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ABSTRACT
Generalized matching problems arise in a number of applications,
including computational advertising, recommender systems, and
trade markets. Consider, for example, the problem of recommending
multimedia items (e.g., DVDs) to users such that (1) users are recom-
mended items that they are likely to be interested in, (2) every user
gets neither too few nor too many recommendations, and (3) only
items available in stock are recommended to users. State-of-the-art
matching algorithms fail at coping with large real-world instances,
which may involve millions of users and items. We propose the
first distributed algorithm for computing near-optimal solutions to
large-scale generalized matching problems like the one above. Our
algorithm is designed to run on a small cluster of commodity nodes
(or in a MapReduce environment), has strong approximation guar-
antees, and requires only a poly-logarithmic number of passes over
the input. In particular, we propose a novel distributed algorithm
to approximately solve mixed packing-covering linear programs,
which include but are not limited to generalized matching problems.
Experiments on real-world and synthetic data suggest that a practical
variant of our algorithm scales to very large problem sizes and can
be orders of magnitude faster than alternative approaches.

1. INTRODUCTION
Matching problems arise in a number of applications, includ-

ing trade markets [24], computational advertising [6, 5], and semi-
supervised learning [15]. Consider, for example, the problem of
assigning DVDs to customers in online DVD rental. Online video
stores such as Netflix or Amazon’s LOVEFiLM allow customers to
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specify which DVDs they would like to rent. Since the number of
physically available DVDs is limited, customers are encouraged to
provide a large, ranked list of preferred movies; the online video
store then automatically selects DVDs to ship to customers based
on both preferences and availability. Moreover, customers are rec-
ommended movies that they might be interested in; a good recom-
mendation engine should consider availability to minimize customer
waiting times for accepted recommendations. The problem of as-
signing DVDs to customers is non-trivial: for shipping, we want to
make sure that users are sent movies ranked as high on their lists
as possible, while at the same time maintaining fairness, i.e., every
user should be supplied with a sufficient number of DVDs without
exceeding the user’s DVD budget. Similarly, for recommendation,
we want to recommend a few DVDs to each user such that the
user is likely to be interested in his recommendations and, in case
of acceptance, the recommended DVD is (likely to be) physically
available.

We can model problems like the ones above as generalized bi-
partite matching problems. In such a problem, we are given a set
of users and a set of items. There is an edge between a user u and
an item v if u is interested in v; each edge is associated with a
positive weight that captures the degree of interest. Furthermore,
each user u and each item v is associated with a lower and an upper
bound on the number of edges that can participate in the match-
ing (the matching problem is “generalized” due to the presence of
these bounds). Our goal is to find a matching—i.e., subset of the
edges—such that all constraints are satisfied and the total weight
of the edges in the matching is maximized. This problem is also
known in the literature as the maximum weight degree-constrained
subgraph problem, while the special case with only upper bounds is
known as maximum weight b-matching.

The problems above can be solved in polynomial time via tradi-
tional max-flow techniques [1], linear programming solvers such as
Gurobi [12], or using the combinatorial algorithm developed in [8].
Unfortunately, these approaches cannot cope with the massive scale
of real-world problem instances which may involve millions of users,
items, and edges; for instance, Netflix offers tens of thousands of
movies for rental to more than 20M customers.

In this paper, we propose a scalable distributed approximation
algorithm for large-scale generalized bipartite matching. Though
several scalable algorithms for b-matching have been proposed in
the literature [13, 16, 22], our algorithm is the first distributed
(i.e., shared nothing) algorithm for generalized bipartite matching
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problems, and it can cope with massive real-world instances. Our
algorithm can also be adapted to capture more complex matching
problems with additional constraints; e.g., in the case of DVD rec-
ommendation, one may enforce that users are recommended at most
one movie per genre to encourage diversity.

Our algorithm produces an approximate solution to the matching
program with strong approximation guarantees. Given a (small)
error bound �, we compute a solution that is within a factor of 1− �

of the optimal solution in expectation, and satisfies the lower- and
upper-bound constraints within a factor of (1 − �) and (1 + �),
respectively. Our method is based on linear programming (LP) and
consists of two phases: (1) Compute an approximate fractional solu-
tion to the LP relaxation of the integer linear program corresponding
to the matching problem, and (2) round the fractional solution to
obtain an integral solution.

Our distributed LP algorithm, called MPCSolver, can compute
an approximate solution to any mixed packing-covering LP—i.e.,
an LP in which all coefficients and variables are non-negative—in
a poly-logarithmic number of passes over the data. MPCSolver is
inspired by the algorithms of [3], which can solve either packing
LPs or covering LPs, and is simple and efficient in practice. Once an
approximate solution to the LP has been obtained, we combine the
centralized rounding scheme of [9] with recent work on “filtering”
in the MapReduce setting [18] to obtain an efficient distributed
rounding algorithm called DDRounding.

Both our LP and our rounding algorithm are amenable to MapRe-
duce. In this paper, however, we focus on a general shared-nothing
architecture for improved efficiency. In fact, it has been observed
that MapReduce can be inefficient for the kind of iterative computa-
tions performed by our algorithms [19]. We describe implementation
issues that are key to good performance in practice, e.g,. how to
distribute data effectively across nodes so that communication costs
are minimized. Finally, we experimentally compare the efficiency
and scalability of our algorithms to existing alternatives on both
real-world and synthetic datasets of varying sizes. Our experiments
indicate that our algorithms can handle significantly larger problem
instances than state-of-the-art linear programming solvers, and are
orders of magnitude faster than alternative distributed algorithms.

The remainder of this paper is organized as follows: We formally
define the generalized bipartite matching problem in Sec. 2. In
Sec. 3, we propose distributed algorithms for solving mixed packing-
covering LPs and rounding the solution. We discuss related work
in Sec. 4 and give results of our experimental study in Sec. 5. We
conclude the paper in Sec. 6.

2. PROBLEM DEFINITION
We are given an undirected bipartite graph G = (U, V,E), where

U represents a set of users, V represents a set of items, and there is
an edge (u, v) ∈ E if user u is interested in item v. Each edge (u, v)
is associated with a positive weight w(u, v) measuring the degree of
interest of u in v. For each user and item, we are additionally given a
lower bound l(v) and an upper bound b(v), where v ∈ U ∪ V . The
bounds constrain the degree of vertex v in the solution; e.g., bounds
on the number of recommendations for a user or the availability of
a movie. More formally, denote by Ē ⊆ E a subset of the edges
in G, and by Ēv the set of edges incident to vertex v in subgraph
(U, V, Ē). We say that Ē is feasible if l(v) ≤ |Ēv| ≤ b(v) for all
v ∈ U ∪ V , i.e., all lower and upper bound constraints are met. An
instance of our problem is feasible if there exists a feasible Ē. The
generalized bipartite matching (GBM) problem is to determine the
best feasible matching between users and movies, i.e., we seek to
maximize the objective function f(Ē) =

�
(u,v)∈Ē w(u, v) over

all feasible Ē ⊆ E.
Although GBM can be solved in polynomial time via maximum-

flow techniques or integer linear programs, available solvers do

not scale to the large problem instances that occur in practice, i.e.,
instances with millions of users and movies, and potentially billions
of edges. In this paper, we consider an approximate variant of
GBM in which we seek for a “good” (but not necessarily optimal)
solution and additionally allow for a small violation of lower- and
upper-bound constraints. In particular, denote by � > 0 a small
error bound. We say that Ē is �-feasible if lower- and upper-bound
constraints are violated by at most a factor of 1− � and 1 + � (up to
rounding), respectively. If the GBM is feasible and objective f(Ē)

is within a factor of 1− � of the optimal solution OPT to GBM, we
say that Ē is a (1− �)-approximation of the GBM. We refer to this
relaxed problem as GBM�.

PROBLEM 1 (GBM�). We are given � > 0 and a GBM in
terms of an undirected bipartite graph G = (U, V,E), a weight
function w : E → �+, and lower- and upper-bound functions
l : U ∪ V → N and b : U ∪ V → N, respectively. If the GBM is
feasible with optimum objective OPT, find a subset Ē ⊆ E such
that

�(1− �)l(v)� ≤ |Ēv| ≤ �(1 + �)b(v)�
for each v ∈ U ∪ V , and

�

(u,v)∈Ē

w(u, v) ≥ (1− �)OPT.

If the GBM is infeasible, return any edge set Ē ⊆ E.

In Sec. 3, we develop a randomized algorithm to efficiently solve
large problem instances of GBM� in a distributed environment.
Our algorithm guarantees �-feasibility and produces a solution with
objective of (at least) (1− �)OPT in expectation. Although we do
not make any formal claims here, our experiment suggests that the
objective is also concentrated around the expected value, i.e., we
obtained an objective that was close or better than (1− �)OPT in
every single run of our algorithm.

