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ABSTRACT
The use of flash-based solid state drives (SSDs) in storage
systems is growing. Adding SSDs to a storage system not
only raises the question of how to manage the SSDs, but
also raises the question of whether current buffer pool algo-
rithms will still work effectively. We are interested in the
use of hybrid storage systems, consisting of SSDs and hard
disk drives (HDDs), for database management. We present
cost-aware replacement algorithms, which are aware of the
difference in performance between SSDs and HDDs, for both
the DBMS buffer pool and the SSDs. In hybrid storage sys-
tems, the physical access pattern to the SSDs depends on the
management of the DBMS buffer pool. We studied the im-
pact of buffer pool caching policies on SSD access patterns.
Based on these studies, we designed a cost-adjusted caching
policy to effectively manage the SSD. We implemented these
algorithms in MySQL’s InnoDB storage engine and used the
TPC-C workload to demonstrate that these cost-aware al-
gorithms outperform previous algorithms.

1. INTRODUCTION
Flash memory has been used for many years in portable

consumer devices (e.g, cameras, phones) where low power
consumption and lack of moving parts are particularly desir-
able features. Flash-based solid state storage devices (SSDs)
are now also becoming commonplace in server environments.
SSDs are more expensive per bit than traditional hard disks
(HDD), but they are much cheaper in terms of cost per
I/O operation. Thus, servers in data centers may be con-
figured with both types of persistent storage. HDDs are
cost effective for bulky, infrequently accessed data, while
SSDs are well-suited to data that are relatively hot [8]. In
this paper, we are concerned with the use of such hybrid
(SSD and HDD) storage systems for database management.
We consider hybrid storage systems in which the two types
of devices are visible to the database management system
(DBMS), so that it can use the information at its disposal
to decide how to make use of the two types of devices. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 8
Copyright 2013 VLDB Endowment 2150-8097/13/06... $ 10.00.

is illustrated in Figure 1. When writing data to storage, the
DBMS chooses which type of device to write it to.
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Figure 1: System Architecture

Previous work has considered how a DBMS should place
data in a hybrid storage system [11, 1, 2, 16, 5]. We provide
a summary of such work in Section 7. In this paper, we
take a broader view of the problem than is used by most
of this work. Our view includes the DBMS buffer pool as
well as the two types of storage devices. We consider two
related problems. The first is determining which data should
be retained in the DBMS buffer pool. The answer to this
question is affected by the presence of hybrid storage because
blocks evicted from the buffer cache to an SSD are much
faster to retrieve later than blocks evicted to the HDD. Thus,
we consider cost-aware buffer management, which can take
this distinction into account. Second, assuming that the
SSD is not large enough to hold the entire database, we
have the problem of deciding which data should be placed on
the SSD. This should depend on the physical access pattern
for the data, which depends, in turn, on both the DBMS
workload and the management of the DBMS buffer pool.

Because we consider both buffer pool management and
management of the hybrid storage system, we have more
scope for optimization than previous work in this area, at
the expense of additional invasiveness in the design and im-
plementation of the DBMS. In addition, we must account
for the fact that the two problems we consider are mutually
dependent. Replacement decisions in the buffer pool depend
on the locations (SSD or HDD) of the pages being replaced,
since location affects both eviction cost and reloading cost.
Conversely, SSD page placement decisions depend on how
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the page is used, e.g., how frequently it is read or written,
which depends in turn on the buffer manager. For exam-
ple, under the GD2L replacement policy we propose here,
moving a page from the HDD to the SSD may result in a
significant increase in the physical read and write rates for
that page, since GD2L tends to evict SSD pages quickly
from the buffer pool.

Our work addresses these dependencies using an anticipa-
tory approach to SSD management. When deciding whether
to move a page into the SSD, our proposed admission and
replacement policy (called CAC) predicts how such a move
will affect the physical I/O load experienced by that page.
The page is moved into the SSD only if it is determined to
be a good candidate under this predicted workload. The
DBMS buffer manager then makes cost-aware replacement
decisions based on the current placements of buffered pages.

In this paper we present the following contributions:

• We present GD2L, a cost-aware algorithm for buffer
pool management in database systems with hybrid stor-
age systems. GD2L takes the usual concerns of DBMS
buffer management (exploiting locality, scan resistance)
into account, but also considers the fact that different
devices in a hybrid storage system perform differently.
GD2L is based on the GreedyDual algorithm [19], but
we have restricted GreedyDual to hybrid systems that
include only two types of devices. In addition, we have
refined GreedyDual for operation in a DBMS environ-
ment.

• We present CAC, an anticipatory cost-based technique
for managing the SSD. Unlike previous techniques,
CAC is intended to work together with a cost-aware
buffer manager like GD2L. It expects that moving a
page into or out of the SSD will change the access
pattern for that page, and it anticipates these changes
when making SSD placement decisions.

• We present an empirical evaluation of GD2L and CAC.
We have implemented both techniques in MySQL’s
InnoDB storage manager. We compare the perfor-
mance of GD2L with that of InnoDB’s native buffer
manager, which is oblivious to the location of pages in
a hybrid storage system. We compare CAC to several
alternatives, including a non-anticipatory cost-based
technique, LRU-2, and MV-FIFO. Our evaluation uses
transactional workloads (TPC-C).

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the system architecture that we
assume. Section 3 presents the GD2L technique for database
buffer pool management, and Section 4 shows empirical re-
sults that illustrate the effect of GD2L on the physical access
patterns of database pages. Section 5 presents the CAC al-
gorithm for managing the contents of the SSD device(s).
The results of our evaluation GD2L and CAC are presented
in Section 6, and Section 7 summarizes related work.

2. SYSTEM OVERVIEW
Figure 1 illustrates the system architecture we have as-

sumed for this work. The DBMS sees two types of storage
devices, SSDs and HDDs. All database pages are stored on
the HDD, where they are laid out according to the DBMS’s
secondary storage layout policies. In addition, copies of

some pages are located in the SSD and copies of some pages
are located in the DBMS buffer pool. Any given page may
have copies in the SSD, in the buffer pool, or both.

When the DBMS needs to read a page, the buffer pool
is consulted first. If the page is cached in the buffer pool,
the DBMS reads the cached copy. If the page is not in the
buffer pool but it is in the SSD, it is read into the buffer pool
from the SSD. The SSD manager is responsible for tracking
which pages are currently located in the SSD. If the page is
in neither the buffer pool nor the SSD, it is read from the
HDD.

If the buffer pool is full when a new page is read in, the
buffer manager must evict a page according to its page re-
placement policy, which we present in Section 3. When the
buffer manager evicts a page, the evicted page is considered
for admission to the SSD if it is not already located there.
SSD admission decisions are made by the SSD manager ac-
cording to its SSD admission policy. If admitted, the evicted
page is written to the SSD. If the SSD is full, the SSD man-
ager must also choose a page to be evicted from the SSD
to make room for the newly admitted page. SSD eviction
decisions are made according to an SSD replacement policy.
(The SSD admission and replacement policies are presented
in Section 5.) If a page evicted from the SSD is more recent
than the version of that page on the HDD, then the SSD
manager must copy the page from the SSD to the HDD be-
fore evicting it, otherwise the most recent persistent version
of the page will be lost. The SSD manager does this by
reading the evicted page from the SSD into a staging buffer
in memory, and then writing it to the HDD.

