
Distribution-Based Query Scheduling

Yun Chi† Hakan Hacıgümüş† Wang-Pin Hsiung† Jeffrey F. Naughton‡

†NEC Laboratories America
‡Department of Computer Sciences, University of Wisconsin-Madison

{ychi,hakan,whsiung}@nec-labs.com, naughton@cs.wisc.edu

ABSTRACT
Query scheduling, a fundamental problem in database man-
agement systems, has recently received a renewed attention,
perhaps in part due to the rise of the “database as a service”
(DaaS) model for database deployment. While there has
been a great deal of work investigating different scheduling
algorithms, there has been comparatively little work inves-
tigating what the scheduling algorithms can or should know
about the queries to be scheduled. In this work, we inves-
tigate the efficacy of using histograms describing the distri-
bution of likely query execution times as input to the query
scheduler. We propose a novel distribution-based scheduling
algorithm, Shepherd, and show that Shepherd substantially
outperforms state-of-the-art point-based methods through
extensive experimentation with both synthetic and TPC
workloads.

1. INTRODUCTION
Query scheduling is a fundamental problem in database

management systems [30, 19], and it has been extensively
studied in the literature [17, 30, 14, 15, 18]. Recently schedul-
ing has received a renewed attention due to the rise of the
“database as a service” (DaaS) model [1, 4] deployed in the
cloud. In such deployments, schedulers try to maximize per-
formance with respect to service level agreements (SLAs)
that may impose financial penalties for missed deadlines.

While there has been a great deal of work investigating dif-
ferent scheduling algorithms, there has been comparatively
little work investigating what the scheduling algorithms can
or should know about the queries to be scheduled. Clearly,
the ideal would be to know the precise running time for ev-
ery query in advance of its execution; in some sense this is
“perfect” knowledge about the queries to be run and one
cannot do better. Most previous work (e.g., [21, 8, 18])
on query scheduling to meet the requirements of SLAs has
at least implicitly assumed that such information is avail-
able; unfortunately, this ideal is most likely not achievable
in many real-world scenarios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 9
Copyright 2013 VLDB Endowment 2150-8097/13/07... $ 10.00.

The reason this is not achievable is simple: estimating the
running time of queries is a notoriously difficult problem, as
query running time is a complex function of the query itself
(including any run-time parameters), the data over which it
is run, and the environment in which it executes (including
both the static hardware configuration and dynamic fac-
tors such as the contents of the buffer pool and the impact
of concurrently running queries.) Despite a great deal of
decade-old and recent effort [12, 10, 22, 36, 35], accurate
prediction of query running times for dynamic, concurrent
workloads remains largely elusive.

Accordingly, in this work we investigate the efficacy of an
alternative to knowing the execution times of queries: specif-
ically, we investigate the approach of using a histogram de-
scribing the distribution of likely execution times rather than
a single, point estimate of the true running time. At first
hearing this may sound silly — we have already acknowl-
edged that predicting running times is difficult, and now we
are asking for predictions of distributions of running times.
However, in actuality, in some common scenarios, building
a histogram of expected running times is easier than pre-
dicting specific running times. For example, if a workload is
generated by instantiating a number of transactions or query
templates (like, for example, all of the TPC benchmarks as
well as many servlet-based Web applications [11]), one can
monitor execution times for instantiations of each template,
and “learn” a distribution of running times. This is anal-
ogous to many other situations in which one can quickly
learn a distribution of some property of a population (for
example, by sampling) more easily than one can predict the
property for any specific member of the population.

Of course, the fact that learning the distribution of run-
ning times is easier than predicting a specific running time
raises the important question of whether knowing this distri-
bution is useful for scheduling. In this paper we demonstrate
that the answer to this question is a clear “yes.” We do so
by presenting a new scheduling algorithm, Shepherd1, that
is specifically designed to exploit distributions of expected
running times when doing SLA-aware query scheduling. We
show through experiments with both simulated and actual
workloads that Shepherd is substantially more effective than
previous algorithms that simply use the mean of the pop-
ulation as the expected running time for the query, and is
much more effective than algorithms that ignore running
time altogether.

1Shepherd stands for “scheduling under probabilistic,
histogram-based query time distributions”.

673

time

dd′′ d′t

t

q1’s exec time
histogram of

histogram of
q2’s exec time

t+r

t+r

Figure 1: Two queries q1 and q2 that have the same
expected execution time r, but different execution
time distributions.

To gain some insight as to why knowing distributions of
query execution times may be more effective than knowing
means, we consider a simple example. Figure 1 shows two
queries q1 and q2 that both arrive at the system at time t,
both have a deadline at time d, and both have an expected
query execution time r. However, the execution times of the
two queries follow different distributions. q1 has a relatively
predictable execution time around r whereas q2’s execution
time follows a bimodal distribution determined by some un-
predictable factors. In this case, although q1 and q2 have the
same expected execution time, q2 is more urgent, because it
has higher chance of missing its deadline if not executed
right away.

Another factor illustrated by this example is that the ab-
solute and even relative importance of these two queries with
the same mean execution time changes over time. For ex-
ample, assume we revisit the situation after a period of time
such that the deadline is shifted to d′. Now running q1 is
urgent because it will almost certainly miss its deadline if it
is not executed right away. More interestingly, if we revisit
the situation at an even later time, say when the deadline is
shifted to d′′, then the urgency of q1 is 0 because its deadline
has passed, whereas executing q2 is still valuable as it still
has some chance to meet its deadline. This suggests that
an effective, distribution-based scheduling algorithm must
revise its priorities constantly over time.

Our contributions
In this paper, we show that probability distributions of exe-
cution times can be effectively exploited for scheduling queries
in the presence of SLA constraints. We do so by exhibiting
one instance of such a distribution-based algorithm, which
we term the Shepherd. Shepherd is based on the CBS (Cost
Based Scheduling) algorithm [25, 27], and also borrows from
ideas presented in our previous work on the iCBS (incremen-
tal CBS) algorithm [8] to increase efficiency in the presence
of stepwise SLAs. However, Shepherd is a larger departure
from both CBS and iCBS than iCBS is from CBS, in that
it builds upon CBS to consider a distribution-based exe-
cution time model rather than the traditional point-based
execution model. To the best of our knowledge, Shepherd is
the first scheduling algorithm designed for database systems
that uses distributions to model query execution times.

We present experiments using both simulated performance

and actual performance on synthetic and TPC-W work-
loads. In our experiments we show that it is indeed fea-
sible to learn sufficiently accurate distributions of TPC-W
query performance. Moreover, both the simulated and ex-
perimental studies verify the effectiveness and efficiency of
distribution-based query scheduling, as embodied by Shep-
herd, in comparison to state-of-the-art point-based approaches.

2. BACKGROUND
In this section, we introduce background information, in-

cluding the notions of cost-aware scheduling and SLA penalty
costs, a previous algorithm (CBS) that inspired our algo-
rithm, and the main weakness of existing cost-aware schedul-
ing algorithms that we address in this paper.

