
CorrectDB: SQL Engine with Practical Query
Authentication

Sumeet Bajaj
Stony Brook University

New York, USA

sbajaj@cs.stonybrook.edu

Radu Sion
Stony Brook University

New York, USA

sion@cs.stonybrook.edu

ABSTRACT

Clients of outsourced databases need Query Authentication
(QA) guaranteeing the integrity (correctness and complete-
ness), and authenticity of the query results returned by po-
tentially compromised providers.

Existing results provide QA assurances for a limited class
of queries by deploying several software cryptographic con-
structs. Here, we show that, to achieve QA, however, it is
significantly cheaper and more practical to deploy server-
hosted, tamper-proof co-processors, despite their higher ac-
quisition costs. Further, this provides the ability to handle
arbitrary queries.

To reach this insight, we extensively survey existing QA
work and identify interdependencies and efficiency relation-
ships. We then introduce CorrectDB, a new DBMS with
full QA assurances, leveraging server-hosted, tamper-proof,
trusted hardware in close proximity to the outsourced data.

1. INTRODUCTION
Today, all major cloud providers offer a database service

of some kind as part of their overall solution. However, such
services require their customers to fully trust the provider.
This is often unacceptable and technology-backed security
assurances are key to clients’ adoption decisions.

The essential issues of data confidentiality and privacy for
semi-trusted, yet curious providers have been tackled exten-
sively [30, 4]. Of equal importance is the case of actively
malicious or faulty service providers, the query results of
which cannot be trusted without proper Query Authentica-
tion (QA) mechanisms [28].

Existing research tackles the QA problem by designing
mechanisms that allow clients to verify remote query execu-
tion results by placing additional authentication data struc-
tures at the provider’s site. At query execution, the provider
sends relevant authentication information derived from these
structures to the client. A set of such approaches have been
proposed for individual query types such as projections and
range queries (section 3).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 7

Copyright 2013 VLDB Endowment 21508097/13/05... $ 10.00.

Unfortunately, the performance of solutions based on client-
side checking is necessarily limited by inherent network band-
width and latency characteristics. Further, unifying the
set of existing individual query-type-specific solutions into
a universal mechanism for arbitrary queries has proven ex-
tremely challenging.

In this paper we propose to look at this problem from
a different angle. Specifically, we posit that server-hosted
close-to-data trusted hardware acting on behalf of clients
can bring about a fundamental paradigm shift in this do-
main and result in a general purpose QA solution that is also
significantly cheaper and more efficient than client-server
software protocols. We are encouraged by previous results
determining that trusted hardware is significantly cheaper
than cryptographic alternatives [5] and subsequent work on-
trusted hardware based DBMS for data privacy [30].

The result of this pursuit is CorrectDB, an SQL DBMS
that deploys tamper proof secure co-processors at the server’s
side to provide full QA guarantees cheaply and efficiently,
despite higher hardware acquisition costs. It achieves this
through its close proximity to the outsourced data, by min-
imizing the authentication data, and by reducing the client-
server communication overheads.

The contributions of this paper are threefold:
(i) A comparative survey of existing QA research that ex-
plores both theoretical and empirical dimensions based on
published results.
(ii) A cost analysis and associated insights showing that us-
ing trusted hardware for QA is significantly more efficient,
both in cost and performance as compared to existing work.
(iii) The design, development, and evaluation of CorrectDB,
a trusted hardware-based DBMS providing QA assurances.

2. MODEL

2.1 Threats and Deployment
Data Owner. Data is placed by the data owner with a
remote, untrusted service provider. For authenticity and in-
tegrity of query results the data owner computes and places
additional authentication data with the provider. After the
initial upload, the server-side, trusted hardware manages the
authentication data on behalf of the data owner. The data
owner also issues search and update queries to the provider.
Clients. Client’s authorized by the data owner query the
outsourced datasets through an interface exposed by the
provider. A client query can either perform a search or re-
quest a data-only-update operation. Client’s have no access
to the server-side authentication data.

529

Adversary. The service provider is not trusted. Due to
compromise or malicious intent, if given the possibility to
get away undetected, it may attempt to compromise one or
more of the QA security requirements, described next.

2.2 Query Authentication (QA)Requirements
Correctness. Correctness has two components.

First, each tuple in the query result should be authentic
i.e., originate from the original database that was uploaded
to the provider’s site. It must be impossible for the provider
to introduce any spurious tuples in the result.

Second, each tuple in the result must satisfy the query
predicates exactly, thus ensuring that query execution ad-
hered to all predicates specified in clients’ queries.
Completeness. Completeness states that all tuples that
are supposed to be part of the query result must be present
in the result, i.e., query execution should not exclude any
valid tuples from the result.

2.3 Security Components
Trusted Hardware. CorrectDB leverages trusted hard-
ware such as the IBM 4764 [13] co-processor (SCPU) in
close proximity to the outsourced data. The SCPU features
tamper-resistant design [14], thus providing a secure execu-
tion environment. In the event of illicit physical handling,
the device destroys its internal state and shuts down.
Cryptography. The deployed SCPUs offer several crypto-
graphic primitives including digital signatures (RSA, DSA),
and crypto hash functions (MD5, SHA).

We will denote by PKALICE a public key that belongs to
Alice while SKALICE represents her private key. A signature
of message M with private keyK is written as S(M,K). The
hash of message M is denoted by H(M). Concatenation of
two messages M1 and M2 is denoted by M1||M2.

