
Ratio Threshold Queries over Distributed Data Sources

Rajeev Gupta
∗

IBM Research, India
grajeev@in.ibm.com

Krithi Ramamritham
Indian Institute of Technology,

Mumbai, India
krithi@cse.iitb.ac.in

Mukesh Mohania
IBM Research, India

mkmukesh@in.ibm.com

ABSTRACT
Continuous aggregation queries over dynamic data are used
for real time decision making and timely business intelli-
gence. In this paper we consider queries where a client wants
to be notified if the ratio of two aggregates over distributed
data crosses a specified threshold. Consider these scenar-
ios: a mechanism designed to defend against distributed
denial of service attacks may be triggered when the frac-
tion of packets arriving to a subnet is more than 5% of the
total packets; or a distributed store chain withdraws its dis-
count on luxury goods when sales of luxury goods constitute
more than 20% of the overall sales. The challenge in exe-
cuting such ratio threshold queries (RTQs) lies in incurring
the minimal amount of communication necessary for propa-
gation of updates from data sources to the aggregator node
where the client query is executed. We address this challenge
by proposing schemes for converting the client ratio thresh-
old condition into conditions on individual distributed data
sources. Whenever the condition associated with a source
is violated, the source pushes its data values to the aggre-
gator, which in turn pulls data values from other sources to
determine whether the client threshold condition is indeed
violated. We present algorithms to minimize the number of
source condition violations (i.e., the number of pushes) while
ensuring that no violation of the client threshold condition is
missed. Further, in case of a source condition violation, we
propose efficient selective pulling algorithms for intelligently
choosing additional sources whose data should be pulled by
the aggregator. Using performance evaluation on synthetic
and real traces of data updates we show that our algorithms
result in up to an order of magnitude less number of mes-
sages compared to existing approaches in the literature.

1. INTRODUCTION
Continuous aggregation queries over dynamic data are

used in various scenarios for real time decision making and

∗This work was done as part of PhD at IIT Mumbai.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 8
Copyright 2013 VLDB Endowment 2150-8097/13/06... $ 10.00.

timely business intelligence. The aggregation function can
take the form of addition, average, min, max [4,9], top-k [1],
frequency measures [13], etc. In this paper we identify and
focus on ratio threshold queries (RTQs) where a client wants
to be notified if the ratio of two aggregates over distributed
data crosses a specified threshold. In this scenario the client
poses the ratio threshold query at a proxy or data aggre-
gator which obtains the required data from geographically
distributed data sources and executes the query.

1.1 Motivation behind RTQs
We describe a few practical scenarios where RTQ arise:
Example1 : A store chain selling various items belonging to
different categories like electronics, food, health-care, etc.,
integrates data from its inventory, marketing, and sales databases
from different geographies for monitoring sales. During a
sales campaign, the manager of the store chain wants to get
notified whenever the sale of electronic goods for the day is
more than 20% of the total sale so that, say, the discount
percentage on electronics goods can be reduced. To know
whether the 20% threshold is crossed, usually a multi-pass
SQL query needs to be executed frequently, resulting in nu-
merous data transfers, many of which are likely to leave the
query result unchanged.
Example2 : Various methods for defending against distributed
denial of service (DDOS) attacks are reported in the lit-
erature including congestion based, anomaly based, source
based, etc. In the congestion based method [6] a specific des-
tination address is marked if the fraction of packets arriving
at that address in a specified duration is above a threshold.
As packets are handled by various edge routers, a distributed
query can be launched to know whether the fraction has
crossed the specified threshold for a particular recipient or
subnet.
Example3 : To incentivize residents to reduce energy con-
sumption, we may want to send alerts to houses in a par-
ticular building whenever the average power consumption
of a building is 5% above the overall average of a campus.
This can be done by collecting energy consumption data
from each home to get average energy consumption of each
building as well as that of whole campus.

1.2 Definition of RTQs
As shown in Figure 1, let there be |S| data sources whose

data is aggregated at the data aggregator. We assume that
data sources are independent and do not directly communi-
cate with each other. An RTQ specified by the client has
numerator (n) and denominator (d) data items along with a
ratio threshold (µ) whose violation (i.e., the ratio becoming

565

Data Aggregator

Source
S1

Source
S2

Source
S3

Source
S|S|

Push & pull

Ratio Threshold Query

….

Figure 1: Data aggregator and sources.

larger (or smaller) than µ) should be notified to the client.
At each data source Si, data values at various time instances
are aggregated to get numerator and denominator data val-
ues, ni and di, respectively. These data values are further
aggregated across distributed data sources to get the nu-
merator and denominator over which the ratio threshold is
specified. Specifically, the client threshold (µ) is specified
over the ratio of the sum of nis, denoted by N, and the sum
of dis, denoted by D. That is, the client is not notified as
long as the following condition on the ratio N/D, called the
global ratio, is satisfied:

N

D
=

∑|S|
i=1 ni∑|S|
i=1 di

≤ µ (1)

In Example1 the numerator is the dollar sales of electronics
goods and the denominator is dollar sales of all items. Ratio
threshold is 20%. Total dollar sales of electronics goods
can be obtained by summing dollar sales of electronics from
each source. The dollar sales of electronics at each source
is obtained by adding dollar values of sales of all electronics
goods at that source. The goal of this paper is to execute
such ratio threshold queries with minimum communication
between data sources and the data aggregator while ensuring
that no instance of the client threshold violation is missed.

1.3 Categorizing RTQs
RTQs can be categorized along the following dimensions:

1. Type of temporal aggregation: An RTQ can have
either start time aggregation (STA) or window based
aggregation (WBA). In STA, the user requires RTQ
to be executed using the data gathered from the start
of the system (landmark window), e.g., daily sales =
0 when the store opens and it is likely to increase as
further sales occur during the day. In case of STA, nis
and dis are non-decreasing functions of time. In WBA,
the RTQ is executed over the data gathered within a
moving time window as in Example2.

2. Type of threshold: RTQ can have either upper bound
threshold (UBT) or lower bound threshold (LBT). In
case of UBT (LBT), the client desires notification only
when the ratio N/D is greater (smaller) than the spec-
ified upper (lower) bound µ. In either case, we say that
the threshold has been violated.

Although our work considers both the types of temporal
aggregations and thresholds, for ease of exposition, in this

P1= �1��2 P2 =

�1 �2

�

(�1 �2) �(�1��2)

Figure 2: Deriving source conditions

paper, as a default we assume that the client wants notifica-
tion when the ratio N/D goes above µ where N and D are
obtained using start time aggregation (i.e., STA-UBT).

1.4 Executing RTQs
To check whether the global ratio has crossed the client

specified threshold the aggregator needs the current values
of the distributed data items. We have the option of evalu-
ating the client query either by getting all the data at the
data aggregator (data shipping), or by sending queries de-
rived from the client query to all the data sources (query
shipping). Data shipping is not a preferred option for contin-
uously changing data items due to the high volume of the re-
sulting data transfers. Thus, from the condition (N/D ≤ µ
as given by Equation 1), defined as client condition C, whose
violation requires the aggregator to send notification to the
client, we derive source conditions Cis (involving ni and di)
for each source i. Each source Si needs to push data values
to the data aggregator whenever Ci is violated. In response
to a push message from a source, the aggregator judiciously
pulls data from the other sources to evaluate the condition
given by Equation 1, and if it is violated, the notification is
sent to the client.