We assume that the DBMS buffer manager implements
asynchronous page cleaning, which is widely used to hide
write latencies from DBMS applications. When the buffer
manager elects to clean a dirty page, that page is written
to the SSD if the page is already located there. If the dirty
page is not already located on the SSD, it is considered
for admission to the SSD according to the SSD admission
policy, in exactly the same way that a buffer pool eviction
is considered. The dirty page will be flushed to the SSD if it
is admitted there, otherwise it will be flushed to the HDD.

The buffer and SSD management techniques that we have
described have two key properties. First, admission of pages
into the SSD occurs only when pages are evicted or cleaned
from the DBMS buffer pool. Pages are not admitted into
the SSD when they are loaded into the buffer pool from the
HDD, as might be expected in a multi-tier cache. The reason
for this is to minimize cache inclusion [18], i.e., the duplica-
tion of pages in the buffer cache and the SSD. Second, each
flush of a dirty page from the DBMS buffer pool goes either
to the SSD or to the HDD, but not to both (at least not im-
mediately). One advantage of this approach, compared to
a write-through design, is that the SSD can potentially im-
prove DBMS write performance, to the extent that writes
are directed to the SSD. A disadvantage of this approach
is that the latest version of an unbuffered page might, in
general, be found on either device. However, because the
DBMS always writes a dirty buffer pool page to the SSD
if that page is already on the SSD, it can be sure that the
SSD version (if any) of a page is always at least as recent
as the HDD version. Thus, to ensure that it can obtain the
most recently written version of any page, it is sufficient for
the DBMS to know which pages have copies on the SSD,
and to read a page from the SSD if there is a copy of the
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Table 1: Storage Device Parameters
Symbol Description
RD The read service time of HDD
WD The write service time of HDD
RS The read service time of SSD
WS The write service time of SSD

page there. To support this, the SSD manager maintains
an in-memory hash map that records which pages are on
the SSD. To ensure that it can determine the contents of
the SSD even after a failure, the SSD manager uses a check-
pointing technique (described in Section 5.4) to efficiently
persist its map so that it can be recovered quickly.

3. BUFFER POOL MANAGEMENT
In this section, we describe our replacement algorithm for

the buffer pool: a two-level version of the GreedyDual algo-
rithm [19] which we have adapted for use in database sys-
tems. We refer to it as GD2L.

Most existing cost-aware algorithms, e.g., the balance al-
gorithm [15] and GreedyDual [19], were proposed for file
caching. They take into account the size of cached objects
and their access costs when making replacement decisions,
and target different situations: uniform object size with ar-
bitrary retrieval costs, arbitrary object size with uniform re-
trieval costs, or arbitrary object size with arbitrary retrieval
costs. The GreedyDual algorithm addresses the case of ob-
jects with uniform size but different retrieval costs. Young
[19] shows that GreedyDual has the same (optimal) compet-
itive ratio as LRU and FIFO [15].

GreedyDual is actually a range of algorithms which gen-
eralize well-known caching algorithms, such as LRU and
FIFO. Initially, we present the GreedyDual generalization
of LRU and our restriction to two retrieval costs. In Sec-
tion 3.1, we describe how a similar approach can be applied
to the LRU variant used by InnoDB, and we also discuss
how it can be extended to handle writes.

GreedyDual associates a non-negative cost H with each
cached page p. When a page is brought into the cache or
referenced in the cache, H is set to the cost of retrieving
the page into the cache. To make room for a new page, the
page with the lowest H in the cache, Hmin, is evicted and
the H values of all remaining pages are reduced by Hmin.
By reducing the H values and resetting them upon access,
GreedyDual ages pages that have not been accessed for a
long time. The algorithm thus integrates locality and cost
concerns in a seamless fashion.

GreedyDual is usually implemented using a priority queue
of cached pages, prioritized based on their H value. With a
priority queue, handling a hit and an eviction each require
O(log k) time. Another computational cost of GreedyDual
is the cost of reducing the H values of the remaining pages
when evicting a page. To reduce the value H for all pages
in the cache, GreedyDual requires k subtractions. Cao et al.
[3] have proposed a technique to avoid the subtraction cost.
Their idea is to keep an “inflation” value L and to offset all
future settings of H by L.

Parameters representing the read and write costs to the
SSD and the HDD are summarized in Table 1. In our case,
there are only two possible initial values for H: one corre-
sponding to the cost of retrieving an SSD page (RS) and

the other to the cost of retrieving an HDD page (RD). The
GD2L algorithm is designed for this special case. GD2L
uses two queues to maintain pages in the buffer pool: one
queue (QS) is for pages placed on the SSD, the other (QD)
is for pages not on the SSD. Both queues are managed using
LRU. With the technique proposed by Cao et al. [3], GD2L
achieves O(1) time for handling both hits and evictions.

Figure 2 describes the GD2L algorithm. When GD2L
evicts the page with the smallest H from the buffer pool,
L (the inflation value) is set to the H value. If the newly
requested page is on the SSD, it is inserted to the MRU
end of QS and its H value is set to L + RS ; otherwise it is
inserted to the MRU end of QD and its H value is set to
L + RD. Because the L value increases gradually as pages
with higher H are evicted, pages in QD and QS are sorted
by H value. The one having the smallest H value is in the
LRU end. By comparing the H values of the LRU page
of QD and the LRU page of QS , GD2L easily identifies the
victim page that has the smallest H value in the buffer pool.
The algorithm evicts the page with the lowest H value if the
newly requested page is not in the buffer pool. In Figure 2,
page q represents the page with the lowest H value.

if p is not cached1

compare LRU page of QS with LRU page of QD2

evict the page q that has the smaller H3

set L = H(q)4

bring p into the cache5

if p is on the SSD6

H(p) = L + RS7

put p to the MRU of QS8

else if p is on HDD9

H(p) = L + RD10

put p to the MRU of QD11

Figure 2: GD2L Algorithm For Reading Page p.

3.1 Implementation of GD2L in MySQL
We implemented GD2L for the buffer pool management in

InnoDB, the default storage engine of the MySQL database
system. InnoDB uses a variant of the least recently used
(LRU) algorithm. When room is needed to add a new page
to the pool, InnoDB evicts the LRU page from the buffer
pool. Pages that are fetched on demand are placed at the
MRU end of InnoDB’s list of buffered pages. Prefetched
pages are placed near the midpoint of the LRU list (3/8 of
the way from the LRU end), moving to the MRU position
only if they are subsequently read. Since prefetching is used
during table scans, this provides a means of scan resistance.

To implement GD2L, we split InnoDB’s LRU list into two
LRU lists: QD and QS . As shown in Figure 3, the cached
HDD pages (represented by H) are stored in QD and the
cached SSD pages (represented by S) in QS . Newly loaded
pages are placed either at the MRU end or the midpoint
of the appropriate list, depending on whether they were
prefetched or loaded on demand. When a new prefetched
page is inserted at the midpoint of QD or QS , its H value
is set to the H value of the current midpoint page.

