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ABSTRACT
Web service providers have been using NoSQL datastores to pro-
vide scalability and availability for globally distributed data at the
cost of sacrificing transactional guarantees. Recently, major web
service providers like Google have moved towards building stor-
age systems that provide ACID transactional guarantees for glob-
ally distributed data. For example, the newly published system,
Spanner, uses Two-Phase Commit and Two-Phase Locking to pro-
vide atomicity and isolation for globally distributed data, running
on top of Paxos to provide fault-tolerant log replication. We show
in this paper that it is possible to provide the same ACID transac-
tional guarantees for multi-datacenter databases with fewer cross-
datacenter communication trips, compared to replicated logging.
Instead of replicating the transactional log, we replicate the com-
mit operation itself, by running Two-Phase Commit multiple times
in different datacenters and using Paxos to reach consensus among
datacenters as to whether the transaction should commit. Doing so
not only replaces several inter-datacenter communication trips with
intra-datacenter communication trips, but also allows us to integrate
atomic commitment and isolation protocols with consistent repli-
cation protocols to further reduce the number of cross-datacenter
communication trips needed for consistent replication; for exam-
ple, by eliminating the need for an election phase in Paxos. We
analyze our approach in terms of communication trips to compare
it against the log replication approach, then we conduct an exten-
sive experimental study to compare the performance and scalability
of both approaches under various multi-datacenter setups.

1. INTRODUCTION
The rapid increase in the amount of data that is handled by web

services as well as the globally-distributed client base of those web
services have driven many web service providers towards adopt-
ing NoSQL datastores that do not provide transactional guaran-
tees but provide more scalability and availability via transparent
sharding and replication of large amounts of data. For example,
systems like Google’s Bigtable [10], Apache Cassandra [24], and
Amazon’s Dynamo [15] do not guarantee isolation or atomicity
for multi-row transactional updates. Other systems like Google’s
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Megastore [3], Microsoft’s SQL Azure [8], and Oracle’s NoSQL
Database [31] provide these guarantees to transactions whose data
accesses are confined to subsets of the database (e.g., a single
shard). Recently, however, major web service providers have
moved towards building storage systems that provide unrestricted
ACID transactional guarantees. Google’s Spanner [13] is a promi-
nent example of this new trend. Spanner uses Two-Phase Commit
and Two-Phase Locking to provide atomicity and isolation, run-
ning on top of a Paxos-replicated log to provide fault-tolerant syn-
chronous replication across datacenters. The same architecture is
also used in Scatter [17], a distributed hash-table datastore that pro-
vides ACID transactional guarantees for sharded, globally repli-
cated data, through a key-value interface. Such layered architec-
ture, in which the protocols that guarantee transactional atomicity
and isolation are separated from the protocol that guarantees fault-
tolerant replication, has many advantages from an engineering per-
spective, such as modularity, and clarity of semantics.

We show in this paper that it is possible to provide the
same strong ACID transactional guarantees for cross-datacenter
databases but with fewer cross-datacenter communication trips,
compared to a system that uses log replication, such as Spanner,
by using a more efficient architecture. We still use a layered ar-
chitecture that separates transactional atomicity and isolation from
fault tolerant replication; however, instead of running Two-Phase
Commit and Two-Phase Locking on top of Paxos to replicate the
transactional log, we run Paxos on top of Two-Phase Commit and
Two-Phase Locking to replicate the commit operation itself. That
is, we execute Two-Phase Commit operation multiple times, once
per datacenter, with each datacenter executing Two-Phase Commit
and Two-Phase Locking internally, and only use Paxos to reach
consensus among datacenters about the fate of the transaction for
the commit and abort decision. We refer to this approach as Repli-
cated Commit, in contrast to the replicated log approach.

Replicated Commit has the advantage of replacing several inter-
datacenter communication trips with intra-datacenter communica-
tion, when implementing ACID transactions on top of globally-
replicated data. Moreover, replicating the Two-Phase Commit op-
eration rather than replicating log entries allows us to integrate
the atomic commitment and isolation protocols with the consistent
replication protocol in a manner that further reduces the number of
cross-datacenter communication trips needed for consistent repli-
cation; for example, by eliminating the need for an election phase
in Paxos. Reducing the number of cross-datacenter communica-
tion trips is crucial in order to reduce transaction response time as
perceived by the user. Studies performed by different web service
providers [19] already demonstrate that even small increases in la-
tency result in significant losses for service providers; for example,
Google observes that an extra 0.5 seconds in search page generation
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time causes traffic to drop by 20%, while Amazon reports that ev-
ery 100ms increase in latency results in 1% loss in sales [19]. When
replicating a database across multiple datacenters in different conti-
nents, each cross-datacenter communication trip consumes tens or
even hundreds of milliseconds, depending on the locations of the
datacenters. In fact, as revealed by our experiments on the Ama-
zon EC2 platform, cross-datacenter communication over the Inter-
net typically requires much more time than the theoretical lower
bound on packet transmission time (i.e., the speed of light). For
example, a packet sent from the East Coast to the West Coast takes
about 45ms, which is nearly three times the time it takes a light
pulse to travel that same distance.

By reducing the number of cross-datacenter communication
trips, Replicated Commit not only reduces the response times of in-
dividual transactions as perceived by the users of the database, but
also significantly reduces the amount of time a transaction holds ex-
clusive locks on data items. Thus, if the database serves a workload
that is skewed towards certain hot data items, Replicated Commit
reduces lock contention, and thus avoids thrashing. Since skewed
data access is fairly common in practice, reducing lock contention
is expected to result in significant performance improvements.

We summarize our contributions in this paper as follows.

• We propose an architecture for multi-datacenter databases,
namely Replicated Commit, that is designed to reduce cross-
datacenter communication trips by replicating the Two-Phase
Commit operation among datacenters, and by using Paxos to
reach consensus on the commit decision.

• We compare Replicated Commit against the replicated log
architecture, that is currently used in production systems
such as Google’s Spanner, in order to analyze Replicated
Commit’s savings in terms of cross-datacenter communica-
tion trips.

• We conduct an extensive experimental study to evaluate the
performance and scalability of Replicated Commit, com-
pared to the replicated log approach, under various multi-
datacenter setups.

The rest of this paper is organized as follows. Section 2 presents
a motivating example that demonstrates the number of cross-
datacenter communication trips required to perform Two-Phase
Commit in a typical replicated log system. In Section 3 we pro-
pose our new architecture, namely Replicated Commit. In Sec-
tion 4 we compare our architecture against the replicated log ar-
chitecture to assess the reduction in the number of cross-datacenter
communication trips analytically, then in Section 5 we conduct an
extensive experimental study to compare the performance and scal-
ability of both approaches, Replicated Commit and replicated logs,
under various multi-datacenter setups. Finally, we discuss related
work in Section 6, and conclude in Section 7.