1.5 Deriving Cis from C: Correctness and Per-
formance Objectives

The derivation of Cis from C is challenging because all
threshold violations should be detected with the least com-
munication overheads – resulting from pushes by sources
to the aggregator and pulls by the aggregator. We explain
these objectives formally now. We denote the set of time
instances when Ci (C) is violated as Θi (Θ). Figure 2 shows
an example scenario for two data sources where the dashed
contour indicates Θ.

We have two considerations while deriving Cis from C:

1.5.1 Correctness objective
To ensure that no client threshold condition violation is

missed (i.e., zero false negatives), we need to ensure that
client’s condition C is never violated without violation of at-
least one of the source conditions (as aggregator pulls data
and verifies C only when at-least one of the Cis is violated).
This correctness objective can be denoted as:

Θ ⊆ ∪Θi (2)

1.5.2 Performance objectives
To minimize the number of pushes from a data source, we

aim to minimize the source condition violations (∪Θi) when

566

global ratio threshold violation (Θ) is unlikely. Thus, as the
first performance objective, we need to minimize | ∪Θi−Θ|.
As shown in Figure 2 we can divide ∪Θi into two parts:
1) P1 ≡ ∩Θi

2) P2 ≡ ∪Θi − ∩Θi.
For minimizing pushes, we should be deriving source condi-
tions, Cis, such that:

a There should not be any push resulting from P1 without
leading to a notification to the client, i.e., if all sources
send the push message at a certain instance, it should
imply the violation of Equation 1. If that is not the
case, we can change the source conditions leading to
lesser number of pushes without introducing any false
negative.

b Number of push messages from P2 is minimized.

Ideally, Θ ≡ ∩Θi (ensuring C1 ∧C2 ∧ ...∧C|S| ⇒ C), i.e.,
we aim for the situation where the client condition is violated
only if all the source conditions are violated. In a centralized
setting, this will ensure that a source pushes only if the
client condition is violated. But in the distributed scenario,
although we aim for Θ ≡ ∩Θi, in practice ∩Θi ⊆ Θ ⊆ ∪Θi.
Specifically, we assign source conditions Cis such that when
more Cis are violated, the client condition violation is more
probable and when all Cis are violated, the client condition
is indeed violated.

When the data aggregator receives a push message from
any source, to determine whether the client threshold condi-
tion is violated, the data aggregator needs to pull data from
other sources. Our second performance objective is to mini-
mize the number of pull messages. In cases where push and
pull costs are different for different sources (say, based on
the number of hops from the aggregator), rather than mini-
mizing the number of push and pull messages we should be
minimizing the total push and pull costs.

1.5.3 Guiding Principles
We use the following principles to help achieve these ob-

jectives:

1. Each source condition should be associated with tun-
ing parameters such that the aggregator can tune them
based on last pulled values. These tuning parameters
can be used to assign source conditions such that they
are likely to be violated at the same time.

2. We should aim to minimize the number of conditions
assigned to each source, as the larger the number of
conditions, the larger the expected source condition
violations (|Θi|) and more difficult it would be to tune
these conditions.

1.6 Contributions and Outline
In this paper, we introduce ratio threshold queries (RTQs)

with their variations and present techniques for efficiently
executing them. A review of related work in the areas
of continuous queries and distributed and efficient execu-
tion of such queries (see Section 2) leads us to believe that
ours is the first work specifically considering ratio threshold
queries over distributed data sources while minimizing the
number of source conditions violations (push messages) and
the pulls required by the data aggregator. The closest re-
lated work [12] is based on a geometric approach to monitor

threshold functions over distributed data values. We show
that compared to our approach, the method based on [12]
results in an order of magnitude more messages between the
data sources and the aggregator.

Our contributions are:

• In Section 3 we develop a suite of algorithms to map
the global client condition (C) into local source condi-
tions (Cis) at individual data sources so that no client
condition violation is missed (guaranteeing zero false
negatives) while minimizing the number of push mes-
sages from the sources. While all these algorithms
guarantee correctness, they have different character-
istics and performance.

• Through performance evaluations using synthetic and
real dynamic data traces, in Section 4, we demonstrate
that our algorithms requires an order of magnitude
lesser number of push messages compared to generic
algorithms proposed in the literature [12].

• When any source pushes a message to the data aggre-
gator, we show that it is not necessary to pull data
from all the sources. Which data to pull is a ques-
tion that needs to be addressed to reduce the number
of pull messages. A judicious choice is made by the
selective pulling schemes developed in Section 5.

• If the data sources have different push and pull costs,
then we need to change (a) the way the source con-
ditions are derived, and (b) the method to select the
data sources to pull, to minimize the total push and
pull costs. This is elaborated in Section 6.

• In Section 7, we consider the case when multiple queries
with overlapping data items are executed at a data ag-
gregator. We show how push and pull messages can
be shared across queries.

• Conclusion and avenues for future work are the subject
of Section 8.

2. RELATED WORK
The problem of answering a continuous query over dis-

tributed data sources has been studied extensively in the
literature. In these queries data from multiple independent
sources need to be aggregated at the data aggregator. These
queries can be categorized based on the type of results de-
sired by the user: value based queries, entity based queries,
and Boolean queries. For these queries, various methods are
proposed to reduce communication among the data sources,
aggregators, and users. An imprecision bound may be spec-
ified for the value and entity based queries where the user is
interested in the new value of the query only if it changes by
more than the specified imprecision bound. Similarly, the
threshold specified for the Boolean queries is used to reduce
the number of refresh messages. In this paper, we use the
threshold and the nature of aggregation to reduce the num-
ber of push and pull messages between the data sources and
the aggregator.

In value based queries [3, 4,7,9,13], the user may want to
know values of individual data items or the result of some
aggregation of the data items. For reducing the number
of push messages from data sources to the data aggregator,
authors of [9] proposed a method to divide the user specified

567

imprecision bound into imprecision bounds for individual
data items. In [4] authors propose dividing the imprecision
bound among sub-queries to be executed at distributed data
aggregators to reduce the number of push messages from the
data aggregators to the users.

In entity based queries [1, 2] the user wants to know the
set of data items satisfying a certain selection condition.
Authors of [2] consider range and rank based selection func-
tions for the entity based queries. In a range query, the user
is interested in knowing the entities which are in the user
specified range of values whereas in a rank query, the user
wants to know the k-nearest neighbor entities at a specific
point in the data space. Authors use the tolerable false pos-
itives and false negatives to reduce the push messages from
the data sources. In [1], authors present algorithms for dis-
tributed top-k monitoring with an imprecision bound. Their
algorithm employs a coordinator which determines the ini-
tial set of top-k identifiers. The coordinator sends each node
a set of constraints such that the list of top-k is guaranteed
to remain unchanged unless one or more of constraints are
violated. Our approach has one aspect common with these
approaches: we also divide client’s threshold condition into
local source conditions for individual data sources. But, un-
like other works, we are considering the situation where a
client threshold is specified over the ratio of two aggrega-
tions.

