
Making Queries Tractable on Big Data with Preprocessing
(through the eyes of complexity theory)

Wenfei Fan
Informatics, University of Edinburgh &

RCBD and SKLSDE Lab, Beihang University

wenfei@inf.ed.ac.uk

Floris Geerts
University of Antwerp

floris.geerts@ua.ac.be

Frank Neven
Hasselt University &

transnational University of Limburg

frank.neven@uhasselt.be

Abstract
A query class is traditionally considered tractable if there
exists a polynomial-time (PTIME) algorithm to answer its
queries. When it comes to big data, however, PTIME al-
gorithms often become infeasible in practice. A traditional
and effective approach to coping with this is to preprocess
data off-line, so that queries in the class can be subsequently
evaluated on the data efficiently. This paper aims to pro-
vide a formal foundation for this approach in terms of com-
putational complexity. (1) We propose a set of Π-tractable
queries, denoted by ΠT0

Q, to characterize classes of queries
that can be answered in parallel poly-logarithmic time (NC)
after PTIME preprocessing. (2) We show that several natu-
ral query classes are Π-tractable and are feasible on big data.
(3) We also study a set ΠTQ of query classes that can be ef-
fectively converted to Π-tractable queries by re-factorizing
its data and queries for preprocessing. We introduce a form
of NC reductions to characterize such conversions. (4) We
show that a natural query class is complete for ΠTQ. (5)
We also show that ΠT0

Q ⊂ P unless P = NC, i.e., the set
ΠT0

Q of all Π-tractable queries is properly contained in the
set P of all PTIME queries. Nonetheless, ΠTQ = P, i.e., all
PTIME query classes can be made Π-tractable via proper re-
factorizations. This work is a step towards understanding
the tractability of queries in the context of big data.

1. Introduction
Challenges introduced by big data suggest that we depart

from the traditional view on tractability. As found in most
textbooks (e.g., [1, 33]), a class of queries is traditionally
considered tractable if there exists an algorithm for answer-
ing its queries in time bounded by a polynomial (PTIME) in
the size of the input, i.e., a database and a query. In other
words, a class of queries is feasible from a theoretical per-
spective if its worst-case time complexity is PTIME, while
a class is considered difficult to solve when it is NP-hard.

In practice, however, PTIME queries do not always serve
as a good yardstick for tractability. This is more evident in
the context of big data. Consider a dataset D of 1 PetaByte
(PB, 1015 bytes). Assuming the fastest Solid State Drives
(SSD) with disk scanning speed of 6GB/s [38], a linear scan

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 9
Copyright 2013 VLDB Endowment 2150-8097/13/07... $ 10.00.

of D takes 166,666 seconds; that is, 46 hours, or 1.9 days!

A popular traditional yet effective approach to coping
with this is to preprocess a database by, e.g., building in-
dices, which are then used to accelerate query evaluation.
When the data is mostly static or when the indices can be
maintained efficiently, this preprocessing step can be consid-
ered as an off-line process with a one-time cost. Further, as
the indices typically serve to answer a multitude of queries,
this one-time cost can often be ignored, and the actual com-
putation cost is measured in terms of the online evaluation
of the queries with the indices. The need for such prepro-
cessing becomes even more evident when querying big data.

Example 1: Consider a class Q1 of point-selection queries.
A query Q1 ∈ Q1 on a relation D is to find whether there
exists a tuple t ∈ D such that t[A] = c, where A is an
attribute of D and c is a constant. A naive evaluation of Q1

would require a linear scan of D. In contrast, we can first
build a B+-tree on the values of the A column in D [34], in
a one-time preprocessing step off-line. Then we can answer
all queries Q1 ∈ Q1 on D in O(log |D|) time, by capitalizing
on such indices. That is, we no longer need to conduct a
linear scan of the data when processing each query in Q1.
When D consists of 1PB of data, we can get the results in
seconds with the indices rather than 1.9 days. 2

This example demonstrates that characterizing a query
class as being in PTIME does not tell us much about its fea-
sibility on big data. Instead, one needs to revise the tradi-
tional notion of tractability to provide a dichotomy between
those queries that can be made feasible on big data after
appropriate preprocessing and those for which preprocess-
ing does not help. In addition to building indices as shown
in the example, many more preprocessing strategies have
proven effective and are being widely used in practice. These
include (i) query-preserving compression schemes that pre-
serve the answers to a class of queries rather than preserving
the data itself [16, 24, 31, 32], (ii) building views such that
queries can be answered using the views without accessing
the original big data [1,23,30]; and (iii) bounded incremen-
tal algorithms [35] that, after evaluating queries once on the
original data (as preprocessing), incrementally evaluate the
queries in response to the changes to the data such that
the cost of query evaluation is a function of the size of the
changes, rather than the size of the original big data [15,37].

While it has been a common practice to speed up query
evaluation with preprocessing, a formal framework is not
yet in pace to answer a number of fundamental questions.
What query classes can be considered tractable in this set-
ting? How large is the set of all query classes that are
tractable with preprocessing? Is every class of PTIME

685

LBDS D f.G; .u; v//g

SLBDS;‡BDS D fhG; .u; v/ig SLBDS;‡ 0 D fh!; .G; .u; v//ig

�1.G; .u; v// D G

�2.G; .u; v// D .u; v/

� 01.G; .u; v// D �

� 02.G; .u; v// D .G; .u; v//

preprocess G only preprocess nothing
logarithmic time answering PTIME answering

…-tractable not …-tractable

re-factorization

Figure 1: Two factorizations ΥBDS and Υ′ of the de-
cision language LBDS for BDS

queries tractable on big data when preprocessing is allowed?
If not, can it be made tractable by means of efficient trans-
formations such that appropriate preprocessing is possible
and hence, it is feasible to answer its queries on big data? Is
there a complete problem for the set of all queries that can
be made tractable with preprocessing, just like our familiar
NP-complete problems for the class NP [33]?

Contributions. This paper aims to provide a formal foun-
dation, in terms of computational complexity, for studying
the tractability of query classes in the context of big data
with preprocessing. We note that preprocessing is just one of
the approaches to handling big data. Several models have
been proposed that depart from the traditional computa-
tion model by distributing data and resources across mul-
tiple computing nodes, and measuring complexity in terms
of coordination or communication cost instead of time (see,
e.g., [2, 3, 28, 29]). These approaches are orthogonal to the
model proposed here (see Section 2 for a detailed discussion).

(1) Π-tractable queries. We propose a notion of Π-tractable
queries. Consider a query class Q in which each query Q
operates on some database D. We say that Q is Π-tractable
if there exists a polynomial Π(·) such that for any database
D, we can convert D into D′ in time bounded by Π(|D|),
and moreover, for all queries Q ∈ Q, Q(D) can be computed
as Q(D′) in NC, i.e., in parallel polylog-time in the sizes |D|
and |Q| with polynomially many processors.

We denote by ΠT0
Q the set of all Π-tractable query classes.

That is, after a preprocessing step on D in PTIME, all
queries in Q defined on D can be subsequently answered
in polylog-time by leveraging parallel computation. We will
justify the choice of complexity classes (PTIME for prepro-
cessing and NC for online query evaluation) shortly.

When we study the complexity class of all Π-tractable
queries, we consider w.l.o.g. Boolean query languages Q [1],
as usual. That is, for each query Q ∈ Q and database D,
the answer Q(D) of Q in D is either true or false.

(2) Case studies. As examples, we show that several natural
query classes are Π-tractable. In addition to relational selec-
tion queries discussed in Example 1, ΠT0

Q includes reacha-
bility queries on graphs, minimum range queries on static
arrays [18], queries for computing lowest common ances-
tors in trees and directed acyclic graphs (DAGs) [5], and
a class of graph queries for breadth-depth search [21]. We
also present strategies for preprocessing data, by means of
query-preserving compression, query answering using views
and bounded incremental computation, such that queries
can be subsequently evaluated efficiently on big data.

(3) Making queries Π-tractable via NC reductions. While
some query classes Q are not Π-tractable, Q can actually

be transformed to a Π-tractable query class by means of re-
factorizations, which re-partition the data and query parts
ofQ and identify a data set for preprocessing, such that after
the preprocessing, its queries can be subsequently answered
in parallel polylog-time, i.e., Q can be made Π-tractable.

Similarly, a decision problem can be made Π-tractable if
each of its instances can be factorized into a pair 〈D,Q〉,
where D denotes data and Q is a query in a Boolean query
language Q, such that the answer to the instance is true if
and only if Q(D) is true and moreover, Q is Π-tractable.

Intuitively, a factorization identifies a data part D from a
problem instance for preprocessing. After D is preprocessed,
the query part Q of the instance can be answered efficiently.

Example 2: Consider Breadth-Depth Search (BDS) [21]:

◦ Input: An undirected graph G = (V,E) with a num-
bering on the nodes, and a pair (u, v) of nodes in V .

◦ Question: Is u visited before v in the breadth-depth
search of G induced by the vertex numbering?

A breadth-depth search starts at a node s and visits all its
children, pushing them onto a stack in the reverse order
induced by the vertex numbering as the search proceeds.
After all of s’s children are visited, the search continues with
the node on the top of the stack, which plays the role of s.

Figure 1 shows two factorizations of the decision language
LBDS associated to BDS: ΥBDS that identifies G as the data-
part and (u, v) as the query part; and Υ′ that treats both G
and (u, v) as query part, leaving nothing to be preprocessed.
The definition of factorizations will be given in Section 3.
We will see later that ΥBDS makes BDS Π-tractable. 2

We denote the set of all decision problems (resp. query
classes) that can be made Π-tractable as ΠTP (resp. ΠTQ).
These are important since after all, what practitioners want
to know is whether a query class or a problem can be prop-
erly factorized and be made Π-tractable.