2. MOTIVATING EXAMPLE
In this section, we present a motivating example that demon-

strates the overhead of running distributed transactions on top of
globally replicated data, while guaranteeing strong consistency us-
ing log replication. In a replicated log system that runs Two-Phase
Commit and Two-Phase Locking on top of Paxos, as is the case
with Spanner and Scatter, typically the client program executing
the transaction begins by reading from the database, and acquir-
ing shared locks, while buffering all updates locally; then after all
reading and processing is done, the client submits all updates to the
database in Two-Phase Commit. Consider the case when a transac-
tion updates three data items X, Y, and Z in three different shards

Figure 1: Typical sequence of messages and operations when
running Two-Phase Commit on top of a Paxos-replicated log.

of the database. Figure 1 shows the messages exchanged during
Two-Phase Commit on a system where logs are replicated across
datacenters using Paxos. We use solid lines to illustrate Two-Phase
Commit communication, and use dashed lines to illustrate Paxos
communication. The setup consists of three datacenters. Each dat-
acenter contains three data servers, where each data server holds a
replica of a shard of the database. We label the shards X, Y, and
Z. The transactional log of each shard is replicated across data-
centers using a variant of Paxos called multi-Paxos, which is the
Paxos variant that is used by most production systems that imple-
ment Paxos-replicated logs [9, 13]. In multi-Paxos, once a node is
elected as a leader during a Paxos instance, that node remains the
leader for subsequent Paxos instances until the node crashes; this
avoids the cost of re-electing a leader each time the system logs
an entry. To account for the case when the Paxos leader crashes,
re-election of the Paxos leader in multi-Paxos is done periodically,
rather than at each Paxos instance. In our example we consider
the general case when Paxos leaders are in different datacenters.
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The special case when all Paxos leaders are in the same datacenter
saves only one cross-datacenter communication trip, as we show
when counting communication trips.

The sequence of operations and messages shown in Figure 1 can
be summarized as follows: (i) The client picks the Paxos leader
of one of the shards involved in the transaction, say the shard that
contains Y, to be the coordinator of Two-Phase Commit, while the
other Paxos leaders of X and Z are cohorts; (ii) The client sends
Two-Phase Commit prepare messages to the Paxos leaders of X,
Y, and Z, and informs them that Y is their coordinator. This is
a cross-datacenter one-way trip because the Paxos leaders can
be in any datacenter arbitrarily far from the client; (iii) The Paxos
leaders acquire exclusive locks on the target data items, X, Y, and
Z, then log the Two-Phase Commit prepare message to their Paxos
logs. Paxos logging requires a cross-datacenter roundtrip be-
cause Paxos leaders have to forward the prepare log entry to, and
receive accepts from, a majority of replicas in other datacenters;
(iv) The Two-Phase Commit cohorts (i.e., the Paxos leaders of X
and Z) acknowledge the Two-Phase Commit coordinator (i.e., the
Paxos leader of Y) that they have logged the Two-Phase Commit
prepare message successfully. If the Paxos leaders are in differ-
ent datacenters, this requires a cross-datacenter one-way trip; (v)
The Two-Phase Commit coordinator (i.e., the Paxos leader of Y)
logs a Two-Phase Commit commit entry in its own Paxos log. This
requires another cross-datacenter roundtrip because the Paxos
leader of Y has to forward the commit log entry to, and receive
accepts from, a majority of replicas in other datacenters; (vi) The
Two-Phase Commit coordinator (i.e., the Paxos leader of Y) for-
wards the commit message to the cohorts (i.e., the Paxos leaders of
X and Z) and to the client. This requires a cross-datacenter one-
way trip; (vii) Once the client receives the commit message, the
client deems the transaction committed. Any further communica-
tion does not affect latency as perceived by the client, but delays
the release of locks; (viii) The Two-Phase Commit cohorts (i.e., the
Paxos leaders of X and Z) log the commit entry in their Paxos logs.
This is a cross-datacenter roundtrip because the Paxos leaders
of Y and Z have to forward the commit log entry to, and receive
accepts from, a majority of replicas in other datacenters; (ix) The
Two-Phase Commit cohorts (i.e., the Paxos leaders of X and Z)
release theirs locks after receiving accepts from a majority of data-
centers that the commit entry has been logged successfully.

If the Paxos leaders of X, Y, and Z are in the same datacenter,
the number of cross-datacenter one-way trips that take place dur-
ing the period starting after the client sends the Two-Phase Commit
prepare message until the client receives an acknowledgment from
the Two-Phase Commit coordinator, equals six one-way trips. If
the Paxos leaders of X, Y, and Z are in different datacenters, an ad-
ditional cross-datacenter one-way trip is incurred. The number of
cross-datacenter trips that take place during the period starting after
the Paxos leaders acquire exclusive locks on X, Y, and Z, until these
locks are released, equals eight one-way trips if the Paxos leaders of
X, Y, and Z are in different datacenters, or seven one-way trips if the
Paxos leaders of X, Y, and Z are in the same datacenter. Locking
data for long periods of time affects concurrency negatively, spe-
cially when there is contention on certain data items. In summary,
this example demonstrates that the design decision of running Two-
Phase Commit and Two-Phase Locking on top of Paxos is not very
efficient in terms of latency and concurrency. Experiments in Sec-
tion 5 also confirm this observation.

3. REPLICATED COMMIT
We begin by presenting the data model and infrastructure that

Replicated Commit runs on, then we explain the Replicated Com-

mit protocol stack. A discussion and analysis of the correctness of
the protocol and other special considerations is also presented.

3.1 Data Model and Infrastructure
Our implementation of Replicated Commit runs on a key-value

store, however, Replicated Commit is agnostic to whether the
database is relational, or is a key-value store. We target databases
that are replicated across multiple databases across the globe. Typi-
cally, data is fully-replicated across datacenters for availability and
fault-tolerance. Within each datacenter the database is sharded
across multiple servers to achieve high scalability. All replicas
of a data item are peers in the sense that there are no leader repli-
cas. Each replica of each data item is guarded by its own lock, thus
each server in each datacenter has its own lock table. By maintain-
ing the locks in a distributed manner Replicated Commit avoids a
single point of failure, as is the case in Spanner where a single lock
per data-item is maintained at the Paxos leader copy of that data-
item. In Replicated Commit a transaction does not have to restart
as long as it maintains locks on a majority of replicas.