In the third type of queries, Boolean queries, the user just
wants to know whether a Boolean condition, expressed as a
threshold over an aggregation of data items, is true [8, 12].
Authors of [12] present a geometric approach to monitor
threshold functions over distributed data sources. In their
setting each node collects a vector of real numbers derived
from its data values; a global statistics vector is defined as
the weighted average of vectors from the individual nodes;
and a client is interested to know whether value of a given
function over global statistics vector is above (or below) a
given threshold. Even though their work is generic and can
be adapted for ratio threshold queries, performance stud-
ies show that our algorithms outperform their approach for
RTQs by an order of magnitude.

3. ALGORITHMS FOR DERIVING SOURCE
CONDITIONS

In this section, we present algorithms for deriving condi-
tions for each data source for a given RTQ. We assume that
when a source condition is violated, the status of the con-
dition does not change until the aggregator evaluates the
condition using data from the sources. We assign source
conditions based on the objectives and guiding principles
outlined in Section 1.5.

Figure 3 shows aggregated values of numerator (N) and
denominator (D) data items in a two dimensional space.
As per Equation 1, the data aggregator need not send no-
tifications to client as long as aggregated values of denom-
inator and numerator are below the black continuous line
with slope µ. We use this assertion to derive local condi-
tions, i.e., conditions when the individual data sources need
not send any notification to the data aggregator. Deriva-
tion is approached from different interpretations of Figure
3, leading to a variety of algorithms. All these algorithms
are mathematically equivalent to Equation 1 (hence, satisfy
the correctness objective), but, as we show in this section,

D

N

µ

IN

ID
O(NO,DO)

Figure 3: Geometric representation of RTQ

Table 1: Symbols used in the paper
Symbol Description
No(Do) Aggregated numerator (denominator) data at point O

ni(di) Numerator(denominator) data item at ith source

Ni(Di) Numerator (Denominator) value thresh. at ith source

Du
i (Dl

i) Upper (lower) threshold for ratio algorithm
g Value of global ratio

INi Value of numerator intercept at ith data source
TNi Value of intercept threshold
fi0 Current value of fraction difference

they are different from a realization point of view, leading to
different network overheads. Table 1 defines symbols used
to describe these algorithms.

3.1 Value Algorithm
For any given point O below the black continuous line

in Figure 3, we can have source conditions in the form of
thresholds over nis and dis such that their aggregated values
are below and to the right of O (i.e., in the shaded region).
Thus, satisfaction of Equation 1 can be guaranteed if we can
select any O(No, Do) such that: (a) N is less than or equal
to numerator threshold, No; (b) D is greater than or equal
to denominator threshold, Do; and (c) ratio No/Do equals
the client threshold, i.e.,

|S|∑
i=1

ni ≤ No;
|S|∑
i=1

di ≥ Do and
No
Do

= µ (3)

We can ensure zero false negatives by assigning a source con-
dition of the form (ni ≤ Ni)∧ (di ≥ Di) to each data source

such that
∑|S|
i=1Di = Do and

∑|S|
i=1Ni = µDo. We need to

find suitable values of Nis and Dis in such a way that the
number of push messages can be minimized. For start time
aggregation(STA), since both numerator and denominator
are non-decreasing, we set Dis as the current denominator
values (say, di0) for all the sources. That gives values of
Do(=

∑
Di) and No(= µDo). We divide No among indi-

vidual data sources in proportion to the rate of change of
numerator values so that all the source conditions are likely
to be violated at the same time. For window based aggrega-
tion (WBA), we assign Di to be λdi0 for 0 ≤ λ ≤ 1. Then
we use the method outlined above to assign conditions of
the form (ni ≤ Ni) ∧ (di ≥ Di) to individual data sources.
Reader is referred to [10] for further details of this algorithm.

568

Since the client is interested in the ratio of numerator and
denominator data items, rather than their individual val-
ues, next we consider an algorithm which sets a threshold
on their ratios.

3.2 Ratio Algorithm
For the global ratio to be greater than µ, at least one of

the local ratios (ni/di) has to be greater than µ. Thus, the
source condition at source Si can be:

ni
di
≤ µ (4)

It is easy to see that ni/di ≤ µ is a sufficient condition
for ensuring zero false negatives. This solution is simple to
understand and implement (with no parameter setting) but
it has a drawback. For instance, in Example1 if one store
is selling lots of electronics items and very few other items,
that store will push lots of messages to the data aggregator.
Next we show that if we permit the ratio thresholds for a few
data sources to be more than the client threshold µ these
push messages can be avoided.

3.3 Modified Ratio Algorithm
It should be noted that if a data source has a ratio thresh-

old greater than µ, we cannot always guarantee zero false
negatives (as the data values at any source may not cross
their thresholds when the global ratio crosses µ). Let us
illustrate that with the help of an example with two data
sources S0 and S1. We can assign a threshold µ1 > µ to
the source S1 only if the ratio at the other source µ0 < µ.
It is easy to see that if we assign threshold µ1 (> µ) to the
source S1, we can ensure zero false negatives only till its de-
nominator value d1 is less than or equal to some threshold
Du

1 (depending on data values at the other source). Thus
the local source conditions for the sources S0 and S1 can be
written as:

S1 : (
n1

d1
≤ µ1) ∧ (d1 ≤ Du

1)

S0 : (
n0

d0
≤ µ0) ∧ (d0 ≥ Dl

0) (5)

where Du
1 (Dl

0) is the upper (lower) bound on denominator
value of the source S1(S0). Thus, in general, for ensuring
zero false negatives, data sources need to have source con-
ditions involving ratio thresholds (µi) and value thresholds
(Du

i or Dl
i). Thus,∑

ni∑
di
≤
∑
µidi∑
di
≤
∑
i∈GH

µiD
u
i +

∑
i∈GL

µiD
l
i∑

i∈GH
Du
i +

∑
i∈GL

Dl
i

(6)

where GH and GL represent the set of sources having µi > µ
and µi ≤ µ, respectively. The above equation can be under-
stood by considering the global ratio as the weighted aver-
age of local ratios, and the fact that the weighted average
increases if the weight of the higher local ratios (i ∈ GH)
increases or the weight of the lower local ratios (i ∈ GL)
decreases. Since value of global ratio should be less than µ,
validity for a given set of local ratio thresholds and value
thresholds can be checked using:

ratio bound =

∑
i∈GH

µiD
u
i +

∑
i∈GL

µiD
l
i∑

i∈GH
Du
i +

∑
i∈GL

Dl
i

≤ µ (7)

We use ratio bound = µ to assign value and ratio thresholds
to data sources to minimize the number of push messages.

First, the data aggregator pulls current values of data items
from all the data sources and calculates current local ratios
for individual data sources (ri = ni/di) and the global ratio
(g =

∑
ni/

∑
di). Local ratio thresholds to the data sources

are assigned as µi = ri + α(µ−g)
|S| ; where |S| is the number

of data sources and α is adjustment factor for adjusting the
ratio and value thresholds for data sources. In Equation
7, ratio bound = µ is used to get a relation among value
thresholds as:∑

i∈GH

(µi − µ)Du
i ≤

∑
i∈GL

(µ− µi)Dl
i (8)

For STA, lower value thresholds for the sources in GL can be
the same as the current value of the denominator di0. The
upper value thresholds (for data sources in GH) are assigned
such that (Du

i −di0), for ith source, is proportional to rate of
change of di, i.e., assuming that if dis keep changing as per
their past rate, all source conditions will be violated simul-
taneously. For WBA, we use a similar technique except that
the lower value thresholds for the sources in GL are assigned
as λdi0 (0 ≤ λ ≤ 1). Through experimentation, we found
that performance of this algorithm is a strong function of α
and, as a thumb rule, value of α should be |S|/2. Similarly,
a value of λ between 0.7 and 0.9 is observed to result in good
performance.