2.1 Cost-aware Scheduling and SLAs
Recently, there has been increasing interest in applying

more sophisticated scheduling algorithms in database sys-
tems [14, 15, 18]. Such a change is partly due to the new
trend of providing databases as a service (DaaS) [1, 4], be-
cause offering differentiated service is a key to the success of
DaaS providers. A family of scheduling algorithms that are
especially effective in this situation are cost-aware schedul-
ing algorithms [17, 20, 27, 21, 15]. In such algorithms, in-
stead of optimizing system metrics such as average latency
and throughput, queries are scheduled so as to optimize costs
that are associated with queries. Such costs, from the point
of view of a service provider, can be two-fold. On the one
hand, executing a query q involves costs such as resource us-
age (e.g., server utilization) and opportunity cost (e.g., exe-
cuting q may postpone the execution of other queries [21]).
On the other hand, missing q’s deadline may have a mone-
tary penalty according to a service level agreement (SLA).

Cost-aware scheduling has long been studied in areas in-
cluding computer networking [27], high-performance com-
puting [21, 28], and real-time databases [30]. For example,
in computer networking, a video packet can have a cost as-
sociated with missing its deadline [26]. As another example,
in a real-time service, there is a trade-off between data fresh-
ness and the data value [30].

The rapid growth of cloud computing, database as a ser-
vice (DaaS), and multitenant databases [1, 4] have intro-
duced strong incentives for cost-aware scheduling in database
systems as well. Cloud service providers often offer differ-
entiated services (e.g., gold vs. silver customers) in a mul-
titenant environment, and query costs are directly tied to
the profit of the service providers. In addition, in the cloud,
query cost models are often readily available, due to service
level agreements (SLAs) between cloud service providers and
their clients. For example, from an SLA for a query, one can
obtain the deadline for the query response time and the cor-
responding cost for missing the deadline [13].

Figure 2 shows two sample SLA functions on query re-
sponse time. In Figure 2(a), each query has a single dead-
line d, and missing the deadline will cost an SLA penalty
of c. Figure 2(b) shows another SLA with two deadlines d1

and d2: missing d1 will cost c1, and if d2 is missed as well, a
higher cost c2 will incur. SLA cost functions such as those
in Figure 2 may be obtained from various sources. They can
be explicitly written in service level agreements and service
level objectives (SLOs) [9], or they can come from particu-
lar applications [5]. We will discuss these SLAs in detail in
Section 7. In the remainder of this paper, for concreteness

674

cost c

(a)

d d1 d2

cost c1

cost c2

(b)

time time
t t

r r

Figure 2: Two examples of SLAs. The query arrives
at the system at t and has an execution time r.

we will use the SLA cost functions shown in Figure 2, which
have also been used in previous studies [38, 8, 37]. That is,
we assume that each query has one or more deadlines, and
associated with each deadline, there is a penalty cost value
for missing that deadline.

2.2 Cost-based Scheduling (CBS)
There is a rich body of work on cost-aware schedulers [17,

20, 27, 21, 7, 15]. Therefore, instead of inventing a to-
tally new cost-aware scheduling algorithm, we chose to care-
fully examine several existing state-of-the-art algorithms in
terms of characteristics, performance, and applicability to
database system requirements. We then built our algorithm
on top of an existing algorithm — the cost-based scheduling
(CBS) algorithm proposed by Peha [25]. We choose CBS,
out of numerous cost-aware scheduling algorithms2, for two
main reasons. First, CBS is effective in terms of cost mini-
mization in an environment of differentiated services. This
has been shown in the original work [25] and verified by our
recent study [8]. The second reason is that CBS is based
on a simple but powerful probabilistic framework and as we
show later, our new framework is a natural extension of CBS
in this probabilistic sense.

Here we give a brief introduction to CBS, which is based
on a very simple intuition:

At a given time t, for a query q waiting to be
serviced, we can either (i) choose q to start ex-
ecution now (at time t) or (ii) choose a query
other than q to execute and hence delay q further.
CBS compares these two choices and computes
the expected cost reduction between the two as
the priority score of q at time t.

More specifically, for a query q with execution time r, its
CBS priority score at time t is

pq(t) =
1

r
(E[Cdelay(t)]− cnow(t))

=
1

r

„Z ∞
τ=0

be−bτ · c(t+ τ)dτ − c(t)
«
, (1)

where c(t+ τ) and c(t) are the costs for starting the execu-
tion of q at time t + τ and t, respectively; b is a parameter
to be set by the algorithm, which we will explain momen-
tarily3. Here is an explanation of the CBS score shown in
Equation (1). The cost of starting q right now is cnow(t). If
on the other hand q is not executed now, then it is assumed

2In this paper we mainly focus on non-preemptive algo-
rithms, where a query execution is not preempted once it
gets started, a common scenario in database systems.
3Actually, E[Cdelay(t)] should be written as EΓ[Cdelay(t)],
with the underlying random variable Γ representing the fur-
ther delay if q is chosen to be postponed.

that the further delay τ for query q follows an exponential
distribution with parameter b, which results in an expected
cost of E[Cdelay(t)]4. The factor 1

r
is used to account for the

resource cost of executing q (e.g., occupying the server).
We illustrate the intuition behind CBS by using a simple

example in Figure 3. In the example, query q has a single
deadline d, where if q can finish its execution by d, there is
no SLA penalty cost; otherwise, there is a cost of c.

Figure 3(a) shows how the priority score pq is evaluated
at time t. If we immediately start the execution of q at t,
q can be finished at time t+ r, which is before the deadline
d, and so we have cnow(t) = 0. If on the other hand we
decide to delay the execution of q, then the further delay
of q follows an exponential distribution be−bτ . As long as
τ < d − r − t, q still can meet its deadline; otherwise, q
will miss its deadline and incur a cost of c. The probability
of the latter scenario (and E[Cdelay(t)]) is reflected by the
shaded area in Figure 3(a). So overall, pq(t) = E[Cdelay(t)]
is proportional to the shaded area in Figure 3(a).

Figure 3(b) shows how the priority score pq is re-evaluated
at time t′, which is later than t. At time t′, cnow(t′) is still
0. That is, if we start the execution of q at time t′, we still
can meet q’s deadline. However, at time t′, the deadline
of q is more urgent, and therefore a smaller further delay
(namely τ > d− r − t′) will make q miss its deadline. This
implies that at time t′, because q’s deadline becomes more
urgent, E[Cdelay(t′)] and the expected cost reduction of the
immediate execution of q (reflected by the shaded area in
Figure 3(b)) become larger. Therefore, the priority score of
q at time t′, namely pq(t

′), grows larger than its priority
score pq(t) at time t. As can be seen, the priority scores in
CBS are dynamically changing over time.

In a recent work [8], we developed a specific implementa-
tion of CBS, named iCBS. However, iCBS is simply an ef-
ficient implementation of CBS under piecewise linear SLAs.
Therefore, in our current context, iCBS shares the same
weakness as CBS, which we discuss next.

cost c

(a)

be−bτ

d-r

r
cost c

(b)

be−bτ

d-r

r
cost c

r+∆

(c)

t ′′d d dt t t ′

t t ′

r

Figure 3: Illustration of CBS and its weakness.

2.3 Weakness in terms of Robustness
Despite its elegant theoretical foundation and superb per-

formance in computer networking applications, CBS (and
therefore iCBS) has a weakness that prevents it from being
used in the database community. This weakness, we believe,
is shared by all cost-aware scheduling policies that rely on
knowledge of the exact query execution time. We illustrate

4This assumption avoids the NP-hardness of the original
scheduling problem by assuming the further delay of each
query follows a known exponential distribution in an inde-
pendent manner.