2.1 ILP formulation and LP relaxation
The GBM problem can be formulated as an integer linear program

(ILP) as follows. For each edge e ∈ E, we introduce a binary
variable xe ∈ { 0, 1 }; xe = 1 if e is included in the solution,
otherwise xe = 0. The ILP is then given by

max
�

e∈E w(e)xe

s.t.
�

e∈Ev
xe ≤ b(v) ∀v ∈ U ∪ V,�

e∈Ev
xe ≥ l(v) ∀v ∈ U ∪ V,

xe ∈ {0, 1} ∀e ∈ E,

(GBM-ILP)

where Ev denotes the set of edges adjacent to vertex v in G. Here the
first two constraints express the upper- and lower-bound constraints,
respectively. Since the constraint matrix of GBM-ILP (see MPC-
LP below) is totally unimodular and the right-hand sides are all
integer-valued, an optimum solution can be computed in polynomial
time [1]. However, our experiments in Sec. 5 suggest that state-of-
the-art ILP solvers cannot handle very large problem instances.

We obtain the so-called LP relaxation, denoted GBM-LP, by
allowing xe to be fractional, i.e., to take any value in [0, 1]. As
described in Sec. 3, we make use of the LP relaxation in our algo-
rithms in that we first compute a solution to GBM�-LP, and then
round (sensibly) to obtain an integral solution. GBM-LP belongs to
the class of mixed packing-covering LPs,1 which have general form:

max w
�
x

s.t. Px≤ p

Cx≥ c

x≥ 0,

(MPC-LP)

1The mapping of GBM-LP to MPC-LP is described in Sec. 3.2.
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where x ∈ �n
+ denotes a vector of variables, w ∈ �n

+ a vector of
weights, P ∈ �m×n

+ a packing-constraint matrix with right-hand
side p ∈ �m

+ , and C ∈ �k×n
+ a covering-constraint matrix with

right-hand side c ∈ �k
+. MPC-LPs constitute a “simple” (but still

expressive) subclass of LPs.

3. ALGORITHMS
As mentioned in Sec. 2.1, we solve GBM� by computing a so-

lution to the corresponding LP relaxation, which is subsequently
rounded to an integral solution. We first present a novel distributed
algorithm that can compute an �-feasible solution to any MPC-LP
(Secs. 3.1 and 3.2) and show how the special structure of GBM
can be exploited to reduce communication costs (Sec. 3.3). We
then show how our algorithm can be used to achieve a (1 − �)-
approximation to the MPC-LP (Sec. 3.4). Finally, we combine
ideas from randomized rounding [9] with “filtering” techniques for
MapReduce [18] to obtain an integral solution (Sec. 3.5).

3.1 Solving MPC-LP (feasibility)
We develop a distributed algorithm for approximately solving

general MPC-LP problems. Our algorithm is inspired by, but more
general than, the work of [3], which can handle either packing or
covering constraints, but not both. In this section, we consider only
the feasibility version of the problem. To simplify our discussion,
we describe our algorithm in a centralized setting and generalize to
the distributed setting in Sec. 3.2.

Recall the definition of an MPC-LP given above. Without loss of
generality, we assume that p = and c = , where denotes an
all-one vector of the appropriate dimensionality, and that each of the
non-zero entries in P and C is equal to or larger than 1.2 Denote
by M the largest entry in P and C. We aim to find a vector x such
that

Px ≤
Cx ≥
x ≥ 0.

(1)

Denote by Ai the i-th row of any matrix A, by A�
j the j-th row

of A�, and by Aij the (i, j)-entry of A. For any value of x ∈ �n
+,

let y(x) = (y1, . . . , ym)
� ∈ �m

+ and z(x) = (z1, . . . , zk) ∈ �k
+

be given as follows

yi(x) = exp
�
µ ·

�
P ix− 1

��
(2)

zi(x) = exp
�
µ ·

�
1−Cix

��
, (3)

where µ is a scaling factor (defined in Alg. 1) and yi(x) and zi(x)

denote the i-th entry of y(x) and z(x), respectively. For brevity,
we suppress the dependence of y(x) and z(x) on x when the value
of x is clear from context. One may think of yi as an exponential
“penalty” function of packing constraint P ix ≤ 1. Penalty yi is
small if the constraint is satisfied (yi ≤ 1 if P ix ≤ 1) and large
otherwise (yi > 1 if P ix > 1). Similarly, zi is a penalty function
for covering constraint Cix ≥ 1. In what follows, we refer to yi

and zi as the dual variable of the corresponding constraint. Our
algorithm tries to minimize the overall penalty, i.e., the potential
function

Φ(x) =

m�

i=1

yi(x) +

k�

i=1

zi(x).

The scaling constant µ is chosen sufficiently large so that if Φ is
(approximately) minimized, the corresponding solution is �-feasible
2This can be achieved by first rescaling the rows, then the columns
of the coefficient matrices. Note that column scaling will change
the solution; we can recover the solution to the original problem by
“inversely” scaling the result of the modified problem.

Algorithm 1 MPCSolver for mixed packing-covering LPs

Require: packing constraint P , covering constraints C, error
bound �

1: �
�
= �/10 // internal error bound

2: µ ← ln(mkM/�
�
)/�

� // scaling constant
3: α ← �

�
/4 // update threshold

4: β ← α/(20µ) // multiplicative step size
5: δ ← β/nM // additive increase
6: Start with any x ∈ �n

+

7: repeat
8: Compute yi(x) = exp

�
µ ·

�
P ix− 1

��
for i = 1, . . . ,m

9: Compute zi(x) = exp
�
µ ·

�
1−Cix

��
for i = 1, . . . , k

10: for j = 1, . . . , n do
11: if P�

j y(x)

C�
j z(x)

≤ 1− α then
12: xj ← max{xj(1 + β), δ}
13: if P�

j y(x)

C�
j z(x)

≥ 1 + α then
14: xj ← xj(1− β)

15: until convergence (Sec. 3.3)

whenever the MPC-LP is feasible. Since Φ is differentiable and
convex in x, we use a version of gradient descent to find the optimal
solution (i.e., the one with lowest penalty). Consider the partial
derivative of Φ w.r.t. xj :

∂Φ

∂xj
= µP�

j y − µC�
j z.

At the minimum, all partial derivatives are zero. When the derivative
is negative (positive), we will increase (decrease) xj by a carefully
chosen amount.

Our algorithm is given in Alg. 1; we refer to this algorithm as
MPCSolver. Here parameter �� is an internal error bound, α acts
as an update threshold, β as a multiplicate step size, and δ as an
additive increase; each parameter is chosen carefully and depends
on error bound �. The algorithm starts with an arbitrary initial point
x0 ∈ �+. In each round (i.e., each iteration of the repeat-until
loop), we first compute the values of the dual variables y and z.
We update variable xj only if its partial derivative is sufficiently
far away from zero. The algorithm terminates once all variables
are left unmodified (or one of the alternative convergence tests of
Sec. 3.3 applies); we then obtain an approximate minimizer of Φ. In
particular, we update xj if and only if ratio P�

j y(x)/C
�
j z(x) lies

outside (1 − α, 1 + α); thus α acts as an update condition. If the
ratio exceeds 1+α (positive gradient), we decrease xj ; if the ratio is
below 1−α (negative gradient), we increase xj . Step size parameter
β determines how quickly we move through the parameter space.
Updates are multiplicative: We add or subtract βxj from xj ; thus
the larger xj , the more it is changed. Finally, we ensure that xj ≥ δ

after an increase so that we can quickly move away from 0 when xj

is very small. Note that our algorithm can be implemented in a few
lines of code.

MPCSolver is designed such that it converges quickly to an �-
feasible solution. Our main theoretical result is as follows:

THEOREM 1 (MAIN). For any 0 < � ≤ 0.5, Alg. 1 termi-
nates after �O( �

−5
ln

3
(kmMnxmax) ) rounds, where xmax =

max { δ, x0,1, . . . , x0,n } and x0,j denotes the j-th element of start-
ing point x0 (note that δ � �). If the given MPC-LP instance is
feasible, Alg. 1 produces an �-feasible solution. For � > 0.5, all
properties are retained w.r.t. O(�).

The theorem asserts that the number of rounds required by MPC-
Solver is poly-logarithmic in the input, which ensures fast conver-
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gence. Here we used �O-notation to hide lower-order terms; a more
precise bound is given by O(�

−5
ln

3
(�

−1
) ln

2
(kmM) ln(k ln(m)

Mnxmax)). Note that MPCSolver uses an internal error bound �
�,

which is set to �/10 in Alg. 1. For sufficiently small � ≤ 0.5, this
ensures convergence to an �-feasible solution. In Sec. 3.3, we show
how to dynamically adapt �� to improve performance in practice.

PROOF SKETCH. We give an outline of the proof here; the full
proof appears in App. A. Assume for now that the MPC-LP is
feasible. We start by partitioning the rounds of MPCSolver into
a set of disjoint intervals, each consisting of a sequence of con-
secutive rounds. The first interval is a “warm-up” interval con-
sisting of a poly-logarithmic number τ0 of rounds. We show that
after τ0 rounds, the potential is sufficiently small, i.e., at most
Φinit = m exp(µ(1 + 2�)) + k exp(µ) (implied by Lemma 3).
Moreover, we prove that after the warm-up interval, the poten-
tial Φ is monotonically non-increasing, and that its decrease per
round can be bounded from below (Lemma 5). We then divide
the remaining intervals into stationary and unstationary intervals
of length τ1 = O(β

−1
log δ

−1
). An interval is stationary if the

potential does not change significantly; as soon as we see a station-
ary interval, we show that the solution is θ(�)-feasible (�-feasible
for � ≤ 0.5, Lemma 7). All other intervals are unstationary; in
these intervals, the potential decreases by a factor of at least Ω(�2)
(Lemma 6). With our choice of µ, Alg. 1 terminates when the
potential drops below Φfin = m + k. We conclude that there
are at most O(log(Φinit/Φfin)/�

2
) unstationary intervals, where

Φinit/Φfin = O(exp(µ)). Putting all pieces together, x becomes
θ(�)-feasible after τ = τ0 + O(τ1/�

2
log(Φinit/Φfin)) rounds. Fi-

nally, to handle infeasible problem instances, we always terminate
Alg. 1 after τ rounds, whether or not a solution has been found.