To characterize transformations that convert a problem
(query class) to a Π-tractable counterpart, we define a form
of many-one reductions, denoted by 6NC

fa , which are in NC,
i.e., also in parallel polylog-time. We show that such reduc-
tions are compatible with ΠTP: if A 6NC

fa B and B is in ΠTP,
then so must be A; similarly for ΠTQ. Moreover, they are
transitive, i.e., if A 6NC

fa B and if B 6NC
fa C, then A 6NC

fa C.
These NC reductions allow us to reduce our problems to an-
other that we know how to solve. Furthermore, they help
us determine whether a problem can be made Π-tractable.

(4) A complete problem for ΠTP. We identify a natural

problem, namely, the Breadth-Depth Search problem (BDS)
(see [21]), and show that BDS is complete for ΠTP under
6NC

fa . That is, BDS is one of the “hardest” problems in ΠTP

to which all problems in ΠTP can be transformed via NC re-
ductions 6NC

fa . This yields an effective method to determine
whether a given problem can be made Π-tractable: if the
problem can be reduced to BDS via proper factorization of
its instances, then it can be made Π-tractable.

Better still, we show that all query classes in P can be
made Π-tractable via 6NC

fa reductions, where P is the set of
all query classes that can be evaluated in PTIME. That is,
although it may be infeasible to evaluate a class Q of PTIME
queries on big data without preprocessing, queries in Q can
actually be transformed to Π-tractable queries by means of
re-factorizations and appropriate preprocessing.

686

(5) Separation of ΠT0
Q and P. To clarify the difference be-

tween ΠT0
Q and P, we introduce another form of NC reduc-

tions, referred to as F-reductions 6NC
F . F-reductions trans-

form a query classQ to another classQ′, and the data sets of
Q to the data sets of Q′, without re-factorizations. We show
that NC ⊆ ΠT0

Q ⊆ P, but ΠT0
Q 6= P unless P = NC, which is

a longstanding open problem [21]. That is, while all queries
in ΠT0

Q are in PTIME and all NC queries are Π-tractable, not
all PTIME query classes are Π-tractable or can be reduced
via 6NC

F to any Π-tractable query class, unless P = NC.

These results tell us that ΠT0
Q is a proper subset of P

(unless P = NC). Nonetheless, many practical query classes
can be made Π-tractable via proper factorizations.

Justification. This work is just one step towards devel-
oping a guidance for us to search for feasible solutions to
query processing on big data. It aims to incite interest in
the study of tractable queries on big data. Below we provide
justification and intuition for the definition of ΠT0

Q.

(1) We allow a PTIME preprocessing step in ΠT0
Q for the

following reasons. (a) PTIME plays the historical role of
tractable query classes [22], and moreover, is robust and
well-studied [21]. (b) As remarked earlier, preprocessing is a
one-time price and is performed off-line. (c) The restriction
to PTIME ensures that the result of the preprocessing step
is bounded by a polynomial and therefore, rules out unrea-
sonably large indices. Of course, there are always settings in
which PTIME (or even linear time) might be too steep a price
to pay, even when the computation is only performed once.
For those applications one might want to require preprocess-
ing to be performed in NC or in MapReduce [28] or its vari-
ants thereof (see Section 2). If we choose NC, then ΠT0

Q co-
incides with NC, in which many useful query classes cannot
be expressed. Since MapReduce is not yet as robust or well-
understood as PTIME, we opt here for PTIME to focus on
the main properties of query answering with preprocessing,
and defer restricted versions of our model to future work.

(2) For the query processing step in ΠT0
Q, we envisage a

complexity class that, on one hand, is large enough to model
logarithmic searches in indices or accommodate polylog-time,
and on the other hand, can be regarded feasible on big data.
For this reason, we consider parallel polylog-time, that is, the
class NC. As shown in Example 1, parallel polylog-time is
feasible on big data. Even though alternatives exist, e.g.,
LogP [10] and BSP [40], NC remains to be the most preva-
lent model capturing parallel-time complexity [21] that is in-
dependent of any particular PRAM architecture. Moreover,
like PTIME, NC is robust and well-understood. Further-
more, NC is one of the few parallel complexity classes whose
connections with classical sequential complexity classes have
been extensively studied (see, e.g., [21]).

(3) We focus on databases D that are either static or allow
efficient incremental preprocessing. After a database D is
preprocessed and yields D′, D may be updated by change
∆D. It may be too costly to preprocess D ⊕ ∆D again
starting from scratch. Instead, we assume incremental pre-
processing of D⊕∆D in response to ∆D, i.e., by computing
∆D′ such that the outcome of processingD⊕∆D is the same
as D′⊕∆D′. In practice, ∆D is typically small. When ∆D
is small, the change ∆D′ to D′ is often small as well, and
is much less costly to find than to conduct the entire pre-
processing of D⊕∆D. We use incremental preprocessing to

avoid paying the price of the PTIME complexity of the en-
tire preprocessing process. Moreover, we advocate bounded
incremental algorithms [35] to maintain preprocessed data
(see Section 4). if such algorithms exist. A more compre-
hensive account of dynamic data is deferred to future work.

Organization. Section 2 reviews related work. Section 3
introduces ΠT0

Q,ΠTP and ΠTQ, followed by several natural
classes of ΠT0

Q in Section 4. Section 5 defines NC reductions

6NC
fa . Section 6 shows that BDS is complete for ΠTP. Sec-

tion 7 proposes the notion of F-reductions, and shows that
unless P = NC, ΠT0

Q ⊂ P. Finally, Section 8 identifies open
issues in connection with Π-tractable query classes.

2. Background and Related Work
This work is related to prior work on complexity classes

within P, complexity models of MapReduce and its variants,
and complexity classes defined in terms of preprocessing.

P and NC. The complexity class P consists of all decision
problems that can be solved by a deterministic Turing ma-
chine in polynomial time (PTIME), i.e., in nO(1) time, where
n is the size of the input. A number of problems have been
shown P-complete, i.e., they are in P, and each problem in
P can be reduced to them by using NC reductions (see [21]
for a survey of P-complete problems). In this paper we also
use P to denote the set of all PTIME query classes.

Several complexity classes within P have been well stud-
ied, notably those defined by sublinear space bounds.

◦ The class NL consists of all decision problems that can
be solved by a nondeterministic Turing machine that
uses space bounded by O(logn).

◦ The class polylog-space consists of all decision problems
solvable with workspace bounded by O(logO(1) n), by
a deterministic or nondeterministic Turing machine.

It is known that NL ⊆ polylog-space ∩ P, but P 6= polylog-
space (see, e.g., [26], for details).

The parallel complexity class NC, known as Nick’s Class,
consists of all decision problems that can be solved by taking
O(logO(1) n) time on a PRAM (parallel random access ma-

chine) with nO(1) processors (see, e.g., [21,26]). It has been
shown that there are natural query classes that capture NC
over ordered relational databases [39]. A problem in NC is
generally considered highly parallel feasible, i.e., can be effi-
ciently solved on a parallel computer [21]. It is known that
NL ⊆ NC ⊆ polylog-space, and NC ⊆ P. However, a major
open question is whether NC = P, which is widely viewed as
an analogy to the question whether P = NP [21, 26].

NC reductions are compatible with P: if problem A is NC
reducible to B and B is in P, then A is also in P.

Parallel and distributed processing. In the database
community, the term big data is often associated with par-
allel and distributed query processing. We next discuss work
related to complexity models for distributed query evalua-
tion. We refer to [7] for a more system-oriented overview.

It is observed in [29] that circuits and PRAM may not be
accurate for parallel systems; it puts forward the massively
parallel (MP) model of computation to better capture com-
putation with a vast number of servers (in the order of tens
of thousands), in a setting when the key bottleneck is the
number of synchronization steps or rounds. For this reason,
the MP model disregards the complexity of computation lo-

687

cal to each server, and only takes the number of global syn-
chronization steps into account. The latter is sometimes also
referred to as coordination complexity, a term introduced
by [25]. The focus of [29] is to identify which fragments of
conjunctive queries can be evaluated in a single round.

MapReduce [12] is a popular programming paradigm for
handling big data. In this framework, [3] studies the evalua-
tion of join queries, and takes the amount of communication,
measured as the sum of the sizes of the input to reducers, as
a complexity measure. Evaluation of transitive closure and
datalog queries in MapReduce has been investigated in [2,4].

Observe that the prior work aforementioned falls within
a larger program that also investigates which query classes
can be considered tractable within various models of com-
putation. Our work focuses on preprocessing and therefore,
can be seen as orthogonal to these approaches.

There has also been recent work on simulating PRAM via
MapReduce [28], which shows that a large class of NC algo-
rithms can be implemented in the MapReduce framework,
and moreover, if an NC algorithm takes t time, than its cor-
responding MapReduce counterpart takes O(t) MapReduce
rounds. There have also been attempts to revise the PRAM
model by requiring log n processors instead of nO(1) [13].

Preprocessing. As remarked earlier, it is common for
database people to preprocess data by building indices, cre-
ating views and compressing the data, among others. It has
also been used to define complexity classes (e.g., [8,11,19]).

A notion of compilable classes is proposed in [8]. For a
complexity class C, a problem is said to be compilable to C
if each of its instances can be partitioned into a fixed part
x and a varying part y, and moreover, after preprocessing
x by a poly-size function f(·), solving 〈f(x), y〉 is in class
C. It differs from this work in the following. (1) The focus
of [8] has been on intractable classes C, namely, NP and be-
yond. As a result, there exist complete problems for C and
moreover, any C-complete problem leads to a problem com-
plete for the compilable class to C under PTIME reductions.
In contrast, we consider NC for query answering, and re-
ductions for establishing complete problems for NC are not
yet settled. For instance, when NC reductions are used, all
problems in NC reduce to a trivial problem, which is not
very helpful when studying the complete problem for ΠTP

(under 6NC
F). (2) There is no limit on the time needed by the

preprocessing function f(·) of [8], except that the size of the
“compiled structure” f(x) is bounded by a polynomial of
|x|. Here f(·) could be even non-recursive, a rather imprac-
tical setting. In contrast, we require that the preprocessing
step of Π-tractable queries is in PTIME.