In the value and ratio algorithms, multiple conditions
are required to be maintained for each source. To reduce
the number of source conditions, we next consider intercept
based approaches.

3.4 Intercept Algorithms
As shown in Figure 3, any point O(No, Do) below the

black arrow (µ line) can be represented with the help of
numerator intercept (IN) or denominator intercept (ID) as
No = µDo + IN and Do = No/µ + ID. As long as IN (ID)
is negative (positive) the data aggregator need not send any
notification to the client. This numerator (denominator)
intercept can be divided among data sources to get source
conditions of the form ni ≤ µdi+TNi (or, di ≤ ni/µ+TDi);
where TNi (TDi) is the threshold over numerator (denom-
inator) intercept for the ith source. To understand the
formulation of intercept algorithms, we rearrange Equation
1 to get:

|S|∑
i=1

(ni − µdi) ≤ 0⇒
|S|∑
i=1

INi ≤ 0 (9)

Thus, the condition given by Equation 1 can be converted
into a set of local thresholds (TNis) over the numerator inter-
cept (INis) at individual data sources (similar formulation
is possible for the denominator intercept also). To ensure
zero false negatives, sum of these local thresholds should be
0 or less. Using the objectives outlined in Section 1.5, we
present various methods to assign these thresholds.

3.4.1 Threshold depending on rate of change of in-
tercept

In this algorithm the value of the threshold for the ith

source depends on current rate of change of INi. Specifi-
cally, the difference between the threshold TNi for a partic-
ular source minus its current value of INi, denoted by INi0,

569

should be proportional to the rate of change of INi, denoted
by γi, i.e.,

(TNi − INi0) ∝ γi
The proportionality constant, a positive value kr, should
be obtained to ensure zero false negatives. The value of
kr can be determined by setting the sum total of thresh-
olds for all the sources, as given by Equation 9, to be less
than or equal to zero. It can be seen that, if we assign
TNi = INi0 + krγi for sources having negative values of γi,
threshold value will be less than INi0 which is not accept-
able (source condition gets violated immediately after new
threshold assignment). Thus, we use the following modifi-
cations to the approach: For sources having negative value
of γi we keep TNi = INi0/β (0 < β < 1) whereas for sources
having non-negative γi we keep TNi = INi0 +krγi such that
the sum of all thresholds is zero.

3.4.2 Thresholds in proportion to fraction difference
In this algorithm we use the following intuition to assign

thresholds: value of TNi should be more for a source which
is contributing more to the total numerator value (N) and
it should be less for a source contributing more to the total
denominator value (D). Using this intuition TNis should be
assigned in proportion to the fraction a source is contribut-
ing to N minus the fraction a source is contributing to D,
i.e.,

INi ≤ TNi = kffi0 = kf (
ni0∑
j nj0

− di0∑
j dj0

) (10)

where fio is the fraction difference for the ith source at the
last pulling instance. This equation ensures that the sum of
thresholds will be zero irrespective of the value of the pro-
portionality constant kf , thus ensuring zero false negatives.
It should be noted that the value of kf should be positive.
At any pulling instance, since data aggregator knows the
current values of data items, it can ensure that conditions
specified by Equation 10 are satisfied for the current data
values for all the sources, i.e.,

INi0 ≤ kf (
ni0∑
j nj0

− di0∑
j dj0

) (11)

In Equation 11 the only unknown quantity is kf . We present
an algorithm to get value of kf such that Equation 11 is
satisfied for every data source, using the following theorems.
First we prove that one can derive upper and lower bounds
on kf using Equation 11, and then give method to calculate
kf using these bounds.

Theorem 1. There exists a finite upper bound (kfupper)
on kf .

Proof. As
∑
fi0 = 0, there has to be some sources hav-

ing positive values of fi0 while some having negative values
of fi0 (or, all fi0s are zero, which implies all the sources
have the same ratio, i.e., value of kf does not matter). If
fi0 < 0, then it can be proved that either INi0 < 0 or global
ratio ≥ µ. As we are assuming that the client condition is
not violated, fi0 < 0 ⇒ INi0 < 0. For each source with
fi0 < 0 and INi0 < 0 Equation 11 can be used to get upper
bounds on kf (as kf ≤ |INi0|/|fi0|). We use minimum of
these, denoted by kfupper, as the upper bound on kf .

Theorem 2. There exists a finite lower bound (kflower)
on kf .

Proof. We have already proven the existence of sources
having fi0 > 0. If none of the sources have INi0 > 0, we will
have all sources having their local ratios less than µ. Hence,
for a non-trivial case, we will have at least one source having
positive INi0. We get the lower bounds on kf (as INi0/fi0)
for each of such sources. Maximum of those, denoted by
kflower, is the lower bound on kf .

Theorem 3. kfupper ≥ kflower.

Proof. We calculate kfupper as minimum value of |INi0|
|fi0|

over all sources having fi0 < 0 (i.e., nio
dio

<
∑

j nj0∑
j dj0

≤ µ).

Using which we can show that kfupper ≥ µ
∑
di0. Similarly

one can show kflower ≤
∑
ni0. Since the client condition

has not violated, kfupper ≥ kflower.

There may be cases where fi0 is positive and INi0 is nega-
tive, but those cases will not be deciding kfupper or kflower
(as these will lead to very low lower bounds and no upper
bounds). Any value of kf between kfupper and kflower will
satisfy Equation 11 for all the sources, but we need to select
a value such that the number of push messages can be min-
imized. We use bound parameter θ to select the appropriate
value of kf such that:

kf = θkfupper + (1− θ)kflower (12)

θ can be between 0 and 1. In the next section, we examine
the number of push messages for various values of θ to decide
the most appropriate values for different categories of RTQs.

3.4.3 Time varying thresholds
From Equation 9 it is clear that we can assign any value

of threshold to the intercepts at individual data sources as
long as their sum is zero. At individual sources if we assign
threshold values such that they are always slightly higher
than their corresponding intercept values, the number of
push messages can be minimized. Since the data aggrega-
tor refreshes values of data items only when it pulls them,
using these values the aggregator should assign thresholds
as a function of time so that the data sources can calculate
the threshold values themselves. In general we can extend
Equation 10 to assign thresholds as polynomial of time τ :

INi ≤ kffi0 +
∑
l

Cilτ
l (13)

where the threshold value is a lth order polynomial of time
τ such that

∑
i Cil = 0 for all values of l (to ensure that

the sum of thresholds is zero all the time). Specifically, we
can use methods proposed in the previous section to assign
the fixed part of threshold and use trends in historical data
values to assign the time varying part of the threshold. In
the next section, we use a first order polynomial to assign
intercept thresholds for measuring performance of this algo-
rithm.