3.2 Distributing MPCSolver
We focus on in-memory processing in the shared-nothing setting,

and exploit shared-memory when multiple threads are run on a
compute node. Denote by s the number of compute nodes and by t

the number cores (each running a thread) per node; the total number
of cores in the cluster is thus given by T = st.

General case. We first describe how to distribute MPCSolver for
general MPC-LPs, and then specialize to GBM-LPs. Recall from
Sec. 3.1 that we associate dual variables y and z with each packing
or covering constraint, respectively. In each round, MPCSolver
first computes the values of these dual variables (lines 8 and 9). To
distribute this computation, we conformingly partition x

� and ma-
trices P and C column-wise across the s nodes; thus each partition
corresponds to a subset of the variables x. Denote by P (i), C(i),
and x(i) the respective partitions stored at node i, 1 ≤ i ≤ s. Each
node i computes the products P (i)x(i) and C(i)x(i) independently
and in parallel (using t threads); the local results are subsequently
aggregated (i.e., summed up) and broadcasted across the compute
cluster to obtain Px and Cx (e.g., using MPI Allreduce). Each
node then computes the values of the duals corresponding to its
variables and broadcasts the results to obtain y and z. Once the
duals have been computed, MPCSolver updates the primal variables
x (lines 10–14). To do this in a distributed manner, we can reuse
the same partitioning of the constraints matrices; primal variables in
partition x(i) can be updated independently and in parallel. Since
both constraint matrices are accessed once row-wise (to compute
the dual variables) and once column-wise (to update the primal
variables), we store at each node i two copies of P (i) and C(i) in
memory: one in row-major and one in column-major order. Note
that the constraint matrices are partitioned once before the algorithm
starts, and that only the values corresponding to the dual variables
are communicated. The algorithm just described can be inefficient
in terms of communication costs when there are many more du-
als (constraints) than primal variables; however, communication

costs can be reduced significantly by exploiting the sparsity of the
constraint matrices.

MPCSolver for GBM-LP. Recall the definition of an MPC-LP
from Sec. 2.1 and consider the LP-relaxation GBM-LP of a given
GBM instance. Then n = |E| denotes the number of edges, x =

(x1, . . . , xn) the edge variables, and w the corresponding edge
weights. Set r = |U ∪ V | and denote by M the r × n incidence
matrix of bipartite graph G. Then Cr×n = M (i.e., k = r),
c is the vector of lower bounds, P (r+n)×n = (M� In)

� (i.e.,
m = r + n), where In is the n× n identity matrix, and p a vector
of r upper bounds followed by n ones. Thus P handles both the
upper-bound constraints and the constraint that xj ≤ 1 for all j.
Note that matrices C and P are usually sparse.

Denote by yM and yI the subset of the dual variables corre-
sponding to upper-bound constraints and at-most-one constraints,
respectively. We communicate yM and z in every round but keep
yI local (only local variables affected). This is advantageous since
the size of yI is linear in n (large) but the size of yM and z is
linear in r (small). For GBM-LP, only product Mx is needed for
the computation of both yM and z; we compute this product only
once (as described above). Note that all communicated values are
vectors of length r, which makes MPCSolver especially attractive
for GBM-LP.

3.3 Implementing MPCSolver
We provide some optimizations that we used to speed-up the

performance of MPCSolver in practice.
Starting point. MPCSolver can start from any initial point x ∈

�n
+. However, in order to reduce the number of iterations and

improve the efficiency of MPCSolver for GBM-LP, we make use
of a special initialization, which satisfies all packing constraints as
follows. Denote by nnz(j) the largest number of non-zero entries
in any row i of M in which M ij �= 0. We then set

xj =
1

nnz(j) ·maxi M ij
for j ∈ [1, n].

Adaptive error bounds. The internal error bound parameter ��
controls the quality of the final solution, but it also dramatically
affects the number of rounds to convergence. Our experiments sug-
gest that setting �

� to values larger than �/10 has only a mild impact
on the quality of the final solution but leads to faster convergence;
in fact, our analysis of MPCSolver is somewhat loose so that our
choice of �� = �/10 is conservative. We devise a simple adaptive
method for choosing �

�, which greatly improves the running time
while ensuring �-feasibility. We exploit the fact that the potential
function can be efficiently evaluated at the end of each iteration
and proceed as follows. Let � ≤ 0.5. We first set �� to some value
larger than �/10 (e.g., 2). We keep running with value �

� as long
as the potential improves significantly (e.g., by 0.001%). When-
ever the potential stagnates, we decrease �

� (e.g., by 1%)—but not
below �/10—and update parameters µ, α, β, and δ accordingly.
This simple adaptive scheme worked well in our experiments (see
Sec. 5).

Convergence test. MPCSolver has converged as soon as one of
the following criteria is met: (1) the solution is �-feasible, (2) all
variables remain unmodified, or (3) the number of rounds exceeds
the poly-logarithmic bound of Theorem 1. If (2) or (3) hold and the
solution is not �-feasible, the MPC-LP is infeasible. In practice, the
poly-logarithmic bound is usually too large to be useful (in particular
when � is small). A heuristic convergence test is to stop MPCSolver
when the decrease in potential stagnates; e.g., when it falls below
some threshold (say, 0.001%) in two consecutive rounds. For the
adaptive scheme, we apply the heuristic convergence test only when
�
� has been reduced to �/10. Even though the guarantees of The-
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orem 1 do not hold when this heuristic is used, our experiments
suggest that the test is effective in practice.

3.4 From feasibility to optimization
Up to this point, we have described how to use MPCSolver to

obtain an �-feasible solution to MPC-LP. In this section, we show
how to derive an (1−�)-approximate solution, i.e., we also optimize
the objective function. Our techniques are an adaptation of the
techniques of Young [28] to our setting. The key idea of [28] is to
push the objective into the constraints. In particular, we consider the
following optimization problem: find λ

∗
= max{λ : (∃x)Px ≤

b,Cx ≥ d,w
�
x ≥ λ}. Given the value of λ∗, we can determine

x via solving a feasibility problem with the additional covering
constraint w�

x ≥ λ
∗. To obtain λ

∗, we run a sequence of feasibility
problems of form {Px ≤ p,Cx ≥ c, w

�
x ≥ λ}, where λ is

determined via binary search. Our search strategy is close to the
one of [28], but we use a fixed error bound and directly compute an
(1− �)-approximation. The following lemma allows us to select an
initial value for λ.

LEMMA 1. Let λmin = min{w�
x : Cx ≥ c, x ≥ 0} and

λmax = max{w�
x : Px ≤ p, x ≥ 0}. Let x̄ be any feasible

solution to MPC-LP, and set λ = w
�
x̄. Then (λmin /λmax)λ

∗ ≤
λ ≤ λ

∗.

PROOF. By definition, λ ≤ λ
∗. Consider the minimization

version of MPC-LP that includes only the covering constraints; we
have w

�
x ≥ λmin. Since we ignore packing constraints, λmin is a

lower-bound on the objective value of any feasible solution to MPC-
LP, i.e., λ ≥ λmin. Using similar arguments, we obtain λ

∗ ≤ λmax
and the assertion follows.

We use the distributed algorithm of Awerbuch and Khandekar
(AK [3]), which obtains a (1 + �)-approximation for covering prob-
lems (λ̂min) and a (1 − �)-approximation for packing problems
(λ̂max). Since MPCSolver is a generalization of AK to MPC, we use
our existing implementation and data partitioning; only parameters,
update condition, and update rules need to be changed.

Let ρ = (λ̂min/(1 + �)) / (λ̂max/(1 − �)) and assume that the
MPC-LP is feasible so that MPCSolver is able to obtain an �-feasible
solution. As before, denote by λ the objective realized by any such
solution. Our binary search algorithm proceeds as follows: We start
with λ0 = λ/ρ, then ρ ≤ λ

∗
/λ0 ≤ 1. We then aim to find the

integer l∗ such that (1− �)
l∗+1

< λ
∗
/λ0 ≤ (1− �)

l∗ via binary
search (on l). Given any l, we run MPCSolver with λ = (1− �)

l
λ0

as lower bound on the objective. If we obtain an �-feasible solution,
then λ

∗ ≥ (1− �)λ ≥ (1− �)
l+1

λ0 so that l∗ ≤ l. Otherwise, the
problem is infeasible and l

∗
> l. The range used for binary search

is given by 0 ≤ l ≤ log1−� ρ (since l
∗ must fall into this range).

The solution obtained at l = l
∗ is now a (1− �)-approximation to

the MPC-LP.

LEMMA 2. Our binary search algorithm computes an �-feasible
(1− �)-approximation to any feasible MPC-LP by solving at most
log2 log1−�(λmin/λmax) �-feasibility problems.