When pages are modified in the buffer pool, they need to
be copied back to the underlying storage device. In InnoDB,
dirty pages are generally not written to the underlying stor-
age device immediately after they are modified in the buffer
pool. Instead, page cleaner threads are responsible for asyn-
chronously writing back dirty pages. The page cleaners can
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Figure 3: Buffer pool managed by GD2L

issue two types of writes: replacement writes and recoverabil-
ity writes. Replacement writes are issued when dirty pages
are identified as eviction candidates. To remove the latency
associated with synchronous writes, the page cleaners try to
ensure that pages that are likely to be replaced are clean
at the time of the replacement. In contrast, recoverabil-
ity writes are those that are used to limit failure recovery
time. The InnoDB uses write ahead logging to ensure that
committed database updates survive failures. The failure
recovery time depends on the age of the oldest changes in
the buffer pool. The page cleaners issue recoverability writes
of the least recently modified pages to ensure that a config-
urable recovery time threshold will not be exceeded.

In InnoDB, when the free space of the buffer pool is below
a threshold, page cleaners start to check a range of pages
from the tail of the LRU list. If there are dirty pages in the
range, the page cleaners flush them to the storage devices.
These are replacement writes. We changed the page cleaners
to reflect the new cost-aware replacement policy. Since pages
with lower H values are likely to be replaced sooner, the
page cleaners consider H values when choosing which pages
to flush. As GD2L maintains two LRU lists in the buffer
pool (QD and QS), the pages cleaners check pages from tails
of both lists. If there are dirty pages in both lists, the page
cleaners compare their H values and choose dirty pages with
lower H values to write back to the storage devices. We did
not change the way the page cleaners issue recoverability
writes, since those writes depend on page update time and
not on page access cost.

The original GreedyDual algorithm assumed that a page’s
retrieval cost does not change. However, in our system a
page’s retrieval cost changes when it is moved into or out
of the SSD. If a buffered page is moved into the SSD, then
GD2L must take that page out of QD and place it into QS .
This situation can occur when a dirty, buffered page that
is not on the SSD is flushed, and the SSD manager elects
to place the page into the SSD. If the page flush is a re-
placement write, it means that the page being flushed is a
likely eviction candidate. In that case, GD2L removes the
page from QD and inserts it at the LRU end of QS . If the
page flush is a recoverability write, then the flushed page
should not be inserted to the LRU end of QS because it
is not an eviction candidate. As QS is sorted by page H
value, we could find the page’s position in QS by looking
through pages in QS and comparing the H values. Since re-
coverability writes are much less common than replacement
writes, pages are rarely moving into the SSD by recoverabil-
ity writes. Hence, we chose a simple approach for GD2L.
Instead of finding the accurate position for the page, GD2L
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Figure 4: Miss rate/write rate while on the HDD
(only) vs. miss rate/write rate while on the SSD.
Each point represents one page

simply inserts the page at the midpoint of QS and assigns
it the same H value as the previous QS midpoint page.

It is also possible that a buffered page that is in the SSD
will be evicted from the SSD (while remaining in the buffer
pool). This may occur to make room in the SSD for some
other page. In this case, GD2L removes the page from QS

and inserts it to QD. Since this situation is also uncommon,
GD2L simply inserts the page at the midpoint of QD, as it
does for recoverability writes.

4. THE IMPACT OF COST-AWARE CACHING
Cost-aware caching algorithms like GD2L take into ac-

count page location when making replacement decisions. As
a result, a page’s physical read rate and write rate might be
different after its location changes. In this section, we ad-
dress the following questions: if the buffer pool uses the
GD2L caching algorithm, how do pages’ physical read rates
change when they are placed in the SSD? GD2L also changes
the mechanism for asynchronous cleaning of dirty pages.
How does this impact the pages’ write rates?

To study the impact of the GD2L algorithm on the page
access pattern, we drove the modified InnoDB with a TPC-
C workload, using a scale factor of 10. The initial size of the
database was approximately 1GB. For managing the SSD,
we used the policy that will be described in Section 5.

In our experiments, we set the buffer pool size to 200MB,
the SSD size to 400MB, and the running duration to sixty
minutes. During the run, we monitored the amount of time
each page spent on the SSD, and its read and write rates
while on the SSD and while not on the SSD. We identified
pages that spent at least twenty minutes on the SSD and
also spent at least 20 minutes not on the SSD (about 2500
pages). We observed the buffer pool miss rates and physical
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write rates for these pages. A logical read request on a page
is realized as a physical read when the page is missed in the
buffer pool. The page miss rate in the buffer pool is defined
as the percentage of logical reads realized as physical reads.

Figure 4 shows the pages’ buffer pool miss rates while the
pages are on the HDD (only) vs. their miss rate while the
pages are on the SSD, and the pages’ write rates while the
pages are on the HDD (only) vs. their write rates while
they are on the SSD. From the two graphs we see that most
page miss rates and write rates are larger while the page is
cached on SSD. This is as expected. Once pages are placed
on SSD, they are more likely to be evicted from the buffer
pool because they have lower retrieval costs. As SSD pages
in the buffer pool are better eviction candidates, the page
cleaner needs to flush dirty ones to the storage before they
are evicted. As a result, page read and write rates go up
while they are cached in SSD.

5. SSD MANAGEMENT
Section 2 provided a high-level overview of the manage-

ment of the SSD device. In this section, we present more
details about SSD management, including the page admis-
sion and replacement policies used for the SSD and the
checkpoint-based mechanism for recovering SSD meta-data
after a failure.

Pages are considered for SSD admission when they are
cleaned or evicted from the DBMS buffer pool. Pages are
always admitted to the SSD if there is free space available on
the device. New free space is created on the SSD device as a
result of invalidations of SSD pages. Consider a clean page
p in the DBMS buffer pool. If p is updated and hence made
dirty in the buffer pool, the SSD manager invalidates the
copy of p on the SSD if such a copy exists and it is identical
to the copy of p on the HDD. Invalidation frees the space
that was occupied by p on the SSD. If the SSD version of
p is newer than the HDD version, it cannot be invalidated
without first copying the SSD version back to the HDD.
Rather than pay this price, the SSD manager simply avoids
invalidating p in this case.

If there is no free space on the SSD when a page is cleaned
or evicted from the DBMS buffer pool, the SSD manager
must decide whether to place the page on the SSD and which
SSD page to evict to make room for the newcomer. The SSD
manager makes these decisions by estimating the benefit, in
terms of reduction in overall read and write cost, of placing a
page on the SSD. It attempts to keep the SSD filled with the
pages that it estimates will provide the highest benefit. Our
specific approach is called Cost-Adjusted Caching (CAC).
CAC is specifically designed to work together with a cost-
aware DBMS buffer pool manager, like the GD2L algorithm
presented in Section 3.

5.1 CAC: Cost-Adjusted Caching
To decide whether to admit a page p to the SSD, CAC

estimates the benefit B, in terms of reduced access cost, that
will be obtained if p is placed on the SSD. The essential idea
is that CAC admits p to the SSD if there is some page p′

already on the SSD cache for which B(p′) < B(p). To make
room for p, it evicts the SSD page with the lowest estimated
benefit.

Suppose that a p has experienced r(p) physical read re-
quests and w(p) physical write requests over some measure-
ment interval prior to the admission decision. If the physical

I/O load on p in the past were a good predictor of the I/O
load p would experience in the future, a reasonable way to
estimate the benefit of admitting p to the SSD would be

B(p) = r(p)(RD −RS) + w(p)(WD −WS) (1)

where RD,RS ,WD, and WS represent the costs of read and
write operations on the HDD and the SSD (Table 1).