3.5 Geometric Algorithm
Besides the algorithms proposed in this section, we also

implemented the coordinator based solution proposed in [12],
specifically for RTQs. In this algorithm, each source creates
a vector of real numbers {ni, di}. The current values of these
vectors are used to create a global statistics vector, {N,D},
defined as the sum of vectors from the individual nodes.
Except when all the data items are pulled from the sources,

570

the value of the global statistics vector is not known at any
of the nodes (including DA). Global estimate vector is the
estimate of the global statistics vector based on last known
values of {ni, di}. Individual data sources calculate the dif-
ference between the current values of {ni, di} and the values
sent to the aggregator at the last pull (or push) instance.
This difference vector is added to the global estimate vector
to calculate a drift vector at each data source independently.
It should be noted that as long as the global estimate vec-
tor and the global statistics vector are on the same side of
the global threshold, the estimate vector can be used to an-
swer the ratio threshold query. In [12], the global statistics
vector is represented as the convex hull of the drift vectors.
Further, the authors showed that the data region covering
the convex hull of drift vectors can be represented as a sub-
set of the union of regions covered by balls formed using
the global estimate vector and the individual drift vectors.
A ball formed using two vectors ~u and ~v has its center at
(~u + ~v)/2 with radius (~u − ~v). An individual data source
need not send any notification to the aggregator as long as
the ratio of numerator and denominator data items calcu-
lated at each point of the ball is below the global threshold.
In our implementation we get equation of the ball and get
the maximum ratio that any point in the ball may have. If
this ratio is above the global threshold, notification is sent
to the aggregator.

3.6 Summary
To summarize, we have developed a number of algorithms

to assign source conditions at individual data sources:

1. Value algorithm (Val) is described in Section 3.1.

2. The ratio threshold algorithm, given in Section 3.2,
is not expected to perform well in most of the cases;
hence, instead, the modified ratio threshold algorithm
(Rat) described in Section 3.3 is considered for perfor-
mance evaluation.

3. InterceptR has thresholds depending on the Rate of
change of the intercept, as given in Section 3.4.1.

4. InterceptF calculates thresholds that are dependent on
F raction difference, as described in Section 3.4.2.

5. Intercept algorithm with T ime varying threshold In-
terceptT, is given in Section 3.4.3.

6. Drift algorithm is the solution proposed in [12] as ex-
plained in Section 3.5.

In the next section we compare the performance of these
algorithms.

4. PERFORMANCE OF ALGORITHMS
For comparing the performance of various algorithms to

assign source conditions at data sources, we use synthetic as
well as real data.
Synthetic data: The synthetic data is generated to mimic
the scenario described in Example1. Table 2 gives default
values for data characteristics and RTQ parameters. By de-
fault, we assume that there are 10 sources whose data are be-
ing aggregated at an aggregator. For each source we consider
10000 update instances. For the ith source (1 ≤ i ≤ 10) we
simulated a total of i sales per update instance, out of which

Table 2: Parameters for performance evaluation

Parameter Name
Nominal

Range
Value

Number of data sources 10 10-50
µ (ratio threshold) 0.25 0.15-0.25
Number of sales per unit time 5 1-20
Electronic sales per unit time 1 1
Mean dollar value per sale 1 1
Std. dev. of dollar value/sale (σ) 1 0.1-3
Trace length 10000 10K-1M
θ (bound parameter) 0.5 0-1
α (adjustment factor) 4 1-10
λ (Section 3.1) 0.9 0.7-1
β (Section 3.4.1) 0.9 0.7-1
ε (Section 5) 0.05 0.03-0.1

1 sale is for electronics items. Dollar value for each individ-
ual sale is modeled using log-normal distribution [5] with
a known mean (=1) and standard deviation (0 ≤ σ ≤ 3).
Thus, mean local ratio at the ith source is 1/i. In these
settings, default client threshold was kept at 0.25 (so there
will not be any client threshold violation for σ = 0).
Real-world backscatter data: We used CAIDA Backscat-
ter 2004-2005 packet dataset [11] to simulate the scenario
outlined in Example2. Such data is generated as side effects
of spoofed denial of service (DOS) attacks. In this kind of
attack the attacker forges the source address in IP pack-
ets sent to the host whose denial is attempted. The victim
responds with normal packets. These response packets are
known as backscatter. The backscatter data consists of traf-
fic logs having time stamp, packet type, source IP address,
destination IP address, and port numbers of the response
packets.

We start with comparing performance of various algo-
rithms, using synthetic data, for STA-UBT with varying
data standard deviation. Real backscatter data is used to
compare performance of WBA-UBT and corroborate the re-
sults obtained using synthetic data in Section 4.2. In both
of these experiments InterceptF is proven to outperform all
other algorithms. Effect of time varying threshold is pre-
sented in Section 4.3. In this experiment fixed part of the
threshold is obtained using InterceptF whereas first order
polynomial is used for the time-varying part as explained in
Section 3.4.3. Next we measure performance of InterceptF
for various categories of RTQs while varying value of the
bound parameter θ to show that different values of θ are
required in different categories for optimal performance.

We perform each of the experiments 10 times and report
the average results.

4.1 Performance of STA-UBT
In the first set of experiments, we consider STA-UBT

queries and compare the performance of Val, Rat, Inter-
ceptR, InterceptF, and Drift. Figure 4 shows that the num-
ber of push messages increases with increasing σ for all the
algorithms. It should be noted that out of 10 sources 3
sources (i = 1, 2, 3) have their mean ratios (=1/1, 1/2, 1/3)
above the ratio threshold (= 0.25). Thus if all the sources are
assigned a local ratio threshold same as the client’s thresh-
old (Section 3.2) that is likely to result in more than 30000

571

0 0.5 1 1.5 2 2.5 3
10

1

10
2

10
3

Standard deviation of dollar value per transaction

N
um

be
r

of
 p

us
h

m
es

sa
ge

s

Comparison of algorithms with varying standard deviation

Val
Rat
InterceptR
InterceptF
Drift

Figure 4: Performance comparison for STA-UBT

(=3*10000) pushes. In comparison, the corresponding num-
bers for Rat and InterceptF are 89 and 32 respectively for
σ = 1. The ratio threshold algorithm (Rat) performs well
for very low values of standard deviation (with α between
4 and 6) whereas InterceptF gives good performance for all
the values of σ. Surprisingly InterceptR performs very badly
for larger values of σ. The poor performance is because of
dependence between values of β and kr. If β is higher (say,
0.9), sources whose intercept value is reducing (i.e., γi ≤ 0)
have threshold values close to the current value of the inter-
cept and, with the higher standard deviation, these thresh-
old values are violated very frequently. For lower values of
β (say, 0.7), sources with positive values of γi cause a large
number of pushes. The poor performance of Drift [12] can
be explained by the fact that in Drift a source pushes a mes-
sage if the absolute difference between expected data values
and local data values crosses a threshold even if its local val-
ues are causing it to move away from the client threshold.

4.2 Performance of WBA-UBT
We use the backscatter data to measure the performance

of our algorithms for WBA-UBT. To counter a denial of ser-
vice attack, in the congestion based method [6], a specific
destination P is “marked” if the fraction of packets coming
to that address is above a specified threshold. We divided
the traces collected from [11] to simulate packets incident
on different routers. Each router maintains counts of total
number of packets incident on it as well as the number of
packets with destination address P . We assume that differ-
ent routers are getting packets at different speeds. Specifi-
cally, we assumed that ith router is receiving 50 ∗ i packets
per second for 1 ≤ i ≤ 10. The network trace had more
than 16 million packets enabling us to simulate 100 minutes.
Client notification is generated if the fraction of packets, in
a window of 1 minute, with IP addresses 61.0.0.0 (with sub-
net mask 255.0.0.0) crosses a specified threshold. Figure 5
shows the number of push messages for various algorithms.
It can be seen that InterceptF performs best for WBA-UBT
corroborating results obtained using synthetic traces.