3.2 Transaction Execution
In Replicated Commit, as the transaction execution proceeds,

read operations are processed at the replicas stored at the data-
centers. However, the client program that executes the transaction
buffers all updates locally while reading from the database. Once
the client program is done with reading and processing, the client
submits all updates to the database using Two-Phase Commit.

3.2.1 Transactional Reads
In Replicated Commit, a transactional read is performed by send-

ing a read request to all replicas. Whenever a data server receives
a request to read a data item, the data server places a shared (read)
lock on that data item and sends the most recent version of the data
item back to the client. We have chosen a very simple strategy to
avoid deadlocks in the system in that if the lock being requested by
a transaction cannot be granted due to an existing lock on the data-
item then the lock request is denied. The only exception to this is
that an exclusive (write) lock can take over an existing shared lock.
This ensures that there is no unbounded waiting albeit at the ex-
pense of potentially unnecessary aborts. The client for every read
request waits until it receives responses from a majority of repli-
cas before reading the data item. The client reads from a majority
to ensure that shared locks are placed on a majority of replicas so
that a transaction that writes on one of the items in the read-set will
be detected as we will show later when the Paxos accept phase is
discussed. Once the client receives responses to its read request
from a majority of replicas, the client uses the most recent version
to process the read operation.

3.2.2 Transaction Termination
Once a transaction has finished all readings and processing, the

client program that executes the transaction submits all buffered
updates to the database as part of Two-Phase Commit. Each trans-
action starts a new Paxos instance for its own Two-Phase Commit.

Terminology. We use the standard terminology of Paxos [25,
26]; that is, each Paxos instance has proposers, acceptors, and
learners. A proposer is an entity that advocates a client request,
trying to convince acceptors to accept a value. Eventually, learners
need to learn the value that the acceptors accepted. In the basic
Paxos algorithm, each Paxos instance consists of two phases. Dur-
ing the first phase, acceptors vote for a leader from among all poten-
tial proposers, then in the second phase, acceptors accept the value
proposed by the leader that they elected in the first phase. Learn-
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ers need to learn the value that has been accepted by a majority of
acceptors which varies with different Paxos implementations [25].

The Commitment Protocol. At a high level, the way Replicated
Commit performs Two-Phase Commit is that each transaction exe-
cutes a new Paxos instance to replicate Two-Phase Commit across
datacenters. The client itself acts as the (sole) proposer for this
Paxos instance. Each datacenter acts as both an acceptor and a
learner. There is no need for an election phase since there is only
one proposer for transaction commitment. In Replicated Commit,
the value to be agreed on at the end of a Paxos instance is whether
to commit a transaction or not. The default value is not to commit,
so a majority of datacenters need to accept the prepare request of
Two-Phase Commit in order for a transaction to commit. Algo-
rithm 1 provides a high level description of the Replicated Commit
protocol.

Algorithm 1 Replicated Commit
1: The client appoints a shard to be the coordinator at each data-

center DC.
2: The client sends Paxos accept request to the coordinator in each

DC
3: for all DC do
4: The coordinator sends 2PC prepare request to all cohorts

within the same DC, including the coordinator itself
5: All cohorts acquire locks and log the 2PC prepare operation
6: The coordinator waits for acknowledgments from all co-

horts within the same DC that they are prepared
7: end for
8: Coordinators inform each others and the client that they accept

the Paxos request
9: for all DC do

10: The coordinator sends 2PC commit request to all cohorts
within the same DC

11: All cohorts log the 2PC commit operation and release locks
12: end for

Paxos Accept Phase & 2PC Prepare Phase. A datacenter ac-
cepts a Paxos request from a transaction only after (1) acquiring
all the exclusive locks needed by that transaction, as specified in
the request, (2) verifying that shared locks that have been acquired
by that transaction are still being held by the same transaction,
thus no shared locks have been released by an exclusive lock of
another transaction, and (3) logging the prepare operation to the
transactional log. At each datacenter, acquiring exclusive locks,
checking shared locks, and logging commit requests are all done
locally on each of the data servers that hold data items accessed
by the transaction that issued the prepare request. Note that each
data server at each datacenter maintains a lock table and a transac-
tional log locally, to manage the data replica that is stored locally
on the server. Furthermore, once the cohort has locked the pre-
pare operation, shared locks held locally can be released without
violating the Two-phase locking rule [36]. The three operations of
acquiring exclusive locks, checking shared locks, and logging the
commit request all constitute the first phase (i.e., the prepare phase)
of Two-Phase Commit. Therefore the prepare phase of Two-Phase
Commit can be thought of as a subroutine that is nested under the
accept phase of Paxos, and for each datacenter the accept phase of
Paxos has to wait for the prepare phase of Two-Phase Commit to
finish before completing.

Whenever a client sends a Paxos accept request to a datacenter,
piggybacked with information about acquired and required locks,
the client also appoints one of the shards involved in Two-Phase
Commit as the coordinator of Two-Phase Commit. The coordinator

data server in each datacenter waits until all other data servers in-
volved in Two-Phase Commit within the same datacenter respond
to that coordinator indicating that the prepare operations of Two-
Phase Commit has been done successfully on each of those data
servers. Once the coordinator in any datacenter receives acknowl-
edgments from all Two-Phase Commit cohorts within the same dat-
acenter, the coordinator sends a message back to the client indicat-
ing that it has accepted the Paxos request. If a datacenter cannot
perform one or more of the operation(s) needed during the prepare
phase of Two-Phase Commit, the datacenter does not accept the
Paxos request of the client, and acts as a faulty acceptor. Once
the client receives acceptances from a majority of datacenters, the
client considers the transaction committed.

2PC Commit Phase. As a result of the outcome of the Paxos ac-
cept phase, the client and all the coordinators will reach consensus
with regard to the outcome of the transaction in question. When a
coordinator at a datacenter learns of the consensus, it initiates the
second phase of the commit. Thus, during this phase, the coordi-
nator in each datacenter sends commit messages to other cohorts
within the same datacenter. Once the cohorts receive this message,
they perform the actual updates required by the transaction, log the
commit operation, and release all the locks held by this transaction.
These three operations of performing updates, logging the commit
operation, and releasing locks constitute the second phase (i.e., the
commit phase) of Two-Phase Commit.

3.3 Discussion and Correctness
Deadlocks. As discussed above, we have chosen a simple ap-

proach to avoid deadlocks in the system. In particular, we do not
allow unbounded waiting for locks by a transaction to occur by
denying a conflicting shared and exclusive lock requests, except
that an exclusive lock request can take over an existing shared lock.
Effectively, we transfer the responsibility of waiting to the transac-
tion program itself. For example, a transaction requesting shared
locks can choose to either abort the transaction when its lock re-
quest is denied at a majority of datacenters or retry the request after
some randomized amount of back-off. The rationale for our ap-
proach is that in a large database conflicts will be rare and a sim-
pler mechanism for deadlock avoidance is preferable to a complex
deadlock resolution mechanism which will result in a significant
increase in the system-level overhead for all transactions. Further-
more, if indeed it becomes necessary, a more elaborate deadlock
resolution technique can be deployed.