In practice, we need to solve only few �-feasibility problems (up
to 7 in our experiments).

3.5 Obtaining an integral solution
We propose a distributed randomized rounding algorithm that

takes as input a fractional solution x of GBM�-LP (such as the one
obtained by MPCSolver) and produces an �-feasible integral solution
X such that E [w

�
X ] = w

�
x. In particular, our algorithm ensures

that: (1) E [w
�
X ] = w

�
x, (2) all edge variables Xe ∈ { 0, 1 },

(3) when P ix ≤ (1+ �)pi, then P iX ≤ �(1+ �)pi�, and (4) when
Cix ≥ (1− �)ci, then CiX ≥ �(1− �)ci�.

A naı̈ve approach is to use an independent rounding scheme,
which independently rounds every edge variable such that P (Xe =

1) = xe. Such a scheme, however, may not (and often does not)
lead to an �-feasible solution. To see this, consider the (packing)
constraint X1 + X2 + X3 ≤ �1 + �� and the fractional solution
x1 = 0.2, x2 = 0.3, x3 = 0.5+ � for � < 1; independent rounding
sets X1 = X2 = X3 = 1 with non-zero probability but this
solution is not �-feasible. We thus need some form of dependent
rounding, in which variables are rounded dependent on the rounding
of other variables.

Gandhi et al. [9] proposed a randomized sequential rounding
scheme (we refer to this algorithm as DRounding). DRounding
guarantees marginal preservation—i.e., E [Xe ] = xe, addressing
(1)—and degree preservation, i.e. �

�
e∈Ev

xe� ≤
�

e∈Ev
Xe ≤

�
�

e∈Ev
xe� for all v ∈ U ∪ V , addressing (3)+(4). We briefly

describe the algorithm here: Call an edge xe integral if xe ∈ {0, 1}
and fractional if xe ∈ (0, 1). DRounding iteratively rounds frac-
tional edges until all edges become integral. Each iteration of
DRounding finds either a cycle or a maximal path in the subgraph
spanned by the remaining fractional edges. Once such a cycle or
path is found, at least one (but possibly more) of its edges are
rounded (see [9] for details). The rounding of a cycle or path does
not require global information, but only the values of the edges
in the cycle or path, respectively. Thus it suffices to maintain the
set F of the fractional edges, which shrinks after every rounding
step. Since we can detect and process a cycle in O(r) time, the total
running time of DRounding is O(rn), where as before r = |U ∪V |
and n = |E|.

In what follows, we show how to adapt DRounding to a distributed
environment. Our distributed algorithm, called DDRounding, is
inspired by recent work on “filtering” in the MapReduce framework
and, in particular, the filtering algorithm for computing minimum
spanning trees [18]. We exploit the fact that the approximation
guarantees of DRounding do not depend on the order in which
cycles or maximal paths are processed; we are thus free to choose
an order that facilitates distributed processing. DDRounding is
summarized as Alg. 2. In each iteration i, the algorithm checks
whether the set Fi−1 of remaining fractional edges is small. If
so, we run DDRounding on Fi−1 and output the solution. If not,
we evenly distribute Fi−1 across si compute nodes, where si is
chosen carefully (see below). In parallel, each node then runs on
its local partition a version of DDRounding that rounds cycles (can
be detected locally) but not maximal paths (cannot be detected
locally). After a local partition is rounded, it contains at most m− 1

remaining fractional edges (since cycles have been rounded so that
the remaining fractional edges form a tree). We then (conceptually)
merge the remaining fractional edges across partitions to construct
the set Fi for the next iteration.

Runtime and memory. The properties of DDRounding are sim-
ilar to those of the filtering techniques of [18]; we describe them
briefly here. Assume without loss of generality that |Ev| ≥ 1 for
all v ∈ U ∪ V , i.e., every user and every item has at least one
incident edge. Also assume that there are more edges than vertices,
i.e., n = r

1+c for some 0 < c ≤ 1. Assume that each compute
node has insufficient memory to store the whole graph; in particular,
each node can store η = O(r

1+γ
) edges for 0 < γ < 1. Further

assume that the input fits in the aggregate memory of all nodes, i.e.,
there are Θ(n/η) = Θ(r

c−γ
) nodes. Note that these assumptions

imply that the set of vertices can be stored on a single node, while
the set of edges cannot. We thus model the situation where there
are many more edges than nodes, as it is often the case in prac-
tice. Set ni−1 = |Fi−1|. In iteration i, we use si = Θ(ni−1/η)

nodes so that each node stores O(η) edges; memory constraints
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Algorithm 2 DDRounding

Require: U , V , E, solution x of GBM�-LP
I0 ← { (e, xe) : e ∈ E, xe ∈ { 0, 1 } } // integral edges
F0 ← { (e, xe) : e ∈ E, 0 < xe < 1 } // fractional edges
for i ∈ 1, 2, . . . do

if |Fi−1| < η then // few fractional edges?
Ii ← DRounding(U, V, Fi−1) // sequential rounding
return

�i
j=0 Ij // output integral solution

else
si ← Θ(|Fi−1|/η) // number of compute nodes
Partition Fi−1 evenly across s compute nodes to obtain
partitions Fi−1,1, . . . , Fi−1,si
for j ∈ { 1, . . . , si } do // in parallel

T ← RemoveCyclesWithDRounding(U, V, Fi−1,j)

Ii,j ← { (e,Xe) ∈ T : Xe ∈ { 0, 1 } }
Fi,j ← T \ Ii,j

Ii =
�si

j=1 Ii,j // newly obtained integral edges
Fi =

�si
j=1 Fi,j // remaining fractional edges

are thus preserved. Now observe that by the arguments above
ni ≤ si(r − 1) = O(ni−1/r

γ
). Since n0 ≤ n = O(r

1+c
), we

conclude that ni = O(r
1+c

/r
iγ
). The algorithm terminates as soon

as ni = O(η), i.e., after O(�c/γ�) iterations. Since every node
runs a (less expensive variant of) DDRounding independently and
in parallel, each iteration has time complexity O(ηr) = O(r

2+γ
).

The overall time complexity is thus O(r
2+γ�c/γ�).

Quality of approximation. �-feasibility of X follows directly
from the degree preservation property of DRounding. The marginal
preservation property implies that the objective function is within
(1 − �) of the optimum in expectation, since E [w

�
X ] = w

�
x.

Note that S = w
�
X is a bounded random variable (both from

below and above). Standard arguments then show that if we round
sufficiently often, then w

�
X is close to w

�
x with high probability.

The number of required rounding steps depend on the problem
though (i.e., on value of the optimal solution). In our experiments,
we found that even a single run of DDRounding produces results
close to or even above w

�
x.

Implementing DDRounding. Recall that, after MPCSolver has
finished, each node j already stores locally a subset F0,j of the
primal variables, where |F0,j | ≤ �n/s�. We thus set s1 = s so that
there is no need for any data redistribution in the first iteration of
DDRounding (i = 1). When available, we use multiple threads on
each node to remove cycles with DRounding. In each subsequent
iteration i > 1, we halve the number of available nodes so that
si = �si−1/2�. We thus need to communicate only half of the
remaining fractional edges, i.e., the remaining fractional edges of
every second node. This procedure balances communication cost
evenly. Also note that iterations i > 1 are faster because every node
processes at most 2r + 2 edges; the bulk of the work is performed
in the first iteration.

Implementing DRounding. Cycle detection using DFS can be
implemented efficiently as follows. We start by selecting an ar-
bitrary root node v0 ∈ U ∪ V and perform DFS starting from
v0. Whenever we find a cycle C = (vv1 · · · vivi+1 · · · vlv), some
of its corresponding edges are rounded. Suppose that by doing
so, only edge (vi, vi+1) becomes integral.3 This removes an edge
of the current path of DFS, i.e., we are in an invalid state. To
avoid restarting DFS from scratch, we decompose C into two paths
C1 = (vv1 · · · vi) and, in reverse order, C2 = (vvl · · · vi+1). We
replace the portion of the DFS stack that corresponds to C by C1

or C2, whichever is longer. To the extent possible, this allows us to

3We proceed similarly when more than one edge becomes integral.

avoid reprocessing the same paths over and over again. Moreover,
once a node is fully processed (i.e., there are no more cycles involv-
ing this node), we mark it so that we never need to visit this node
again. Both optimizations significantly improved the efficiency of
our implementation of DRounding.

4. RELATED WORK
The classical optimization task of finding an assignment of enti-

ties to users under a given set of constraints has been extensively
investigated in various domains of computer science. Entities could
be items in an auction [24], advertisements [6], scientific papers [10],
social content [22], or multimedia items as in our case. Additionally,
matching problems (in particular weighted b-matching) has been
shown to be a useful tool in a wide variety of machine learning tasks,
including semi-supervised learning [15], spectral clustering [14],
graph embedding [26], and manifold learning [27]. Packing prob-
lems find applications in allocation of display ads [5]. In some of
the applications mentioned above, the input data is not immedi-
ately available and decisions need to be made as new data arrives;
this is referred to as the online version of the problem. In this pa-
per, we focus on offline algorithms, which can help in solving the
corresponding online versions [2].