A Merkle Hash Tree (MHT) [19] authenticates a set rela-
tionship between multiple items such as tuples in a database.
If t1, t2 ... tn denote individual tuples in the dataset, the
leaves of the MHT are composed of the hash of each indi-
vidual tuple i.e., H(t1), H(t2) ... H(tn). Then, each internal
parent node at higher levels up the tree is constructed as the
hash of its two child nodes e.g., the parent node of H(t1)
and H(t2) is H(H(t1)||H(t2)). To subsequently prove that
a tuple belongs to the dataset associated with the MHT, it
suffices to re-compute and verify the root of the tree from
the tuple’s value and the siblings of all the nodes in the
traversal path up to the root of the MHT.

3. EXISTING WORK SURVEY
Here, we provide an overview of the important existing

QA works which are summarized in Table 1. This survey
serves to understand the factors that make trusted hardware
more suitable for QA, and to identify the best QA solutions
for range and join processing which can then be compared
with CorrectDB.
Overview. Existing QA solutions follow the deployment
model of section 2 with the following key difference. All
database updates, including the modifications to the au-
thentication data are performed by the data owner. Client
queries are read only.

At a high level, existing solutions work similarly using the
following steps. (1) The data owner uploads the database to

Name Year QCT QCP Ops Updates

Tree Based

MHT [8] 2003 X X S,R ×

VBT [24] 2004 X X S,R X

EMBT [15] 2006 X X S,R,J X

Singh et al [28] 2008 X X S X

XBT [26] 2009 X X R X

AIM [32] 2009 X X S,R,J ×

MRT [33] 2009 X X Sp X

AABT [16] 2010 X X A X

MR-SKY [17] 2011 X X Sp ×

Yang et al [34] 2011 X X R ×

Signature Based

AGS [21, 20] 2004 X × S,R ×

DSAC [22] 2005 X X S,R X

Pang et al [23] 2005 X X S,R,J X

VKDT,VRT [7] 2006 X X Sp ×

Pang et al [25] 2009 X X S,R,J X

VNA [12] 2010 X X Sp X

Others

DICT [10] 2001 X X K X

AUDIT [31] 2007 X × S,J X

HLT [35] 2012 X X S,R,J,A X

Table 1: Summary of existing approaches (QCT - Query

Correctness, QCP - Query Completeness, S - Select, R -

Range, J - Join (Equi,<,>), A - Aggregation, Sp - Spatial,

K - Key lookup).

the service provider. She then computes and uploads addi-
tional data structures known as Authentication Data Struc-
tures (ADS). Also, she may distribute certain information to
the clients. (2) A client submits a query request to the ser-
vice provider. (3) The provider executes the query to get the
desired results. With the aid of the ADS, he also computes
the data necessary for the client to verify both correctness
and completeness of the results. This additional informa-
tion is referred to as the Verification Object (VO). (4) The
service provider delivers both the query results and the VO

to the client. (5) Using the information from the owner,
and the query results and VO from the service provider, the
client determines whether QA assurances are met.

The properties of the ADS and the VO prevent the provider
from compromising integrity of the query results.
Classification. Existing solutions can primarily be clas-
sified as either tree-based or signature-based. The two cate-
gories differ in the data structures used for the ADS and the
VO, and hence in the query execution and verification.

In tree-based approaches, the ADS is constructed as a tree
(MHT, MB-Tree, VB-Tree etc). As part of query execution,
the service provider traverses the tree and gathers the re-
spective nodes that form the VO, which is sent to the client
along with the query results. The client can then recon-
struct the traversal path used in query execution and verify
that it is indeed authentic.

Signature-based approaches provide a mechanism to ver-
ify the ordering between tuples, when using specific search
attributes. To this end, an authenticated chain of unforge-
ably signed tuples is constructed by the data owner. At
query time, the service provider gathers the signatures of all
the tuples that comprise the contiguous range query result.
This set of signatures comprises the VO. Since each tuple is
now linked to its predecessor and successor in an unforgeable
manner the client can verify that no tuple is either illicitly
inserted or omitted from the query result.

3.1 Treebased Solutions
The approach designed in [8] forms the basis for most tree-

based range query approaches. It utilizes a MHT for query

530

processing on the provider’s site. The MHT root node is
signed by the owner and distributed to the client before up-
loading the MHT to the provider. In response to a client
query, the provider delivers the actual query results and rel-
evant nodes from the MHT such that the client can recon-
struct the root node. The client then verifies the signature
on the root node and is thereby assured that the query was
processed correctly.

The MHT approach can be extended and applied to B+-
Trees which are then referred to as MB-Trees (MBT). The
digest for a leaf node is constructed by a hash of the concate-
nation of the hashes of the k tuples pointed to by it i.e., Hli

= H(H(t1)||H(t2)||...||H(tk)). Each non-leaf node’s digest
is the hash of the concatenation of the digests of each of its
child nodes. Then the VO consists of all the additional node
digests required for the client to reconstruct and verify the
digest of the root node of the tree.

The first approach to deploy such a B+-Tree is known
as Verifiable B-Tree or VBT [24] and considers an edge
computing model, wherein all digests are computed, signed,
and later updated by a trusted central server and then dis-
tributed to the edge servers. The VO then consists of all the
authenticated nodes up to the root node of the subtree that
do not envelope the tuples present in the query result. The
client can construct this sub-tree and verify the signature
on its root. The optimization here lies in the fact that the
VO need not contain the path up to the root of the entire
B+-Tree, like in MHT.