Read Optimization. In the base Replicated Commit protocol,
we require that each read operation waits until the transaction re-
ceives replies from a majority of replicas. This of course has the
consequence that the read latency incurred by the transaction is a
function of the slowest datacenter in the majority. An alternative
would be to allow optimistic processing of read operations by as-
suming that the first response received is up-to-date [1] thus over-
lapping the read operation while the responses are collected in par-
allel. This requires a more complex execution logic in the client
programs in that the application must be designed such that it can
be rolled-back if the optimistic assumption of the first response be-
ing up-to-date turns out to be incorrect.

Correctness. In order to establish the correctness of Replicated
Commit, we need to show that transaction executions in Replicated
Commit are one-copy serializable [5]. One-copy serializability of
a set of transaction executions, denoted H , is established in two
steps. First, we need to ensure that the serialization graph induced
by H , denoted SG(H) on the physical replicas of data-items in the
database does not have any cycles. However, acyclicity of SG(H)
alone is not enough to ensure one-copy serializability. As a second
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step, we also need to establish that SG(H) satisfies the replicated
data serialization graph, referred to as RDSG, in that it induces
a write order and read order on the logical data-items. Acyclic-
ity of SG(H) for the transaction execution in Replicated Commit
follows from the fact that we use two-phase commit and two-phase
locking on the copies of each data-item read or written by the trans-
actions. Furthermore, SG(H) is RDSG follows from the fact that
we are using majority quorum protocol for replica synchronization
i.e., reading and writing replicated data (see pages 298-301 in [5]).
This ensures that the execution of transactions committed in Repli-
cated Commit are one-copy serializable.

4. REPLICATED COMMIT COMPARED
TO REPLICATED LOG

In the following subsections, we analyze the number of cross-
datacenter communication trips needed by Replicated Commit and
compare it to systems that are based on replicated logs.

4.1 Transactional reads
Replicated Commit performs transactional reads by reading from

a majority of replicas and picking the value with the highest times-
tamp. Although reading from a majority of replicas adds more
messaging, it may impact latency marginally since the requests are
processed in parallel. In the case of replicated logs, for each data
item there is one replica that acts as a long living Paxos leader of
that data item and maintains shared and exclusive locks on the data
item, thus the client needs to read from only that Paxos leader in or-
der to hold a shared lock on the data item. Although reading from
the Paxos leader only results in a single read request message, the
Paxos leader of each data item may be in any datacenter that is ar-
bitrarily far from the client. For example, in Spanner [13], which
is a system that uses long-living Paxos leaders, Paxos leaders are
distributed arbitrarily among datacenters. Thus, many data reads
end up being answered from remote datacenters. This is particu-
larly the case when each transaction reads multiple data items, then
those read requests end up directed to multiple datacenters, similar
to Replicated Commit.

Reading a majority of replicas, as the case with Replicated Com-
mit, has advantages related to fault-tolerance. In the case of repli-
cated logging systems, the lock table of any shard is maintained
at a single node, that is the Paxos leader. Thus whenever a Paxos
leader crashes, all clients that are trying to access the lock table at
that Paxos leader need to wait until a new Paxos leader gets elected,
which may take multiple seconds. For example, the time between
two consecutive elections in Spanner is 10 seconds [13]; all clients
that try to access the lock table at a failed Paxos leader have to wait
for the next elections to take place first. Replicated Commit does
not have the same issue; that is, as long as a majority of replicas at
different datacenters are up and running, transactions can continue
reading data without interruption.

4.2 Two-Phase Commit
Figure 2 shows how Replicated Commit works for the same ex-

ample illustrated in Figure 1. That is, given three datacenters, with
three data servers in each datacenter. Each data server holds a shard
of the database, and shards are labeled X, Y, and Z. Solid lines in-
dicate Two-Phase Commit communication, while dashed lines in-
dicate Paxos communication.

The following sequence of messages takes place in Replicated
Commit: (i) The client picks a shard, say the shard of Y, as the
Two-Phase Commit coordinator; (ii) The client sends a Paxos ac-
cept request to the coordinator in each datacenter. This requires a

Figure 2: Operations and messages involved in Two-Phase
Commit operations when using Replicated Commit.

cross-datacenter one-way trip; (iii) The coordinator in each dat-
acenter sends a Two-Phase Commit prepare message to all Two-
Phase Commit cohorts in the same datacenter, and to itself, e.g.,
the cohorts are the servers that host X, and Z. The coordinator and
the cohorts acquire locks, and log the Two-Phase Commit prepare
message in their local logs, then respond back to their coordina-
tors; (iv) After receiving from all Two-Phase Commit cohorts in
the same datacenter, the coordinator in each datacenter responds
back to the client, confirming that it has finished the prepare phase
of Two-Phase Commit, and thus has accepted the Paxos request.
Coordinators also send that message to each other so that all dat-
acenters learn about this acceptance. This phase requires a cross-
datacenter one-way trip; (V) Once the client receives responses
from a majority of datacenters, the client deems the transaction
committed. Any further communication does not affect latency
as perceived by the user; (Vi) In each datacenter, the coordinator
waits until it learns that a majority of datacenters have accepted
the commit request, then the coordinator commits its own datacen-
ter by sending commit messages to all Two-Phase Commit cohorts
within its datacenter, including the coordinator itself. All cohorts
log the commit message, then release their locks.

Here we compare the number of cross-datacenter communica-
tion trips incurred by Replicated Commit during Two-Phase Com-
mit against those required by replicated logs. The number of cross-
datacenter communication trips that take place starting after the
client sends the accept request to datacenters until the client re-
ceives a commit acknowledgment equals two one-way communi-
cation trips. The number of cross-datacenter communication trips
that take place starting after data servers acquire exclusive locks
until these locks are released equals only one-way communica-
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tion trip. Thus Replicated Commit eliminates five cross-datacenter
communication trips from total response time, compared to repli-
cated logging when Paxos leaders are in different datacenters, or
four communication trips when Paxos leaders are in the same data-
center. Moreover, Replicated Commit eliminates seven communi-
cation trips from total locking time, compared to replicated logging
when Paxos leaders are in different datacenters, or six communica-
tion trips when Paxos leaders are in the same datacenter. Taking
Spanner as an example of a production system that uses Paxos-
replicated logs, the experimental setup of Spanner states that Paxos
leaders are randomly scattered over zones, so it is more realistic
not to assume that the leaders are in the same datacenter. More-
over, the amount of time a lock is retained by a given transaction
affects the performance of other transactions, specially when there
is contention over some data items.