Unfortunately, when the DBMS buffer manager is cost-
aware, like GD2L, the read and write counts experienced
by p in the past may be particularly poor predictors of its
future physical I/O workload. This is because admitting p
to the SSD, or evicting it from the SSD if it is already there,
will change p’s physical I/O workload. In particular, if p is
admitted to the SSD then we expect that its post-admission
physical read and write rates will be much higher than its
pre-admission rates, as was illustrated by the experiments
in Section 4. Conversely, if p is evicted from the SSD, we
expect its physical I/O rates to drop. Thus, we do not expect
Equation 1 to provide a good benefit estimate when the
DBMS uses cost-aware buffer management.

To estimate the benefit of placing page p on the SSD, we
would like to know what its physical read and write work-
load would be if it were on the SSD. Suppose that r̂S(p)
and ŵS(p) are the physical read and write counts that p
would experience if it were placed on the SSD, and r̂D(p)
and ŵD(p) are the physical read and write counts p would
experience if it were not. Using these hypothetical physical
read and write counts, we can write our desired estimate of
the benefit of placing p on the SSD as follows

B(p) = (r̂D(p)RD−r̂S(p)RS)+(ŵD(p)WD−ŵS(p)WS) (2)

Thus, the problem of estimating benefit reduces to the prob-
lem of estimating values for r̂D(p), r̂S(p), ŵD(p), and ŵS(p).

To estimate r̂S(p), CAC uses two measured read counts:
rS(p) and rD(p). (In the following, we will drop the explicit
page reference from our notation as long as the page is clear
from context.) In general, p may spend some time on the
SSD and some time not on the SSD. rS is the count of the
number of physical reads experienced by p while p is on the
SSD. rD is the number of physical reads experienced by p
while it is not on the SSD. To estimate what p’s physical
read count would be if it were on the SSD full time (r̂S),
CAC uses

r̂S = rS + αrD (3)

In this expression, the number of physical reads experienced
by p while it was not on the SSD (rD) is multiplied by a
scaling factor α to account for the fact that it would have
experienced more physical reads during that period if it had
been on the SSD. We refer to the scaling factor α as the
miss rate expansion factor, and we will discuss it further in
Section 5.2. CAC estimates the values of r̂D, ŵD, and ŵS

in a similar fashion:

r̂D = rD +
rS
α

(4)

ŵS = wS + αwD (5)

ŵD = wD +
wS

α
(6)

The notation used in these formulas is summarized in Ta-
ble 5.

An alternative approach to estimating r̂S would use only
the observed read count while the page was on the SSD (rS),
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Figure 5: Summary of Notation
Symbol Description
rD, wD Measured physical read/write count while

not on the SSD
rS , wS Measured physical read/write count while

on the SSD
r̂D, ŵD Estimated physical read/write count if

never on the SSD
r̂S , ŵS Estimated physical read/write count if al-

ways on the SSD
mS Buffer cache miss rate for pages on the

SSD
mD Buffer cache miss rate for pages not on the

SSD
α Miss rate expansion factor

scaling it up to account for any time in which the page was
not on the SSD. While this might be effective, it will work
only if the page has actually spent time on the SSD to that
rS can be observed. We still require a way to estimate rS for
pages that have not been observed on the SSD. In contrast,
estimation using Equation 3 will work even if rS or rD are
zero due to lack of observations.

We track reference counts for all pages in the buffer pool
and all pages in the SSD. In addition, we maintain an out-
queue for to track reference counts for a fixed number (Noutq)
of additional pages. When a page is evicted from the SSD,
an entry for the page is inserted into the outqueue. Entries
are also placed in the outqueue for pages that are evicted
from the buffer pool but not placed into the SSD. Each entry
in the outqueue records only the page statistics. When the
outqueue is full, the least-recently inserted entry is evicted
to make a room for a new entry.

5.2 The Miss Rate Expansion Factor
The purpose of the miss rate expansion factor (α) is to

estimate how much a page physical read and write rates
will change if the page is admitted to the SSD. A simple
way to estimate α is to compare the overall miss rates of
pages on the SSD to that of pages that are not on the SSD.
Suppose that mS represents the overall miss rate of logical
read requests for pages that are on the SSD, i.e., the total
number of physical reads from the SSD divided by the total
number of logical reads of pages on the SSD. Similarly, let
mD represent the overall miss rate of logical read requests
for pages that are not located on the SSD. Both mS and
mD are easily measured. Using mS and mD, we can define
the miss rate expansion factor as:

α =
mS

mD
(7)

For example, α = 3 means that the miss rate is three times
higher pages for on the SSD than for pages that are not on
the SSD.

While Equation 7 captures our intuition about increased
miss rates for pages on the SSD, we have found that it is too
coarse. In Equation 7, α is calculated using the buffer pool
miss rates of all database pages, meaning that all pages will
be assumed to have the same expansion factor. However,
since different tables may have different access patterns and
the distribution of page requests is not uniform, this may
not be true. As an example, Figure 6 illustrates miss rate
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Figure 6: Miss rate expansion factor for pages from
three TPC-C tables.

expansion factors of pages grouped by table and by logical
read rate. The three lines represent pages holding the TPC-
C STOCK, CUSTOMER, and ORDERLINE tables.

Since different pages may have substantially different miss
rate expansion factors, we use different expansion factors for
different groups of pages. Specifically, we group database
pages based on the database object (e.g., table) for which
they store data, and on their logical read rate, and we track
a different expansion factor for each group. We divide the
range of possible logical read rates into subranges of equal
size. We define a group as pages that store data for the
same database object and whose logical read rates fall in
the same subrange. For example, in our experiments, we
defined the subrange width as one logical read per minute.
If the maximum logical read rate of a table was 1000, this
table might have 1000 groups. For each page group g, we
define the miss rate expansion factor as in Equation 7:

α(g) =
mS(g)

mD(g)
(8)

where mS(g) is the overall miss rate for pages in g while
they are in the SSD, and mD(g) is the overall miss rate for
pages in g while they are not in the SSD.

We track logical and physical read counts for each indi-
vidual page, as well as miss rates for each group. Page read
counts are updated with each logical or physical read request
to the page. Group miss rates are updated lazily, when cer-
tain events occur, using the per-page statistics of the group’s
pages. Specifically, we update group miss rates when a page
is evicted from the buffer pool, when a dirty page is flushed
from the buffer pool to the SSD, and when a page is evicted
from the SSD. Because pages are grouped in part based on
their logical read rates, which can fluctuate, the group to
which a page belongs may also change over time. If this
occurs, we subtract the page’s read counts from those of its
old group and add them to the new group.

It is possible that mS(g) mD(g) will be undefined for some
groups. For example, a group’s mD(g) may be undefined
because pages in the group have never been evicted from the
buffer pool. We assume that mD(g) = 0 for such groups.
Similarly, mS(g) may be undefined because no pages in the
group have been admitted to the SSD. We set α(g) = 1 for
such groups, which gives a better opportunity for them to
be admitted to the SSD, giving us a better chance to collect
statistics for them.

A potential efficiency threat is the number of possible
groups for which the system must maintain statistics. The
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number of possible groups depends on the size of the sub-
range. If we do not set the subrange size, there is only one
group in each table. A smaller subrange size leads to more
accurate α(g) at a cost of more space for collecting statistics.
In our evaluation (Section 6) we ignore this cost because the
space requirement for tracking group statistics was less than
0.01% of the buffer pool size.