An MB-Tree based ADS is also used in [15]. Here, each
individual node of the B+-Tree in turn stores an embedded
MB-Tree and this is thus known as an Embedded Merkle
B-Tree (EMBT). The embedded tree aids in quickly con-
structing the composite hash of the node being traversed
as part of query execution thereby reducing the number of
B+-Tree read operations in constructing the VO.

A standard MHT is used in [28] in a slightly different
context. Here, the provider periodically commits the state
of the database to the client and QA is performed only
against the last committed version. This provides weaker
security than other approaches but allows more frequent
updates. The ADS in this case is a MHT and the hash
for a leaf node is computed as H(id||H(Ai1||S(Ai1, SKDO)
... H(Aik||S(Aik, SKDO)) where, id is a unique identifier
for the tuple, Ai1, ...Aik are the tuple attribute values, and
SKDO is the secret signing key of the data owner. Support
for projections is added by including the tuple attribute val-
ues in the composite hash.

For join processing, straight-forward approaches have been
proposed that materialize the entire cross product and then
build the ADS on it. This is inefficient both in terms of
storage and update operations. [23] extends range query au-
thentication to joins as follows. Consider the relations R1,
R2, and the join query R1 ⊲⊳R1 .A=R2.B R2. Then the data
owner constructs an ADS on both R1.A and R2.B. Also,
assume that R1 is smaller. First the provider sends R1 to
the client along with the authentication data for R1. Then,
for each tuple in R1 the provider performs a range query on
R2 to find the matching tuples. The VO resulting from each
such range query is appended to construct the VO for the
entire join query results.

The first comprehensive work on QA for joins can be found
in [32]. The most efficient solution proposed here is Authen-
ticated Index Merge Join (AIM). Again, consider the join

query R1 ⊲⊳R1.A=R2.B R2, and that ADSs exists on both
R1.A and R2.B. Each ADS used is an MBT (discussed ear-
lier). Now, for the first tuple in R1, the provider performs
an index traversal and leaf scan on the ADS for R2 to find
the boundary tuples which are included in the VO. Then,
at each step the roles of R1 and R2 are reversed and addi-
tional boundary tuples are included. The detailed algorithm
is involved and we refer the reader to [32].

A solution for authenticating aggregation queries (SUM,
COUNT etc) using a tree-based ADS is proposed in [16].
This ADS is referred to as the Authenticated Aggregation
B-Tree (AABT). In a AABT each node stores the aggregated
sum α of its child nodes on the value of the search attribute
i.e., α = α1 + α2 + ... + αk where α1, α2 ... αk are the
aggregated values of the individual child nodes (η1, η2 ...
ηk). In addition a node stores the hash H(η1||α1||...||ηk ||αk)
which is included in the VO. All other solutions do not
authenticate aggregate operations, but transfer the relevant
data to the client for client-side aggregation.
Key Insights. Transferring additional ADS nodes to the
clients for verification means that the VO sizes in tree-based
approaches can become quite large. This in turn increases
both query latencies and the cost of data transmission. As
shown in [6] cloud to client transfer can cost upwards of 3500
picocents/bit, 2-3 orders of magnitude higher than process-
ing costs (1 US picocent = $1× 10−14).

3.2 Signaturebased Solutions
A straight-forward approach [24, 22] using signatures for

query correctness, but not for completeness, is for the data
owner to sign individual tuples before uploading to the provider.
The client can then verify the signatures on the tuples in the
query result. We refer to this as NBS.

The first approach to use signatures [21] (appeared in
2004, published in 2006) for range QA addresses only query
correctness. Here signature aggregation [21, 20] is used to
combine multiple tuple signatures into a single signed mes-
sage thereby resulting in a small, constant sized VO .

[22] extends [21] to provide completeness for range QA.
While in [21] the ADS consisted of the signature of the hash
of each individual tuple i.e., S(H(ti), SKDO), in [22] the
ADS consists of the signature of each individual tuple along
with its immediate predecessor i.e., S(H(ti)||H(ti−1), SKDO),
where ti−1 is the predecessor of ti when sorted on the search
attribute. By including the predecessor in the signature, a
chain of all tuples is formed, ordered on the search attribute.
In effect the client verifies that the set of tuples received in
the result do form a valid chain. The scheme is also appli-
cable to multiple search attributes.

Simultaneously, [23] devised a signature-based scheme for
range and join QA, to overcome the limitation of [8], where
two additional range boundary tuples are revealed to the
client, potentially causing a violation of access control mech-
anisms. Here, the ADS consists of the signature of each indi-
vidual tuple along with its immediate predecessor and suc-
cessor i.e., S(H(ti−1)||H(ti)||H(ti+1)), SKDO). Signature
aggregation can also be applied here to reduce VO size.

Signature-based schemes are inefficient for join processing
as they result in large VO sizes. Again, consider the join
query R1 ⊲⊳R1.A=R2.B R2. For each tuple in R1 present
in the result, the VO contains the boundary tuples for the
matching tuple in R2. Also, for each tuple in R1 that is not
part of the result we need a proof that no matching tuple

531

exists in R2. Again, the VO will contain two boundary tuples
showing that no such tuple in R2 exists. The resulting VO

thus becomes large.
Key Insights. The VO for signature-based solutions that
employ signature aggregation is a single signed message.
Hence, they do not incur the high transmission costs of tree-
based approaches, at least not for range queries. However,
the operations needed to construct such small VOs are ex-
pensive in computation on the server side, since computing
even a single cryptographic trapdoor requires a high number
of CPU cycles costing up to 30,000 picocents [6, 30].