In parameterized complexity theory [19], fixed-parameter
tractability can be characterized in terms of kernelization,
which reduces a given instance of a parameterized problem
in PTIME to an instance whose size is bounded in terms
of the parameter alone and does not depend on the size
of the original instance. Here kernelization can be viewed
as preprocessing. It differs from our work as follows. (1)
Kernelization is defined on the parameter of an intractable
problem, which captures the main source of the intractabil-
ity of the problem. In contrast, we preprocess the data of Π-
tractable queries by, e.g., building auxiliary structures such
as indices and views in addition to compressing the data,
such that the queries can then be evaluated on the data
efficiently. (2) When the parameter of a problem is not

assumed fixed, solving the problem is not in PTIME after
kernelization. In contrast, after preprocessing of the data of
Π-tractable queries, the queries can be evaluated in NC.

Pseudo sublinear-time algorithms aim to solve problems
in sublinear-time [11], after appropriate preprocessing. The
study of sublinear-time algorithms has focused on property
testing via approximation and randomization (see [11, 36]
for surveys), which we do not allow here. Moreover, com-
plexity classes and complete problems studied in this work
are not considered by the prior work. On the other hand,
when a problem is not in ΠTP, we may develop Π-tractable
approximate or randomized algorithms for it.

Preprocessing has also proven effective in handling NP in-
stances in cryptographic applications, via compression [24].
It is also related to partial evaluation, which is widely used
in compiler generation, code optimization and dataflow eval-
uation (see [27] for a survey). Given a function f(s, d) and
part of its input s, partial evaluation conducts the part of
f(·)’s computation that depends only on s, and generates a
partial answer, i.e., a residual function f ′(·) that depends
on the as yet unavailable input d. The generation of f ′(·)
can also be viewed as preprocessing.

3. Tractable Queries on Big Data
In this section, we first formally define Π-tractable query

classes (ΠT0
Q). We then present decision problems and query

classes that can be made Π-tractable (ΠTP and ΠTQ).
We start with some notations.

Notations. Following the convention of complexity theory
[33], we assume a finite alphabet Σ of symbols to encode
both data and queries. A database can be encoded as a
string D ∈ Σ∗ just like in a Turing machine, with necessary
delimiters; similarly for a query Q. The length of a string
x ∈ Σ∗ is denoted by |x|. Hence |D| (resp. |Q|) denotes the
size of a database D (resp. a query Q).

A language S of pairs is a subset of Σ∗×Σ∗. We use S
to encode a class Q of Boolean queries such that for each
〈D,Q〉 ∈ S, Q is a query in Q, D is a database on which
Q is defined, and Q(D) is true. In other words, S can be
considered as a binary relation such that 〈D,Q〉 ∈ S if and
only if Q(D) is true. We refer to S as the language for Q.

To be consistent with the complexity classes of decision
problems, we consider Boolean queries in this work. For in-
stance, Q may be the class Q1 of Boolean point selection
queries given in Example 1. This does not lose general-
ity: given a non-Boolean query Q′ and a database D, one
can write a Boolean query Q to determine, given a tuple t,
whether t ∈ Q′(D). There is a natural analogy from this to
the connection between search problems and decision prob-
lems in complexity theory (see, e.g., [21]).

We say that a language S of pairs is in complexity class
C if it is in C to decide whether a pair 〈D,Q〉 ∈ S. For
instance, C may be the sequential complexity class P or the
parallel complexity class NC, among other things.

Π-tractable queries. Using languages of pairs to represent
queries, we are now ready to define Π-tractable classes of
queries, denoting tractable queries with preprocessing.

Definition 1: A language S of pairs is Π-tractable if there
exist a PTIME preprocessing function Π : Σ∗ → Σ∗ and a
language S′ of pairs such that for all D,Q ∈ Σ∗,

688

◦ 〈D,Q〉 ∈ S if and only if 〈Π(D), Q〉 ∈ S′, and

◦ S′ is in NC.
We say that a class Q of queries is Π-tractable if S is Π-

tractable, where S is the language of pairs for Q. We use
ΠT0

Q to denote the set of all Π-tractable query classes. 2

Intuitively, function Π(·) preprocesses data D and gen-
erates another structure D′ = Π(D), in PTIME. After this,
for all queries Q ∈ Q that are defined on D, Q(D) can be
answered by evaluating Q(D′) in parallel polylog-time in the
sizes |D′| and |Q|. In other words, all the queries in the set
QD = {Q | Q ∈ Q, Q is defined on D} can then be answered
in D′ in NC. Note that |D′| ≤ p(|D|) for a polynomial p(·).

The preprocessing function Π(·) may compress D, or build
auxiliary structures such as indices without reducing the
size of D, or do both, in an off-line PTIME computation.
No matter what it does to D, after the preprocessing step,
queries in Q can then be answered in parallel polylog-time.

To simplify the discussion, we allow preprocessing of the
data but keep the queries unchanged. One may consider
a more general setting by incorporating a query rewriting
function λ : Q → Q′, and revise Definition 1 such that (1)
〈D,Q〉 ∈ S if and only if 〈Π(D), λ(Q)〉 ∈ S′, and (2) S′ is in
NC. Then as long as λ(·) is a PTIME computable function,
it is still feasible to answer queries of Q on big data. We
defer the study of this more general setting to future work.

Example 3: Recall the query class Q1 given in Example 1.
The language S1 for Q1 is a set of pairs 〈D, (A, c)〉, where
D is a relation, A is an attribute of D and c is a constant,
such that there exists a tuple t ∈ D with t[A] = c. As shown
in Example 1, Q1 is Π-tractable: we may preprocess D by
building B+-trees on attributes in D in PTIME. After this,
for any (A, c), whether there exists t ∈ D such that t[A] = c
can be decided in O(log|D|) time by using the indices.

As another example, consider a class Q2 of reachability
queries. Given a directed graph G, a query Q2 ∈ Q2 is
to determine whether there exists a path from s to t in G,
where s and t are nodes in G. This class of queries corre-
sponds to the Graph Accessibility Problem (GAP), which is
NL-complete with log-space reductions (cf. [26]). The lan-
guage S2 for Q2 is a set of pairs 〈G, (s, t)〉, such that there
exists a path from s to t in G. Recall that NL ⊆ NC, and
hence Q2 is Π-tractable. Better still, off-line preprocessing
helps us here: we may precompute a matrix that records the
reachability between all pairs of nodes in G, and then an-
swer all queries Q2 ∈ Q2 defined on G in O(1) time by using
the matrix. Hence after the preprocessing we need constant
time to answer each query in Q2, instead of NL. 2

Making problems Π-tractable. We next extend the no-
tion of Π-tractability to decision problems. Recall that a
decision problem can be represented as a language L ⊆ Σ∗

that contains string encoding of its instances, such that for
any instance x ∈ Σ∗ of the problem, x ∈ L if and only if the
solution to x is true [21]. In the sequel we use L to denote
a decision problem and a language interchangeably.

We now want to define when a decision problem can be re-
garded as Π-tractable. That is, we want to find out whether
preprocessing can help us make it feasible to solve the de-
cision problem on big data. We answer this question by
treating decision problems as languages of pairs, for which
the notion of Π-tractability is already in place (Definition 1).

To this end, we need a notion of factorization, to identify
which part of the problem may be subject to preprocessing.

We say that a language L can be factored if there exist
three NC computable functions π1(·), π2(·) and ρ(·, ·) such
that for all x ∈ L, ρ(π1(x), π2(x)) = x. We refer to

◦ Υ = (π1, π2, ρ) as a factorization of L,

◦ S(L,Υ) = {〈π1(x), π2(x)〉 | x ∈ L} as the language of
pairs for (L,Υ);

◦ L(D,Υ) = {π1(x) | x ∈ L} as the data set of (L,Υ), and

◦ L(Q,Υ) = {π2(x) | x ∈ L} as the query class of (L,Υ).

Intuitively, a factorization of problem L partitions each
instance x of L into a “data” part D = π1(x) and a “query”
part Q = π2(x), and ρ is an inverse function that restores
the original instance x from π1(x) and π2(x).

Example 4: Consider a decision problem Ls that is to
determine, given a relation D, an attribute A of D and a
constant c, whether there exists a tuple t ∈ D such that
t[A] = c. A factorization of this problem is (π1, π2, ρ), such
that for each instance x = (D,A, c) of the problem, π1(x) is
the relation D, π2(x) is the pair (A, c), and ρ(π1(x), π2(x))
maps π1(x) and π2(x) back to x. With this factorization, its
query class of Ls is Q1 given in Example 1, and its language
of pairs is the same as S1 given in Example 3.

As another example consider the BDS problem given in
Example 2 and the factorization ΥBDS = (π1, π2, ρ) of its
instances x = (G, (u, v)), where π1(x) = G, π2(x) = (u, v),
and ρ maps π1(x) and π2(x) back to x, as shown in Fig. 1.
This yields a language S(BDS,ΥBDS) of pairs 〈G, (u, v)〉, where
u is visited before v in the breadth-depth search. That is,
we treat graph G as data and pair (u, v) as a query. 2

We are now ready to formally define when decision prob-
lems can be made Π-tractable.

Definition 2: We say that a decision problem L can
be made Π-tractable if there exists a factorization Υ =
(π1, π2, ρ) of L such that the language S(L,Υ) of pairs for
(L,Υ) is Π-tractable, i.e., the query class L(Q,Υ) of (L,Υ)
is Π-tractable. We use ΠTP to denote the set of all decision
problems that can be made Π-tractable. 2

That is, L can be made Π-tractable if L can be factor-
ized into data and query parts, such that after the data is
preprocessed in PTIME, all the instances of L with the same
data can be solved by evaluating their queries on the data in
parallel polylog-time. There are possibly multiple factoriza-
tions for L. As long as one of the factorizations transforms
instances of L to a Π-tractable query class and data sets, L
can be made Π-tractable, since the factorization allows us
to efficiently decide the membership of instances in L:

Proposition 1: If a decision problem L can be made Π-
tractable by means of a factorization Υ = (π1, π2, ρ), then
x ∈ L if and only if 〈π1(x), π2(x)〉 ∈ SL,Υ. 2

Proof: If x ∈ L then 〈π1(x), π2(x)〉 ∈ S(L,Υ) by the defini-
tion of S(L,Υ). Conversely, if 〈π1(x), π2(x)〉 ∈ S(L,Υ) then
there exists x′ ∈ L such that π1(x) = π1(x′) and π2(x) =
π2(x′). Assume that x 6= x′. By the definition of factoriza-
tions, x = ρ(π1(x), π2(x)) = ρ(π1(x′), π2(x′)) = x′, which
contradicts our assumption. Thus x = x′ and x ∈ L. 2

Example 5: Problem Ls described in Example 4 can be

689

made Π-tractable. Indeed, the factorization given there
transforms Ls to the class Q1 of point-selection queries on
relations, and as argued in Example 3, Q1 is Π-tractable.