675

this in Figure 3(c). At time t′′ (which is only slightly ear-
lier than d − r), if we immediately start the execution of
query q and q takes time r to finish, then the deadline can
be met. As a result, we will set the term cnow(t′′) to 0 in
Equation (1). If on the other hand, q takes r+∆ instead of r
to finish its execution, then q will miss its deadline even if it
is immediately started at t′′ and as a result, we set cnow(t′′)
to c. In other words, if we look at how sensitive pq(t) is with
respect to the accuracy of our knowledge about the query
execution time r of query q, it can be shown that at time t′′

lim
∆→0

pq(t
′′, r + ∆)− pq(t′′, r)

∆
= −∞. (2)

This result implies that a small perturbation to the execu-
tion time of q, or small imprecision in the prediction on q’s
execution time, can dramatically change the priority score
of q in the scheduling algorithm. Therefore, we say CBS is
not robust in the presence of imprecision in query execution
time prediction. We believe this weakness is a hurdle to
the application of CBS to database systems, in which it is
almost impossible to know beforehand the exact execution
time of a particular query instance. In our experiments,
we will demonstrate that this weakness is shared by several
state-of-the-art cost-aware scheduling algorithms and it has
a non-trivial negative impact on their performance.

While inaccurate estimates for running times create prob-
lems for scheduling, we should point out that knowing noth-
ing about r is not acceptable either. Without any knowledge
about r, one cannot infer the urgency of each query and as a
result, one cannot apply any cost- or urgency-aware schedul-
ing. Recently, there have been many efforts in the database
community (e.g., [12, 33, 10]) to reduce the errors in the
prediction of r. Moreover, recent studies (e.g., [11]) have
shown that although it can be extremely difficult to predict
the exact execution time of a particular query instance, it is
relatively easy, e.g., through a brief period of online moni-
toring, to learn about the distribution of the execution time
for queries with the same template or from the same family.

In the rest of this paper, we focus on scenarios where r is
not known exactly but instead can be determined to follow a
certain probability distribution represented by a histogram.

3. SHEPHERD IN A SIMPLE SCENARIO
In this and the next section, we present in detail our al-

gorithm, which we name “Shepherd,” which explicitly takes
into account the distribution of expected query execution
times. At a high level, Shepherd makes use of the following
insight:

In Shepherd, instead of relying on a single point
estimation for the execution time of a query q, we
consider all the possible values of the execution
time of q, together with their consequences in
terms of SLA penalty cost.

Note that this is very different from relying on a single esti-
mated mean value for the execution time of q.

3.1 Priority Score for Shepherd
We first describe how a priority score is defined in Shep-

herd. In Shepherd, we represent the execution time of q not
as a constant, but instead, as a random variable R that fol-
lows a probability distribution. With this representation, we
define the Shepherd priority score in a spirit similar to that

of CBS, except that all the possible values of R are evalu-
ated, according to the probability that they occur. Specifi-
cally, the Shepherd score is defined as:

pq(t) =
1

E[R]
(E[Cdelay(t)]− E[Cnow(t)]) (3)

=

R∞
r=0

p(r)
ˆR∞
τ=0

be−bτ · c(t+ τ, r)dτ − c(t, r)
˜
drR∞

r=0
r · p(r)dr

,

where p(r) is the probability density function of R, the ran-
dom variable representing the execution time of q.

Comparing Equation (3) with the CBS score in Equa-
tion (1), we can see several distinguishing points. First, the
r term in Equation (1) is replaced by E[R]. This is because
the query execution time is not fixed but instead is a random
variableR with mean value E[R]. Second, cnow(t) is replaced
by E[Cnow(t)]. This is because that the query execution time
R is a random variable, and therefore even if we start the
execution of q immediately, the cost is still a random vari-
able Cnow(t), and E[Cnow(t)] captures the expected value
of Cnow(t). In addition, although comparing Equation (3)
with Equation (1), the form for the term E[Cdelay(t)] does
not change, the details have changed because the expecta-
tion is now taken over two random variables R and Γ5.

The Shepherd score defined in Equation (3) is compli-
cated, which naturally raises concerns about its practicality.
On the one hand, Equation (3) does achieve our goal of
evaluating over all the possible execution times for q; on the
other hand, this evaluation requires a double integration.
Furthermore, this evaluation (which is time-varying) has to
be conducted at any time t when a scheduling decision is to
be made, for all queries waiting to be serviced at time t. In
the remainder of this paper, a main theme is to make the
Shepherd scores more manageable through analysis, simpli-
fications, and special-purpose techniques. We start by care-
fully deriving closed-form solutions to the Shepherd score
under special scenarios. We first analyze Shepherd scores
in a very simple scenario, where the query execution time
follows a uniform distribution and the SLA cost is a single-
step function. We use this simple scenario to illustrate the
desirable properties of the Shepherd score and we postpone
the description of more general scenarios to the next section.

3.2 Detailed Derivation of the Priority Score
In this section we focus on cases where R follows a uni-

form distribution as described in Figure 4. That is, if we
start the execution of query q at time t, q’s finishing time
is uniformly distributed between t + r1 and t + r2. In the
figure, obviously h = 1

r2−r1
. In addition, we assume that

the SLA cost function is a single-step function with a single
deadline d and a jump of height c for the cost of missing the
deadline, also shown in Figure 4.

3.2.1 Derivation of E[Cnow(t)]

Figure 4 shows how E[Cnow(t)] is derived. At time t, if
we immediately start the execution of q, there can be three
cases, depending on the relation between d and (t+r1,t+r2):

5Actually, E[Cnow(t)] should be written as ER[Cnow(t)] and
E[Cdelay(t)] should be written as ER,Γ[Cdelay(t)]. This is
because Cnow(t) only depends on R, the query execution
time, while Cdelay(t) depends on both R and the further
delay Γ, where Γ is also a random variable.

676

t

h

t+r2

PDF

cost c

d time

case 3case 2case 1

t+r1

Figure 4: Uniform distribution of execution time,
with three possible cases.

case 1, t+ r2 ≤ d: In this case, q can meet its deadline no
matter what its execution time R is (as long as R falls
between t+r1 and t+r2, which is guaranteed). There-
fore

E[Cnow(t)] = 0.

case 2, t+ r1 < d ≤ t+ r2: In this case, the expected cost
of starting query q immediately at time t is propor-
tional to the probability that R falls after the deadline
d, and we can show

E[Cnow(t)] = (t+ r2 − d)hc.

case 3, d ≤ t+ r1: In this case, there is no way for q to
meet its deadline and so we have

E[Cnow(t)] = (r2 − r1)hc.

Note that in the last case, since we have h = 1
r2−r1

, we

actually have E[Cnow(t)] = c. However, we keep the current
form so that it can be extended in the next section to cases
where h is not necessarily equal to 1

r2−r1
.

3.2.2 Derivation of E[Cdelay(t)]

If, on the other hand, we decide to postpone the execu-
tion of q, then the cost Cdelay(t) is another random variable.
We provide the detailed derivation of the expected value
E[Cdelay(t)] in Appendix A and here just present the result:

case 1, t+ r2 ≤ d:

E[Cdelay(t)] =
hc

b

“
eb(r2−d) − eb(r1−d)

”
ebt

case 2, t+ r1 < d ≤ t+ r2:

E[Cdelay(t)] = hc(t+ r2 − d) +
hc

b
− hc

b
eb(r1−d)ebt

case 3, d ≤ t+ r1:

E[Cdelay(t)] = (r2 − r1)hc.