3.3 Update Operations
Providing QA complicates update operations on the out-

sourced database, since changes made to the database tuples
involve modifications in the related ADS. Hence, some of the
works from previous sections, either do not address update
operations [20, 28] or assume fairly static/infrequently up-
dated databases [8, 18, 22, 21]. Moreover, only the data
owner is permitted to perform all update operations.

For tree-based approaches, the most straight-forward way
to update database tuples is for the data owner to re-upload
the new, modified tuples along with the entire ADS path
from the leaf node to the root. Then, the data owner can
compute a new signature for the root node and re-distribute
it to the clients. This approach clearly becomes inefficient
in case of a large number of clients querying the database.

Also, in this case, it is important to avoid replay attacks
wherein a service provider by using old signatures can pro-
vide stale results to clients. To handle this, the data owner
can lock the database and then make the relevant changes.
This however means that the database can only be updated
intermittently as in [24].

Batch updates are suggested in [15]. Updates to tuples
which are close together i.e., lie on same/adjacent leaf nodes,
can be performed in a single batch. Since these adjacent leaf
nodes would share nodes from the path to the root node the
number of ADS tree nodes modified would be small.

[8, 24, 22] suggest using materialization of the entire cross
product to compute join queries. This further complicate
update operations, since a minor change to a single tuple
can potentially affect a large number of join tuples.

For signature-based approaches, any update to a tuple
requires re-computing the signed digests for its neighboring
tuples. A concrete update mechanism to achieve this is given
in [22]. Here, a multi-round protocol is employed between
the owner and the provider to perform data manipulation
operations on individual tuples. This can also be used for
[23]. However, this is vulnerable to replay attacks.

3.4 Empirical Evaluation
QA performance entails the following key metrics.

VO size (VOS). The VO is transferred over the network
and thus determines query latency and bandwidth usage.
Hence, all solutions target to minimize the VO size.
Query Execution Time (QET). The provider builds VO
by computing on the ADS. This computation adds to the
overall execution time.
Verification Time (VT). Some client-side computation
is required to verify the authenticity of query results. Since
client(s) may be limited in computing abilities it is impera-
tive that this processing is minimal.

ASBT [15]

MHT

[8]

VBT

[24]

EMBT

[15]

Singh et

al [28]
AGS

[21,20]

DSAC

[21]

Pang et

al [23]

DICT

[10]

AUDIT

[31]

MBT

[24]

NSB

[22,24]

RNG

RNG

T

r

e

e

B

a

s

e

d

S

i

g

n

a

t

u

r

e

B

a

s

e

d

Other Research

VOS

VT, QET

XBT

[26]

MRT

[33]

AABT

[16]

VKDT

[7]

VRT

[7]

Pang et

al [25]

RNG

VOS, VT

AIM

[32]

VNA

[12]

Yang et

al [34]

MR-

SKY[17]

HLT

[35]

Figure 1: Comparison of published results. Metrics:

VOS = Verification Object (VO) Size, VT = Client-side

Verification Time, QET = Server-side Query Execution

Time. Queries: SEL = Selection, AGGR = Aggregation,

RNG = Range, JN = Join. A −→ B = A outperforms

B for the metrics denoted above the arrow and queries

denoted below. Nodes with no edges = no experimental

comparisons available.

Over time, newer solutions have shown their benefits over
existing prior work by experimental comparisons. Looking
at all of the published experimental results we can draw a
map as to which solutions perform better than others and
thus identify the most efficient QA solutions. Figure 1 shows
a comparative summary of existing research.

3.5 Summary
For selection and range queries, signature-based schemes us-
ing aggregation [22] provide the smallest VO and thus have
the least client-server network overhead. However, tree-
based solutions [15] in 2006 have been shown to have an
advantage over signature-based schemes when evaluated on
both QET and VT. This changes again in 2009 with the
speedup in crypto operations [25]. Note that crypto opera-
tions such as signature verification and aggregation are CPU
but not I/O intensive. Faster processors in 2009 reverse the
2006 result and signature-based schemes now perform bet-
ter on the metrics QET and VT as well. Signature-based
schemes are still expensive for join processing due to the
large VO sizes. AIM [32] is the only comprehensive approach
for join processing and is shown to perform better than other
tree-based approaches.

4. THECASE FORTRUSTEDHARDWARE
We now discuss the benefits of SCPUs for QA. In section

5 we describe how they are achieved in CorrectDB.
Data Proximity. One of the major performance and

cost considerations for QA has to do with VO sizes that
need to be transmitted from the provider to the client with
each query execution. This is applicable specifically to tree-
based solutions. Since SCPUs communicate with the host
server locally over the PCI bus they virtually eliminate these
high transmission costs. Later, in section 5.5 we show that
despite the higher acquisition and processing costs of SCPU
the data proximity factor leads to significant savings in over-
all processing costs.