The problem we studied in this paper is also known in the litera-
ture as the maximum weight degree-constrained subgraph problem.
The special case with upper bounds only is known as maximum
weight b-matching. In a centralized environment, both problems
can be solved in polynomial time via linear programming solvers,
maximum flow techniques [1], or using the combinatorial algorithm
developed in [8]. Unfortunately, these algorithms do not cope well
with massive datasets.

For b-matching, a simple greedy algorithm can achieve approx-
imation guarantee of 1/2, and there is a (2/3− �)-approximation
algorithm with expected running time O(bm log

1
� ) [21]. To the

best of our knowledge, the algorithm developed in [8] with running
time Ω(n

1/2
m) is the most efficient algorithm developed for ex-

act b-matching to date. Scalable algorithms for b-matching have
been presented in [22], where authors adapted two well-known algo-
rithms for bipartite b-matching to the MapReduce environment. The
problem has also been studied using the message passing model of
distributed computation [23, 17]. None of the above algorithms can
handle lower- and upper-bound constraints simultaneously.

There has been a significant effort in developing parallel and
distributed algorithms for linear programs with packing and/or cov-
ering constraints. Both packing problems and covering problems
have been defined in [25], which also gives efficient algorithms
for each class of problems. A first parallel algorithm for packing
problems and covering problems was presented in the seminal work
of Luby and Nisan [20]. Awerbuch and Khandekar [3] presented a
distributed stateless (1 + �)-approximation algorithm for solving
linear programs with only packing or only covering constraints.
MPCSolver is based on this algorithm in that it also uses gradient
descent with multiplicative updates; key differences are that MPC-
Solver can handle mixed packing-covering problems and can start
from an arbitrary initial point. Young [28] developed a parallel
(1 + �)-approximation algorithm for mixed packing-covering prob-
lems, which obtains a solution that satisfies all constraints within a
(1± �) factor in a poly-logarithmic number of rounds. Young’s algo-
rithm has a better theoretical bound than MPCSolver; in particular,
its runtime is independent of the width of the problem (M ). Young’s
algorithm initially sets all variables to sufficiently small values (all
packing constraints satisfied), and then gradually increases but never
decreases variables until either approximate feasibility is achieved
or infeasibility is detected. In contrast to MPCSolver, variable incre-
ments cannot be undone. For this reason, Young’s algorithm cannot
start from an arbitrary starting point and it does not support adaptive
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Table 1: Summary of datasets

Dataset |U | |V | |E|
Netflix 456K 18k 99M
KDD 1M 620k 252M
Syn 10M 1M 1B
Semi-Syn 480k 18k 3.2B

changes of the error bound, which greatly affect performance in
practice (see Sec. 5).

5. EXPERIMENTAL EVALUATION
We investigated the performance of our and alternative algorithms

in an extensive experimental study on both (semi-)synthetic and real-
world datasets. We found that our algorithms are competitive with
state-of-the-art LP solvers on moderately large problem instances,
and multiple orders of magnitude faster than alternative methods on
large instances.

5.1 Experimental setup
Computational environment. We implemented MPCSolver,

Young’s algorithm [28], and DDRounding in C++. To ensure a
fair comparison, we used the data distribution techniques of Sec. 3.3
when implementing Young’s algorithm, which greatly reduced its
communication cost. All algorithms employed MPICH2 for commu-
nication.4 We used two different setups to run our experiments: (1)
a single high-memory server and (2) a compute cluster consisting of
16 nodes (with significantly less main memory). The high-memory
server had 512GB of main memory and was equipped with an Intel
Xeon 2.40GHz processor with 32 cores. Each node in the compute
cluster had 48GB of main memory and an Intel Xeon 2.40GHz
processor with 8 cores.

Real-word datasets. Table 1 gives a brief overview of the datasets
used in our experiments. We used two real-world datasets: the Net-
flix dataset [4], which consists of roughly 99M ratings (1–5) of 456k
Netflix users for 18k movies, and the KDD dataset of Track 1 of
KDD-Cup 2011 [7], which consists of approximately 253M ratings
of 1M Yahoo! Music users for 625k musical pieces. We excluded
users with less than 10 ratings from the Netflix dataset (this ensures
feasibility and is more realistic; see the discussion below). In both
datasets, the number of ratings per user is unbalanced, i.e., there are
users with very few ratings but also users with a large number of
ratings. To construct a GBM instance, we converted each dataset to
a bipartite graph (users and items form vertices; ratings correspond
to weighted edges); our goal was to recommend items to users. We
used a lower bound of 3 and an upper bound of 5 for the number of
recommendations given to each user. We did not enforce a lower
bound for items, but require each item to be recommended at most
200 times (Netflix) or 2000 times (KDD). These choice of bounds
ensured that the resulting instance was feasible.

Large-scale datasets. The real-world datasets above are some-
what unrealistic because we recommend items to users that the users
have already rated. A more realistic setup is covered by our large-
scale semi-synthetic dataset, denoted Semi-Syn. In more detail, we
applied the rating prediction algorithm of [11] to predict unknown
ratings in the Netflix matrix. Next, we sampled 3.2B entries uni-
formly from this matrix; each of the samples corresponds to an
edge in the bipartite graph, weighted by the predicted rating. Note
that this dataset is balanced, i.e., each user has the same number
of ratings in expectation. The Semi-Syn dataset has a large num-
ber of edges but only a moderate number of vertices. In order to
investigate the performance of our algorithms with a large number
4http://www.mcs.anl.gov/mpi/mpich/

of vertices, we additionally generated a synthetic dataset (denoted
Syn) with 10M users, 1M items, and 1B edges. The edges and their
corresponding weights (between 1 and 5) are sampled uniformly at
random. We generally use the same lower and upper bounds as for
Netflix, except for Syn, where we modify the upper bound on the
number of recommendations for each item to 50.

Optimal solution. In order to compute the value of the optimum,
we used the latest version of Gurobi optimizer 5.0 [12], a state-of-
the-art commercial solver for linear programs (and other problems);
Gurobi takes advantage of multiple cores if available. Even though
our real-world datasets were only moderately large, Gurobi was not
able to solve them on one of our cluster nodes due to insufficient
memory. On the high-memory server, however, Gurobi did produce
an optimal solution for the real-world datasets. For Syn and Semi-
Syn, Gurobi ran out of memory even on the high-memory server;
we thus were not able to compute the value of the optimum.

Convergence test. When running MPCSolver and Young’s algo-
rithm, we need to detect whether the algorithms have “practically“
converged. Say that a solution has maximum violation λ if it is barely
λ-feasible (i.e., not λ�-feasible for any λ

�
> λ). For MPCSolver we

used the heuristic convergence test as described in Sec. 3.3. Young’s
algorithm was declared converged as soon as the maximum violation
of only the packing constraints and only the covering constraints
became equal (or the solution had maximum violation of �). This
modified convergence bound for Young’s algorithm ensures a fair
comparison: If we ran the algorithm any further, the maximum vio-
lation would increase (i.e., covering violation gets smaller, packing
violation gets larger).

5.2 Results for GBM-LP (feasibility)
In our first set of experiments, we compared MPCSolver and

Young’s algorithm for GBM-LP feasibility problems with respect
to efficiency (in terms of both number of iterations and total time
to convergence) and (strong) scalability. Our goal was to produce a
0.05-feasible solution, i.e., � = 0.05. As discussed below, running
any of the two algorithms with such a small error bound leads to
poor performance in practice. Instead, we ran the algorithms with
some value �

� ≥ � in the hope to still get an �-feasible solution. For
MPCSolver, we also considered the adaptive scheme of Sec. 3.3
(with the parameters given in that section). The time for rescaling
the input problem and computing the starting point was negligible
(a few seconds) and is not included in our plots.

Efficiency. We studied the effect of error bound parameter �� for
both MPCSolver and Young’s algorithm. For MPCSolver, �� refers
to the internal error bound, while for Young’s algorithm �

� refers
to the desired error bound given to the algorithm. Note that the
choice of �� affects both running time and the feasibility of the final
solution. Fig. 1 plots the maximum violation after every iteration
until convergence for various choices of ��. Here we only used a
single cluster node with 8 parallel threads. All algorithms were run
from the same initial point.