5.3 Sequential I/O
Hard disks have substantially better performance for se-

quential reads than for random reads. To account for this,
CAC considers only random reads when estimating the ben-
efit of placing a page in the SSD. In particular, the measured
values rS and rD used in Equation 3 count only random
reads. This requires that the SSD manager classify read
requests as sequential or random. Two classification ap-
proaches have been proposed in recent work. Canim et al.
[2] classify a page request as sequential if the page is within
64 pages of the preceding request. Do et al. [5] exploit the
existing DBMS read-ahead (prefetch) mechanism: a page is
marked as sequential if it is read from the disk via the read-
ahead mechanism; otherwise, the page is marked as random.
Do et al. [5] indicate that leveraging the read-ahead mech-
anism was much more effective. CAC adopts this approach
for identifying sequential reads, using the read-ahead in the
InnoDB buffer manager.

5.4 Failure Handling
Since data present in the SSD may be more recent than

that in the HDD, the system needs to ensure that it can
identify the pages in the SSD after a system failure. TAC [2]
does not have such a problem because it writes dirty pages
to both the SSD and the HDD. Lazy cleaning, as proposed
by Do et al. [5], handles this issues by flushing all dirty
pages in the SSD to the HDD when taking a checkpoint.
Neither of these approaches exploits the persistence of the
SSD. In contrast, CAC assumes that the contents of the SSD
will survive a failure, and it will read the latest version of
a page from the SSD after a failure if the page was located
there. The challenge with this approach is that the SSD
manager’s in-memory hash map indicating which pages are
in the SSD is lost during a failure. Debnath et al. [4] address
this problem by checkpointing the hash map and logging all
writes to the SSD. During recovery, the hash map can be
rebuilt based on the last written hash map and the log.

CAC’s approach is also based on checkpointing, but it
does not require logging of changes to the hash map. As each
page header includes a page identifier, the hash map can be
rebuilt without causing any runtime overhead by scanning
all pages in the SSD during the failure recovery process.
However, this may substantially increase recovery time. For
example, based on the read service time of our SSD, to scan a
32G SSD requires about three minutes. Larger SSDs would
introduce proportionally larger delays during recovery. To
achieve faster recovery, CAC checkpoints the hash map pe-
riodically and also identifies a group of k low priority pages
as an eviction zone on the SSD. Until the next checkpoint,
CAC will evict only pages that fall into the eviction zone.
After a failure, CAC initializes its hash map using the most
recently checkpointed copy, and then checks the k SSD slots
where the eviction candidates were located to identify what
is actually there, updating the hash map if necessary. The
eviction zone size (k) controls a trade-off between opera-

tional overhead and the recovery time. CAC will checkpoint
its hash map when all of the eviction candidates in the evic-
tion zone have been evicted from the SSD. Thus, smaller
values of k result in more frequent hash map checkpoints,
but faster recovery.

6. EVALUATION
In this section, we present an experimental evaluation of

GD2L and CAC. Our first objective is to provide some in-
sight into the behavior of our proposed algorithm, which is
the combination of GD2L (for the buffer pool) and CAC
(for the SSD). Specifically, we wish to address two ques-
tions. First, how effective is GD2L relative to non-cost-
aware buffer management? Second, when GD2L is used to
manage the buffer pool, how important is it to use an antic-
ipatory SSD manager, like CAC, that recognizes that page
access patterns change when the page is moved between the
SSD and the HDD? Our second objective is to compare the
performance of our proposed algorithms (GD2L with CAC)
to that of other, recently proposed techniques for managing
SSDs in database systems.

To answer these questions, we have implemented a variety
of algorithms in MySQL’s InnoDB storage manager. For the
DBMS buffer pool, we have two alternatives: the original
buffer pool policies of InnoDB, which we refer to as LRU,
and our implementation of GD2L. For SSD management we
have implemented CAC as well as three alternatives, which
we refer to as CC, MV-FIFO, and LRU2:

CC: CC is cost-based, like CAC, but it is not anticipatory.
That is, unlike CAC it does not attempt to predict
how a page’s I/O pattern will change if that page is
moved between the SSD and HDD. It uses Equation 1
to estimate the benefit of placing a page in the SSD,
and evicts the page with the lowest benefit from the
SSD when necessary. CC’s approach for estimating the
benefit of placing a page in the SSD is similar to the
approach used by TAC [2], although TAC tracks statis-
tics on a region basis, rather than a page basis. How-
ever, CC differs from TAC in that it considers pages for
admission to the SSD when they are cleaned or evicted
from the buffer pool, while TAC admits pages on read.
Also, TAC manages the SSD as a write-through cache,
while CC, like CAC, is write-back.

LRU2: LRU2 manages the SSD using the LRU2 replace-
ment policy, as recently proposed by Do et al [5] for
their lazy cleaning (LC) technique. LRU2 is neither
cost-based nor anticipatory. Our implementation of
LRU2 is similar to LC. Both consider pages for ad-
mission when they are cleaned or evicted from the
database buffer pool, and both treat the SSD as a
write-back cache. Our LRU2 implementation cleans
pages in the SSD only when they are evicted, which
corresponds to the least aggressive (and best perform-
ing) version of LC implemented by Do et al. in SQLServer.
The invalidation procedure used for our implementa-
tion of LRU2 differs slightly from LC’s in that our
implementation invalidates an SSD page only if that
page is identical to the version of the page on the HDD.

MV-FIFO: MV-FIFO manages the SSD as a FIFO queue
of pages. Pages are admitted to the SSD when they
are cleaned or evicted from the database buffer pool. If
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the page being cleaned or evicted already exists in the
SSD and the existing version is older, the existing ver-
sion is invalidated. MV-FIFO is neither cost-based nor
anticipatory. It was proposed for SSD management by
Kang et al. as the basis of their FaCE algorithm [10].
The FIFO organization of the SSD ensures that all
writes to the SSD are sequential and hence fast - this
is the chief advantage FaCE.

Either buffer pool technique can be combined with any of
the SSD managers, and we will use the notation X+Y to
refer to the combination of buffer pool manager X with the
SSD manager Y. For example, LRU+MV-FIFO refers to the
original InnoDB buffer manager combined with SSD man-
agement using MV-FIFO.

6.1 Methodology
We used the MySQL database management system, ver-

sion 5.1.45, with the InnoDB storage engine modified to
implement our buffer management and SSD management
techniques. MySQL ran on a server with six 2.5GHz Intel
Xeon cores and 4GB of main memory, running Ubuntu 10.10
Linux with kernel version 2.6.35-22-generic. The server has
two 500GB RPM SCSI hard disks. One disk holds all system
software, including MySQL, and the test database. The sec-
ond disk holds the transaction logs. In addition, the server
has a 32GB Intel X25-E SATA SSD The database SSD cache
is implemented as a single file on the SSD. All files in Inn-
oDB use unbuffered I/O.

All of our experiments were performed using TPC-C work-
loads [17]. Each of our experiments involved measuring
performance under a TPC-C workload for a given system
configuration, TPC-C scale factor, and a combined buffer
pool and SSD algorithm. Our primary performance metric
is TPC-C throughput, measured as the number of TPC-
C New-Order transactions that are processed per minute
(tpmC). Throughput is measured after the system has warmed
up and reached its steady state performance. We also col-
lected a wide variety of secondary metrics, including device
utilizations and I/O counts measured at both the database
and operating system levels. Experiment durations varied
from from four to seven hours, largely because the amount of
time required to achieve a steady state varied with the sys-
tem configuration and the TPC-C scale factor. After each
run, we restarted the DBMS to clean up the buffer pool and
replaced the database with a clean copy.