532

Query Expressiveness. The general-purpose SCPUs can
be programmed to execute arbitrary queries. Thus, limita-
tions on the query expressiveness can now be removed and a
single solution utilizing SCPUs can be used for authenticat-
ing range, join and aggregation queries even with complex
predicates.
Database Updates. In existing QA solutions, since there
is no trusted component server-side the data owner cannot
simply issue an update query to the server. Instead, the
data owner is relied on entirely to perform all update opera-
tions. Hence, if the data owner does not retain a local copy
of the database it needs to fetch the relevant tuples from the
server, modify them locally, construct new ADS, and then
upload the new tuples and ADS back to the server. This adds
significant data transfer overheads. In addition, tree-based
approaches require re-distribution of the ADS root hash to
all clients. In the scenario using SCPUs, the data owner can
issue an update query directly to the SCPU. All updates
are then performed by the SCPU incurring no additional
data transfer overheads (section 5.7). Also, the ADS can
now completely be stored server-side. Hence, if the query
result verification is also performed using the SCPU, the re-
distribution to clients is avoided.
Access Control. If the server environment is untrusted
to provide correct and complete query results, it may be
argued that it should also not be trusted to enforce access
control policies. Access control can be efficiently executed
and enforced within the SCPU.
Untrusted Clients. Each update operation involves both
modifying the actual data and the ADS. In existing QA so-
lutions updates are limited to the data owner only. If clients
were permitted to perform data updates, it would be nec-
essary to give the clients access to the ADS as well. Hence,
a compromised client could alter the ADS causing incorrect
results to be computed for other clients’ queries.

In a trusted hardware-based solution, the SCPU acts as
a trusted entity on behalf of the owner and performs all
updates server-side. Clients can now issue update queries,
but the underlying data and ADS are modified only by the
server-side SCPU. Further, client update queries can be fil-
tered by SCPU enforced access control mechanisms, thereby
avoiding malicious updates.
Client Synchronization. If clients are storing any au-
thentication information such as the root hash in tree-based
approaches, any change to the authentication data involves
updates on all clients in synchronization, lest some clients
end up with stale data. If the number of clients is large this
problem becomes acute. Using a SCPU-based design avoids
such synchronization issues.
Replay Attacks. To prevent replay attacks, where the

server sends old authentication data to clients, tree-based
approaches require some way of locking the database while
the data owner recomputes the root hash of the ADS. Fur-
ther, the owner is required to securely distribute the new
root to all clients. Signature-based schemes are inherently
vulnerable to replay attacks. By computing the ADS locally
during updates, SCPU-based designs can avoid replay at-
tacks entirely in an efficient manner (section 5.7).
Querying without ADS. In existing work queries with
predicates on attributes that do not have any associated
ADS require the intermediate results to be transmitted for
client-side evaluation. This incurs significant data transmis-
sion costs. By comparison, server-side SCPUs can leverage

Host Server

SCPU (IBM 4764)

Client

Request

Handler

CorrectDB

Server

Query

Processor

B+ Tree

ADS for

leaf

nodes Root Hash

of ADS

Leaf

nodes

sorted

on

search

attribute

PCI

CorrectDB

Query

Parser

CorrectDB

SCPU

Query

Processor

Request

Handler

Crypto

PK
CDB

K
DATA

SK
CDB

CERT
CDB

PK
OS

SK
OS

PK
DEV

SK
DEV

PK
IBMC

SK
IBMC

OA

Keys

PK
IBM

K
DATA

1

8c

8b

3

4

5c*

5a*

65b*

8a

9

7

2a

2b

2c

Figure 2: CorrectDB Architecture

Step Description Details in
1 Client submits query
2,3 Forward client query
4 Parse into server & scpu-side sub-queries section 5.1
5 Forward parsed queries
6* Request leaf nodes from server

sections 5.2
7* Find leaf + MHT nodes
8* Request MHT nodes from server
9* Verify leaf nodes + process query to 5.5
10 Sign digest of query results (VO)
11,12 Forward results + signed VO

13 Client-side verification section 5.6

Table 2: Legend for figure 2, * = multi-round steps.

ADS on attribute(s) other than the search attribute(s). This
is specifically applicable for processing joins (section 5.4).
Data Privacy. For privacy data can be encrypted before
deployment to the provider. However, encryption greatly
limits the query predicates to very simple conditions [9, 11].
Within a SCPU however, data can be processed in plaintext
and complex predicates can be evaluated over it (section 7).
Regulatory Compliance. Secure code execution within
SCPUs can be easily augmented with a “Compliance Mod-
ule” to support regulatory compliance. Policies that reg-
ulate data can be communicated to and enforced by the
SCPU securely at runtime without additional costs. E.g.,
enforcement of tuple-level retention times.

5. CORRECTDB ARCHITECTURE
CorrectDB is built around a set of core components (figure

2) including a request handler, a query parser, server and
SCPU side query processors, and a crypto library. Following
are some of the key details.

Overview. The outsourced data is stored at the provider’s
site. For each relation R in the database a B+-Tree is built
on the search attribute(s)/key(s) of R. In addition, a sep-
arate Merkle-Hash tree (MHT) based ADS is built on the
leaf nodes of each of the B+-Trees. Each leaf of the ADS

is a hash of the entire contents of a single leaf node of the
corresponding B+-Tree. Figure 3 shows how the ADS is con-
structed from the corresponding B+-Tree. The root hash of
each ADS is stored inside the SCPU and is never accessible
from the outside. This avoids having to digitally sign each
root node hash, thereby saving a signature operation on each
update, and multiple signature verifications on each query.

533

L1 L2 L3 L4

B+-Tree

MHT

based ADS

m1 m2
m3 m4

m1 = H(L1)

H(m1||m2)

H(H(m1||m2)||H(m3||m4))

H(m3||m4)

m2 = H(L2) m3 = H(L3) m4 = H(L4)

Figure 3: MHT based ADS.