4.3 Effect of Time Varying Thresholds
In section 3.4.3 we explained that the number of push

messages can, probably, be reduced by having time varying
thresholds. In this sub-section we use the synthetic data

1 1.2 1.4 1.6 1.8 2
10

0

10
1

10
2

10
3

10
4

Ratio Threshold %

N
um

be
r

of
 p

us
h

m
es

sa
ge

s

Comparison of algorithms for network data

Val
Rat
InterceptR
InterceptF
Drift

Figure 5: Performance of WBA-UBT with real
traces

0.5 1 1.5 2 2.5 3
10

1

10
2

Standard deviation of dollar value per transaction

N
um

be
r

of
 p

us
h

m
es

sa
ge

s

Comparison of algorithms with varying standard deviation

InterceptF−STA
InterceptT−STA
InterceptF−WBA
InterceptT−WBA

Figure 6: Effects of time varying threshold

to investigate the effect of time varying thresholds by com-
paring InterceptF with InterceptT. For these experiments
threshold at ith source, as given by Equation 13, has a fixed
part and a time varying part Ciτ where τ designates time
elapsed since the latest threshold assignment to the source
by the aggregator (we are considering 1st order polynomial).
Values of Cis are proportional to the change rates of the nu-
merator intercept. Figure 6 shows that for STA InterceptT
performs better than InterceptF for lower values of σ but
worse as value of σ is increased. This happens because with
increasing value of σ it becomes difficult to capture the trend
in the values of the numerator intercept with time. Similarly,
as there is no trend in the data values for WBA (window
size=100), InterceptT performs poorly. Thus, if it is possi-
ble to get trends for data item values, using InterceptT is
beneficial.

4.4 Performance of InterceptF with Different Pa-
rameter Settings

Now we present the performance of the InterceptF algo-
rithm for various RTQ categories (Section 1.3) which will
illustrate the need for different parameter values for the in-
tercept algorithms in different scenarios. Figure 7 shows
the performance of different categories of RTQs for various
values of the bound parameter θ while keeping σ = 1: (a)
STA-UBT with µ=0.25; (b) WBA-UBT with µ=0.25 and

572

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

Value of bound parameter

N
um

be
r

of
 p

us
h

m
es

sa
ge

s

Comparison of InterceptF for various scenarios (stddev=1.0)

STA−UBT
WBA−UBT
STA−LBT
WBA−LBT

Figure 7: Performance of InterceptF with varying θ

aggregation window size=100; (c) STA-LBT with µ=0.15;
and (d) WBA-LBT with µ=0.15 and aggregation window
size=100. It can be seen that for WBA algorithms, as we
increase the value of θ, the number of push messages first
decreases and then increases. Thus for WBA, we should
keep θ in the range of 0.4-0.5 for UBT as well as LBT. In
the case of STA, in general, the number of push messages re-
duces with increasing values of θ. For STA-UBT, minimum
number of push messages were obtained at θ =0.9 whereas
for STA-LBT the corresponding value was 1.0.

Reasons for the need for different values of θ for different
scenarios can be explained as follows: Figure 8 shows typ-
ical numerators and denominator values at two sources P
and Q. As long as the values of (ni, di) at these sources are
below the dashed red and green lines, respectively, there will
not be any push message from these sources. As explained
in Section 3.4.2 for UBT, lower bound for the proportional-
ity constant kf , i.e., kflower, is calculated using data values
from sources having positive values of fraction difference fi0
(like Q) and upper bound kfupper from sources having neg-
ative value of fi0 (like P). In case data sources continue to
behave as they have been behaving in the recent past (i.e.,
maintaining their local ratios approximately equals to the
current ratios), then:

• In the case of WBA, depending on the value of stan-
dard deviation, numerator and denominator values at
P and Q are likely to remain around their current val-
ues, thus possibly, within their corresponding red and
green contours. In this case, both P and Q are equally
likely to cross red and green dashed lines respectively.
Thus we should keep the value of kf equi-distant from
kflower and kfupper which is achieved by keeping θ
closer to 0.5.

• In the case of STA, data values at P and Q are likely to
follow the corresponding (red and green, respectively)
curved arrows. Thus, it can be seen that intercept at
Q is more likely to cross its threshold than that at P.
To keep the chances of intercept crossing similar for
both the sources, we should have kf closer to kfupper
which is achieved by having θ closer to 1.

• Different values of θ should be used for STA-UBT and
STA-LBT as: In case of UBT (LBT), kflower is ob-
tained from sources having positive (negative) values

d

n

µ

P(nP,dP)

Q(nQ,dQ)

IPIQ

Figure 8: Explaining θ values for different RTQs

of fi0 and kfupper from sources having negative (posi-
tive) values of fi0. We simulated the data at ith source
by aggregating dollar values of i sales for denominator
and 1 sale for numerator. Thus, with a fixed value
of mean and standard deviation of dollar value per
transaction, denominator values of sources having pos-
itive fi will have larger standard deviation compared to
sources with negative fi. Thus, for STA-UBT value of
θ should be lesser (i.e., away from sources having more
standard deviation) compared to that for STA-LBT.
This explains why for STA-UBT we get best results
for θ=0.9 whereas for STA-LBT we get best results
for θ=1. Summarizing, in practice, θ=0.5 should be
used for WBA whereas θ should be between 0.8-1 for
STA depending on standard deviations of the dynamic
data.

4.5 Summary of Performance Results
In this section we measured the number of push messages

for various algorithms. We performed several other exper-
iments details of which are not included for lack of space.
We compared performance of various algorithms when stan-
dard deviation of the data changes with time. We found that
Drift and InterceptF cope very well with changing data char-
acteristics whereas Val and Rat have poor performances.
Specifically, compared to the case of a constant standard
deviation, in case of time varying standard deviation (we
changed σ once at 5000th update instance), performance of
InterceptF worsens only by 10% compared to more than
50% for Val. To assess the scalability of our algorithms we
measured the overhead at the aggregator for processing mes-
sages. Even for a scenario involving 10000 sources, 100000
updates per source, the total processing overhead at the ag-
gregator was less than 1 millisecond. The total processing
time at the aggregator included the time to read the data
from all the sources, updating local conditions for them, and
pushing the updated local conditions. This shows that our
algorithms can work with a large number of data sources.
To summarize, except for very low values of standard devi-
ation, where Rat and InterceptT perform better, InterceptF
performs best in almost all the cases.

5. SATISFYING CORRECTNESS WITHOUT
PULLING FROM ALL SOURCES

573

In the previous section, we assumed that when the data
aggregator receives a push message from any of the sources,
it pulls data from all the sources to know whether the client
needs to be notified and, if that is not the case, assign new
source conditions to avoid unnecessary push messages. Can
the data aggregator recognize that C is not violated with-
out pulling data from all the sources? Can it assign new
Cis without knowing data values at all the sources? In this
section, we answer these questions with the goal of devising
selective pulling techniques to reduce cost of handling each
source condition violation which can significantly reduce the
total number of messages, especially in cases when the num-
ber of data sources is large. We use InterceptF to illustrate
our approach.