3.2.3 The overall priority score
Now we derive the overall priority score for Shepherd.

Note that E[R] is a constant that is invariant over time. On
the other hand, E[Cdelay(t)] and E[Cnow(t)], the expected
costs of further postponing q and that of executing q right
away, both change over time. At a give time t, we have

pq(t) =

8>><>>:
hc

E[R]·b

“
eb(r2−d) − eb(r1−d)

”
ebt t+ r2 ≤ d

hc
E[R]·b −

hc
E[R]·be

b(r1−d)ebt t+ r1 < d ≤ t+ r2

0 d ≤ t+ r1.

(4)

d
time

floating
sinking

d-r1d-r2

Figure 5: Shepherd score changing over time.

This priority score of Shepherd is displayed in Figure 5. As
can be seen from the figure, for this particular case, namely a
uniformly distributed execution time and a single-step SLA
cost function, the Shepherd score increases exponentially up
to time d − r2 (referred to, in the rest of the paper, as the
floating stage) and then starts to decrease exponentially up
to time d− r1 (referred to as the sinking stage). After time
d− r1, the Shepherd score becomes 0.

3.3 Robustness of the Shepherd Score
The original CBS can be considered as a special case of

Shepherd in which there is no sinking stage. That is, in the
original CBS, the priority score increases exponentially until
time d− r, and then suddenly drops to 0.

d

(a)

d-r

t

execution time R
PDF of query

CBS score

t+r

time d

(b)

d-r1d-r2

t+r1
t t+r2

execution time R
PDF of query

time

Shepherd score

Figure 6: Robustness of (a) CBS vs. (b) Shepherd.

Figure 6 illustrates how the Shepherd score and CBS score
change over time. From the figure we can see that compared
to the CBS score, the Shepherd score is more robust in that
a small disturbance or error in the query execution time
prediction does not change the priority score too much. Such
a robustness is very important especially when we cannot
predict r perfectly, which is the case in most of database
applications.

4. SHEPHERD IN GENERAL
In this section, we extend Shepherd to handle more gen-

eral scenarios. First, we extend the execution time distri-
bution from uniform distributions to multiple-bucket his-
tograms. Then we extend the SLA cost function from single-
step functions to multiple-step functions. However, instead
of giving the tedious technical details, in the discussion in
this section, we present intuitive descriptions and omit the
detailed derivations. The key observation we leverage to
address the general case is the following:

The main operations we used to compute the
Shepherd score, namely expectation, integration,
and convolution, are all linear operations. There-
fore, we can apply the superposition principle.

677

4.1 Histogram-based Query Execution Time
In the general cases, instead of a uniform distribution,

we assume the distribution of the query execution time can
be represented as a histogram with multiple buckets. A
histogram-based representation is practical in many appli-
cations. For example, if a query q follows a query template
(e.g., issued from a servlet from a Web server), then the ex-
ecution time of historic queries from the same template can
be used to infer q’s execution time. The execution time of a
large number of historic queries can be succinctly encoded
in a histogram. As another example, very often, the pre-
diction obtained from machine-learning approaches is not in
the form of a single value (point estimation) but instead is
in the form of a probability distribution (e.g., obtained from
a Bayesian approach). Such probability distributions can be
approximated by histograms with finite number of buckets.

It turns out that Shepherd can be easily extended from ex-
ecution time following a uniform distribution (which can be
considered as a histogram with a single bucket) to query exe-
cution time following a general histogram. The key observa-
tion is that in Equation (3), both E[Cdelay(t)] and E[Cnow(t)]
are linear functions and as a result, we are able to compute
E[Cdelay(t)] and E[Cnow(t)] for each bucket in the histogram
separately and put the results together. (E[R] is a constant
independent of t and can be derived from the histogram.)
More specifically, we can decompose a general histogram
vertically into the sum of individual buckets, as shown in
Figure 7, then handle each bucket by using the method in
the previous section (recall that in the previous section, we
intentionally used h instead of 1

r2−r1
). Finally, the results

are aggregated to get the Shepherd score.

execution
time

0 r2 r3

h2histogram-2

execution
time

execution
time

0 r1 r2

h1

histogram-1

execution
time

0 r3 r4

h3

histogram-3

(b)

histogram

0 r1 r2 r3 r4

h1
h3

h2

(a)

Figure 7: Decomposition of query execution time
histogram.

4.2 Multiple-step SLA Cost Functions
Following a similar line of thought, we rely on the linearity

of the Shepherd score to extend from single-step SLA cost
function to multiple-step SLA cost functions.

Figure 8(a) shows a multiple-step SLA cost function with
three deadlines and the corresponding costs. Such an SLA
turns out to be decomposable horizontally into the sum of
three single-step cost functions, as shown in Figure 8(b).
Then we can compute the priority score for each of the
single-step cost functions and sum them to get the total
priority score for Shepherd.

d3

(b)

cost function 3

t time

c3-c2

d1

cost function 1

t time

c1

d2

cost function 2

t time

c2-c1

cost function

d3d2d1t time

c1

c2

c3

(a)

Figure 8: Decomposition of a multiple-step cost
function.

4.3 Putting It All Together
By combining (i) the decomposition of the histogram of

the query execution time as shown in Figure 7 and (ii) the
decomposition of the multiple-step cost function as shown
in Figure 8, it can be derived, in a straightforward way, that
the overall Shepherd score can be written as

pq(t) =
X
i,j

pqij(t). (5)

In the above expression, pqij(t) is the Shepherd score for the
special case with a single-bucket (the i-th bucket as in Fig-
ure 7) distribution of query execution time and a single-step
(the j-th step as in Figure 8) cost function. This special
case is exactly what has been solved in the previous section.
Therefore, we have demonstrated that the general cases,
with multiple-bucket histograms and multiple-step SLA cost
functions, are not intrinsically more difficult than the special
case in the previous section. We can prove that the Shepherd
score for the general cases, as described by Equation (5),
consists of various floating and sinking stages. Moreover,
pq(t) is a continuous function over time t and therefore the
non-robust scenario, as described earlier in Equation (2),
will never happen to a Shepherd priority score.

5. EFFICIENT IMPLEMENTATION
So far we have focused on computing the Shepherd score

for a single query. In real applications, there can be a large
number of queries to be prioritized at any given time. In
this section, we develop a technique that achieves this prior-
itization with time complexity logarithmic in N , the number
of queries to be prioritized.