First note that �� indeed affects time to convergence for both algo-
rithms, which is in accordance with theory (MPCSolver is linear in
(�

�
)
−5, Young’s algorithm in (�

�
)
−4). Nevertheless, both algorithms

produce solutions with maximum violation far less than �
� (but

above � = 0.05); this effect was more pronounced for MPCSolver.
For all choices of �� ≥ 1, MPCSolver converged faster and achieved
a higher precision (i.e., less maximum violation). Moreover, for
both algorithms and on both datasets, a choice of �� = 1 worked
best within 1500 iterations; the final maximum violation achieved
by MPCSolver was slightly better than the one obtained by Young’s
algorithm (0.19 vs. 0.21 on Netflix, 0.13 vs. 0.16 on KDD). For
�
�
= 0.5, neither of the algorithms converged after 1500 iterations:

The iterate moved very slowly towards approximate feasibility. On
Netflix (KDD) the achieved error was 0.98 (0.99) for MPCSolver
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Figure 1: Efficiency of Young’s algorithm and MPCSolver for 0.05-feasibility on real-world datasets (1x8)

and 0.76 (0.43) for Young’s algorithm, respectively.
For high values of ��, the maximum violation dropped quickly in

the beginning, but did not improve significantly in further iterations
(in fact, most algorithms converged quickly for large �

�). For small
values of �

�, the maximum violation improved more slowly but
eventually reached a lower value. This behavior motivated our
adaptive method for selecting �

� (denoted “adaptive”) discussed in
Sec. 3.3. Recall that Young’s algorithm cannot be run with adaptive
error bound selection; see Sec. 4. In contrast, MPCSolver is well
suited to adaptive error bound selection because it can start from an
arbitrary starting point and is able to “undo” bad steps. As can be
seen in Fig. 1, MPCSolver with adaptive �

� outperforms all fixed
choices of ��. As a consequence, MPCSolver with adaptive error
bound selection was the only method that achieved 0.05-feasibility
in 1500 or less iterations. In particular, the maximum violation
fell below 0.05 within 1077s (Netflix) and 5317s (KDD). In what
follows, we focus on MPCSolver with adaptive �

�.
Regarding running time, we found that an iteration of MPCSolver

was slightly faster than an iteration of Young’s algorithm (1.8x faster
on average). Communication costs were similar, but Young’s algo-
rithm is more computationally intensive (since it needs to compute a
global parameter from time to time). However, MPCSolver required
significantly less iterations to converge, mainly due to its flexibility
in terms of selecting �

�. Overall, MPCSolver was multiple orders of
magnitude faster than Young’s algorithm.

As a final remark, Gurobi required about 2h (Netflix) and 3.5h
(KDD) to find a feasible solution on our high-memory server. To
have a fair comparison to MPCSolver, we also used Gurobi to find
0.05-feasible solution: the running times decreased to 1.9h (Netflix)
and 3.3h (KDD). Thus MPCSolver was competitive in terms of
overall runtime to state-of-the-art parallel solvers for feasibility
problems.

Strong scalability. We investigated the runtime performance
(measured as the average time per iteration and the total time until

convergence) of MPCSolver and Young’s algorithm as we increase
the number of compute nodes from 1 to 16, where each node runs
8 threads. We refer to these setups using a “node x threads” abbre-
viation, i.e., 1x8, 2x8, . . ., 16x8. Our results are summarized in
Table 2.

We first discuss the results on the moderately-sized real-world
datasets (which do fit into the memory of a single cluster node).
Compared to the per-iteration execution time of Netflix (KDD) on
1x8, MPCSolver provided 1.6x (1.7x) speed-up on 2x8, and a 1.9x
(2.4x) speed-up on 4x8. Here communication overhead becomes
significant so that speed-up is sublinear. Young’s algorithm has
slightly higher speed-up than MPCSolver, but starts at a higher cost
initially. In fact, Young’s algorithm on 8 nodes takes more time
per iteration as MPCSolver on 2 nodes. Similar to MPCSolver,
the benefit of moving from 4 to 8 or more nodes was marginal.
Turning to overall time to convergence, we found that Young’s
algorithm did not converge after 24h. Note that we ran Young’s
algorithm with �

�
= 0.05 to ensure that we can actually find an

�-feasible solution, which caused it to move very slowly. In contrast,
MPCSolver converged after 660 (1050) iterations on Netflix (KDD);
the total running time was less than 1h on 4x8 and above.

We also investigated the performance of MPCSolver and Young’s
algorithm on the large Syn and Semi-Syn datasets. For Syn (Semi-
Syn), we give results for 4x8, 8x8, and 16x8 (8x8 and 16x8) only; a
smaller number of nodes had insufficient aggregate memory to store
the data. On Syn, MPCSolver achieved 1.5x speed-up when moving
from 4x8 to 8x8. However, the algorithm ran solely 1.3x faster
when using 16x8. This sublinear speed-up is caused by increased
communication cost (see below). Young’s algorithm exhibited simi-
lar speed-ups. Each MPCSolver iteration took 8s on average using
16x8; MPCSolver converged to a 0.05-feasible solution after 551
iterations (1.2h). In contrast, iterations of Young’s algorithm took
longer (14.6s) and the algorithm did not converge within 24 hours.
On Semi-Syn, though, we observed a better scalability for both
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Table 2: Performance of Young’s algorithm (Young) and MPCSolver (MPC) for feasibility problems (� = 0.05)

1x8 2x8 4x8 8x8 16x8
Young MPC Young MPC Young MPC Young MPC Young MPC

Average time/iteration (s) on Netflix 5 2.8 3.5 1.8 2.7 1.5 2.3 1.3 2 1.1
Average time/iteration (s) on KDD 14 7.8 8.7 4.6 6.2 3.3 5.2 3 4.4 2.7
Average time/iteration (s) on Syn 29.2 15.7 19.7 10.5 14.6 8
Average time/iteration (s) on Semi-syn 21 11 13.1 6.9
Time for feasibility (h) on Netflix >24 0.51 >24 0.33 >24 0.28 >24 0.24 >24 0.2
Time for feasibility (h) on KDD >24 2.3 >24 1.3 >24 0.96 >24 0.87 >24 0.78
Time for feasibility (h) on Syn >24 2.4 >24 1.6 >24 1.2
Time for feasibility (h) on Semi-syn >24 3.4 >24 2.1

MPCSolver and Young’s algorithm; both algorithms provided 1.6x
speed-up on 16x8. To understand this behavior, recall that the
communication cost of each MPCSolver iteration is governed by
the number of vertices, whereas the computation cost depends on
the number of edges. Semi-Syn has less vertices than Syn (less
communication) and many more edges (more computation) so that
Semi-Syn is easier to parallelize. On Semi-Syn, each MPCSolver
iteration required 6.9s on average using 16x8, and MPCSolver re-
quired 1120 iterations (2.1h) to compute a 0.05-feasible solution.
Similar to Syn, iterations of Young’s algorithm took longer (13.1s)
and the algorithm did not converged within 24 hours.

We conclude that MPCSolver scales to very large datasets and is
significantly faster than Young’s algorithm. Moreover, MPCSolver
is competitive to state-of-the-art LP solvers, but can handle much
larger problem instances.

5.3 Results for GBM-LP (optimality)
Recall that we need to run a sequence of feasibility instances

to determine an optimal solution to the GBM problem. We first
present results for Netflix and KDD with � = 0.05. We compared
the solution of MPCSolver with the optimal solution computed by
Gurobi and found that the desired approximation ratio was obtained
(i.e., the value of the objective was at least 95% of the optimum).
On 16x8, MPCSolver required 2.9h (Netflix) and 7.4h (KDD) in
total. On the high-memory server, Gurobi required 2.2h (Netflix)
and 3.8h (KDD).

For both Syn and Semi-Syn, Gurobi ran out of memory. In con-
trast, MPCSolver required 9.5h (13.6h) for Syn and 14.7h (24h) for
Semi-Syn on 16x8 (8x8), respectively. Note that the high-memory
server had sufficient memory for MPCSolver to process both Syn
and Semi-Syn; our algorithm required 9.7h (Syn) and 18h (Semi-
Syn) using all 32 cores. Thus MPCSolver is faster on the high-
memory server (with 32 cores) than on the 8x8 cluster setup (with
64 cores). Although the hardware in both setups is not identical, a
key reason for the performance difference is that communication
between workers is fast in shared-memory systems (high-memory
server) but significantly slower in shared-nothing systems (compute
cluster).

Overall, we found that MPCSolver is competitive in terms of
overall runtime. It’s key advantage is that it can scale over a com-
pute cluster and thus to much larger problem instances; it’s key
disadvantage is that results are approximate up to �.

5.4 Results for distributed rounding
Recall that the approximate solution of GBM-LP is generally not

integral. In our next set of experiments, we evaluated the perfor-
mance of DDRounding to produce an integral solution. As before,
we measured performance with respect to quality (i.e., value of
objective function after rounding), efficiency, and strong scalability.
We used the 1x8 to 16x8 setups described previously.
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Figure 2: Scalability of DDRounding on different datasets

Quality. For all datasets, we took the fractional solution obtained
by MPCSolver with � = 0.05 as input to DDRounding. For each
real-world dataset, we executed 10 independent runs of DDRound-
ing, thereby obtaining 10 integral solutions. We found that the value
of the objective differed only marginally (within 0.5%) from the
value of the fractional solution across all 10 runs. Moreover, for
Netflix (KDD) the best run produces solutions that were slightly bet-
ter than the fractional solution (increase of 0.5% for Netflix, 0.1%
for KDD); this increase is possible because the fractional solution is
�-optimal but not optimal. For Syn and Semi-Syn, we only executed
a single run. As before, the objective was close to the fractional
solution (≈ 0.01% off) for both datasets. Thus the integral solutions
obtained by DDRounding rounding were of essentially the same
quality as the fractional solutions.

Efficiency and strong scalability. Fig. 2 shows the performance
of DDRounding with varying number of cluster nodes. As can
be seen, DDRounding clearly benefits from distributed processing,
i.e., performance improved significantly when adding more nodes:
The local subgraph processed in the DRounding step on each node
becomes smaller and so that cycles can be removed more efficiently.
We expect, however, that using too many nodes is not beneficial
because then the number of cycles per subgraph may become too
low (so that there is little work to do). Nevertheless, we found that
the performance of DDRounding improves even if we go beyond
8x8, even on our moderately-sized real-world datasets. On 16x8, we
achieved an integral solution for all the real-world datasets within
1.6h. For Syn, we obtained an integral solution after 9.4h, 5.8h,
and 3.6h using 4x8, 8x8, and 16x8, respectively; on smaller setups,
the data did not fit into the main memory. We observed similar
speed-ups for Semi-Syn; the time to obtain an integral solution
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was reduced from 18h using 8x8 to 10.5h on 16x8; as before, the
data exceeded the main memory available when using less than 8
compute nodes.