5.1 Adjusting Thresholds without Pulling from
all the Sources

If any source S1 sends a message to the aggregator, the
data aggregator can know that it need not send notifica-
tion to the client if the value of numerator intercept of S1

can be brought within the threshold by assigning additional
threshold to it. But, for getting the additional threshold, the
aggregator needs to select one or more sources whose thresh-
olds can be reduced without violating their own source con-
ditions. It arranges sources in a priority order such that it
is highly likely that the thresholds of higher priority sources
can be reduced without violating their own source condi-
tions. Various methods for assigning priorities are discussed
in the next section. We employ the following scheme to as-
sign modified thresholds to the data sources: For a notifying
source S1, we pull data from the source with highest priority
(say, S2) among the remaining sources. If the sum of the
numerator intercepts of the notifying and the pulled sources
is less than the sum of their thresholds, without pulling data
from other sources, we know that the notification need not
be sent to the client. Otherwise, we need to pull data from
more sources. Specifically, we continue pulling data from
highest priority sources among the remaining sources till
(IN1 + IN2) is less than (1− ε)(TN1 + TN2). A small value
of ε (0 ≤ ε ≤ 1) is used so that the values of individual
thresholds are strictly more than the corresponding values
of the intercepts. Using experiments we set ε = 0.05. The
data aggregator assigns modified thresholds to numerator
intercepts of the notifying and the pulled sources using the
method outlined in Section 3.4.2 (using fi0 values of the
data sources involved).

If there are large number of data sources, pulling data
from sources one-at-a-time may lead to high latency. Thus,
while designing a selective pulling algorithm we may have
to make a compromise between reducing the number of
pull messages and reducing latency to determine whether
a source notification should imply notification to the client.
For example, we can selectively pull from a chosen subset of
data sources rather than pulling from one source at a time.
Algorithm described above can be easily extended to achieve
this.

5.2 Deciding Pull Order
In this section we present two methods to assign priorities

for pulling.

5.2.1 Random

In this scheme, the data aggregator randomly (by default,
using uniform distribution) selects any of the sources, which
have not notified their violation, for selective pulling. This
scheme is based on the assumption that all the sources are
equally likely to send push messages, hence, they are also
equally likely to be useful for identifying whether the client
condition is indeed violated.

5.2.2 Threshold based
If we assume that data sources (approximately) maintain

their past ratios in the future, we can assign pulling priorities
to sources in reverse order of threshold values, i.e., sources
with lowest threshold values are pulled from first. However,
this scheme suffers from a drawback: as data from a source
(say S2 of Section 5.1) is pulled, its threshold value is de-
creased (to increase threshold of S1), thus, the next time a
pull is required, S2 is more likely to be pulled again. We need
to correct this because when data from a source is pulled, its
effectiveness to help in avoiding further pulls reduces. Once
data is pulled from a source, to lower its priority of pulling,
we propose a dynamic pull priority scheme. Specifically, af-
ter data is pulled from all the sources, we assign priorities to
the sources as per their threshold values (lower the thresh-
old higher the chances of pulling). We maintain a variable
sfi for each data source Si as exponential average of the
ratio of the number of data sources pushing at any particu-
lar instance divided by the number of sources (including Si)
whose data is pulled. A new value of sfi is calculated when-
ever data is pulled from Si. Then priorities are assigned in
inverse order of pfactor defined as:

pfactori =

{
TNi × sfi TNi ≥ 0
TNi/sfi otherwise

(14)

This ensures that the source with higher value sfi is less
likely to be selected for pulling.

Although we presented the selective pulling techniques for
InterceptF algorithm similar techniques can be developed for
other algorithms as well. For example, in the Rat algorithm
value thresholds are assigned using Equation 8 and, pull
priorities to the sources can be assigned based on their (µ−
µi)di0 values.

5.3 Performance of Selective Pulling
Figure 9 shows the number of pulls for various values of

σ with number of sources |S| = 10 & 20. Using selective
pulling the number of pulls can be reduced by more than
half. For |S|=20 and σ=2, selective pulling reduces the
number of pulls from 600 to 276. Even random selection
of data sources for selective pulling reduces the number of
pulls by 40%. In comparison, selective pulling that uses the
threshold based priority assignment requires lesser number
of pulls as it selects a source more likely to reduce its thresh-
old without incuring any of its own violations. It should
be noted that we first found an efficient algorithm to mini-
mize the number of push messages and then used selective
pulling to minimize the number of pull messages. We believe
that it is unlikely for an algorithm having higher number of
push messages to incur lower pulling cost compared to Inter-
ceptF ; as we saw in Section 4, InterceptF outperforms other
algorithms comfortably. We verified these observations by
designing selective pulling algorithm for the Rat algorithm
and found its number of pulls (with selective pulling) much
higher compared to InterceptF.

574

0 0.5 1 1.5 2 2.5 3

100

200

300

400

500

600

700

800

Standard deviation of dollar value per transaction

N
um

be
r

of
 p

ul
ls

 w
ith

/w
ith

ou
t s

el
ec

tiv
e

pu
lli

ng

Selective pulling for InterceptF with varying standard deviation

pull from all sources, #sources=10
random selective pulling, #sources=10
thresh. based priority, #sources=10
pull from all sources, #sources=20
random selective pulling, #sources=20
thresh. based priority, #sources=20

Figure 9: Comparison of InterceptF with and with-
out selective pulling

6. MINIMIZING OTHER COST MEASURES
There are scenarios where different sources have different

costs associated with pushing and pulling the data. The
different costs may be due to different delays in getting the
messages, load on the sources, etc. In such cases, instead
of minimizing the number of pushes and pulls, our goal
should be to minimize total cost of refreshing the data in
a certain time interval. We assume that cost of each push
and pull from data sources are specified in terms of scalar
numbers, pushcosti and pullcosti, respectively, i.e., the ag-
gregator knows the cost metric corresponding to each data
source.

6.1 Reducing Push and Pull Costs
To reduce the communication cost, we use the following

methods:

1. Reducing push cost: In various algorithms presented
in Section 3, we can assign tighter thresholds to the
sources having lower cost while giving the extra slack
to the sources having higher cost. This ensures that
higher cost sources push fewer messages. Specifically
we use the following algorithm to assign the local thresh-
olds for InterceptF : first we assign the threshold as per
the method outlined in Section 3.4.2. For each data
source calculate slack li defined as the difference be-
tween its threshold and its current value of numerator
intercept, i.e., li = TNi − INi0. For sources having
less than average pushcosts (denoted by pushavg), we
reduce its slack in proportion to pushcosti/pushavg.
The additional slack is assigned to other sources in
proportion to their pushcosti values.