5.1 Efficient Prioritization
The Shepherd score for a query is continuously changing

over time, as we can see from Equation (5). As a conse-
quence, the query having the highest Shepherd score varies
with time. On the one hand, this dynamic ordering is a key
to the good performance of Shepherd. On the other hand,
it seems to impose a time complexity of Ω(N) for choos-
ing, among the N queries waiting to be serviced, the query
currently having the highest Shepherd score — after all, it
seems that at a given time t, the Shepherd score for each
query (which depends on t) has to be recomputed. This time

678

other
queries

other
queries

q2
q1

time τ

(a) original space

q3

β

-ebt

β3 β1 β2

α3
α1

α2

α

(b) dual space

q3
q1

q2

pq3(τ)
score pq1(τ)

t

pq2(τ)Shepherd

Figure 9: (a) Dynamically changing Shepherd scores
and (b) static mapping into the dual space.

complexity is undesirable. To address this issue, we borrow
a technique that we previously proposed in [8], which maps
the time-varying Shepherd score for a query to a fixed point
in the dual space of linear functions. This mapping is based
on the following observation on the special form of the Shep-
herd score — for a query q, its Shepherd score at any given
time t can always be written as

pq(t) = αq + βqe
bt, (6)

where αq and βq are constants (i.e., invariant with respect to
t) for a certain period of time. We start with the simple case
of a single-bucket histogram and a single-step cost function
as shown in Equation (4). As can be seen, pq(t) = αq+βqe

bt

where the (αq, βq) pair only change value twice during the
lifetime of q — once from the floating stage to the sinking
stage, and once from the sinking stage to 0. Similar proper-
ties hold in the Shepherd score for the more general cases.
As shown in Equation (5), the Shepherd score for the general
cases can be written as the superposition of several buckets
in the histogram of query execution time and several steps
in the cost function. Therefore, it can be shown that with
I buckets in the histogram and J steps in the cost function,
pq(t) is always in the form of αq + βqe

bt where the (αq, βq)
pair only change value finite times during the lifetime of q —
it happens only when the left or right border of a bucket in
the histogram “hits” a new step in the cost function, which
occurs (I + 1)J times in total6.

By using Equation (6), we can map each query q to a
point with coordinate (αq, βq) in the dual space of linear
functions. Then at time t, to find the query with the highest
Shepherd score at t, we “sweep” the dual space by using a
line with slope −ebt, as illustrated in Figure 9(b). It can
be shown that (i) the first point hit by the sweeping line
corresponds to the query with the highest Shepherd score at
time t, and (ii) such a point is guaranteed to be on the convex
hull of all the points in the dual space. In this method,
the time-varying (relative) priorities among the queries are
reflected by two types of dynamics in the dual space. First,
the coordinate (αq, βq) for a query q can shift several times
during the lifespan of q. Second, depending on time t, we
use a sweeping line with different slope −ebt and therefore
may hit different “corners” on the convex hull (and therefore
pick different queries). We refer the interested readers to [8]
for further details.

6This is one reason why we focused on cost functions in the
form of step functions. It can be shown that for general
piecewise linear cost functions, as given in [8], the Shepherd
score is in the form of pq(t) = αq + βq · ebt + γq · t.

5.2 Implementation Details
For the above technique to work, we need an algorithm to

maintain a planner convex hull incrementally. In our previ-
ous work [8], we pointed out that such algorithms with loga-
rithmic time complexity exist (e.g., the O(logN) algorithm
in [6] and the O(log2 N) algorithm in [24]), without actually
implementing any of them. In this paper, we implemented
the algorithm proposed by Overmars and von Leeuwen [24],
which has an O(log2 N) time complexity. For the implemen-
tation, a special data structure named concatenable queue [2]
is needed. We implemented the concatenable queue by using
a 2-3 tree [2], and we implemented the 2-3 tree by extending
the left-leaning-red-black-tree (LLRB) [32]. In total, our im-
plementation of the dynamic convex hull algorithm consists
of less than 1000 lines of Java code.

6. EXPERIMENTAL STUDIES
In this section, we evaluate the effectiveness and efficiency

of distribution-based scheduling by investigating the perfor-
mance of Shepherd using both simulations and real system
experiments. The main metric we use to measure perfor-
mance is the average SLA penalty cost per query. That is,
after each query is finished, we look at its query response
time, compare the response time with the deadline(s) in its
SLA cost function, and derive its penalty cost.

6.1 Settings for the Experiments

Our simulator and TPC-W testbeds
We conducted experiments on two testbeds, both imple-
mented in Java. The first testbed is a comprehensive discrete-
event simulator developed at NEC Labs. This simulator
allows us to evaluate different scheduling algorithms under
different workload characteristics and SLAs. With the sim-
ulator, we can control the distribution of query execution
time and even study hypothetical (and practically unattain-
able) oracle cases, where the exact query execution time is
available to the scheduling algorithms before each query is
executed.

Our second testbed is a deployment of the TPC-W bench-
mark7, with the following details. The server machine has
Intel Xeon 2.4GHz quad-core CPUs and 16GB memory. We
used the 600MB data size for TPC-W; the database was
MySQL 5.5 using InnoDB 1.1.3, with 1GB memory as the
InnoDB buffer pool. We implemented a middleware-based
workload manager, which handled the execution of the schedul-
ing algorithms, generated the query workloads, and collected
relevant statistics. Separate machines with the same spec-
ifications were used as clients to issue queries. The mul-
tiprogramming level (MPL) was set to 20, which was also
the case for the simulator testbed. We experimented with
other MPLs and observed similar performance, hence those
results are omitted.

We achieved MPL 20 by creating 20 database working
threads, where each of the threads maintained its own database
connection. The workload manager generates SQL state-
ments and pushes them into a queue shared by all 20 work-
ing threads; these working threads with individual JDBC
connections then grab the SQL statements from the queue
and execute them. The SQL queries were uniformly gener-
ated from 5 TPC-W query templates, which are a mixture of

7http://www.tpc.org/tpcw/

679

short running (< 1ms) and relatively long running (> 50ms)
queries. However, to get a fair comparison among different
algorithms, for each test, once a workload was generated and
used by the first algorithm under study (usually FCFS), we
recorded the arrival time and the SQL statement for each
query; then we reused the same workload trace when run-
ning the other algorithms in the same test.

Two types of workload traffic
We used two types of workload traffic: static and bursty. For
static traffic we used Poisson arrivals, where the arrival rate
was tuned to achieve the target system load required by each
experiment. Here, by system load, we mean the ratio of (1)
the total service time required by all the queries that arrive
during an experiment and (2) the total service time that can
be provided by the database server. A system load greater
than 100% corresponds to an overload situation, which is of
interest to us as well.

For bursty traffic we used the well-known 1998 World Cup
trace [3], which describes the visitor arrival rate to a web-
server over the course of several hours. The trace is plotted
in Figure 10, and again we scaled the arrival rate to achieve
the target system load. Both types of traffic belong to the
category of open-workload [31], where queries arrive inde-
pendently of the status of previous queries.

 5

 10

 15

 20

 25

 30

 35

 40

15:00pm 19:00pm 22:21pm

R
e
q
u
e
s
t
R

a
te

 (
k
/m

in
)

Time

Figure 10: The World Cup trace, with the main
event happened at 19:00pm.

Baseline algorithms
For baseline scheduling algorithms, we implemented two cost-
unaware algorithms: first-come-first-serve (FCFS) and (SJF),
where SJF is aware of query execution time but not SLA
penalty cost. For more sophisticated cost-aware schedul-
ing policies, we implemented two state-of-the-art algorithms,
FirstReward and iCBS, described below. We chose these al-
gorithms because they have cost-aware properties similar to
Shepherd, namely they dynamically prioritize queries in real
time based on query execution time and SLAs.
FirstReward [21] is a sophisticated algorithm that con-
siders the benefit and opportunity cost of each scheduling
choice. FirstReward needs as input the execution time of
the queries to be scheduled. For the parameters alpha and
discount rate, we use the suggested values of 0.3 and 0.01.
iCBS [8] is our previous implementation of CBS. For the
parameter b, we follow the suggestion in [25] and set 1/b to
be four times the mean query execution time. The same b
is used in our Shepherd algorithm.