Now recall BDS from Example 2. It is known that BDS is
P-complete (cf. [21]), and is costly when graph G is big. We
show that it is also in ΠTP. The factorization ΥBDS given
in Example 4 yields a language S(BDS,ΥBDS) of pairs. Given
ΥBDS, we define preprocessing Π(·) as the function that per-
forms breadth-depth search on G based on the ordering on
the vertices, and returns a list M consisting of all the nodes
in V in the same order as they are visited during the search.
Then Π(G) is clearly in PTIME in |G|. Let S′ be the lan-
guage of pairs 〈M, (u, v)〉 such that u appears before v in M .
Observe the following: (a) whether (M, (u, v)) ∈ S′ can be
decided by binary searches on M , in O(log |M |) time; and
(b) 〈M, (u, v)〉 ∈ S′ if and only if 〈G, (u, v)〉 ∈ S(BDS,ΥBDS).
Hence by Definition 1, S(BDS,ΥBDS) is Π-tractable. Thus BDS
can be made Π-tractable by Definition 2. 2

Making query classes Π-tractable. Given a query class
that is not Π-tractable, a natural question is whether we can
make it Π-tractable by changing its data and query parts,
similar to the case of decision problems? This is important
since we want to know whether there exists an efficient
transformation that makes our queries feasible on big data.

To answer this question, we treat query classes as de-
cision problems and leverage Definition 2. We have seen
that for each decision problem L and each factorization Υ
of L, there exist a language S(L,Υ) of pairs and a class
L(D,Υ) of queries associated with them. Conversely, for
each class Q of queries, which is represented as a language
SQ of pairs 〈D,Q〉, there also exists a decision problem
LQ = {D#Q | 〈D,Q〉 ∈ SQ} associated with it, where # is
a delimiter, and LQ ⊆ Σ∗. The problem LQ is referred to
as the decision problem of Q, and can be stated as:

◦ Input: D#Q.

◦ Question: Does Q(D) evaluate to true?

Obviously, for any complexity class C, SQ ∈ C if and only if
LQ ∈ C. Moreover, a factorization ΥLQ of LQ can be readily
defined that extracts Q and D from an instance x = D#Q
of LQ. This yields the language SQ of pairs as S(LQ,ΥLQ).

In other words, SQ determines a factorization of LQ.

One may explore various factorizations Υ for LQ, which
may yield languages S(LQ,Υ) of pairs different from SQ. We
refer to such an Υ as a re-factorization for SQ and Q.

Definition 3: We say that a class Q of queries can be made
Π-tractable if the corresponding decision problem LQ of Q
can be made Π-tractable. We denote by ΠTQ the set of all
query classes that can be made Π-tractable. 2

That is, Q is in ΠTQ if it can be re-factorized by some
factorization Υ to re-partition its data and query parts for
preprocessing, such that S(LQ,Υ) is Π-tractable.

Figure 2 depicts the relationship among the three classes
ΠT0

Q, ΠTP and ΠTQ. From the definitions above we can see
that the set ΠTQ of all query classes that can be made Π-
tractable corresponds to ΠTP. As will be seen in Section 7,
this set properly contains the set ΠT0

Q of all query classes

that are Π-tractable unless P = NC. Moreover, 6NC
fa reduc-

tions (Section 5) are transformations for making a query
class Π-tractable, and are compatible with the set ΠTQ.

PTIME Query classes
(Language of pairs)

PTIME Decision problems
(Languages)

P = ΠTP

L
S.L;‡/

Factorization ‡

SQ
LQ

Factorization ‡ 0
S.LQ;‡ 0/

ΠTQ

ΠT0
Q

Figure 2: ΠT0
Q: Π-tractable query classes; ΠTP: de-

cision problems that can be made Π-tractable; ΠTQ:
query classes that can be made Π-tractable.

We use P (resp. NC) to denote the class of all decision
problems that can be solved in PTIME (resp. NC) and the
set of all PTIME (resp. NC) query classes interchangeably.

4. Π-Tractable Cases
Extending Examples 3 and 5, we next present more Π-

tractable query classes, as well as decision problems that can
be made tractable. We illustrate the effect of preprocessing
and explore general strategies to make queries Π-tractable.

(1) Selection queries. We have seen from Example 1
that the class Q1 of point-selection queries is in ΠT0

Q, by
using indices. This also extends to range-selection queries.
Given a relation instance D of schema R, a range-selection
(Boolean) query is to find whether there exists a tuple t ∈ D
such that c1 ≤ t[A] ≤ c2, where A is an attribute of R, and
c1 and c2 are constants. As database texts tell us (e.g., [34]),
we may preprocessD by building B+-trees. With these, such
range queries on D can also be answered in O(log|D|) time.

(2) Searching in a list. Consider a decision problem L1:

◦ Input: An unordered list M , and an element e.

◦ Question: Does e appear in M?

This problem is in ΠTP. Indeed, a factorization of L1 is
Υ1 = (π1, π2, ρ) such that for any instance x = (M, e) of L1,
π1(x) = M and π2(x) = e, i.e., it treats M as data and e as
a query. The language S(L1,Υ1) for (L1,Υ1) consists of pairs
〈M, e〉. One can define a preprocessing function Π(·) for
S(L1,Υ1) that sorts M into an ordered list, in O(|M | log|M |)
time. After this, for all queries e, one can decide whether
e is in M via binary search in O(log|M |) time.

(3) Minimum Range Queries (MRQ). Consider L2 [18]:

◦ Input: An array A[1, n] of n objects from a totally
ordered domain, and i, j with 1 ≤ i ≤ j ≤ n.

◦ Question: Find RMQA(i, j) = arg mini≤k≤j{A[k]}.
The range minimum query RMQA(i, j) returns the position
of a minimum element in the sub-array A[i, j]. Obviously L2

can be factorized into array A[1, n] and query RMQA(i, j).
As shown in [18], one may preprocess A[1, n] by building
an auxiliary structure of O(n) bits, in PTIME, such that
all range minimum queries RMQA(i, j) can be subsequently
answered in O(1) time by using the structure. Note that L2

is a search problem, although it can be readily converted to
a decision problem in ΠTP, i.e., made Π-tractable.

(4) Lowest Common Ancestors (LCA). Consider L3:

◦ Input: A DAG G, and nodes u and v in G.

◦ Question: Find LCA(u, v), i.e., node w in G such that
w is an ancestor of both u and v and moreover, w has
no descendants that are also ancestors of u and v.

690

This is also a search problem. As shown in [5], G can be
preprocessed by computing LCA for all pairs of nodes in G in
O(|G|3) time. Then given any nodes (u, v) in G, LCA(u, v)
can be found in O(1) time; so its decision problem is in ΠTP.

As remarked earlier, it has been show in [39] that some
natural classes of queries are in NC over ordered relational
databases. These query classes are also in ΠT0

Q.

We next present three general strategies to put query
classes Q in ΠT0

Q, not limited to any specific Q.

(5) Query preserving compression. The key idea is as
follows: for a class Q of queries, we preprocess a database D
by finding a smaller database Dc via an efficient compression
function, such that for all queries Q ∈ Q, Q(D) = Q(Dc),
i.e., the answer to Q in the smaller Dc. In contrast to
lossless compression schemes (e.g., [6,9,17]), query preserv-
ing compression is relative to Q, i.e., it generates small Dc

that preserves the information only relevant to queries in Q
rather than preserving the entire original D. Hence it often
achieves a better compression ratio than lossless compres-
sion. Indeed, this approach has proven effective in answering
graph queries on large social network graphs [16,31,32] and
in cryptographic applications [24]. If the compression can be
conducted in PTIME [16, 31,32] and moreover, queries in Q
can be answered in the compressed databases Dc in parallel
polylog-time, perhaps by combining with other techniques
such as indexing, then Q is Π-tractable, i.e., Q ∈ ΠT0

Q.

(6) Query answering using views. Another technique
commonly used by database people is query answering using
views [1, 23, 30]. Given a query Q ∈ Q and a set V of view
definitions, query answering using views is to reformulate Q
into another query Q′ such that (a) Q and Q′ are equivalent,
i.e., for all databases D, Q(D) = Q′(D), and moreover, (b)
Q′ refers only to V and its extensions V(D).

When all queries in Q can be answered using views, Q is
Π-tractable (in ΠT0

Q) if the following conditions are satisfied.
(a) The views can be created and materialized in PTIME, as
preprocessing. (b) The answer Q(D) can be computed by
evaluating Q′ on the views V(D) in parallel polylog-time in
|Q| and |D|, where Q′ is a reformulation of Q (i.e., query
rewriting; see the remark below Definition 1). This is done
by possibly combining with other techniques for preprocess-
ing. In practice V(D) is often much smaller than D. If Q(D)
can be found by using V(D) only, without accessing the orig-
inal big D, then it is feasible to evaluate the queries on D.