Like Do et al. [5], we have focused our experiments on
three representative scenarios:

• database much larger than the size of the SSD cache

• database somewhat larger than the SSD cache

• database smaller than the SSD cache

To achieve this, we fixed the SSD size at 10GB and varied
the TPC-C scale factor to control the database size. We
used TPC-C scale factors of 80, 150, and 300 warehouses,
corresponding to initial database sizes of approximately are
8GB, 15GB, and 30GB, respectively. The size of a TPC-C
database grows as the workload runs. The number of TPC-C
client terminals was set to twice the number of warehouses.
For each of these scenarios, we tested database buffer pool
sizes of 10%, 20%, and 40% of the SSD size (1GB, 2GB, and
4GB, respectively).

For experiments involving CAC or CC, the maximum num-
ber of entries in the outqueue was set to be the same as
the number of database pages that fit into the SSD cache.
We subtracted the space required for the outqueue from the
available buffer space when using CAC and CC, so that all
comparisons would be on an equal space basis. Unless other-
wise stated, all experiments involving CAC used an eviction
zone of 10% of the SSD cache size.

6.2 Cost Parameter Calibration
As introduced in Sections 3 and 5, both GD2L and CAC

rely on device read and write cost parameters (listed in Ta-
ble 1) when making replacement decisions. One characteris-
tic of an SSD is its I/O asymmetry: its reads are faster than
its writes because a write operation may involve an erasing
delay. We measure RS and WS separately.

To measure these access costs, we ran a TPC-C workload
using MySQL and use diskstats, a Linux tool for recording
disk statistics, to collect the total I/O service time. We also
used InnoDB to track the total number of read and write
requests it made. As diskstats does not separate total ser-
vice time of read requests and that of write requests, we
measured the devices’ read service time using a read-only
workload. The read-only workload was created by convert-
ing all TPC-C updates to queries with the same search con-
straint and deleting all insertions and deletions. Thus, the
modified workload has a disk block access pattern similar to
that of the unmodified TPC-C workload. First, we stored
the entire database on the SSD and ran the read-only work-
load, for which we found that 99.97% of the physical I/O
requests were reads. Dividing the total I/O service time
(from diskstats) by the total number of read requests (from
InnoDB), we calculated RS = 0.11ms. Then, we ran an
unmodified TPC-C workload, and measured the total I/O
service time, the total number of reads, and the total num-
ber of writes. Using the total number of reads and the value
of RS obtained from the read-only experiment, we estimated
the total I/O service time of the read requests. Deducting
that from the total I/O service time, we had the total I/O
service time spending on write requests. Dividing the to-
tal I/O service time on writes by the total number of write
requests, we calculated WS = 0.27ms. Similarly, we stored
the database on the HDD and repeated this process to de-
termine RD = 7.2ms and WD = 4.96ms. For the purpose
of our experiments, we normalized these values: RS = 1,
RD = 70, WS = 3, and WD = 50.

6.3 Analysis of GD2L and CAC
To understand the performance of GD2L and CAC, we ran

experiments using three algorithm combinations: LRU+CC,
GD2L+CC, and GD2L+CAC. By comparing LRU+CC and
GD2L+CC, we can focus on the impact of switching from a
cost-oblivous buffer manager (LRU) to a cost-aware buffer
manager (GD2L). By comparing the results of GD2L+CC
and GD2L+CAC, we can focus on the effect of switching
from a non-anticipatory SSD manager to an anticipatory
one. Figure 7 shows the TPC-C throughput of each of these
algorithm combinations for each test database size and Inn-
oDB buffer pool size.

6.3.1 GD2L vs. LRU
By comparing LRU+CC with GD2L+CC in Figure 7, we

see that GD2L outperforms LRU when the database is much
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Figure 7: TPC-C Throughput Under LRU+CC,
GD2L+CC, and GD2L+CAC For Various Database
and DBMS Buffer Pool Sizes.

larger than the SSD. The two algorithms have similar per-
formance for the two smaller database sizes. For the large
database, GD2L provides TPC-C throughput improvements
of about 40%-75% relative to LRU.

Figures 8 and 9 show the HDD and SDD device utiliza-
tions, buffer pool miss rates, and normalized total I/O cost
on each device for the experiments with the 30GB and 15GB
databases. The normalized I/O cost for a device is the device
utilization divided by the New Order transaction through-
put. It can be interpreted as the number of milliseconds of
device time consumed, on average, per completed New Or-
der transaction. The normalized total I/O cost is the sum
of the normalized costs on the HDD and SSD.

For the 30GB experiments, in which GD2L+CC outper-
forms LRU+CC, Figure 8 shows that GD2L results in a
much lower total I/O cost (per transaction) than LRU, de-
spite the fact the GD2L had a higher miss rate in the Inn-
oDB buffer pool. GD2L’s higher miss rate is not surprising,
since it considers replacement cost in addition to recency
of use when making eviction decisions. Although the total
number of I/O operations performed by GD2L+CC is higher
than that of LRU+CC, GD2L+CC results in less I/O time

Alg & HDD HDD SSD SSD total BP miss
BP size util I/O util I/O I/O rate
(GB) (%) (ms) (%) (ms) (ms) (%)

LRU+CC
1G 93 88.6 12 11.1 99.7 6.6
2G 93 72.8 8 6.0 78.8 4.4
4G 94 55.1 6 3.3 58.4 2.4

GD2L+CC
1G 92 53.1 21 12.1 65.2 8.8
2G 90 44.3 20 9.7 54.0 7.4
4G 90 36.3 14 5.8 42.1 4.7

GD2L+CAC
1G 85 39.6 19 8.8 48.4 7.4
2G 83 31.8 20 7.8 39.6 6.3
4G 82 23.5 20 5.8 29.3 4.8

Figure 8: Device Utilizations, Buffer Pool Miss
Rate, and Normalized I/O Time (DB size=30GB)
I/O is reported as ms. per New Order transaction.

Alg & HDD HDD SSD SSD total BP miss
BP size util I/O util I/O I/O rate
(GB) (%) (ms) (%) (ms) (ms) (%)

LRU+CC
1G 79 11.1 38 5.4 16.5 4.2
2G 68 5.7 47 4.0 9.7 2.7
4G 73 4.4 43 2.6 7.0 1.3

GD2L+CC
1G 21 2.5 68 8.0 10.4 6.1
2G 18 1.5 62 5.3 6.8 3.7
4G 14 0.9 61 3.8 4.7 2.3

GD2L+CAC
1G 30 3.2 73 7.8 11.0 5.7
2G 21 1.6 78 6.2 7.8 4.0
4G 48 2.3 60 2.9 5.3 2.0

Figure 9: Device Utilizations, Buffer Pool Miss
Rate, and Normalized I/O Time (DB size=15GB)
I/O is reported as ms. per New Order transaction.

per transaction because it does more of its I/O on the SSD
and less on the HDD, compared to LRU+CC. This reflects
GD2L’s preference for evicting SSD pages, since they are
cheaper to reload than HDD pages. In the case of the 30GB
database, GD2L’s shifting of I/O activity from the HDD to
the SSD results in significantly higher throughput (relative
to LRU+CC) since the HDD is the performance bottleneck
in our test environment. This can be seen from the very
high HDD utilizations shown in Figure 8.