Note that for static data
sets both the B+-Trees
and their ADS can be
constructed by the data
owner prior to upload-
ing the database. How-
ever, since CorrectDB
supports insert and up-
date queries these struc-
tures are continuously
updated by the server-
side SCPU in response to
client update queries.

Query processing proceeds as follows (figure 2): (1) A
client queries the server through a standard SQL interface.
(2) The server forwards the query to the Request Handler
inside the SCPU which then forwards it to the CorrectDB
Query Parser. (3) The client query is parsed and re-written
into two sub-queries: a server query and a SCPU query. (4)
The parsed queries are forwarded to the CorrectDB query
processor. (5) The server sub-query is executed on the un-
trusted server host and its results are validated by the SCPU
by using the MHT ADS. (6) The SCPU sub-query is pro-
cessed on the results of the server sub-query, within the
SCPU, to get the final results. (7) The SCPU signs the
final query result. (8) The signed result is then sent to the
client. (9) The client verifies the signature.

5.1 Query Parsing and Execution
A query can be composed of various operations such as

selections, ranges, projections, aggregations, group-by etc.
The Query Parser’s job is then to re-write the original client
query into sub-queries, ensuring the following. (a) Process-
ing within the SCPU is minimized. (b) Any intermediate
results generated by server-side query processing can be val-
idated by the SCPU using the ADS built on the leaf nodes of
the B+-Tree indices of the relevant relations. (c) Any oper-
ations that cannot be authenticated if executed server-side
are processed on the intermediate results inside the SCPU.
(d) The net result of the sub-queries is the same as if the
original client query was executed without any re-writes.

To see how queries are re-written and processed consider
the following query derived from TPC-H [2]:
SELECT sum(l_extendedprice*l_discount), o_priority
FROM lineitem, orders
WHERE l_shipdate >= ’1993-01-01’
AND l_shipdate < ’1994-01-01’
AND o_orderdate between ’1992-01-01’ AND ’1993-01-01’
AND l_discount between 0.05 AND 0.07
AND l_orderkey = o_orderkey
AND o_priority in (’W’, ’R’, ’Q’)

Suppose we have B+-Tree indices and MHT based ADS on
the attributes l shipdate and o orderdate. Then the server-
side sub-query searches for all leaf nodes from the relations
lineitem and orders that satisfy the conditions

l_shipdate >= ’1993-01-01’
AND l_shipdate < ’1994-01-01’
AND o_orderdate between ’1992-01-01’ AND ’1993-01-01’

For this, the server uses the B+-tree indices on the at-
tributes l shipdate and o orderdate. Note that the server
does not actually identify the individual tuples that satisfy
these predicates but only the leaf nodes that contain the
tuples which may potentially satisfy them. The server and
the SCPU-side query processors then engage in a interac-
tive protocol in which, for each round, a set of leaf nodes is

first read into the SCPU, then verified for correctness and
completeness using the corresponding MHT based ADS, and
finally evaluated for the remainder of the query predicates:

SELECT sum(l_extendedprice*l_discount), o_priority
FROM lineitem, orders
AND l_discount between 0.05 AND 0.07
AND l_orderkey = o_orderkey
AND o_priority in (’W’, ’R’, ’Q’)

The SCPU-side verification step ensures the authentica-
tion of the results of the server sub-query (section 5.2). Since
the server sub-query filtered out unwanted tuples from the
relations lineitem and orders, the SCPU sub-query only
processes a subset of the data. This is essential, else the
join condition l orderkey = o orderkey would become an
expensive operation to perform entirely within the SCPU.

5.2 Range Queries
Consider the execution of a range query for all tuples with

keys in the range (L,U), L < U . Let R denote the set of
tuples in the query result. Let L1, L2,..., Ln be the leaf nodes
at the lowest level of the B+-Tree. Since the B+-Tree stores
data sorted on the search keys, the same sort order applies
to the leaf nodes as well, including the ordering of tuples
within a single leaf i.e., for two leaf nodes Li and Lj where

i < j, we have ∀ t ∈ Li, ∀ t
′

∈ Lj , t.key < t
′

.key. The
server performs the search for all tuples in the range and
identifies the leaf nodes Ll, Ll+1,...Lm, where l > 1, m <
n and l < m. It then sends these leaf nodes to the SCPU
query processor. The SCPU query processor computes the
hash of the leaf nodes H(Ll), H(Ll+1),...H(Lm). Using these
hash values and by requesting additional ADS nodes from
the server, the SCPU query processor constructs and verifies
the root hash of the MHT. Finally, the SCPU scans the leaf
nodes to find all tuples t such that t.key ∈ (L,U), which
comprise the result set R.
The following properties hold:
Correctness. (1) ∀ tuples t ∈ R, t.key ∈ (L,U).
Proof (sketch): The SCPU verifies evaluation of the range
predicate. Correctness then reduces to the security/collision
resistance of the MHT. Since the MHT based ADS is used
to verify the integrity of each leaf node the server cannot
alter any tuples to subvert query correctness.
Completeness. (2) ∀ t, if t.key ∈ (L,U) then t ∈ R.
Proof (sketch): Completeness is violated iff, ∃ tuple t such
that t.key ∈ (L, U), but t /∈ R. Note that the leaf nodes
Ll, Ll+1, ... Lm are consecutive nodes at the lowest level of
the B+-tree. This is easily verified by the SCPU using the
MHT, since the same leaf nodes correspond to the leaves at
the lowest level of the MHT. Thus, when the root hash of the
MHT is constructed, this chain linking between the B+-tree
leaf nodes is automatically verified. Now, in addition the
SCPU also checks the following. (1) min{t.key, t ∈ Ll} < L,
and (2) max{t.key, t ∈ Lm} > U . (1) and (2) together with
chain linking of consecutive leaf nodes ensure completeness.
Proof then reduces again to collision resistance of the MHT.