(7) Incremental evaluation. Incremental techniques also
allow us to effectively evaluate queries on big data [15, 37].
Given Q in a classQ of queries, as preprocessing we compute
Q(D) once. When D is updated by ∆D, instead of recom-
puting Q(D ⊕∆D) starting from scratch, we incrementally
compute ∆O such that Q(D⊕∆D) = Q(D)⊕∆O, to min-
imize unnecessary recomputation. In practice, ∆D is typi-
cally small; as a result, ∆O tends to be small as well, and is
far more efficient to compute than to recompute Q(D⊕∆D).
The benefit is particularly evident if there exists a bounded
incremental algorithm for answering queries in Q. As ar-
gued in [35], incremental algorithms should be analyzed in
terms of |CHANGED| = |∆D| + |∆O|, which represents the
updating costs that are inherent to the incremental problem
itself. An incremental algorithm is said to be bounded if its
cost can be expressed as a function of |CHANGED|, i.e., it
depends only on |CHANGED|, independent of the original

D. Then Q is Π-tractable (i.e., Q ∈ ΠT0
Q) if (a) the pre-

processing Q(D) is in PTIME, and (b) Q(D ⊕∆D) can be
incrementally computed in parallel polylog-time. If so, it is
feasible to answer Q in response to changes to big data D.

As remarked in Section 1, we also use (bounded) incre-
mental techniques to preprocess D in response ∆D.

Finally, we investigate two “hard” problems that, under
certain conditions, can also be made Π-tractable (in ΠTP).

(8) Circuit Value Problem (CVP). CVP is stated as:

◦ Input: An encoding ᾱ of a Boolean circuit α, inputs
x1, . . . , xn, and a designated output y.

◦ Question: Is output y of α true on inputs x1, . . . , xn?

Informally, a Boolean circuit α is a DAG, in which a node
can be (a) an input node xi for i ∈ [1, n], with indegree 0;
(b) an output y, with outdegree 0, or (c) a gate denoting a
Boolean operator, e.g., ∧,∨,¬,→, which applies to its input
(children) and feeds the result as an input for its parent
nodes. It is a Boolean function that takes input x1, . . . , xn,
and returns the truth value of y. Its encoding ᾱ is a sequence
of tuples, one for each node in the DAG (see [21] for details).

CVP is perhaps the best known P-complete problem (cf.
[21]). In Section 6 we will show that CVP can also be made
Π-tractable, i.e., CVP can be factorized to be feasible on big
data (i.e., when α is “big”). Nevertheless, we will show in
Section 7 that there exist certain fixed factorizations of CVP
that may not be evaluated on big data efficiently, i.e., CVP
is feasible on big data only after it is properly factorized.

(9) Vertex Cover (VC). VC is stated as follows [20]:

◦ Input: Graph G=(V,E) and positive integer K≤|V |.
◦ Question: Is there a vertex cover of size ≤ K for G?

A vertex cover of G is a set V ′ ⊆ V such that for each edge
(u, v) ∈ E, at least one of u and v is in V ′.

It is known that VC is NP-complete in general (cf. [20]).
However, as shown by the study of parameterized complex-
ity theory [19], its instances can be preprocessed by Buss’
Kernelization in O(|E|) time, such that when K is fixed, it
is in O(1) time to decide whether there exists a vertex cover
of size K or less. That is, when K is fixed, VC is in ΠTP.

5. NC Reducibility with Factorizations
There are several important and practical questions in

connection with Π-tractability. Given a class Q of queries, if
Q is not Π-tractable, can we make it Π-tractable by means
of efficient transformations? If so, what kind of transfor-
mations should we use? Furthermore, how large is ΠTQ,
the set of all query classes that can be made Π-tractable?
Can we determine whether a decision problem can be made
Π-tractable by “reducing” it to another problem in ΠTP?
Moreover, is there a natural problem that is complete for
ΠTP, i.e., the “hardest” problem in ΠTP?

We answer these questions in the next two sections. In
this section we introduce a form of reductions 6NC

fa to specify
transformations from one problem to another, and to make
a query class Π-tractable. In the next section we will use
6NC

fa to relate a problem to the entire complexity class ΠTP.

Below we first introduce 6NC
fa for decision problems (Sec-

tion 5.1). We then extend 6NC
fa to query classes (Section 5.2).

We show that 6NC
fa reductions are transitive and are compat-

ible with ΠTP. As will be seen shortly, these properties are

691

not as trivial as their counterparts for PTIME reductions.

5.1 Reducibility for Decision Problems

We start with a form of many-one reductions for decision
problems in ΠTP, which allow many distinct instances of one
problem to be mapped to a single instance of another.

In contrast to PTIME reductions that we use to prove,
e.g., that a problem is NP-complete, reductions for ΠTP are
more intriguing. They are defined in terms of factorizations,
and involve both the data and query parts determined by
the factorizations. In addition, such reductions have to be
compatible with ΠTP: if problem A is reducible to another
problem B and if B can be made Π-tractable, then so must
be A. In light of this, PTIME reductions no longer work
here. Furthermore, like our familiar PTIME reductions, such
reductions should be transitive: if A can be reduced to B
and B can be reduced to C, then A is also reducible to C.

Taking these into account, we now define 6NC
fa reductions.

Definition 4: A problem (language) L1 is said to be NC-
factor reducible to another problem (language) L2, denoted
by L1 6NC

fa L2, if there exist factorizations Υ1 = (π1
1 , π

1
2 , ρ1)

and Υ2 = (π2
1 , π

2
2 , ρ2) of L1 and L2, respectively, and NC

functions α(·) and β(·), such that for all D and Q in Σ∗,
〈D,Q〉 ∈ S(L1,Υ1) if and only if 〈α(D), β(Q)〉 ∈ S(L2,Υ2). 2

In contrast to PTIME reductions, a NC-factor reduction
is defined in terms of (a) two NC functions α(·) and β(·)
rather than a single PTIME function, and (b) factorizations:
L1 6NC

fa L2 if one of the factorizations Υ1 of L1 can be
reduced to one of the factorizations Υ2 of L2, such that α(·)
and β(·) transform the data and query parts of (L1,Υ1) to
their counterparts of (L2,Υ2), respectively.

We now verify that 6NC
fa has the necessary properties of

reductions. We first show that 6NC
fa is transitive.

Lemma 2: The reducibility relation 6NC
fa is transitive, i.e.,

if L1 6NC
fa L2 and L2 6NC

fa L3, then also L1 6NC
fa L3. 2

Proof: Given that L1 6NC
fa L2 and L2 6NC

fa L3, we have the
following factorizations by the definition of 6NC

fa :

◦ For L1: Υ1 = (π1
1 , π

1
2 , ρ1);

◦ For L2: Υ2 = (π2
1 , π

2
2 , ρ2) and Υ′2 = (σ2

1 , σ
2
2 , ρ
′
2); and

◦ For L3: Υ3 = (π3
1 , π

3
2 , ρ3).

In addition, there exist NC functions α1(·), α2(·), β1(·) and
β2(·) such that for all D1, Q1, D2, Q2 ∈ Σ∗:

〈D1, Q1〉 ∈ S(L1,Υ1) iff 〈α1(D1), β1(Q1)〉 ∈ S(L2,Υ2),
〈D2, Q2〉 ∈ S(L2,Υ

′
2) iff 〈α2(D2), β2(Q2)〉 ∈ S(L3,Υ3).

To show that L1 6NC
fa L3, we have to define factoriza-

tions of L1 and L3 and NC functions α(·) and β(·) as re-
quired by the definition of 6NC

fa . We cannot simply compose
(α1, β1) and (α2, β2) to a reduction (α2◦α1, β2◦β1) as in the
case for a standard proof of transitivity of reductions, be-
cause α2 and β2 may rely on both the query and data parts
resulting from the reduction (α1, β1). The solution lies in
padding both the query and data parts as follows. We start
by defining a factorization Υ′1 = (σ1

1 , σ
1
2 , ρ
′
1) of L1. For all

x ∈ L1, we define σ1
1(x) = π1

1(x)@π1
2(x), where @ is a special

symbol that is not used anywhere else. In addition, we let
σ1

2(x) = σ1
1(x), and define ρ′1(x1@x2, x1@x2) = ρ1(x1, x2).

More specifically, consider S(L1,Υ
′
1), S(L3,Υ3) and the follow-

ing functions: for any D1, Q1 ∈ Σ∗,

α(D1) = α2(σ2
1(ρ2(α′1(D1), β′1(D1)))),

β(Q1) = β2(σ2
2(ρ2(α′1(Q1), β′1(Q1)))),

where α′1(D1) = α1(r) if D1 = r@s and β′1(D1) = β1(s) if
D1 = r@s. Similarly for α′1(Q1) and β′1(Q1). Given these,
we verify that for any D1, Q1 ∈ Σ∗,

〈D1, Q1〉 ∈ S(L1,Υ
′
1) iff 〈α(D1), β(Q1)〉 ∈ S(L3,Υ3).

Indeed, one can readily verify the following:

〈D1, Q1〉 ∈ S(L1,Υ
′
1) iff D1 = σ1

1(x), Q1 = σ1
2(x) for some x ∈ L1

iff D1 = Q1 = π1
1(x)@π1

2(x)
iff D1 = Q1 = D′1@Q′1, 〈D′1, Q′1〉 ∈ S(L1,Υ1)

iff 〈α′1(D1), β′1(Q1)〉 ∈ S(L2,Υ2)

iff α′1(D1) = π2
1(y), β′1(Q1) = π2

2(y) for some y ∈ L2

iff ρ2(α′1(D1), β′1(Q1)) ∈ L2

iff 〈σ2
1(ρ2(α′1(D1), β′1(Q1))), σ2

2(ρ2(α′1(D1), β′1(Q1)))〉 ∈ S(L2,Υ2)

iff 〈σ2
1(ρ2(α′1(D1), β′1(D1))), σ2

2(ρ2(α′1(Q1), β′1(Q1)))〉 ∈ S(L2,Υ2)

iff 〈α2(σ2
1(ρ2(α′1(D1), β′1(D1)))), β2(σ2

2(ρ2(α′1(Q1), β′1(Q1))))〉
∈ S(L3,Υ3)

iff 〈α(D1), β(Q1)〉 ∈ S(L3,Υ3),

as desired. Hence, L1 6NC
fa L3. 2

We next verify that 6NC
fa is compatible with ΠTP.