4.3 Latency Analysis
Replicated Commit and Replicated Log use different read and

commit strategies. A trade-off between read latency and commit
latency can be inferred by examining the overall behavior of those
strategies. Here, a formulation to calculate the time required to
commit a given number of transactions is presented for both pro-
tocols. The analysis corresponds to the sum of the transactions
latencies, where the transaction latency is the time from the be-
ginning of the transaction until it receives a commit decision. We
denote the transaction latency by Tt. Tt is equal to the sum of the
latency required to serve all reads plus the commit latency, hence
Tt =

∑Nr (Tr) + Tc, where Nr is the number of read operations,
Tr is the latency of one read, and Tc is the commit latency.

Using the aforementioned values, the duration of completing Nt

transactions by a client is Te =
∑Nt Tt. To simplify the pre-

sentation, we take the average of the read and commit latencies
so that Te is equal to (TrNr + Tc)Nt. To differentiate between
Replicated Commit and Replicated Log, any value corresponding
to Replicated Log will have a superscript rl and rc for Replicated
Commit, e.g., T rl

r for Replicated Log. A fair comparison between
the two protocols will be for identical values of Nr and Nt. Given
Nr and Nt we would like to find which protocol performs better.
Consider subtracting the duration of Replicated Commit from the
duration of Replicated Log, T rc

e − T rl
e . If the value is positive it

means Replicated Log performs better and vice versa. Substitut-
ing from the aforementioned formulas it turns out that there is a
unique value of Nr so that Replicated Commit and Replicated Log
have identical performance. This value, denote it as N̄r , is equal

to −(Trl
c −Trc

c )

Trl
r −Trc

r
. It follows that if Nr is greater than N̄r then Repli-

cated Log is better, otherwise Replicated Commit is better. This
shows that the number of read operations decides which protocol
is better and that Replicated Commit performs better for scenarios
with a smaller number of reads per transaction.

Consider a simple scenario of N datacenters and k shards. As-
sume for Replicated Log that shard leaders are uniformly dis-
tributed across datacenters, hence each datacenter contains k

N
lead-

ers. Also, assume that communication latency between any two
replicas is identical. The RTT will be denoted as RTT . The read
and commit latencies of Replicated Log and Replicated Commit
will be derived now to aid in getting more insight on N̄r . Reads
for Replicated Log are either local or remote. Local reads are im-
mediate and remote reads takes RTT time. Thus, the average read
latency T rl

r equals to (1 − 1
N

)RTT . The commit latency equals
7 one-way communication messages, hence T rl

c = 3.5RTT . The
read and commit latencies of Replicated Commit are identical and
equal to RTT . By plugging these values to the formula for N̄r , its

O V I S
C 21 86 159 173
O - 101 169 205
V - - 99 260
I - - - 341

Table 1: RTT latencies between different datacenters.

value becomes equal to 2.5N . Note from this that the size of the
transaction that decides which protocol is better only depends on
the number of datacenters in this simple scenario. Thus, if the num-
ber of average reads per transaction is less than the product 2.5N
then Replicated Commit will perform better, otherwise as the num-
ber of reads per transaction increases to larger values Replicated
Log performs better. This result is verified in the evaluation section
(Figure 5).

5. EXPERIMENTS
A performance evaluation study of Replicated Commit is done

in this section. In our study, we are interested in observing the
behavior of Replicated Commit. For this we designed variations
of size-up, scale-up, and speed-up experiments [11]. Machines in
multiple Amazon EC2 datacenters are leveraged as an infrastruc-
ture for our experiments. Used machines are High-CPU Medium
(c1.medium) which have two CPU cores and 1.7GB of cache mem-
ory. Machines are distributed in five datacenters: California (C),
Virginia (V ), Oregon (O), Ireland (I), and Singapore (S). In what
follows we used the capitalized first initial of each datacenter as
its label. RTT latencies are shown in Table 1. In any datacenter,
three different servers run instances of Replicated Commit. Each
server is responsible for an independent shard of the data. There
are three shards in our systems, denoted X , Y , and Z. Each server
will be named by the pair of its host datacenter and shard of data
assigned to it. For example, server I.Y is the server responsi-
ble for shard Y in the datacenter in Ireland. For our evaluation,
YCSB [11] is leveraged to generate workloads and evaluate the sys-
tem. Since YCSB was not designed to support transactions, we use
an extended version [14] that supports transactions and generates
transactional workloads. The extended YCSB issues transactions
constituting of reads, writes, and a commit operation. Each read or
write accesses a different key in the database. Thus, the extended
YCSB generates workloads consisting of multi-record transactions.

The workload consists of 2500 transactions divided equally at
each datacenter. An additional machine, called Workload Gener-
ator, in each datacenter is deployed to generate the corresponding
workload. Each Workload Generator forks five traffic generating
threads (TGTs) to issue transactions either with a target throughput
or back to back. Each TGT waits to receive the commit request
reply before proceeding with the next transaction; no two transac-
tions can be active at the same time in a single TGT. Each trans-
action contains five operations, either reads or writes. The ratio of
reads to writes is 1:1 unless mentioned otherwise. An operation
operates on an item from a pool of 3000 items divided equally be-
tween the three shards, X , Y , and Z. This small number of items
will enable us to observe the performance of the system under con-
tention. We will show results demonstrating the effect of increasing
and decreasing the database size. Operations are served consecu-
tively, meaning that no two operations are served in any one time
for one TGT. The target throughput default value is 50 operations
per second in each datacenter. For five datacenters the throughput
is 250 operations per second.

A reference implementation of a Replicated Log protocol is used
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Figure 3: Transactions average commit latency for scenarios
with different numbers of datacenters

to compare against Replicated Commit. We base our Replicated
Log implementation on Google Spanner. We use the same setup
as Replicated Commit, where five data centers have three machines
each to hold three different shards. In Replicated Log one machine
for each shard is assigned as a replica leader. Reads are served by
the replica leader of the corresponding shard. Two-Phase commit
is used to commit transactions over involved replica leaders. Trans-
actions that are detected to be involved in a deadlock are immedi-
ately aborted. Replication from the replica leader to other repli-
cas is done using Paxos. In Spanner, the authors used leases of
10 seconds for a replica leader. Here we assume infinite leases
for a leader, hence a leader maintains its status throughout the ex-
periment. This is done to enable us to observe the effect of the
non-failure case of Replicated Log. Clients are distributed equally
among datacenters in Replicated Commit experiments, since there
is a coordinator in each datacenter. In Replicated Log, there are
only three replica leaders in our setup. To avoid the additional cost
of Replicated Log when a transaction starts at a datacenter with no
replica leader, we distribute the clients equally over datacenters that
contain replica leaders. Overall target throughput, number of trans-
actions, and number of TGTs are identical for Replicated Commit
and Replicated Log. We denote the placement of replica leaders
by R/R/R where each initial is the datacenter hosting the replica
leader. The first initial is for shard X , the second is for Y , and the
third is for Z. For example V/O/S denotes an experiment with
shard X’s replica leader in datacenter V , shard Y ’s replica leader
in datacenter O, and shard Z’s replica leader in datacenter S.