Constraint violations. Recall that DDRounding preserves the
lower- and upper-bound constraints (up to rounding). In our next
experiment, we investigated the actual constraint violations obtained
by MPCSolver, both before and after applying DDRounding. Table
3 summarizes our results. First note that on all datasets, both the
fractional and the integral solution violated only very few constraints
(i.e., is almost feasible). As mentioned previously, our error analysis
is somewhat loose so that MPCSolver performs better than guar-
anteed by theory. For Netflix and Semi-Syn, DDRounding further
decreased the violations in the constraints (slightly).

5.5 Results for GBM
In our final experiments, we put everything together and inves-

tigated how well we can solve the GBM problem. Recall that
computation of an optimal integral solution with Gurobi on the
high-memory server took 2.2h (3.8h) for Netflix (KDD). With MPC-
Solver and DDRounding on 16x8 and for our choice of � = 0.05,
we obtained a 0.05-feasible solution in 4.5h (8.9h) that was 95.5%
(95.1%) of the optimal solution. Thus the desired approximation ra-
tio was indeed realized. Approximately solving GBM-LP took 2.9h
(7.4h), rounding to an integral solution took 1.6h (1.5h). Observe
that MPCSolver with rounding was slower than Gurobi. However,
the individual cluster nodes used by our algorithms were less pow-
erful, both in terms of memory and in terms of number of cores.
Moreover, our approach can handle much larger problem instances.
For Syn and Semi-Syn, which cannot be handled by Gurobi on our
high-memory server, a 0.05-feasible solution to GBM was obtained
after 13.1h (9.5h for GBM-LP, 3.6h for rounding) and 25.2h (14.7h
for GBM-LP, 10.5h for rounding), respectively, on 16x8. We expect
that running time can be further reduced by adding more compute
nodes.

6. CONCLUSIONS
We presented distributed algorithms to approximately solve large-

scale generalized bipartite matching problems. Our approach is
based on linear programming and randomized rounding. In particu-
lar, we developed MPCSolver, a distributed algorithm to approxi-
mately solve large-scale mixed packing-covering linear programs,
and DDRounding, a distributed rounding algorithm to obtain an
integral solution of high quality. Our experiments suggest that our
algorithms are more scalable and more efficient than alternative
approaches.
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Table 3: Constraint violations before (fractional solution) and after (integral solution) rounding

# satisfied constraints # �-feasible (but not feasible) Avg. rel. violation (infeasible) Max rel. violation (infeasible)
Fractional Integral Fractional Integral Fractional Integral Fractional Integral

Netflix 930 085 930 086 45 44 0.0473 0.0145 0.0496 0.015
KDD 2 626 509 2 626 509 432 432 0.0407 0.0409 0.0499 0.05
Syn 20 998 614 20 998 623 1386 1377 0.0485 0.0491 0.0499 0.05
Semi-Syn 978 090 978 105 58 43 0.0492 0.0163 0.0498 0.02

APPENDIX
A. PROOF OF MAIN THEOREM

Denote by x(t), y(t), and z(t) the values of x, y(x), and z(x) in
round t. The potential in round t is then given by

Φ(t) = · y(t) + · z(t). (4)

Note that y and z are fast-growing functions of x: Any “significant”
change in the value of x leads to a “significant” change in the value
of Φ. We assume throughout that the problem instance is feasible;
otherwise, our analysis implies that if Alg. 1 does not find a solution
after the poly-logarithmic number of rounds asserted by Th. 1, the
MPC-LP is infeasible.

Our proof follows the outline given in Sec. 3.1. The key ideas
underlying our proof are due to [3] (who considered packing LPs
or covering LPs, but not MPCs); here we adapt the proof to our
setting. We make use of the internal step size parameter �

�
=

�/10 throughout. We first discuss our choice of parameters. First,
parameters β and δ are chosen such that if x satisfies Px ≤ 3 · in
the beginning of a round, the value of P�

j y(x) changes by at most
a factor of α/4 in that round, 1 ≤ j ≤ n. Similarly, if x satisfies
C�

i x ≤ 3, then the value of C�
j z(x) for any j changes by at most

α/4. Finally, our parameter choice ensures that the increase in P ix

(upper bounded by β + n ·M · δ) is at most 1/(8µ).

A.1 Warm-up interval
We show in Lemma 3 that after a warm-up interval of poly-

logarithmic length, we do not violate the packing and covering
constraints by too much. This allows us to bound the value of
function Φ so that we can bound the number of stationary and
unstationary intervals later on.

LEMMA 3. Let the algorithm start from a point x0 ∈ �n
+ and

let xmax = maxj x
0
j . After τ0 = O(β

−1
log(δ

−1
nkM(xmax+δ))

rounds, as long as x(t) does not form a feasible solution to (1), we
have

• 1− 2�
� ≤ maxi P ix(t) < 2 + 2�

�, and
• mini Cix(t) ≤ 1 + 2�

�.
PROOF. Assume that maxi P ix > 2 + �

� holds initially. Note
that for all i with P ix > 2 + �

�, we have yi > mkM/�
� · exp(µ).

Note also that zi ≤ exp(µ) for all i. Thus, for all variables j

such that P ij �= 0 for some i with P ix > 2 + �
�, it holds that

P�
j y/C

�
j z > 1 + α. Thus all these variables decrease by a factor

of β. Thus after O(β
−1

log(nMxmax)) rounds, maxi P ix ≤ 2 +

�
�. Moreover since P ix in a single round increases to at most

(1 + β)P ix + nMδ, we have that maxi P ix can increase to at
most (2 + �

�
)(1 + β) + nMδ < 2 + 2�

� in any subsequent round.
Now consider the duration in which x does not form an O(�

�
)-

feasible solution to (1). Also assume that maxi P ix ≤ 1 − �
�.

Thus yi ≤ �
�
/(mkM) for all i. Note that since x is not a feasible

solution, we have mini Cix ≤ 1. Since Cix ≤ 1 implies zi ≥ 1,
we have that all j with Cij �= 0 for some i with Cix ≤ 1 satisfy
P�

j y/C
�
j z ≤ �

�
/k < 1 − α. Thus all these variables increase

by factor (1 + β). Thus after O(β
−1

log δ
−1

) rounds, we have
maxi P ix > 1 − �

�. Since any xj decreases by a factor of at
most (1 − β) in any single round, we always have maxi P ix >

(1− �
�
)(1− β) ≥ 1− 2�

�.

Now assume that mini Cix ≥ 1 + �
�. Thus zi ≤ �

�
/(mkM)

for all i. Note that since x is not a feasible solution, we have
maxi P ix ≥ 1. Since P ix ≥ 1 implies yi ≥ 1, we have that all
j with P ij �= 0 for some i with P ix ≥ 1 satisfy P�

j y/C
�
j z ≥

m/�
�
> 1 + α. Thus all these variables decrease by factor (1− β).

Thus after O(β
−1

log(kMxmax)) rounds, we have mini Cix <

1 + �
�. Since any xj increases by a factor of at most (1 + β) in any

single round, we always have mini Cix < (1+�
�
)(1+β) ≤ 1+2�

�.

The following rather technical lemma will be needed in the proof
of Lemma 7.

LEMMA 4. After τ0 rounds, we have

(maxi P ix− �
�
)( · y) ≤ (1 + �

�
) y

�Px,

(mini Cix+ �
�
)( · z) ≥ z

�Cx.

PROOF. Let 1 ≤ i0 ≤ m be such that P i0x = maxi P ix.
Let S = {i | P ix < P i0x − �

�}. Thus yi < yi0 exp(−µ�
�
) <

yi0�
�
/m holds for all i ∈ S. Hence

�
i∈S yi ≤ �

�
yi0 and ·

y < (1 + �
�
)
�

i �∈S yi. Therefore (maxi P ix − �
�
)( · y) <

(1 + �
�
)
�

i �∈S P ix · yi ≤ (1 + �
�
) y

�Px.
Now let 1 ≤ i0 ≤ k be such that σ := Ci0x = mini Cix

and let S = {i | Cix > σ + �
�}. From Lemma 3, we get that

σ ≤ 1 + 2�
�. It is easy to check that ��zi0 = �

�
exp(µ(1− σ)) ≥

(σ + �
�
) exp(µ(1 − σ − �

�
)) · k. Now fix i ∈ S and let η =

Cix. Since η exp(µ(1 − η)) is a decreasing function of η for
η ≥ 1/µ, we get that ��zi0 ≥

�
i∈S zi · Cix. This implies that�

i �∈S zi ·Cix+ �
�
zi0 ≥ z

�Cx. From the definition of S, now we
get that (mini Cix+ �

�
)( ·z) ≥

�
i �∈S zi ·Cix+ �

�
zi0 ≥ z

�Cx

as desired.