Lemma 3: For all problems L1 and L2, if L1 6NC
fa L2 and

L2 is in ΠTP, then L1 is also in ΠTP. That is, if L1 6NC
fa L2

and L2 can be made Π-tractable, then so can be L1. 2

Lemma 3 tells us how to show that a problem L1 can
be made Π-tractable, i.e., L1 is in ΠTP: pick a problem
L2 ∈ ΠTP and show that L1 6NC

fa L2. It also tells us how
to show that a problem L2 cannot be made Π-tractable: if
L1 6NC

fa L2 and L1 6∈ ΠTP then L2 6∈ ΠTP.

Proof: From L1 6NC
fa L2 we know that there exist factoriza-

tions Υ1 = (π1
1 , π

1
2 , ρ1), Υ2 = (π2

1 , π
2
2 , ρ2) and NC functions

α(·) and β(·) such that for all D1, Q1 ∈ Σ∗,

〈D1, Q1〉 ∈ S(L1,Υ1) iff 〈α(D1), β(Q1)〉 ∈ S(L2,Υ2).

Furthermore, since L2 is in ΠTP, by Definitions 1 and 2,
there must exist a factorization Υ′2 = (σ2

1 , σ
2
2 , ρ
′
2) of L2, a

PTIME preprocessing function Π(·), and a language S′2 of
pairs in NC, such that for all D2, Q2 ∈ Σ∗,

〈D2, Q2〉 ∈ S(L2,Υ
′
2) iff 〈Π(D2), Q2〉 ∈ S′2.

To show that L1 can be made Π-tractable, we first argue that
L1 is also NC-factor reducible to L2 with the factorization
Υ′2 of L2 rather than Υ2. Indeed, we can construct an NC-
factor reduction that meets this requirement along the same
lines as the proof of Lemma 2, by changing the factorization
Υ1 of L1. This yields a factorization Υ′1 = (σ1

1 , σ
1
2 , ρ
′
1) of

L1 and NC functions α′(·) and β′(·) such that

〈D1, Q1〉 ∈ S(L1,Υ
′
1) iff 〈α′(D1), β′(Q1)〉 ∈ S(L2,Υ

′
2)

iff 〈Π(α′(D1)), β′(Q1)〉 ∈ S′2.

Define a language S′′2 of pairs such that 〈a, b〉 ∈ S′′2 if and
only if 〈a, β′(b)〉 ∈ S′2. Obviously, if S′2 is in NC then so is
S′′2 . Define Π′(D1) = Π(α′(D1)). Then we have that

〈D1, Q1〉 ∈ S(L1,Υ
′
1) iff 〈Π′(D1), Q1〉 ∈ S′′2 .

Note that Π′(·) is in PTIME since Π(·) is in PTIME, α′(·) is
in NC, and NC ⊆ P. Moreover, S′′2 is in NC since S′2 is in NC
by the assumption above. Therefore, L1 is also in ΠTP. 2

692

5.2 Reducibility for Query Classes

In view of the relationship between query classes Q and
decision problem LQ, as we have seen in Section 3, we can
now readily define 6NC

fa for query classes as follows.

Definition 5: For classes Q1 and Q2 of queries, we say that
Q1 is NC-factor reducible toQ2, also denoted byQ1 6NC

fa Q2,
if LQ1 is NC-factor reducible to LQ2 , where LQ1 and LQ2

are the decision problems of Q1 and Q2, respectively. 2

That is, Q1 6NC
fa Q2 if LQ1 6NC

fa LQ2 , i.e., there exist
factorization Υ1 of the decision problem LQ1 of Q1 and fac-
torization Υ2 of the decision problem LQ2 of Q2, such that
S(LQ1

,Υ1) can be transformed to S(LQ2
,Υ2) in NC (recall the

decision problem for a query class from Section 3).

As an immediate result of Lemmas 2 and 3, we have:

Corollary 4: For all classes Q1, Q2 and Q3 of queries,

(1) if Q1 6NC
fa Q2 and Q2 6NC

fa Q3, then Q1 6NC
fa Q3; and

(2) if Q1 6NC
fa Q2 and Q2 is in ΠTQ, then Q1 is also in

ΠTQ. That is, if Q1 6NC
fa Q2 and Q2 can be made

Π-tractable, then Q1 can also be made Π-tractable. 2

In other words, 6NC
fa is compatible with ΠTQ, the set of

query classes that can be made Π-tractable. In contrast, 6NC
fa

is not compatible with ΠT0
Q, the set of query classes that

are Π-tractable. Indeed, as will be seen in Section 6, there
exists a query class for the Circuit Value Problem (CVP)
that is not Π-tractable, but it is NC-factor reducible to a Π-
tractable class of queries, i.e., it can be made Π-tractable.

In Section 7 we will give a notion of F-reductions, which
preserve the factorizations SQ1 and SQ2 for LQ1 and LQ2 ,
i.e., they do not allow re-factorizations of Q1 and Q2. As
will be seen there, F-reductions are compatible with ΠT0

Q.

6. A Complete Problem for ΠTP

We next answer the question whether there exists a natu-
ral problem that is complete for ΠTP. A complete problem
for ΠTP is one that is no easier to solve than any other prob-
lem in the complexity class ΠTP of all problems that can be
made Π-tractable. That is, they capture the difficulty intrin-
sic of the ΠTP class. Similarly, we answer this question for
ΠTQ, i.e., for query classes that can be made Π-tractable.

The main result of this section is that ΠTP has complete
problems. This is not evident, since there are complexity
classes for which no complete problem exists. As a conse-
quence of this result, it follows that all problems in P and all
query classes that are in PTIME can be made Π-tractable.

We start by defining ΠTP-complete problems. Recall our
familiar notion of NP-complete problems, e.g., the 3SAT
problem and the Vertex Cover problem (VC) [33]. Such
problems are in the complexity class NP, and moreover, all
problems in NP can be reduced to them in PTIME. Along
the same lines, we define ΠTP-complete problems.

Definition 6: A problem L is ΠTP-hard under NC-factor
reducibility if L′ 6NC

fa L for all decision problems L′ in ΠTP.
A problem L is ΠTP-complete under NC-factor reducibility
if L can be made Π-tractable itself and L is ΠTP-hard.

A class Q of queries is said to be ΠTQ-hard under NC-
factor reducibility if Q′ 6NC

fa Q for all query classes Q′ in
ΠTQ. It is ΠTQ-complete under NC-factor reducibility if it
can be made Π-tractable and is ΠTQ-hard. 2

The need for studying these complete problems is evident.
If there exists a ΠTP-complete problem L under 6NC

fa , then
given a problem L′, we can determine whether L′ ∈ ΠTP

by checking whether L′ 6NC
fa L. Similarly, if we know that

a query class Q is ΠTQ-complete under 6NC
fa , then to decide

whether a query classQ′ can be made Π-tractable, we simply
check whether Q′ 6NC

fa Q. Further, as will be seen shortly,
such a complete query class tells us how large ΠTQ is.

Complete problems and complete query classes. No
matter how important, not every complexity class has a
complete problem. Indeed, while a number of complete
problems have been established for NP [20] and for P [21], it
is known that polylog-space has no complete problems under
log-space reductions (cf. [26]), for instance.

The good news is that there exist a ΠTP-complete prob-
lem and a ΠTQ-complete query class under 6NC

fa . To see this,
recall the Breadth-Depth Search problem (BDS), its factor-
ization ΥBDS and language S(BDS,ΥBDS) of pairs presented in
Examples 4 and 5. We use QBDS to denote the query lan-
guage Q(BDS,ΥBDS) represented by S(BDS,ΥBDS).

Theorem 5: Under NC-factor reducibility,

(1) BDS is ΠTP-complete; and

(2) QBDS is ΠTQ-complete. 2

Proof: We show that BDS is ΠTP-complete. The proof for
the ΠTQ-completeness of QBDS under 6NC

fa is similar.

We have already shown that BDS can be made Π-tractable
and is thus in ΠTP, in Example 5. We next show that BDS
is ΠTP-hard under 6NC

fa . That is, for all problems L that can
be made Π-tractable, L 6NC

fa BDS. Observe the following:

(a) If L can be made Π-tractable, then L ∈ P.

(b) BDS is P-complete (cf. [21]).

To see (a), note that the solution to any instance of L can be
computed in PTIME, by combining the preprocessing step
(PTIME) and query evaluation (NC), since NC ⊆ P.

Based on these, we show that L 6NC
fa BDS. Consider a

factorization ΥL = (π1, π2, ρ) that, for any instance x of L,
defines π1(x) = π2(x) = x and ρ(x, x) = x. Since BDS is
P-complete and L is in P, this tells us that there exists an
NC function h(·) such that for any x ∈ Σ∗, x ∈ L if and only
if h(x) is in BDS. Then there exist NC functions α(·) and
β(·) such that α(x) corresponds to the undirected graph G
in a BDS instance with a numbering on its vertices, as part
of h(x), and β(x) corresponds to a pair of nodes (u, v) in G
as the other part of h(x). Hence, for all 〈x, x〉 ∈ S(L,ΥL),

〈x, x〉 ∈ S(L,ΥL) iff 〈α(x), β(x)〉 ∈ S(BDS,ΥBDS),

where S(BDS,ΥBDS) is the language of pairs for BDS and the

factorization ΥBDS given in Section 4. Hence, L 6NC
fa BDS

by Definition 4. Thus BDS is ΠTP-hard under 6NC
fa . 2

The proof above also tells us the following.

Corollary 6: (1) All problems in P can be made Π-
tractable. (2) All query classes that are in PTIME can be
made Π-tractable via NC-factor reductions. 2

That is, the set ΠTP of all decision problems that can be
made Π-tractable is large enough to cover all problems in
P. Hence P = ΠTP since all problems that can be made Π-
tractable are also in P. In particular, the Circuit Value Prob-
lem (CVP) discussed in Section 5 can be made Π-tractable,
i.e., there exists a factorization of CVP that allows instances

693

of CVP to be transformed to instances of BDS, such that af-
ter preprocessing the input circuits of CVP instances, those
instances can be solved in parallel polylog-time.