Number of datacenters. The first set of experiments measures
the effect of scaling up the number of datacenters while fixing the
size of the database. Figure 3 shows the results of five configura-
tions. The scenario is denoted by the initials of involved datacen-
ters. For example, experiment CV OI is an experiment performed
on four datacenters, namely California, Virginia, Oregon, and Ire-
land. Replicated Log’s replica leader placement of the scenarios
are C/C/C, C/C/V , C/V/O, V/O/I , and V/O/I , respectively.
A run with only one datacenter, C, is shown to give a sense of
the overhead caused by intra-datacenter Two-Phase commit in ad-
dition to internal processing for Replicated Commit and internal
processing and intra-datacenter communication between the client
and machines for Replicated Log. This overhead is measured to
be 5.8ms for Replicated Commit and 14.8ms for Replicated Log.
This difference is due to different patterns of message exchange for
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Figure 4: Average commit latency for scenarios with differ-
ent replica leader placements of replicated log compared with
replicated commit

both protocols. For the case of one datacenter, Replicated Com-
mit sends one message to a designated coordinator that will per-
form Two-Phase Commit and return with the result to the client,
whereas Replicated Log’s client sends three messages to all ma-
chines and then a coordinator completes the transaction and returns
to the client. As we increase the number of datacenters the effect
of communication latency becomes more pronounced. In experi-
ment CV , for example, the average incurred latency is 90ms for
Replicated Commit, which agrees with our expectation to be the
RTT value (86ms in this case) plus the overhead caused by intra-
datacenter communication and processing. This is compared to
a commit latency of 267ms, a 196.67% increase, for Replicated
Log. Consider the scenario CV O to observe that a transaction only
needs a majority to commit; the average latency of this scenario is
lower than CV for both cases. This is because datacenters C and
O are closer than C and V , thus a majority can be acquired in a
shorter time. For Replicated Commit, transactions issued in C and
O can commit with a latency slightly above their RTT value, i.e.,
21ms. The average latency is higher than this value because trans-
actions originating from datacenter V still incur higher latency.
Replicated Log benefits from having a closer majority by shorten-
ing the time required for replication, though the time required for
Two-Phase commit is not affected. The largest two scenarios show
the expected result which is the average of required latency to get
a reply by a majority for all datacenters for Replicated Commit
and the average time of Two-Phase Commit exchange and repli-
cation for Replicated Log. For the inter-continental cases, CV OI
and CV OIS, Replicated Log incur a commit latency higher than
Replicated Commit by 241% and 189%, respectively.

Replica leaders placement. The performance of Replicated
Log depends on the placement of replica leaders. To investigate
the effect of different placements on performance we conducted a
set of experiments with the following replica leader placements:
C/C/C, C/V/O, V/O/I , and S/S/S. Results are shown in
Figure 4 compared to the commit latency observed by Replicated
Commit. The first placement, C/C/C, groups all leaders in C.
This setting yields the best results since C have the lowest latency
to acquire the vote of the majority and Two-Phase Commit’s mes-
sage exchange is all inside the datacenter. The commit latency is
206ms, which is to be expected since two rounds of replication
are necessary and each replication round require 86ms. The second
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Figure 5: Increasing the number of read operations per trans-
action.

placement, C/V/O, assigns all replica leaders in the United States.
Observe that the commit latency is higher than for the C/C/C
placement. An inter-continental replica distribution is studied in
the third placement, V/O/I , where the commit latency jumps to
387ms due to the wide-area communication required by Two-Phase
Commit and replication. The fourth placement, S/S/S, assigns all
replica leaders to S. Note that the commit latency is much higher
than the similar C/C/C due to the higher cost of replication caused
by a farther majority. The results show that Replicated Commit
outperforms Replicated Log even for C/C/C, the best possible
placement. In the remainder of this section we will use V/O/I as
a replica leader placement strategy for Replicated Log.

Number of operations per transaction. Increasing the num-
ber of reads per transaction causes more time to be spent servicing
those reads before the transaction can request to commit. In Fig-
ure 5 the effect of increasing the number of operations per trans-
action is shown for results collected from clients at V accessing
items from a pool of 50000 data items. The size is larger for this
experiment to isolate the effect of read operations from any con-
tention caused by the larger number of operations. Read operations
are independent from each other, which causes the read latency to
maintain the same average latency even while increasing the num-
ber of operations per transactions. Similarly, the commit latency
maintains its value for both protocols. The effect of the increase of
the number of reads is witnessed on the transaction latency, which
is the latency spent on a transaction, which includes the time to
read the read-set in addition to the time to commit. As the num-
ber of operations increase, the transaction latency increases too for
both protocols. We showed in Section 4.3 that the number of reads
per transaction is the sole determinant of whether Replicated Log
or Replicated Commit performs better. Recall that Replicated Log
is better for scenarios with a large number of reads and that there
is a value that represents a critical point between number of reads
that causes Replicated Commit to perform better and number of
reads that causes Replicated Log to perform better. This value is
2.5 times the number of datacenters, i.e., 12.5 in this case. Since
half the operations are writes, the number of operations per trans-
action that represents the critical point in the figure is 25 operations
per transaction. Note that the crossing of the two plots of the trans-
action latency crosses at the expected point, i.e., 25 operations per
transaction. This validates our analysis. Note that as the number
of operations per transaction increases, the gap of the transaction
latency between the two protocols increases too.
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Figure 6: The effect of increasing the number of clients on the
throughput

Throughput. Now, we discuss the results of an experiment
to study the amount of throughput that the system can support.
Throughput here is the number of successfully committed opera-
tions per second. We set the database size to be 50000 data objects
to be able to accommodate the large number of requests. We do this
by increasing the number of clients, which are TGTs in our case
and observe how much throughput can be achieved. Each client is-
sues transactions back-to-back, i.e., maximum throughput it is able
to generate. Each run from this experiment has a duration of 10
minutes. Results are shown in Figure 6. We increase the number
of clients from 15 to 360. Replicated Commit’s peak throughput
is 1570 operations per second (ops/s) for 165 clients. Replicated
Commit maintains a close throughput to this value for a larger num-
ber of clients and then starts decreasing for more than 300 clients.
Replicated Log scales poorly with increasing demand when com-
pared to Replicated Commit. The peak throughput of Replicated
Log in this set of experiments is 594 ops/s for 75 clients. Repli-
cated Log then experiences a drop of throughput as the number of
clients increases. This drop of throughput is due to the contention
caused at the leaders. This causes Replicated Log to thrash and be
not able to commit transactions.