2. Reducing pulling cost: While deciding on selec-
tive pulls, the aggregator gives higher priority to the
sources having lower pullcosti. We implement this by
dividing the priority obtained by the method outlined
in the previous section by pullcosti

6.2 Performance of Cost Reduction Techniques
We calculate the total cost for five different optimization

scenarios of the InterceptF algorithm:

1. Minimizing number of pushes using InterceptF with-
out selective pulling (minPushNum).

Table 3: Total push and pull costs
Algo \ cost Push Cost Pull Cost
minPushNum 35.2 190.4
minPullNum 45.4 125.7
minPullCost 47.4 108.4
minPushCost 32.0 206.0
minPushPullCost 44.1 107.4

2. Minimizing number of pulls using selective pulling (min-
PullNum).

3. Minimizing pull cost using pullcosti values without
any push cost reduction (minPullCost).

4. Minimizing push cost using pushcosti values without
any pull cost reduction (minPushCost).

5. Minimizing pull cost and reducing push cost using pullcosti
and pushcosti values, respectively (minPushPullCost).

In this experiment push and pull costs for different sources
are: pushcost= {1.25, 1.25, 1.25, 1.25, 1.25, 0.75, 0.75, 0.75,
0.75, 0.75} and pullcost= {1.25, 1.25, 1.25, 1.25, 1.25, 0.75,
0.75, 0.75, 0.75, 0.75}. These experiments are done with 10
data sources and σ = 2 with 10 different random data gen-
eration keys. The minPushNum and minPullNum scenarios
are implemented by assuming equal costs of messages for all
sources. Selective pulling is used in minPullNum, minPull-
Cost, and minPushPullCost. Table 3 shows that we can re-
duce the cost of pushing and/or pulling using methods given
in Section 6.1. Using minPushCost we reduce the push cost
from 35.2 to 32 compared to minPushNum. Similarly, com-
pared to selective pulling (minPullNum), cost based pulling
reduces cost by more than 10%. But if we try to reduce
the pull cost then the push cost is more than that in the
minPushCost case. Total cost of communication can be cal-
culated by adding push cost and pull cost.

7. HANDLING MULTIPLE RTQs
Till now we have implicitly assumed that the execution

of an RTQ does not have an impact on other queries. But
if there are multiple RTQs, with overlapping data items,
executing at an aggregator then the aggregator can use the
data values pulled for one query to benefit the other queries.
We present two schemes for this type of sharing.

Sharing messages: In this scheme, push and pull mes-
sages are shared across queries. First, we independently get
local conditions for each RTQ. If any local condition is vio-
lated, the corresponding data source sends values of the data
items along with the notification. The notification causes
the aggregator to pull from other sources which contribute
data items to that particular query. These data values are
used by the data aggregator to reassign local conditions not
only for that particular query but also for the other queries
that use data from the same data sources. We use the al-
gorithm described in Section 5.1 to adjust local conditions
for these other queries. It should be noted that we cannot
apply that algorithm unless we get data values from at least
two data sources for a query, hence, this sharing message
technique can be used only when queries have two or more
data sources in common.

We conducted experiment with two RTQs having 10 data
sources each, 5 of which are overlapping. Data traces are

575

generated using the technique described in Section 4. Global
thresholds for the two queries are 0.25 and 0.28, respectively.
If these queries are executed independently they require, on
average, 18.9 and 13.4 notifications (push messages), respec-
tively. But if we use the sharing messages technique, the
total number of notifications is 25.1. Clearly, sharing helps
in reducing the number of messages. There is an alternative
technique involving sharing of local condition across RTQs.
Due to space constraints we only provide an overview of this
technique below.

Sharing local conditions: In this scheme, we not only
share the messages to assign local conditions, we also assign
a single local condition considering a number of queries.

• First, we get local conditions independently for each
of the queries.

• Next we “merge” the local conditions involving the
same set of numerator and denominator data items.
For each local condition, we find the difference between
the intercept threshold and the current value of the
intercept. The local condition corresponding to the
minimum of these differences is chosen as the local
condition for that source. This tightest local condition
is used for all the queries involving the same set of data
items at that source.

• We again assign local conditions for all the queries, for
the remaining sources, knowing the local conditions for
the sources for which we have already assigned condi-
tions.

• Whenever a particular local condition is violated we
need to consider all the queries which may be affected
by that violation. To know whether global condition of
any of these queries is indeed violated, we need to pull
at least one more data item for each of these queries.
We can either pull all the common data items or se-
lectively pull data items to know whether the global
threshold is indeed violated.

There are various issues while designing this technique such
as the order of considering data sources for local condition
assignment, the order in which queries should be selected
for data pulls, etc. We plan to investigate these issues as
part of our future work.

8. CONCLUSION AND FUTURE WORK
In this paper we introduced ratio threshold queries in a

distributed data sources setting. We motivated the problem
using a number of practical examples. These ratio thresh-
old queries are answered by a data aggregator which divides
the client’s threshold condition into conditions for individual
data sources such that there are no false negatives and the
number of message exchanges between data sources and the
aggregator is minimized. We developed efficient algorithms
to get the conditions for individual data sources. In gen-
eral, we found that InterceptF algorithm gives better per-
formance compared to other algorithms. We also presented
various schemes for selectively pulling data from sources to
efficiently identify whether notifying the client is warranted.
Such schemes reduce the number of pulls by more than half.
We have also done preliminary studies on non-linear RTQs
involving non-linear aggregations and/or threshold being a

function of dynamic data items [10]. Identifying compelling
use cases for such non-linear aggregations and developing
scenario specific efficient algorithms is our future research
direction.

9. REFERENCES
[1] B. Babcock and C. Olston. Distributed top-k

monitoring. In SIGMOD ’03: Proceedings of
international conference on Management of data,
pages 28–39, 2003.

[2] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu.
Filtering data streams for entity-based continuous
queries. In IEEE Transactions on Knowledge and
Data Engineering, pages 234–248, 2010.

[3] R. Gupta, A. Puri, and K. Ramamritham. Executing
incoherency bounded continuous queries at web data
aggregators. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, Chiba,
Japan, 2005.

[4] R. Gupta and K. Ramamritham. Optimized query
planning of continuous aggregation queries in dynamic
data dissemination networks. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 321–330, Banff, Alberta,
Canada, 2007.

[5] Investopedia. http://www.investopedia.com/terms/
l/log-normal-distribution.asp.

[6] J. Ioannidis and S. M. Bellovin. Implementing
pushback: Router based defense against DDOS
attacks. Network and Distributed System Security
Symposium, 2002.

[7] A. Jain, J. M. Hellerstein, S. Ratnasamy, and
D. Wetherall. A wakeup call for internet monitoring
systems: The case for distributed triggers. In
SIGCOMM workshop on Hot Topics in Networks
(HotNets III), 2004.

[8] R. Keralapura, G. Cormode, and J. Ramamritham.
Communication efficient distributed monitoring of
threshold counts. In SIGMOD ’06: Proceedings of
international conference on Management of data,
2006.

[9] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data streams.
In SIGMOD ’03: Proceedings of international
conference on Management of data, San Diego, 2003.

[10] Technical report: Executing ratio threshold queries
over distributed data sources. http:
//www.cse.iitb.ac.in/~krithi/papers/rtq.pdf.

[11] C. Shannon, D. Moore, E. Aben, and kc claffy. The
caida backscatter-2004-2005 dataset - may 2004 -
november 2005. http://www.caida.org/data/
passive/backscatter_2004_2005_dataset.x.

[12] I. Sharfman, A. Schuster, and D. Keren. A geometric
approach to monitoring threshold functions over
distributed data streams. ACM Transactions of
Database Systems, 32(4):23, 2007.

[13] S. Zhu and C. V. Ravishankar. Stochastic consistency,
and scalable pull-based caching for erratic data stream
sources. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases,
2004.

576