Furthermore, all PTIME query classes can be made Π-
tractable. These include query classes in ΠT0

Q and beyond.
Indeed, as will be seen in Section 7, there exists a factor-
ization Υ0 of CVP such that the query class CVP(Q,Υ0) of
(CVP, Υ0) is not Π-tractable unless P = NC. That is, by
preprocessing only the data part given in the particular fac-
torization Υ0, CVP instances may not be solvable in par-
allel polylog-time. Nevertheless, CVP(Q,Υ0) 6NC

fa QBDS, i.e.,
it can be made Π-tractable via re-factorizations. In gen-
eral, a class Q of queries that are in PTIME may not nec-
essarily be Π-tractable, but it can be made Π-tractable via
re-factorizations as assured by Corollary 6.

To compare NC and ΠTP, observe that NC ⊆ ΠTP by Def-
inition 2 for problems that can be made Π-tractable. Nev-
ertheless, we do not know whether NC = ΠTP. Indeed, this
question is equivalent to the open problem whether NC = P.

Problems that cannot be made Π-tractable. At this
point, a natural question is what problems are not in ΠTP.
Theorem 5 tells us that unless P = NP, none of NP-complete
problems is in ΠTP. In other words, problems such as the
3SAT problem and VC mentioned earlier cannot be made
Π-tractable, no matter what factorizations are considered.

Corollary 7: Unless P = NP, no NP-complete problems are
Π-tractable. 2

Proof: Assume by contradiction that there exists an NP-
complete problem that can be made Π-tractable. Then by
Theorem 5, L 6NC

fa BDS by NC reductions. Nevertheless,
BDS is in P. Hence this would lead to P = NP. 2

7. Factorization Preserving Reductions
The NC-factor reductions allow us to transform one query

class Q1 to another query class Q2 in ΠTQ by means of re-
factorizations. More specifically, suppose that Q1 and Q2

are represented by languages S1 and S2 of pairs 〈D1, Q1〉 and
〈D2, Q2〉, respectively, and that Q1 6NC

fa Q2. Then there
exist factorizations Υ1 and Υ2 of S1 and S2, respectively
(see Sections 3 and 5), which yield languages S(Q1,Υ1) and
S(Q2,Υ2) of pairs 〈D′1, Q′1〉 and 〈D′2, Q′2〉, such that D′1 and
Q′1 can be transformed to D′2 and Q′2 via NC functions,
respectively. Observe that Q′1 may no longer be a query
in the class Q1; similarly for Q′2. That is, such reductions
re-factorize S1 and S2, in which the original query classes
Q1 and Q2 are not preserved. In other words, Q1 is made
Π-tractable by reducing it to Q2 with such re-factorizations.

This raises a natural question: what happens if we require
to transform the query part Q1 of S1 to Q2 of S2, and the
data part D1 of S1 to D2 of S2, preserving the original query
classes Q1 and Q2? That is, one may want to use a form
of reductions that preserve fixed query classes. The practi-
cal need for this emerges when we want to study, e.g., query
rewriting from Q1 to a fixed language Q2. This section stud-
ies such reductions, referred to as F-reductions. We define
F-reductions and study their properties in Section 7.1.

We show that unless P = NC, there exists a class of
PTIME queries that is not Π-tractable and moreover, it is
not F-reducible to any class of Π-tractable queries, in Sec-
tion 7.2. This tells us that without proper factorizations, it

may not be feasible to evaluate PTIME queries on big data,
and further highlights the need for appropriate preprocess-
ing. This result separates ΠT0

Q from the set P of all PTIME
query classes unless P = NC. We also show that under F-
reductions, it is rather hard to find a query class complete
for ΠT0

Q, in Section 7.3. Indeed, the existence of such a class
is closely related to the big open question: whether P = NC.

7.1 F-Reducibility

We define F-reductions on language of pairs and on query
classes, rather than on decision problems, as follows.

Definition 7: A language S1 of pairs is F-reducible to an-
other language S2 of pairs, denoted by S1 6NC

F S2, if there
exist NC functions α(·) and β(·) such that for all D and Q
in Σ∗, 〈D,Q〉 ∈ S1 if and only if 〈α(D), β(Q)〉 ∈ S2.

A class Q1 of queries is F-reducible to another query class
Q2, denoted by Q1 6NC

F Q2, if S1 6NC
F S2, where S1 and S2

are the languages of pairs for Q1 and Q2, respectively. 2

Compared to NC-factor reductions given in Definition 4,
a F-reduction does not allow re-factorizations of S1 and S2.
In terms of decision problems L1 and L2, F-reductions are
defined on fixed factorizations Υ1 of L1 and Υ2 of L2. These
reductions preserve the factorizations and their correspond-
ing languages S(L1,Υ1) and S(L2,Υ2) in the transformations,
and are used to study the relative difficulty of the data and
query parts in S(L1,Υ1) with their counterparts in S(L2,Υ2).

Along the same lines as Lemmas 2 and 3, we show that F-
reductions are transitive and compatible with ΠT0

Q. In con-

trast to 6NC
fa that is compatible with ΠTQ, the set of all query

classes that can be made Π-tractable, 6NC
F is compatible with

ΠT0
Q, the set of all query classes that are Π-tractable.

Lemma 8: For any languages S1, S2 and S3 of pairs,

◦ if S1 6NC
F S2 and S2 6NC

F S3, then also S1 6NC
F S3; and

◦ if S1 6NC
F S2 and S2 is in ΠT0

Q, then S1 is also in ΠT0
Q.

That is, 6NC
F is compatible with ΠT0

Q. 2

7.2 Separation: PTIME and Π-Tractable Queries

Corollary 6 tells us that under NC-factor reductions, all
PTIME query classes can be made Π-tractable by reduction
to a query class that can be made Π-tractable. In contrast,
when it comes to F-reductions, this is no longer possible.

Theorem 9: Unless P = NC, there exists a query class
that is in P, but it is not Π-tractable and moreover, it is not
F-reducible to any Π-tractable class of queries. 2

Theorem 9 distinguishes the set ΠT0
Q of all Π-tractable

query classes from the set P of all PTIME query classes.
From this and Corollary 6, we can see the connection and
differences between ΠT0

Q and P as follows.

(1) While a Π-tractable query class must be in P, a PTIME
query class may not necessarily be Π-tractable. Indeed, The-
orem 9 shows that P 6= ΠT0

Q unless P=NC.

(2) As shown by Corollary 6, any query class Q in P can
be made Π-tractable by 6NC

fa reductions, which allow re-
factorizations. In contrast, Theorem 9 tells us that when re-
factorizations are not allowed, i.e., when 6NC

F is used instead
of 6NC

fa , Q may not be transformed to a Π-tractable class of
queries unless P = NC. In other words, a query class in P
can be made Π-tractable only with proper re-factorizations.

694

We next prove Theorem 9.

Proof: To simplify the discussion we prove this w.l.o.g. for
languages of pairs representing query classes. Consider the
language SCVP of pairs 〈ε, q〉, where q is an instance of the
Circuit Value Problem (CVP), and ε is the empty string.
That is, SCVP is a language of pairs defined by CVP and a
factorization Υ = (π1, π2, ρ) such that for any instance x of
CVP, π1(x) = ε, π2(x) = x and ρ(ε, x) = x. We show that
unless P = NC, SCVP is not Π-tractable and it may not be
F-reduced to any Π-tractable language of pairs.

First assume by contradiction that SCVP is Π-tractable.
Then there exists a PTIME function Π(·) such that

〈Π(ε), q〉 ∈ NC.

However, Π(ε) is a constant function, and CVP is known to
be P-complete under NC reductions [21]. From these and
NC ⊆ P [26] it follows that NC = P, which is widely open.

Now assume that there exists a Π-tractable language S
of pairs such that SCVP 6NC

F S. Then by Definition 7, there
exist NC functions α(·) and β(·) such that

〈ε, q〉 ∈ SCVP iff 〈α(ε), β(q)〉 ∈ S.
Since S is Π-tractable, by Definition 1, there exists a PTIME
function ΠS(·) such that

〈D,Q〉 ∈ S iff 〈ΠS(D), Q〉 ∈ NC.

Putting these together, we have the following:

〈ε, q〉 ∈ SCVP iff 〈ΠS(α(ε)), β(q)〉 ∈ NC.

Again, ΠS(α(ε)) is a constant function. Therefore, if
SCVP 6NC

F S, then we would have that P = NC. 2

7.3 Complete Problems Under F-Reductions

Finally, we study complete problems for the set ΠT0
Q of

all Π-tractable query classes under F-reducibility. Along the
same lines as Definition 6, we define the following notion.

Definition 8: A class Q of queries is hard for ΠT0
Q under F-

reducibility if Q′ 6NC
F Q for all Q′ ∈ ΠT0

Q. It is complete for
ΠT0

Q under F-reducibility if it is Π-tractable and moreover,
is hard for ΠT0

Q under F-reducibility. 2

It is rather hard to find a class of queries that is complete
for ΠT0

Q under F-reducibility. Indeed, the result below shows
that the existence of such a complete query class is closely
related to the open question whether P = NC.

Proposition 10: Unless P = NC, a complete query class
for ΠT0

Q under F-reducibility is a witness in P \ NC. 2

Proof: Suppose that there exists a query class Q that is
complete for ΠT0

Q under F-reducibility. Then for all classes

Q′ of NC queries, Q′ 6NC
F Q, since by Definition 1, Q′ is

Π-tractable. Now consider a language S′CVP of pairs 〈q, ε〉,
where q is an instance of the Circuit Value Problem (CVP),
and ε is the empty string (see the proof of Theorem 9). Ob-
viously, S′CVP is Π-tractable by Definition 1. Then by Defi-
nition 8, S′CVP is F-reducible to the language of pairs for Q.
Moreover, ΠT0

Q ⊆ P, and CVP is P-complete. Putting these
together, we have that unless P = NC, Q is in P \ NC. 2

From Proposition 8 it follows that if we want to show
P 6= NC (resp. P = NC), we need to (a) find a query class
Q that is complete for ΠT0

Q under 6NC
F , and moreover, (b)

show that Q in not in NC (resp. is in NC).