For the 15GB experiments, Figure 9 shows that GD2L+CC
again has lower total I/O cost per transaction than LRU+CC,
and shifts I/O activity from the HDD to the SSD. How-
ever, the effect is not as pronounced as it was for the larger
database. Furthermore, as can be seen from Figure 7, this
behavior does not lead to a significant TPC-C throughput
advantage relative to LRU+CC, as it does for the 30GB
database. This is because the SSD on our test server be-
gins to saturate under the increased load induced by GD2L.
(The SSD saturates here, and not in the 30GB case, be-
cause most of the database hot spot can fit in the SSD.) In
a system with greater SSD bandwidth, we would expect to
see a TPC-C throughput improvement similar to what we
observed with the 30GB database.

For the experiments with the 8G database, both LRU+CC
and GD2L+CC have very similar performance. In those
experiments, the entire database can fit into the SSD. As
more of the database becomes SSD-resident, the behavior
of GD2L degenerates to that of LRU, since one of its two
queues (QD) will be nearly empty.
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6.3.2 CAC vs. CC
Next, we consider the impact of switching from a non-

anticipatory cost-based SSD manager (CC) to an antici-
patory one (CAC). Figure 7 shows that GD2L+CAC pro-
vides additional performance gains above and beyond those
achieved by GD2L+CC in the case of the large (30GB)
database. Together, GD2L and CAC provide a TPC-C per-
formance improvement of about a factor of two relative to
the LRU+CC baseline in our 30GB tests. The performance
gain was less significant in the 15GB database tests and
non-existent in the 8GB database tests.

Figure 8 shows that GD2L+CAC results in lower total
I/O costs on both the SSD and HDD devices, relative to
GD2L+CC, in the 30GB experiments. Both policies re-
sult in similar buffer pool hit ratios, so the lower I/O cost
achieved by GD2L-CAC is attributable to better decisions
about which pages to retain on the SSD. To better under-
stand the reasons for the lower total I/O cost achieved by
CAC, we analyzed logs of system activity to try to iden-
tify specific situations in which GD2L+CC and GD2L+CAC
make different placement decisions. One interesting situa-
tion we encounter is one in which a very hot page that is in
the buffer pool is placed in the SSD. This may occur, for ex-
ample, when the page is cleaned by the buffer manager and
there is free space in the SSD, either during cold start and
because of invalidations. When this occurs, I/O activity for
the hot page will spike because GD2L will consider the page
to be a good eviction candidate. Under the CC policy, such
a page will tend to remain in the SSD because CC prefers to
keep pages with high I/O activity in the SSD. In contrast,
CAC is much more likely to to evict such a page from the
SSD, since it can (correctly) estimate that moving the page
will result in a substantial drop in I/O activity. Thus, we
find that GD2L+CAC tends to keep very hot pages in the
buffer pool and out of the SSD, while with GD2L+CC such
pages tend to remain in the SSD and bounce into and out
of the buffer pool. Such dynamics illustrate why it is impor-
tant to use an anticipatory SSD manager (like CAC) if the
buffer pool manager is cost-aware.

For the experiments with smaller databases (15GB and
8GB), there is little difference in performance between GD2L+CC
and GD2L+CAC. Both policies result in similar per-transaction
I/O costs and similar TPC-C throughput. This is not sur-
prising, since in these settings most or all of the hot part of
the database can fit into the SSD, i.e., there is no need to be
smart about SSD placement decisions. The SSD manager
matters most when the database is large relative to the SSD.

6.4 Comparison with LRU2 and MV-FIFO
In this section we compare GD2L+CAC to other recently

proposed techniques for managing the SSD, namely lazy
cleaning (LC) and FaCE. More precisely, we compare GD2L-
+CAC against LRU2 and MV-FIFO, which are similar to
LC and FaCE but implemented in InnoDB to allow for side-
by-side comparison. We combine LRU2 and MV-FIFO with
InnoDB’s default buffer manager, which results combined al-
gorithms LRU+LRU2 and LRU+MV-FIFO. We also tested
GD2L+LRU2.

Figure 10 shows the TPC-C throughput achieved by all
four algorithms on our test system for all three of the database
sizes that we tested. In summary, we found that GD2L+CAC
significantly outperformed the other algorithms in the case
of the 30GB database, achieving the greatest advantage

over its closest competitor (GD2L+LRU2) for larger buffer
pool sizes. For the 15GB database, GD2L+CAC was only
marginally faster than LRU+LRU2, and for the smallest
database (8GB) they were essentially indistinguishable. LRU-
+MV-FIFO performed much worse than the other two al-
gorithms in all of the scenarios we test.
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Figure 10: TPC-C Throughput Under LRU+MV-
FIFO, LRU+LRU2, GD2L+LRU2, and
GD2L+CAC for Various Database and DBMS
Buffer Pool Sizes.

LRU+MV-FIFO performs poorly in our environment be-
cause the performance bottleneck in our test system is the
HDD. The goal of MV-FIFO is to increase the efficiency of
the SSD by writing sequentially. Although it succeeds in
doing this, the SSD is relatively lightly utilized in our test
environment, so MV-FIFO’s optimizations do not increase
overall TPC-C performance. Interestingly, LRU+MV-FIFO
performs poorly even in our tests with the 8GB database,
and remains limited by the performance of the HDD. There
are two reasons for this. The first is that MV-FIFO makes
poorer use of the available space on the SSD than LRU2 and
CAC because of versioning. The second is disk writes due
to evictions as SSD space is recycled by MV-FIFO.

Figure 11 shows the device utilizations, buffer hit rates
and normalized I/O costs for the experiments with the 30GB
database. LRU+LRU2 performed worse than GD2L+CAC
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Alg & HDD HDD SSD SSD total BP miss
BP size util I/O util I/O I/O rate
(GB) (%) (ms) (%) (ms) (ms) (%)

GD2L+CAC
1G 85 39.6 19 8.8 48.4 7.4
2G 83 31.8 20 7.8 39.6 6.3
4G 82 23.5 20 5.8 29.3 4.8

LRU+LRU2
1G 85 49.4 15 8.6 58.0 6.7
2G 87 50.3 12 6.7 57.0 4.4
4G 90 48.5 9 4.7 53.2 2.4

GD2L+LRU2
1G 73 41.1 43 24.6 65.8 10.7
2G 79 46.5 32 18.9 65.3 8.8
4G 79 34.4 32 13.8 48.2 7.6

LRU+FIFO
1G 91 101.3 8 9.2 110.5 6.6
2G 92 92.3 6 5.8 98.1 4.4
4G 92 62.9 5 3.7 66.6 2.5

Figure 11: Device Utilizations, Buffer Pool Miss
Rate, and Normalized I/O Time (DB size=30GB)
I/O is reported as ms. per New Order transaction.

in the 30GB database test because it had higher total I/O
cost (per transaction) than GD2L+CAC. Furthermore, the
additional cost fell primarily on the HDD, which is the per-
formance bottleneck in our setting. Although it is not shown
in Figure 11, GD2L+CAC did fewer reads per transaction
on the HDD and more reads per transaction on the SSD
than did LRU+LRU2. This may be due partly to CAC’s
SSD placement decisions and partly to GD2L’s preference
for evicting SSD pages. In the 30GB tests, the performance
of LRU+LRU2 remained relatively flat as the size of the
database buffer pool was increased. We observed that SSD
read hit ratio of LRU2 dropped as the buffer pool size in-
creased. One potential reason is that the effectiveness of
LRU2 (recency-based) is reduced as the temporal locality
in the request stream experienced by the SSD is reduced
as the buffer pool gets larger. Another reason for this is
that LRU+LRU2 generated more write traffic to the HDD
because of SSD evictions than did GD2L+CAC.