6.2 Evaluation on Effectiveness & Robustness

6.2.1 Effectiveness using synthetic data
We start with a simple experiment using the simulator.

We generated queries with mean execution time of r = 30 ms
using static traffic. The Poisson arrival rate was controlled
so that the target system load, e.g., 95%, was achieved un-
der the given MPL. However, when assigning the exact query
execution time at run time, we randomly picked half of the
queries and assigned their execution times using the his-
togram shown in the upper panel of Figure 1 (centered at
30 ms, with 3 buckets each with a width of 0.5 ms); the
other half of the queries had execution times following the
bimodal histogram described in the lower panel of Figure 1
(centered at 1ms and 59ms). The baseline algorithms only
use the the means of query execution time, while Shepherd
additionally takes into consideration the histograms. No
algorithm (other than the oracle) knows the exact query
execution time before a query is executed.

In terms of SLAs, we start with the simple one shown
in Figure 2(a), namely with a single deadline. We set the
deadline d at 5r = 150 ms after the arrival of each query and
we set the cost simply at c = 1. In terms of performance,
we report the average SLA penalty cost per query. This
average penalty, when used together with the simple SLA
(i.e., single deadline and c = 1), turns out to be equivalent
to the fraction of queries that miss their deadlines. For each
system load and each scheduling algorithm, the simulation
was run three times with different random seeds, each time
using 100K queries. The average performance is reported in
Table 1, under “SLA-1”. As can be seen, Shepherd clearly
outperforms its non-robust counterparts, incurring only be-
tween one third and one half of the SLA cost penalties of
the best baselines.

Next, we randomly picked half of the queries (indepen-
dent of the distribution of their execution time) and changed
their SLAs to the one shown in Figure 2(b). More specifi-
cally, we set c1 = 1, c2 = 10, d1 as 5r and d2 as 10r after
query arrival time, respectively. In other words, among all
queries, half of them (e.g., from gold customers) have a sec-
ond deadline, with a penalty cost much more severe than
that of the first deadline. We use such a mixture of two
SLAs to demonstrate that cost-aware scheduling algorithms
can provide differentiated service. The results are shown in
Table 1, under “SLA-2”. As can be seen, the performance of
the cost-unaware algorithm SJF suffers, while the cost-aware
algorithms handle the new SLA quite well.

In addition, to find the performance degradation due to
imprecise query execution time prediction, we ran an “ora-
cle” version of iCBS, where the exact query execution time
was used in the algorithm, and report the result in the last
row of Table 1. As can be seen, the performance degrada-
tion from the oracle cases (iCBS-oracle, fed with the exact
query execution time) to the practical cases (iCBS, fed with
mean query execution time) can be up to 500%.

Table 2 reports the performance of the same set of tests
using the World Cup traffic. As can be seen, although the
performance improvement is less dramatic, Shepherd con-
sistently outperforms the best baselines by around 30%.

6.2.2 Robustness using synthetic data
To compare the robustness of Shepherd to that of iCBS,

we conducted the following simple test. In the test, the exe-

680

Table 1: Average SLA cost per query, for different
algorithms under different SLAs and system loads
(static traffic).

SLA Type SLA-1 SLA-2
load 95% 99% 105% 95% 99% 105%

FCFS 0.087 0.955 1.00 0.192 5.15 5.51
SJF 0.055 0.106 0.149 0.184 0.435 0.676

F-REWARD 0.015 0.057 0.121 0.026 0.134 0.305
iCBS 0.022 0.085 0.176 0.021 0.092 0.184

Shepherd 0.008 0.030 0.067 0.008 0.035 0.077

iCBS-oracle 0.004 0.016 0.031 0.005 0.022 0.047

Table 2: Average SLA cost per query, for different
algorithms under different SLAs and system loads
(World Cup traffic).

SLA Type SLA-1 SLA-2
load 95% 99% 105% 95% 99% 105%

FCFS 0.796 0.984 0.996 4.29 5.40 5.49
SJF 0.297 0.330 0.362 1.58 1.76 1.94

F-REWARD 0.221 0.234 0.250 0.767 0.825 0.883
iCBS 0.232 0.248 0.265 0.586 0.628 0.689

Shepherd 0.173 0.187 0.200 0.408 0.464 0.516

iCBS-oracle 0.099 0.108 0.117 0.281 0.313 0.341

cution time of the queries comes from the bimodal histogram
described in Figure 11, with a mean of r = 30 ms and a gap
of 2 ∗ e ∗ r between the two modes (e can be considered as
the imprecision level in the knowledge about the query ex-
ecution time). Also, all queries have the same SLA, with a
single deadline at 5r and a cost of c = 1. Then, we conducted
a series of tests with different e values. Under each e value,
we ran Shepherd, iCBS, and iCBS-oracle. We report (i)
the ratio of the performances of Shepherd and iCBS-oracle,
and (ii) the ratio of the performances of iCBS and iCBS-
oracle. As can be seen, as e increases, the imprecision of
the query execution time increases. As a consequence, both
Shepherd and iCBS suffer, in terms of their performance vs.
the performance achievable by iCBS-oracle. However, the
performance degrades much more gracefully with Shepherd,
which suggests that Shepherd is much more robust to such
imprecision.

0 (1−e)r r (1+e)r

Figure 11: Histogram used in the robustness test.

6.2.3 Effectiveness using TPC-W data
For the experiments on the real TPC-W testbed, we chose

a subset of five query templates, referred to as Q1,. . . ,Q5,
from the TPC-W benchmark specification. These five tem-
plates, whose details are skipped due to the space limit,

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
e
g
ra

ta
ti
o
n
 L

e
v
e
l
(%

)

Imprecision Level e

iCBS
Shepherd

Figure 12: The robustness test.

are a mixture of (relatively) long-running queries and short-
running ones. In the experiments, we used single-step SLAs
and set the deadlines for each of the long-running queries
(from query templates Q2, Q4, and Q5) to five times its
mean execution time. For query templates Q1 and Q3,
whose queries usually take less than 1 ms, we simply set
their deadlines to be 10 ms after query arrival. For the SLA
penalty cost, we assign the cost to be proportional to the
mean query execution time. Note that in order to set up the
deadlines and the SLAs, we need to know the mean execu-
tion time of queries from the five templates beforehand. For
this purpose, we run a pre-processing step to get the profiles
of the query templates, which are shown in Figure 13.

During the test, the baseline algorithms were provided
with (i) the template for each query and (ii) the mean query
execution time of the queries from each template (collected
and updated in real time from the most recent 100 queries
from the same template). In order for Shepherd to learn the
histogram of query execution times in real time, we built
the histogram, with five buckets, from the most recent 100
queries as well.

The performance under the static traffic is reported in
Table 3, and those under bursty traffic is reported in Ta-
ble 4. The performance is obtained by averaging over three
runs (with different random seeds used by the workload
manager), where each run consists of about 5,000 query in-
stances. As can be seen, again, Shepherd consistently out-
performs the best baseline by up to 50%.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 1 2 3 4 5

Q1 (ms)

 0
 50

 100
 150
 200
 250
 300
 350

 20 30 40 50 60

Q2 (ms)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 1 2 3 4 5

Q3 (ms)

 0

 50

 100

 150

 200

 250

 20 30 40

Q4 (ms)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 100 200 300

Q5 (ms)

Figure 13: Execution time histograms for the five
TPC-W query templates.