Contention. Replicated Commit’s reaction to contention is
quantified by varying the number of data objects in the database.
Results are shown in Figure 7. The number of data objects is var-
ied from 150 to 6000 data objects. Commit latency and number of
commits are shown in Figures 7(a) and 7(b), respectively. The av-
erage commit latency of successfully committed transactions only
is also reported. Consider the scenario with 150 data objects, hence
highest contention. Commit latency is lower than those observed
in cases with lower contention for Replicated Log. This is because
the number of aborted transactions is higher; an aborted transac-
tion exhibits lower latency due to its early termination compared
to a committed transaction. This is noticed by examining that the
commit latency of successfully committed transactions does not
vary as much as the overall commit latency. Replicated Commit
maintains its average commit latency even with high contention.
This is because the client waits for the majority response for both
aborts and commits. However, there is a slight decrease due to the
failed reads that cause the transaction to abort early. Even for a
small number of data objects, 150, Replicated Commit recorded
36% successful commits compared to 22.32% successful commits
for Replicated Log. The behavior converges to deliver the expected
commit latency and number of commits as contention decreases for
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Figure 7: Measuring the effect of contention on commit latency
and number of commits by varying the size of the database.

both cases.
Intra-datacenter overhead. It is necessary to quantify intra-

datacenter overhead on the overall behavior of Replicated Commit.
We showed in Figure 3 that the commit latency in a single data-
center with intra-datacenter communication only to be 5.8ms for
Replicated Commit. Another aspect that needs to be studied is
whether the interaction between datacenters can create additional
complexities and overheads in intra-datacenter communication and
logic. For this we design an experiment where the number of shards
is varied in each datacenter to observe whether having more shards
affects the overall behavior of the system. We compare the results
with Replicated Log. Note that the effect of decreasing the number
of involved shards is different for Replicated Log; Inter-datacenter
communication is still necessary for replication. Results of this
experiment are shown in Figure 8 where we vary the number of
shards from one to three shards. A slight increase is observed from
133 to 138ms for Replicated Commit. However, this change is af-
fected by the smaller number of commits for the case of one shard
to other cases. Varying the number of shards plays a larger role
in deciding Replicated Log’s commit latency. The commit latency
with one shard is almost half the commit latency of three shards.
This highlights the significance of access locality for Replicated
Log protocols. The figure shows that Replicated Commit outper-
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Figure 8: The effect of number of used shards on commit la-
tency
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Figure 9: The effect of the ratio of writes to reads on commit
latency

forms Replicated Log even in the case of transactions accessing one
shard by 28.8%.

Write to read ratio. In our previous experiments we set the
ratio of writes to reads is 1:1. Different applications have differ-
ent read and write behavior. To test whether Replicated Commit is
suitable for read- or write-intensive workloads we show results of
varying write to read ratio in Figure 9. We observe a slight effect
on commit latency with high write to read ratio for both Repli-
cated Commit and Replicated Log. However, the main effect is on
the overall transaction latency, which includes the latency of read
operations. Write operations are buffered and thus do not affect
the transaction latency whereas read operations are served at the
time of the operation. The figure shows that Replicated Commit
is impacted more from the increase in the number of reads when
compared to Replicated Log. This is due to the difference in read
strategies; Replicated Commit reads from a majority and Repli-
cated Log reads from a leader. The number of commits is affected
by workloads with more writes than reads. The effect of comparing
a write-intensive workload (9:1) to a read-intensive workload (1:9)
is more visible for Replicated Log (16.2% decrease of number of
commits) than Replicated Commit (6.2% decrease). This effect of
write to read ratio is slight compared to the other factors we dis-
cussed earlier. This is because the design of Replicated Log and
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Replicated Commit make write locks held for a short duration, i.e.,
write locks are held only for the duration of processing the transac-
tion, unlike read locks for Replicated Log.
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Figure 10: Fault-tolerance of the system by introducing a sud-
den outage of datacenter California.

Fault-tolerance. In the next experiment we demonstrate the
ability of Replicated Commit to operate in the case of failures. We
consider a scenario with all five datacenters and ten TGTs in C and
I . The experiments take three minutes. After the first minute, an
outage of datacenter C is simulated. Then in the second minute,
the datacenter becomes alive. Results of this experiment are shown
in Figure 10. In the figure, every transaction commit is represented
with a point in the figure. The position of the point is determined by
its commit time (x-axis) and commit latency (y-axis). Note that we
plot every tenth transaction only to make the figure less cluttered.
Observe that commit latency before the outage is around 90ms for
C’s clients and 165ms for I’s clients as expected for the case of
normal operation. When C outage occurs, the commit latency of
C’s clients immediately jumps to be around 160ms. This is because
clients can no longer get a majority including C, thus they need to
wait for messages that take longer from either I or S to form a ma-
jority with the closer datacenters O and V . I’s clients, on the other
hand are not affected as drastically as C’s clients. This is because
although C was part of the majority of I’s clients, the next best dat-
acenter, O, is of comparable latency to C. This sudden adaptation
of Replicated Commit is because committing a transaction is pos-
sible with any majority of operating datacenters. This is in contrast
to Replicated Log, where replica leaders hold leases, 10 seconds
for the case of Spanner, that need to be expired before proceeding
with a different replica leader.

Read and commit latencies. Replicated Log and Replicated
Commit have different read and commit strategies. It is important
to observe the trade-off between the latency of a read and a commit.
In Figure 11 we plot the read and commit latencies for transactions.
To simplify the presentation we only display a subset of the trans-
actions that committed at V and I . Each point represents a read
operation where the x-axis is the commit latency of the correspond-
ing transaction and the y-axis is the latency of that read operation.
Replicated Commit’s points are clustered in regions that have sim-
ilar read and commit latencies, i.e., V transactions have a read and
commit latency close to 100ms and I transactions have a latency
just below 200ms. This is because Replicated Commit waits for a
majority for both the read and the commit operations. Replicated
Log on the other hand displays a different behavior. Read latencies
depend on the target leader. Thus, transactions for I for exam-
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Figure 11: Commit and read latencies of transactions.

ple have read values ranging from 0 to 200ms. Note that the read
values have three possible levels for I: 0 read latency is for reads
served by the local replica, 100ms latency is for reads served by
the next closest leader, and larger latencies are for reads of the far-
thest replica. V has two levels for read latencies because the second
nearest (O) and farthest (I) leaders almost have the same RTT from
V , i.e. around 100ms. The same applies for commit latencies be-
cause a commit reaches leaders that are involved in the transaction
only. For example, transactions for I that have a commit latency
around 350ms are transactions that access two shards only. Trans-
actions that access all three shards from I have a commit latency of
more than 400ms.