GD2L+LRU2 had worse performance than LRU+LRU2
and GD2L+CAC in most cases. In Figure 11, GD2L+LRU2
shows higher I/O cost, which is caused by the higher I/O
cost on the SSD. Unlike CC and CAC, LRU2 flushes all
dirty pages to the SSD. When hot dirty pages are flushed to
the SSD, GD2L evicts them from the buffer pool, and then
reloads to the buffer pool quickly. As a result, GD2L+LRU2
tends to retain hot pages on the SSD and keeps bouncing
them into and out of the buffer pool. With a cost aware
buffer policy, hot pages cause more I/O cost when on SSD
than on HDD.

When the database size is 15GB, GD2L+CAC’s advan-
tage disappears. In this setting, both algorithms had simi-
lar per-transaction I/O costs. GD2L+CAC directed slightly
more of the I/O traffic to the SSD than did LRU+LRU2,
but the difference was small. For the 8GB database there
was no significant difference in performance between the two
algorithms

6.5 Impact of the Eviction Zone
To evaluation the impact of the eviction zone, we ran ex-

periments with GD2L+CAC using different eviction zone
sizes. In these experiments, the database size was 1GB, the
buffer pool size is set to 200M and the SSD cache size is set

to 400M. We tested k set to 1%, 2%, 5% and 10% of the SSD
size, Our results showed that k values in this range had no
impact on TPC-C throughput. In InnoDB, the page identi-
fier is eight bytes and the size of each page is 16K. Thus, the
hash map for a 400M SSD fits into ten pages. We measure
the rate with which the SSD hash map was flushed, and find
that even with k = 1%, the highest rate of checkpointing the
hash map experienced by any of the three SSD management
algorithms (CAC, CC, and LRU2) is less than three per sec-
ond. Thus, the overhead imposed by checkpointing the hash
map is negligible.

7. RELATED WORK
Placing hot data in fast storage (e.g. hard disks) and

cold data in slow storage (e.g. tapes) is not a new idea.
Hierarchical storage management (HSM) is a data storage
technique which automatically moves data between high-
cost and low-cost storage media. It uses fast storage as a
cache for slow storage. The performance and price of SSDs
suggest that “Tape is dead, disk is tape, flash is disk” [9]
seems to have come true.

Some research has focused on how to partially replace
hard disks with SSDs in database systems. Unlike DRAM,
flash memory is non-volatile, i.e. data stored on flash mem-
ory will not be lost in case of a loss of power. Koltsidas et al.
[11] assume that random reads to SSD are ten times faster
than random writes to HDD, while random writes to SSD
are ten times slower than random writes to HDD. They de-
sign an algorithm to place read-intensive pages on the SSD
and write-intensive pages on the HDD. Canim, et al. [1]
introduce an object placement advisor for DB2. Using run-
time statistics about I/O behavior gathered by the buffer
manager, the advisor helps the database administrator make
decisions about SSD sizing, and about which database ob-
jects, such as tables or indices, should be placed on limited
SSD storage. Ozmen et al. [16] present a database layout
optimizer which places database objects to balance work-
load and to avoid interference. It can generate layouts for
heterogeneous storage configurations that include SSDs.

Flash memory has also been used as a lower-tier cache
in various settings. In Sun ZFS [12], flash memory has
been used as an extension of the main memory. The sys-
tem populates the flash memory cache as entries are evicted
from the main memory cache. FlashCache [6], a product of
Facebook, sits between the main memory and the disks and
is managed using a LRU/FIFO policy. FlashStore [4] uses
SSDs as a write-back cache between RAM and the HDD.
It organizes data as key-value pairs, and writes the pairs in
a log-structure on flash to improve the write performance.
Canim, et al. [2] investigate the use of SSD as a second-tier
write-through cache. The most-frequently read pages, iden-
tified by run-time I/O statistics gathering, are moved into
the SSD. Reads are served from the SSD if the page is in
the SSD, but writes need to go to the hard disks immedi-
ately. Do, et al. [5] propose lazy cleaning, an eviction-based
mechanism for managing an SSD as a second-tier write-back
cache for database systems. Kang et al. [10] propose FaCE,
an alternative write-back design. FaCE is based on the
FIFO replacement algorithm. FaCE invalidates stale pages
on the SSD and writes new versions to the end of the FIFO
queue. Therefore, FaCE always writes pages sequentially
to the SSD, and improves the performance by avoiding ran-
dom writes. hStorage-DB [13] extracts semantic information
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from the query optimizer and query planner and passes it
with I/O requests to the SSD manager. The semantic infor-
mation includes hints about the request type, e.g, random or
sequential. hStorage-DB associates a priority with each re-
quest type, and the SSD manager uses these priorities when
making placement and replacement decisions.

Most replacement policies for the buffer cache, such as
LRU and ARC, are cost-oblivious. Existing cost-aware al-
gorithms for heterogeneous storage systems, e.g. balance al-
gorithm [15] and GreedyDual, are proposed for file caching.
Cao et al. [3] extend GreedyDual to handle cached objects of
varying size, with application to web caching. Forney et al.
[7] revisit caching policies for heterogeneous storage systems.
They suggest partitioning the cache for different classes of
storage according to the workload and performance of each
class. Lv, et al. [14] design another “cost-aware” replace-
ment algorithm for the buffer pool. However, it is designed
for storage systems that only have SSD, not for heteroge-
neous storage systems. The algorithm is aware that SSD
read costs and write costs are different and tries to reduce
the number of writes to the SSD. Thus, its “cost-aware” is
in a different sense than GD2L.

Our work builds upon previous studies [15, 3, 2, 5]. The
GD2L algorithm for managing the buffer pool is a restricted
version of GreedyDual [15], which we have adapted for use
in database systems. Our CAC algorithm for managing the
SSD is related to the previous cost-based algorithm of Canim
et al [2]. CAC is aware that the buffer pool is managed
by a cost-aware algorithm and adjusts the its cost analysis
accordingly when making replacement decisions.

8. CONCLUSION
In this paper we present two new algorithms, GD2L and

CAC, for managing the buffer pool and the SSD in a database
management system. Both algorithms are cost-based and
the goal is to minimize the overall access time cost of the
workload. We implemented the two algorithms in InnoDB
storage engine and evaluated them using a TPC-C workload.
We compared the performance of GD2L and CAC with other
existing algorithms. For databases that our large relative
to the size of the SSD, our algorithm provided substantial
performance improvements over alternative approaches in
our tests. Our results also suggest that the performance of
GD2L and CAC and other algorithms for managing SSD
caches in database systems will depend strongly on the sys-
tem configuration, and in particular on the balance between
available HDD and SSD bandwidth. In our test environ-
ment, performance was usually limited by HDD bandwidth.
Other algorithms, like FaCE, are better suited to settings in
which the SSD is the limiting factor.
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