681

Table 3: TPC-W: average cost for static traffic.

load 55% 65% 75% 85% 95% 105% 130%

FCFS 5.57 5.70 5.11 7.29 42.3 70.2 70.5
SJF 4.21 4.81 5.49 7.30 21.0 26.7 30.6

F-REWARD 3.68 4.02 3.51 5.60 9.22 12.6 24.0
iCBS 3.51 4.47 4.27 4.61 5.93 16.2 24.4

Shepherd 3.20 3.99 3.70 3.42 4.98 8.4 13.2

Table 4: TPC-W: average cost for World Cup traffic.

load 55% 65% 75% 85% 95% 105% 130%

FCFS 44.4 52.5 60.7 62.5 63.9 67.2 67.3
SJF 18.8 21.5 25.1 26.65 28.3 28.9 30.7

F-REWARD 8.62 9.67 13.8 17.8 19.2 23.3 29.3
iCBS 9.98 11.8 12.2 13.4 16.1 22.5 24.6

Shepherd 5.01 7.36 8.57 11.3 13.8 15.8 18.9

6.2.4 Robustness using TPC-W data
To study of the level of performance degradation due to

imprecise query execution time, we conducted the following
test. First, after an experimental run, we collected from the
log file the ground truth of the real execution time of each
query from each of the five query templates. Then, using
the simulator, we ran exactly the same queries with arrival
times as recorded in the log file. For each scheduling algo-
rithm, we ran the test two times: (i) first without knowing
the exact query execution time (using template means in
the baselines) and (ii) with the exact query execution time
known before the query execution (oracles). In other words,
each algorithm is compared to its own oracle, because the
exactly same workload trace is used by the simulator and
because the simulator can enforce the “true” execution time
of each query.

We report the ratio between the performances from (i) and
those from (ii) in Figure 14. Note that a degradation level
of 100% implies the performance is not affected by impreci-
sion in query execution time, whereas a larger level implies
worse degradation. From the results we can see that cost-
aware scheduling algorithms are not robust in the presence
of imprecise query execution time — the real performances
can be worse than the ideal (oracle) cases by a factor of two
to three, especially when the load is high.

6.3 Evaluation of Efficiency
To study the efficiency of our Shepherd implementation,

we compared a naively implemented version of Shepherd,

100%

200%

300%

80% 95% 110%

D
e

g
ra

d
a

ti
o

n
 L

e
v
e

l

System Load

FCFS
SJF

F-REWARD
iCBS

Shepherd

Figure 14: Performance degradation of different al-
gorithms due to imprecise query execution time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Number of Queries to Be Scheduled

Naive Implementation
Efficient Implementation

Figure 15: The running time under different num-
bers of queries to schedule.

where the Shepherd scores of all queries are re-computed
each time, with our implementation as described in Sec-
tion 5. To study the scalability of the algorithm, we intro-
duced a large number of queries waiting to be serviced in the
following way. We used an SLA with a single deadline and
we set the deadline to a very large value, and at the same
time we increased the system load to borderline overload.
Figure 15 is a scatter plot that shows how the naive imple-
mentation of Shepherd and our implementation scale with
respect to the number of queries waiting in the queue to be
serviced. We can see that in the naive implementation, the
time taken to make a scheduling decision is proportional to
the number of queries waiting to be serviced; in compari-
son, in our efficient implementation, a couple thousands of
queries can be handled in negligible time. This result illus-
trates that Shepherd can be implemented in an efficient way
so as to be able to handle large number of queries.

7. RELATED WORK
In this section, we survey literature in related areas.

Scheduling and cost-aware scheduling
Scheduling is a well-studied research topic and is ubiquitous
in many applications [7]. Most analytical results in queueing
theory are obtained by assuming that query arrival rates and
query execution times follow identical independent distribu-
tions (i.i.d.). On the other hand, when per-query scheduling
decisions are made where each query has a known execu-
tion time and hard deadlines, most problem instances be-
come NP-complete [34]. Furthermore, the situation is not
improved when the hard deadlines are replaced by mini-
mization of the number of deadline violations [25]. There-
fore, most scheduling algorithms adopt certain heuristics.
One family of such algorithms are cost-aware or value-based
scheduling algorithms. In these algorithms, the decisions on
scheduling are made so that certain costs are optimized. The
costs could be defined in different ways: they could be fixed
or time-varying values assigned to different queries [17, 21];
they could be the costs of rolling back and restarting trans-
actions [20]; they could be about other metrics such as fair-
ness [15] and result quality [18]. More commonly, the costs
of queries under different query response time are derived
from SLAs [23, 38, 28]. However, in most of the approaches
described above, a common weakness is that they assumed
the exact query execution time to be available beforehand,
which is not practical in most database applications.

682

SLA penalty costs
SLA penalty costs may come from various sources. In ser-
vice oriented architectures such as cloud computing, SLAs
may be readily available. For example, Amazon’s Dynamo
system guarantees the 99.9-percentile query response time
under certain peak workload [9]. The penalty cost can also
come from the requirements of particular applications. In
the field of Web service design, it has been shown there
exists strong correlations between query latency and user-
perceived Quality of Service (QoS) and user satisfaction [5].
Such correlations have been extensively used in Web service
QoS modeling and design [23, 18]. In computer networking,
packets from different applications (e.g., emails vs. real-time
voice) are usually associated with different urgency [26]. In
real-time systems, query deadlines may be determined by
characteristics of physical systems and controls, QoS re-
quirements, human sensory perceptions, and so on [29].

Query execution time prediction
In the past few years, much research work has been done
to address the problem of predicting the execution time of
a query before the query is actually executed. Solutions
proposed so far cover both OLTP [12] and OLAP [22, 36,
35] queries, as well as both stand-alone [12, 36] and con-
current [10, 35] queries. Because most of these solutions
are based on machine-learning approaches, and because real
data contain noise and inherent uncertainties, it is reason-
able to assume there exists unavoidable imprecision in the
predicted query execution time. Such imprecise query ex-
ecution time is explicitly addressed by the Shepherd algo-
rithm in this paper.

8. CONCLUSION
In database systems, when the predictions on query exe-

cution time are imprecise, there are two choices: either we
can ignore the imprecision and use a typical execution time
such as the mean value, or we can explicitly model and take
such imprecision into account in scheduling decisions. In
this paper, we show that the former leads to performance
degradation, and accordingly we propose a novel cost-aware
scheduling algorithm Shepherd, which we believe to be the
first one belonging to the latter. Shepherd has rigorous the-
oretic underpinnings as well as potential in real applications;
it is robust to imprecision in query execution time predic-
tion; and it is highly scalable. Such robustness and efficiency
are both supported by our empirical studies.

However, we do not claim Shepherd to be the best so-
lution to scheduling under imprecise query execution time.
Perhaps the most interesting aspect of this paper is that by
presenting Shepherd, we have demonstrated that it is both
necessary and manageable to explicitly treat imprecise esti-
mates of query execution time in scheduling decisions. We
believe such an explicit treatment of imprecise query execu-
tion times is both crucial to practitioners and fertile ground
for future research.

9. ACKNOWLEDGMENTS
We thank Jon M. Peha for his helpful suggestions, and

Hyun Jin Moon for his help in building the testbeds. The
work described in this paper is part of the CloudDB project [16]
at NEC Laboratories America.