5.3 Projections
Projection operations are performed by the SCPU query

processor. Thus, no additional ADS are needed to support
them. For each leaf node being processed the SCPU query
processor simply discards any attributes not required for
current query processing. Supporting projections in this
manner enables CorrectDB to build the MHT based ADS

534

on the contents of the entire leaf nodes of the B+-Trees,
rather than on individual tuples. This saves considerably
on hash operations in intermediate query result verification
In effect, for the verification of Ln leaf nodes of average size
Ls KB with an average tuple size of Ts bytes, the number of
hash operations required during verification (by the SCPU)
are reduced from Ln∗Ls∗1024

Ts

to Ln. Also, hashing entire leaf
nodes enables us to utilize the SCPU’s crypto-hardware en-
gine which has high throughput for bulk operations, thereby
circumventing the high setup latencies involved in hashing
small data items such as individual tuples.

5.4 Joins
Join processing is a relatively straight-forward extension

of range processing. CorrectDB essentially uses two separate
methods for evaluating join queries, a sort-merge join for
predicates with ordering-based operators such as =,< and>,
and a full nested join for any other arbitrary join predicates.

Equi(=), <, > etc joins. The same method is used
for both Equi(=) joins and <,> join predicates. To com-
pute and authenticate the results of the join query σPr

(R)
1R.a=S.b σPs

(S) between the relations R and S the server
uses the B+-Trees on R.a and S.b to identify all the leaf
pages of R and S that contain the query results. If the
predicates Pr and Ps contain conditions on attributes other
than R.a and S.b or if they are empty then this means that
all leaf pages of both relations potentially contain result tu-
ples. If Pr and Ps contain predicates only on R.a and S.b
then the server can identify the subset of the leaf nodes of
R and S by traversing the respective trees. Once the server
identifies the leaf nodes, the server and SCPU-side query
processors engage in a protocol where, in each round, the
server-side query processor sends a set of pages from the
identified leaf nodes of R and S, in order, to the SCPU.
The SCPU performs a sort-merge scan of these pages and
includes any identified result tuples in the final result set.
Just as in range query processing the SCPU verifies both
the integrity and the consecutive linking of all the leaf pages
from both R and S by using the respective MHT based ADS,
thereby ensuring both correctness and completeness. Pro-
jections and any additional predicates are processed by the
SCPU query processor.

Arbitrary Joins. Nested loop joins are required when
join operations are complex and are not computable using
a sort-merge mechanism or when there are no indices avail-
able on the join attributes. Nested loop joins can also be the
preferred choice when the outer relation is small. Unfortu-
nately nested loop joins can be expensive. Suppose the two
relations participating in the join have nr and ns number
of leaf nodes respectively, each of size P . This could result
in reading nr * ns leaf nodes into the SCPU to perform the
nested join operation.

This cost can be reduced by utilizing the available mem-
ory inside the SCPU (e.g., M = 32 MB for the 4764) as
follows. M/2 space inside the SCPU is dedicated to hold
the leaf nodes for each relation. Then the SCPU will per-
form a number of nr + (2∗P∗ns

M
)2 node fetches to do the

join. The verification procedure of section 5.2 is repeated
for the leaf nodes of both relations to guarantee correctness
and completeness. If an ADS is not available for a particular
join attribute, we can use the ADS of another attribute of
the same relation to perform the authentication within the
SCPU, if the entire relation is participating in the join.

5.5 Aggregations, Grouping and Ordering
Existing tree and signature-based mechanisms require the

client to perform any aggregation operations. Thus addi-
tional data, which is not part of the final query results is
transferred to the client incurring both query latency and
data-transfer-cost overheads. CorrectDB however, performs
all aggregation operations inside the SCPU and only the fi-
nal result is sent to the client. This saves traffic for all and
costs for most but not all queries. Later, in section 6 we
compare the performance and cost of aggregate operations
for CorrectDB with the data transfer in other QA solutions.

The same argument as above applies to processing GROUP
BY clauses within the SCPU rather than transferring ad-
ditional tuples to the client, and having the client do the
grouping. If on average, a GROUP BY clause aggregates ng

values and the total number of tuples satisfying the query
predicates is nr, then this reduces the number of tuples
transferred from nr to nr

ng
.

ORDER BY clauses however are not subject to this ar-
gument. If an ORDER BY clause is processed as the last
step in query execution then there is no reduction in the
number of tuples that need to be transferred to the client.
In this case if the client has higher processing capacity than
the SCPU, such as desktop clients, then client-side ordering
will perform better at least in execution time.

5.6 Client Side Verification
Client-side verification is identical for all query types since

most query-specific verifications are already performed by
the server-side SCPU.

The tuples comprising the result set R are identified by
the SCPU query processor while processing the second sub-
query on the verified intermediate results of the first sub-
query executed by the server. Let R = {t1, t2, ..., tr}. The
SCPU then computes the digest of R, D(R) = H(Cid||Qc||
Nonce||H(t1)||H(t2)||...||H(tr)), where Cid is the client iden-
tifier, and Qc is the client query. Nonce is a per query fresh
random value sent by the client within the query request. Its
purpose is to uniquely associate the result R with the query
Qc. This prevents the server from matching stale results
with a recent query thus thwarting replay attacks.