In summary, the main result of this section is as follows:
NC ⊆ ΠT0

Q ⊆ P, and unless P = NC, ΠT0
Q ⊂ P, i.e., P

properly contains ΠT0
Q. Moreover, a complete query class

for ΠT0
Q under 6NC

F is a witness in P \ NC unless P = NC.

8. Conclusion
This work is a first attempt to give a formal treatment

of tractable queries on big data utilizing the preprocessing
paradigm. We have proposed a notion of Π-tractable queries
to characterize queries that are feasible on big data, in par-
allel polylog-time after a one-time PTIME preprocessing step
off-line. Notions of decision problems and query classes that
can be made Π-tractable are also introduced, based on fac-
torizations of its instances into data sets and query classes.
We have shown that several natural query classes are Π-
tractable, and several query classes and decision problems
can be made Π-tractable. We have also introduced two forms
of NC reductions 6NC

fa and 6NC
F , and shown that they are

transitive, and are compatible with the set ΠTQ of all query
classes that can be made Π-tractable and with the set ΠT0

Q

of all Π-tractable query classes, respectively. In addition, we
have shown that under 6NC

fa , a natural problem is complete
for the class ΠTP of all decision problems that can be made
Π-tractable. On the other hand, there exists a query class
that is in P but is not in ΠT0

Q, and it is not reducible to

any Π-tractable query class under 6NC
F unless P = NC.

The main conclusion of the paper is as follows:

(1) NC ⊆ ΠT0
Q ⊆ P; and unless P = NC, ΠT0

Q ⊂ P, i.e.,
not all PTIME queries are Π-tractable (Theorem 9).

(2) All query classes in P can be made Π-tractable by
transforming them to a query class in ΠTQ via 6NC

fa

reductions (Theorem 5 and Corollary 6).

(3) For decision problems, NC ⊆ ΠTP = P (Corollary 6).

That is, ΠT0
Q is properly contained in P, unless P = NC.

Nonetheless, all classes of PTIME queries can be made Π-
tractable by means of proper factorizations.

As remarked earlier, ΠTP allows arbitrary factorizations
of problem instances into data and query parts, and corre-
sponds to the set ΠTQ of all query classes that can be made
Π-tractable. In contrast, each query class in ΠT0

Q is already
Π-tractable with its predefined factorization (see Section 3).

In practice, the results help us determine whether a query
class is feasible on big data. These also suggest an approach
to answering a class Q of queries on big data: reduce Q to a
ΠTQ-complete class that we know how to evaluate, by find-
ing proper 6NC

fa reductions, if Q can be made ΠTP-tractable.

This work has raised as many questions as it has answered.
A number of issues are open and require further investiga-
tion. We list some of the open issues below.

(1) As remarked in Section 1, we opt to use NC to define
ΠT0

Q because NC is the most prevalent model for parallel-
time complexity, among other things. However, PRAM un-
derlying NC may not be accurate for parallel systems such
as MapReduce and its variants. These call for a full treat-
ment of parallel computation models and parallel complex-
ity classes that are more accurate than PRAM and NC, and
moreover, take into account both computational cost and
communication (coordination) complexity. Upon the avail-
ability of such a model and a complexity class, the class ΠT0

Q

of Π-tractable queries should then be revised accordingly.

(2) Another question concerns the existence of a complete
query class for ΠT0

Q under F-reducibility 6NC
F . When NC-

695

factor reducibility 6NC
fa is considered, Theorem 5 tells us that

the query class of one of BDS’ factorizations is complete for
ΠTQ. This result is useful since after all, we want to know
what query classes can be made Π-tractable.

However, under 6NC
F , the existence of a complete query

class for the set ΠT0
Q of all Π-tractable queries is closely

related to whether P = NC (Proposition 10), and remains
open. This said, it does not hinder the study of ΠT0

Q,
just like we still study (approximation) PTIME algorithms
although we do not know whether P = NP.

(3) We have so far only considered Boolean queries and de-
cision problems when studying Π-tractability. Nevertheless,
Π-tractability for general queries, as well as for search prob-
lems and function problems, deserves a full treatment. In
other words, Π-tractable functions and complexity classes
consisting of such functions remain to be studied.

(4) We have studied two forms of reductions. At one end
of the spectrum, 6NC

F is rather conservative in that no re-
factorizations are allowed. At the other end, 6NC

fa is quite
liberal in that the query and data parts can be combined
and re-factorized. It is interesting to study other forms of
reductions “between” 6NC

F and 6NC
fa , which allow certain re-

factorizations under practical constraints.

(5) Finally, there are a number of open issues in connection
with query evaluation with preprocesssing. Given a prob-
lem that can be made Π-tractable, how can we identify a
factorization that appropriately picks the dataset to be pre-
processed, such that the problem instances can be solved in
parallel polylog-time? If a given problem cannot be made
Π-tractable, can we still preprocess its data set so that ap-
proximate parallel polylog-time algorithms can be developed
for solving the problem? In addition, we have only presented
preprocessing strategies that are commonly used in practice
(Section 4). Other effective preprocessing methods are to
be explored. For instance, under certain conditions, top-k
query answering with early termination [14] may be made Π-
tractable, which finds top-k answers in Q(D) without com-
puting the entire Q(D). While it may not be easy to develop
generic schemes to answer these questions, we envisage that
in various application domains, effective techniques can be
developed to make our queries Π-tractable on big data.

Acknowledgments. Fan is supported in part by the RSE-

NSFC Joint Project Scheme, EPSRC EP/J015377/1, UK, and
the 973 Program 2012CB316200 and NSFC 61133002 of China.

9. References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis, and

J. D. Ullman. Map-reduce extensions and recursive queries.
In EDBT, 2011.

[3] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-
reduce environment. In EDBT, 2010.

[4] F. N. Afrati and J. D. Ullman. Transitive closure and recur-
sive datalog implemented on clusters. In EDBT, 2012.

[5] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena,
and P. Sumazin. Lowest common ancestors in trees and di-
rected acyclic graphs. J. Algorithms, 57(2):75–94, 2005.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In WWW, 2011.

[7] V. R. Borkar, M. J. Carey, and C. Li. Inside “big data man-
agement”: ogres, onions, or parfaits? In EDBT, 2012.

[8] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Pre-
processing of intractable problems. Inf. Comput., 176(2):89–
120, 2002.

[9] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On compressing social net-
works. In KDD, 2009.

[10] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. E.
Santos, K. E. Schauser, R. Subramonian, and T. von Eicken.
Logp: A practical model of parallel computation. Commun.
ACM, 39(11):78–85, 1996.

[11] A. Czumaj and C. Sohler. Sublinear-time algorithms. In
Property Testing, pages 41–64, 2010.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1), 2008.

[13] R. Dorrigiv, A. López-Ortiz, and A. Salinger. Optimal
speedup on a low-degree multi-core parallel architecture (Lo-
PRAM). In SPAA, pages 185–187, 2008.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. JCSS, 66(4):614–656, 2003.

[15] W. Fan, J. Li, Z. Tan, X. Wang, and Y. Wu. Incremental
graph pattern matching. In SIGMOD, 2011.

[16] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph
compression. In SIGMOD, pages 157–168, 2012.

[17] T. Feder and R. Motwani. Clique partitions, graph compres-
sion and speeding-up algorithms. JCSS, 51(2):261–272, 1995.

[18] J. Fischer and V. Heun. Space-efficient preprocessing
schemes for range minimum queries on static arrays.
SICOMP, 40(2):465–492, 2011.

[19] J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer, 2006.

[20] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[21] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Par-
allel Computation: P-Completeness Theory. Oxford Univer-
sity Press, 1995.

[22] M. Grohe. The quest for a logic capturing ptime. In LICS,
pages 267–271, 2008.

[23] A. Y. Halevy. Answering queries using views: A survey.
VLDB J., 10(4):270–294, 2001.

[24] D. Harnik and M. Naor. On the compressibility of
NP instances and cryptographic applications. SICOMP,
39(5):1667–1713, 2010.

[25] J. M. Hellerstein. The declarative imperative: experi-
ences and conjectures in distributed logic. SIGMOD Record,
39(1):5–19, 2010.

[26] D. S. Johnson. A catalog of complexity classes. In Handbook
of Theoretical Computer Science, Volume A: Algorithms and
Complexity (A), pages 67–161. The MIT Press, 1990.

[27] N. D. Jones. An introduction to partial evaluation. ACM
Comput. Surv., 28(3):480–503, 1996.

[28] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of com-
putation for MapReduce. In SODA, pages 938–948, 2010.

[29] P. Koutris and D. Suciu. Parallel evaluation of conjunctive
queries. In PODS, pages 223–234, 2011.

[30] M. Lenzerini. Data integration: A theoretical perspective. In
PODS, 2002.

[31] H. Maserrat and J. Pei. Neighbor query friendly compression
of social networks. In KDD, 2010.

[32] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summa-
rization with bounded error. In SIGMOD, 2008.

[33] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[34] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill Higher Education, 2000.

[35] G. Ramalingam and T. Reps. On the computational com-
plexity of dynamic graph problems. TCS, 158(1-2), 1996.

[36] D. Ron. Algorithmic and analysis techniques in property
testing. Foundations and Trends in Theoretical Computer
Science, 5(2):73–205, 2010.

[37] D. Saha. An incremental bisimulation algorithm. In
FSTTCS, 2007.

[38] G. Santos. SSD ranking: The fastest solid state drives.
http://www.fastestssd.com/featured/ssd-rankings-the-
fastest-solid-state-drives/#pcie, Oct 2012.

[39] D. Suciu and V. Tannen. A query language for NC. J. Com-
put. Syst. Sci., 55(2):299–321, 1997.

[40] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

696