10. REFERENCES
[1] A. Aboulnaga, K. Salem, A. A. Soror, U. F. Minhas,

P. Kokosielis, and S. Kamath. Deploying database
appliances in the cloud. IEEE Data Eng. Bull.,
32(1):13–20, 2009.

[2] A. V. Aho and J. E. Hopcroft. The Design and
Analysis of Computer Algorithms. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1974.

[3] M. Arlitt and T. Jin. A workload characterization
study of the 1998 World Cup Web site. Network,
IEEE, 14(3):30–37, 2000.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[5] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating
user-perceived quality into web server design. Comput.
Netw., 33(1-6):1–16, June 2000.

[6] G. Brodal and R. Jacob. Dynamic planar convex hull.
In FOCS, 2002.

[7] P. Brucker. Scheduling algorithms. Springer, 5th
edition, 2007.

[8] Y. Chi, H. J. Moon, and H. Hacıgümüş. iCBS:
Incremental cost-based scheduling under piecewise
linear SLAs. PVLDB, 4(9):563–574, 2011.

[9] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[10] J. Duggan, U. Çetintemel, O. Papaemmanouil, and
E. Upfal. Performance prediction for concurrent
database workloads. In SIGMOD, 2011.

[11] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and
request scheduling in e-commerce web sites. In WWW,
2004.

[12] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. I. Jordan, and D. A. Patterson. Predicting
multiple metrics for queries: Better decisions enabled
by machine learning. In ICDE, 2009.

[13] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and
A. Kemper. Adaptive quality of service management
for enterprise services. TWEB, 2(1), 2008.

[14] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis,
A. Labrinidis, and K. Pruhs. Adaptive scheduling of
web transactions. In ICDE, 2009.

[15] C. Gupta, A. Mehta, S. Wang, and U. Dayal. Fair,
effective, efficient and differentiated scheduling in an
enterprise data warehouse. In EDBT, 2009.

[16] H. Hacıgümüş, J. Tatemura, W.-P. Hsiung, H. J.
Moon, O. Po, A. Sawires, Y. Chi, and H. Jafarpour.
CloudDB: One size fits all revived. In SERVICES,
2010.

[17] J. R. Haritsa, M. J. Carey, and M. Livny. Value-based
scheduling in real-time database systems. The VLDB
Journal, 2:117–152, April 1993.

[18] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta:
Scheduling interactive services with partial execution.
In SOCC, 2012.

683

[19] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton.
Architecture of a database system. Foundations and
Trends in Databases, 1(2):141–259, 2007.

[20] D. Hong, T. Johnson, and S. Chakravarthy. Real-time
transaction scheduling: a cost conscious approach. In
SIGMOD, 1993.

[21] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing
risk and reward in a market-based task service. In
HPDC, 2004.

[22] J. Li, A. C. König, V. R. Narasayya, and
S. Chaudhuri. Robust estimation of resource
consumption for SQL queries using statistical
techniques. PVLDB, 5(11):1555–1566, 2012.

[23] Z. Liu, M. S. Squillante, and J. L. Wolf. On
maximizing service-level-agreement profits. In ACM
Conference on Electronic Commerce, 2001.

[24] M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Syst. Sci.,
23(2):166–204, 1981.

[25] J. M. Peha. Scheduling and dropping algorithms to
support integrated services in packet-switched
networks. PhD thesis, Stanford University, 1991.

[26] J. M. Peha. Scheduling and admission control for
integrated-services networks: the priority token bank.
Computer Networks, 31(23-24):2559–2576, 1999.

[27] J. M. Peha and F. A. Tobagi. Cost-based scheduling
and dropping algorithms to support integrated
services. IEEE Transactions on Communications,
44(2):192–202, 1996.

[28] F. I. Popovici and J. Wilkes. Profitable services in an
uncertain world. In Supercomputing, 2005.

[29] K. Ramamritham. Where do deadlines come from and
where do they go? Journal Of Database Management,
7(2):4–10, 1996.

[30] K. Ramamritham, S. H. Son, and L. C. Dipippo.
Real-time databases and data services. Real-Time
Syst., 28(2-3):179–215, 2004.

[31] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open versus closed: A cautionary tale. In NSDI, 2006.

[32] R. Sedgewick. Left-leaning red-black trees. In Dagstuhl
Workshop on Data Structures, 2008.

[33] S. Tozer, T. Brecht, and A. Aboulnaga. Q-Cop:
Avoiding bad query mixes to minimize client timeouts
under heavy loads. In ICDE, 2010.

[34] J. D. Ullman. Np-complete scheduling problems. J.
Comput. Syst. Sci., 10(3):384–393, 1975.

[35] W. Wu, Y. Chi, H. Hacıgümüş, and J. F. Naughton.
Towards predicting query execution time for
concurrent and dynamic database workloads. In
PVLDB, 2013.

[36] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacıgümüş,
and J. F. Naughton. Predicting query execution time:
are optimizer cost models really unusable? In ICDE,
2013.

[37] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and
H. Hacıgümüş. ActiveSLA: A profit-oriented
admission control framework for database-as-a-service
providers. In SOCC, 2011.

[38] L. Zhang and D. Ardagna. SLA based profit
optimization in autonomic computing systems. In
ICSOC, 2004.

APPENDIX
A. DERIVATION OF E[CDELAY(T)]

To simplify the discussion, we introduce a new random
variable F to represent the extra time, with respect to t,
that is needed for q to finish its execution8. Notice that
such extra time is the sum of q’s queueing delay and its
execution time. If we use random variable W to denote q’s
queueing delay and R to denote q’s execution time, then we
have F = W +R. Because F is the sum of the two random
variables W and R, the PDF f(τ) of F is the convolution of
w(τ) and r(τ). That is

f(τ) =

Z ∞
ξ=0

w(ξ) · r(τ − ξ)dξ

=

8><>:
0 τ ≤ r1R τ−r1

0
be−bξ · hdξ r1 < τ ≤ r2R τ−r1

τ−r2
be−bξ · hdξ r2 < τ

=

8>><>>:
0 τ ≤ r1

h ·
“

1− e−b(τ−r1)
”

r1 < τ ≤ r2

h ·
“
e−b(τ−r2) − e−b(τ−r1)

”
r2 < τ

Figure 16 shows the distribution of F . At time t, if we
decide to postpone the execution of q, obviously the finishing
time of q is t+ F .

SLA cost c

f (τ)

0

τ

r1 r2 d-t

Figure 16: Probability distribution of finishing time
if a query is postponed.

With the distribution of the finishing time t+F given, we
can derive the expected value of Cdelay(t).

case 1, t+ r2 ≤ d:

E[Cdelay(t)] =

Z ∞
τ=d−t

h ·
“
e−b(τ−r2) − e−b(τ−r1)

”
cdτ

=
hc

b

“
ebr2 − ebr1

”
e−bτ

˛̨̨d−t
∞

=
hc

b

“
eb(r2−d) − eb(r1−d)

”
ebt

case 2, t+ r1 < d ≤ t+ r2:

E[Cdelay(t)] =

Z r2

τ=d−t
h ·
“

1− e−b(τ−r1)
”
cdτ

+

Z ∞
τ=r2

h ·
“
e−b(τ−r2) − e−b(τ−r1)

”
cdτ

=hc(t+ r2 − d) +
hc

b
− hc

b
eb(r1−d)ebt

case 3, d ≤ t+ r1: E[Cdelay(t)] = (r2 − r1)hc.

8It can be shown that F is time-invariant, i.e., independent
of t.

684