A.2 Potential is monotonically non-increasing
The following lemma shows that the potential is monotonically

non-increasing after τ0 rounds, and that its decrease can be bounded
from below (w.r.t. the current values of x, y and z).

LEMMA 5. Let ∆Φ(t) = Φ(t+1)−Φ(t) denote the increase in
Φ in round t. Similarly let ∆xj(t) = xj(t+ 1)− xj(t), ∆yi(t) =

yi(t+1)− yi(t), and ∆zi(t) = zi(t+1)− zi(t). After τ0 rounds,
we have

−∆Φ(t) ≥ Ω(α)
�

i |∆yi(t)| (5)
−∆Φ(t) ≥ Ω(α)

�
i |∆zi(t)| (6)

−∆Φ(t) ≥ Ω(βµ)
�
z(t)

�Cx(t)− (1 + α) · y(t)�Px(t)
�
(7)

−∆Φ(t) ≥ Ω(βµ)
�
(1− α) · y(t)�Px(t)− z(t)

�Cx(t)
�
(8)

PROOF. Note that the potential Φ is a convex differentiable
function of x. Thus for any two vectors x

0 and x
1, we have

Φ
�
(x

0
) · (x1 − x

0
) ≤ Φ(x

1
) − Φ(x

0
) ≤ Φ

�
(x

1
) · (x1 − x

0
)

where Φ�
(x) is the gradient of Φ evaluated at x. Note that Φ�

j(x) =

µ(P�
j y(x) − C�

j z(x)) for all j. Thus ∆Φ(t) ≤ µ
�

j ∆xj(t) ·
(P�

j y(t+ 1)−C�
j z(t+ 1)).

We first prove (5). Note that for any j such that ∆xj(t) > 0,
Lemma 3 implies that P�

j y(t+ 1)−C�
j z(t+ 1) ≤ (1 + α/4) ·
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P�
j y(t)− (1−α/4) ·C�

j z(t) ≤ −Ω(α) ·P�
j y(t), where the last

inequality follows from ∆xj(t) > 0. Similarly for any j such that
∆xj(t) < 0, we have P�

j y(t+ 1)−C�
j z(t+ 1) ≥ (1− α/4) ·

P�
j y(t) − (1 + α/4) · C�

j z(t) ≥ Ω(α) · P�
j y(t). From above

analysis, we have ∆Φ(t) ≤ −Ω(α)·µ
�

j |∆xj(t)|·P�
j y(t). Now

note that for any i, we have ∆yi(t) ≤
�

j µP ijyi(t+1)·∆xj(t) ≤
(1 + α/4)

�
j µP ijyi(t) · ∆xj(t). Therefore |∆yi(t)| ≤ (1 +

α/4)
�

j µP ijyi(t) · |∆xj(t)|. Summing up over all i, we get�
i |∆yi(t)| ≤ O(1) ·

�
j P

�
j y(t) · |∆xj(t)| and (5) follows. The

proof of (6) is similar to the above and is omitted. We now prove (7):

∆Φ(t) ≤ µ
�

j ∆xj(t)
�
P�

j y(t+ 1)−C�
j z(t+ 1)

�

≤ µ

�

j:∆xj(t)>0

∆xj(t)
�
P�

j y(t+ 1)−C�
j z(t+ 1)

�

≤ βµ

�

j:∆xj(t)>0

xj(t)
�
P�

j y(t+ 1)−C�
j z(t+ 1)

�

≤ Ω(βµ)

�

j:∆xj(t)>0

xj(t)
�
(1 + α) · P�

j y(t)−C�
j z(t)

�

≤ Ω(βµ)
�

j xj(t)
�
(1 + α) · P�

j y(t)−C�
j z(t)

�

= Ω(βµ)
�
(1 + α) · y(t)�Px(t)− z(t)

�Cx(t)
�
.

The third inequality follows from the fact that if ∆xj(t) > 0 then we
indeed have ∆xj(t) ≥ βxj(t). The second and the fifth inequalities
follow from ∆xj(t) < 0. The proof of (8) is similar and omitted.

A.3 Stationary and unstationary intervals
We proceed by defining stationary intervals in which the potential

function does not change significantly.

DEFINITION 1 (STATIONARY INTERVAL). An interval T =

[t0, t1] of rounds is called stationary if all of the following conditions
hold:

•
�

t∈T
�

i |∆yi(t)| ≤ κ1 · Φ(t0).
•

�
t∈T

�
i |∆zi(t)| ≤ κ2 · Φ(t0).

• (1 − α) · y(t)�Px(t) − z(t)
�Cx(t) ≤ κ3 · Φ(t0) for all

t ∈ T .
• z(t)

�Cx(t) − (1 + α) · y(t)�Px(t) ≤ κ4 · Φ(t0) for all
t ∈ T .

Here κ1,κ2,κ3,κ4 = θ(�
�
) are small constants. An interval that is

not stationary is called unstationary.

Lemma 6 shows that the potential function decreases by a multi-
plicative factor in any unstationary interval, which in turn bounds
the total number of unstationary intervals by a poly-logarithmic
function. Its proof follows directly from Definition 1 and Lemma 5.

LEMMA 6. In any unstationary interval, the potential Φ de-
creases by a factor of Ω(�� ·min{α,βµ}) = Ω(�

�2
).

Lemma 7 completes the proof. It states that all solutions computed
in a “sufficiently” long stationary interval are θ(�

�
)-feasible. The

proof is included below.

LEMMA 7. Consider a stationary interval T = [t0, t1] where
t0 ≥ τ0 and t1 − t0 ≥ τ1 where τ1 = O(

1
β log

1
δ ). Let x0

, y
0
, z

0

denote the values of x, y, z at round t0. Then x
0 forms a θ(�

�
)-

feasible solution and, in particular, if 0 < �
� ≤ 0.05, x0 is a

10�
�-feasible solution.

Since �
�
= �/10, we obtain �-feasibility for � ≤ 0.5.

PROOF. Assume to the contrary that the solution x
0 is not θ(��)-

feasible, e.g., that mini Cix
0

maxi P ix0 = λ ≤ 1− 5�
�. Then from Lemma 4

and Def. 1, we have

(maxi P ix
0 − �

�
) ( · y0

)

≤ (1 + �
�
) · (y0

)
�Px

0

≤ 1 + �
�

1− α
· (z0)�Cx

0
+ (1 + �

�
) · κ3 · Φ(t0)

≤ 1 + �
�

1− α
· (min

i
Cix

0
+ �

�
) · · z0 + (1 + �

�
) · κ3 · Φ(t0)

≤ (1 +
5

3
�
�
) · (min

i
Cix

0
+ �

�
) · · z0 + (1 + �

�
) · κ3 · Φ(t0).

Now from Lemma 3, it follows that maxi P ix
0 ≥ 1− 2�

�. There-
fore

· y0 ≤
�
1 +

5

3
�
�
�
· λ ·maxi P ix

0
+ �

�

maxi P ix
0 − ��

· ( · z0)

+
1 + �

�

maxi P ix
0 − ��

· κ3 · Φ(t0)

≤ (1− �
�
)( · z0) +O(κ3) · Φ(t0).

Since y and z have low mileage in the interval T , we have

· y0
+

�
t∈T

�
i |∆yi(t)|

≤ (1− �
�
) ·

�
· z0 −

�
t∈T

�
i |∆zi(t)|

�

+O(κ1 + κ2 + κ3) · Φ(t0).

Let κ123 = κ1 + κ2 + κ3. Since Φ(t0) = · y0
+ · z0, we have

(1−O(κ123)) ·
�

· y0
+

�
t∈T

�
i |∆yi(t)|

�

≤ (1− �
�
+O(κ123)) ·

�
· z0 −

�
t∈T

�
i |∆zi(t)|

�
.

Thus

· y0
+

�
t∈T

�
i |∆yi(t)|

· z0 −
�

t∈T
�

i |∆zi(t)|
≤ 1− �

�
+O(κ123) ≤ 1− α.

Since the given mixed LP is feasible, there exists x∗ ≥ 0 such that
Px

∗ ≤ and Cx
∗ ≥ . Thus we have

(y
0
)
�Px

∗
+

�
t∈T

�
i |∆yi(t)| · Px

∗

(z0)�Cx∗ −
�

t∈T
�

i |∆zi(t)| ·Cx∗ ≤ 1− α.

Using an averaging argument, it follows that there exists j such that

P�
j y

0
+

�
t∈T

�
i |P

�
j y(t+ 1)− P�

j y(t)|
C�

j z
0 −

�
t∈T

�
i |C

�
j z(t+ 1)−C�

j z(t)|
≤ 1− α.

Therefore for this j, and for all t ∈ T , we have

P�
j y(t) /C

�
j z(t) ≤ 1− α.

Our algorithm will increase this variable by a factor of β in each
round. Therefore after τ1 rounds, its value increases so much that
the potential Φ becomes larger than (m+k)·exp(2µ), contradicting
Lemma 3. Therefore we can conclude that the solution x

0 is indeed
θ(�

�
)-feasible.

To establish the final assertion, observe that mini Cix
0

maxi P ix0 > 1 −
5�

� (proved above). Let �� ≤ 0.05. From Lemma 3, we obtain
mini Cix

0
> 1− 7�

� and maxi P ix
0
< 1 + 10�

�, which ensures
10�

�-feasibility.
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