6. RELATED WORK
Running transactions on top of replicated storage was first pro-

posed in Gifford’s Ph.D. thesis [16], and has been recently used
in various systems like Spanner [13] and Scatter [17], by making
use of Paxos [25] for log replication. Replicated Commit, in com-
parison, runs Paxos on top of Two-Phase Commit and Two-Phase
Locking to replicate the commit operation instead of the log. In
other words, Replicated Commit considers each datacenter as a
stand-alone data storage system that provides transactional guar-
antees (using 2PC); Replicated Commit replicates the execution of
transactions on those datacenters. Thus, although Replicated Com-
mit still uses a layered architecture that separates atomic commit-
ment, concurrency control, and consistent replication into differ-
ent layers, Replicated Commit inverts the layered architecture to
achieve lower latency.

Gray and Lamport [18] proposed Paxos Commit as an atomic
commitment protocol to solve the blocking issue of Two-Phase
Commit. Eliminating blocking during atomic commitment is an
orthogonal issue; in other words, Replicated Commit can still use
Paxos Commit as an alternative to Two-Phase Commit for atomic
commitment inside each datacenter, while maintaining the layered
architecture of running an inter-datacenter replication layer on top
of an intra-datacenter atomic commit layer.

Asynchronous primary-copy replication [34] is a different ap-
proach to database replication that has been the most commonly-
used replica management protocol for a long time [6]. Unlike Paxos
replication, in primary-copy replication, replica leaders do not have
to wait for a majority of replicas to receive an update before ac-
knowledging the client (or the 2PC coordinator); instead, updates
are considered done once they are applied to the replica leader, then
these updates propagate lazily to the rest of the replicas. Although
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primary copy replication reduces transaction latencies, it may re-
sult in data loss in case of server failures, thus it is no longer practi-
cal for cloud databases running on cheap commodity hardware that
crashes frequently.

During the past few years, several consistency models weaker
than one-copy serializability have been proposed. However, in
general, it has been now broadly acknowledged even by the pro-
ponents of weaker data consistency models that weak consistency
introduces costs and overheads that more than offset the perfor-
mance and scalability advantages. One particular proposal that has
gained some degree of acceptance for replicated data is referred to
as one-copy snapshot isolation (SI) [22, 27]. New replica manage-
ment protocols [28, 32] have been proposed for wide-area networks
(WANs) that realize one-copy snapshot isolation. However, as was
pointed out in [20]: ”1-copy SI can lead to data corruption and vio-
lation of integrity constraints [4]. 1-copy serializability is the global
correctness condition that prevents data corruption.” Furthermore,
we note that these protocols were not developed in the context of
geo-replicated data over multiple datacenters. Rather, the underly-
ing architecture leverages data replication for database computing
in the edges of a network. Furthermore, these protocols are based
on the assumption of atomic multicast [7] over WAN which enables
consistent commitment of update transactions with a single WAN
message to a centralized certifier for synchronizing transactional
read and write accesses. In essence, the complexity of distributed
atomic commitment and synchronized execution of transactions is
incorporated in the implementation of the atomic multicast which
in itself is not scalable in the WANs.

Message Futures [30] is another recent proposal that aims at
reducing the number of cross-datacenter communication trips re-
quired to achieve strong consistency for multi-datacenter databases.
Message Futures indeed reduces the number of cross-datacenter
communication trips required by each transaction to only one cross-
datacenter roundtrip; however, Message Futures does not tolerate
datacenter failures. In other words, if one of the datacenters goes
down the system does not make progress, thus geo-replication in
that case serves to improve read availability but not fault-tolerance.

MDCC [23] is a recently proposed approach to multi-datacenter
databases that uses variants of Paxos to provide both consistent
replication and atomic commitment. In comparison to MDCC, the
layered architecture that is used in Replicated Commit, as well as in
replicated logging, separates the atomic commitment protocol from
the consistent replication protocol. Separating the two protocols re-
duces the number of acceptors and learners in a Paxos instance to
the number of datacenters, rather than the number of data servers
accessed by the transaction; the latter equals the number of data-
centers times the number of shards accessed by the transaction. Be-
sides, the layered architecture has several engineering advantages
such as modularity and clarity of semantics. Unifying different pro-
tocols via semantically-rich messages has been investigated before
in other contexts; for example, integrating concurrency control with
transactional recovery [2].

Other examples of multi-datacenter datastores include Cassan-
dra [24] and PNUTS [12]; however, those system do not support
transactions. COPS [29] delivers a weaker type of consistency; that
is, causal consistency with convergent conflict handling, which is
referred to as causal+. Other systems have been also developed
with focus on distributed transactions. For example, H-Store [21]
and Calvin [35] are recently-proposed distributed datastores that
eliminate concurrency by executing transactions serially, when the
set of locks to be acquired during a transaction are known in ad-
vance, but they do not provide external consistency. Walter [33]
is another recently-proposed datastore that extends Snapshot Isola-

tion to a variant called Parallel Snapshot Isolation (PSI).

7. CONCLUSION
We present an architecture for multi-datacenter databases that

we refer to as Replicated Commit, to provide ACID transactional
guarantees with much fewer cross-datacenter communication trips
compared to the replicated log approach. Instead of replicating the
transactional log, Replicated Commit replicates the commit opera-
tion itself by running Two-Phase Commit multiple times in differ-
ent datacenters, and uses Paxos to reach consensus among datacen-
ters as to whether the transaction should commit. Doing so not only
replaces several inter-datacenter communication trips with intra-
datacenter communication trips, but also allows us to eliminate the
election phase before consensus so as to further reduce the num-
ber of cross-datacenter communication trips needed for consistent
replication. Our proposed approach also improves fault-tolerance
for reads. We analyze Replicated Commit by comparing the num-
ber of cross-datacenter communication trips that it requires versus
those required by the replicated log approach, then we conduct an
extensive experimental study to evaluate the performance and scal-
ability of Replicated Commit under various multi-datacenter se-
tups.
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