determines an element which is most likely to be
the maximum, and which future comparisons will be most
effective. Other examples are [25] that provides efficient tun-
able heuristics and [5] that studies complexity lower/upper
bounds. As explained in the Introduction, a key difference
between these previous works on max/top-k (and sorting, in
general) processing and ours is the inherent dependency that
exists between items in the plan. Unlike max/top-k process-
ing where users can be asked to compare pairs of individual
elements, planning requires a global view of the (preceding
sub-)plan, and its possible/ideal completions. These previ-
ous algorithms are thus not applicable here. The optimal
choice of questions to pose to the crowd has also been con-
sidered in [2] to reduce the uncertainty/error in aggrega-
tion functions over crowd answers. Here again a key differ-
ence from our work is the independence assumption among
the aggregated data items. The dependency exhibited in
planning problems requires developing corresponding uncer-
tainty measures, and consequently different algorithms.

7. CONCLUSION
In this paper we propose to use the power of the crowd

for answering planning queries, when the goal, i.e, the no-
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tion of best plan, is hard to formalize. We introduce a sim-
ple generic model for modeling plans and for interpreting
crowd’s answers to questions about them. Based on this
model, we present an effective algorithm for identifying the
(approximately) best answer using the crowd. The algo-
rithm builds the desired plans incrementally, choosing at
each step the best questions so that the overall number of
questions that need to be asked is minimized. We prove
the algorithm to be instance-optimal for a large common
class of planning queries and data instances, showing that
the optimality ratio that it achieves is the best possible,
and demonstrate experimentally the algorithm’s effective-
ness and efficiency.

We focused here on identifying the (approximated) best
plan. More generally, one may want to identify top-k best
answers. Our algorithm naturally generalizes to this context
by continuing the execution after a top-1 sequence is found.
Intuitively, nodes that are part of the returned sequence
should be marked in the tree and ignored when candidates
are considered. We omit the details for space constraints
and only note that all of the results presented here for the
Top-1 case (including optimality) extend for Top-K (full de-
tails can be found in the technical report [14]).An interesting
challenge for future research is identifying heuristics that can
be applied when some prior knowledge about the expected
answer distribution, the tree structure, or the specific users
expertise is available. How to obtain such information is
also an interesting questions. Another possible extension to
our algorithm, to be considered in the future research, could
be to allow creating plans not necessarily in a successive or-
der (for example when parts of the plan are known and one
wants to use the crowd to fill in the gaps).
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