The SCPU then signs D(R) using its private key. The
signed message S(D(R), SKCDB), is then sent to the client,
along with the query results {t1, t2, ..., tr}. The client then
recomputes D(R) and verifies the signature using the public
key of the SCPU.

Standardized Outbound Authentication mechanisms exist
for key setup and for communication of public keys (PKCDB)
to clients. For details refer to [30, 29].

5.7 Database Updates
Clients issue update statements to request modifications

to the server-hosted data. Any client update query requires
secure modifications to the B+-Tree storing the tuples, and
the MHT based ADS used by the SCPU for verification.
Both these data structures are modified only by the SCPU
via local interaction with the server without involving the
data owner. This avoids the need of inter-client synchro-
nization and increases efficiency. .

Consider the following update query:

UPDATE lineitem SET l_discount = l_discount + 0.01
WHERE l_shipdate >= ’1993-01-01’
AND l_shipdate < ’1994-01-01’

535

AND l_discount between 0.05 AND 0.07

It is processed as follows. (1) The query is parsed by the
SCPU query parser and re-written into a server sub-query

SELECT * FROM lineitem
WHERE l_shipdate >= ’1993-01-01’
AND l_shipdate < ’1994-01-01’

and a SCPU sub-query

UPDATE lineitem SET l_discount = l_discount + 0.01
WHERE l_discount between 0.05 AND 0.07

similar to the case of range queries. (2) The server then
executes the first sub-query and finds all the leaf nodes that
require modifications. Additional leaf nodes may be identi-
fied if the server requires re-balancing of the index. (3) The
server transfers these leaf nodes to the SCPU query proces-
sor, which are then verified using the MHT ADS. Verifica-
tion ensures correctness and completeness. (4) The SCPU
query processor then modifies the nodes as per the second
sub-query. It also modifies the MHT ADS, re-computing and
updating the root hash stored within the SCPU. (5) Only
after making changes to the ADS, the modified leaf nodes
are transferred back to the server query processor and the
final changes applied to the B+-tree.

The above is repeated for each B+-Tree with an ADS.
Since on any update operation the root hash of the ADS is
immediately re-computed and refreshed within the SCPU,
replay attacks are thwarted.

6. EXPERIMENTS
We experimentally evaluate CorrectDB and compare it

with [22, 25], the most efficient existing range query mecha-
nisms, and with AIM [32], the most efficient mechanism for
join queries (section 3).
Setup. The SCPU used is the IBM 4764 with 32 MB RAM,
and a PowerPC 405GPr at 233 MHz. The SCPU sits on the
PCI-X bus of an Intel Xeon 3.4 GHz, 4GB RAM Linux box
(kernel 2.6.18). The client is an Ubuntu VM with 1 GB
RAM and 2 vCPUs. The CorrectDB stack is written in C.

Measurements are made for the three key metrics, Verifi-
cation Object (VO) size, Query Execution Time (QET), and
Verification Time (VT).

For comparative experiments, we combine both Query Ex-
ecution Time (QET) and Verification Time (VT) into a sin-
gle Total Query Execution time and later in figure 9(a) we
measure each time component separately. CorrectDB has a
constant VO size, which is a single signed digest of all tuples
that comprise the query result. This VO size is the same for
all types of queries, hence we only mention it once here.
Range Queries. For evaluating the performance of Cor-
rectDB and signature aggregation we set up multiple rela-
tions with varying tuple sizes and 106 tuples each, indexed
using a B+-Tree. Keys are random integers between 1 and
107. We evaluate the performance by varying the tuple size,
and the number of tuples in the query result. As we shall
see, both these parameters have varying effects on perfor-
mance and it is hence, important to consider both. The test
queries are thus of the form

SELECT * FROM R where R.key > ’LB’ AND R.key < ’UB’

’LB’ and ’UB’ are varied to get query results of differ-
ent sizes. Note that, although CorrectDB supports a wide
range of queries, we only use simple queries here for consis-
tent comparative results, since other approaches [22, 25, 32]
support and evaluate only such basic queries.

Figure 4(a) shows the total query execution times for Cor-
rectDB and signature aggregation varying the two parame-
ters. For small tuple sizes (32 bytes - 128 bytes) CorrectDB
performs 2-6x better than signature aggregation. Note that
the performance of signature aggregation is linear in terms
of the number of tuples in the result set, but does not de-
pend on the tuple size, since the aggregation is performed
only on the signed hash of the tuples and not on the tuples
themselves. This explains the similar times for signature
aggregation even when tuple sizes are varied. CorrectDB’s
performance however, varies with both tuple size, and num-
ber of tuples in the result.

For larger tuple sizes (512 bytes) and large result sets (≥
103) we observe a shift and signature mechanisms perform
better by factors of 1.1-2x (figure 4(b)). This is because in-
creasing tuple size also increases the size of the leaf nodes
that contain the tuple data. Since these leaf nodes are trans-
ferred from the server to the SCPU, the larger the leaf node
the higher is the transfer latency. Hence, CorrectDB has
higher execution times for large tuples. This is apparent
from figure 9(a) which depicts the breakdown of execution
times of different query processing stages of CorrectDB. As
seen, for result sizes ≥ 103, the data transfer of leaf nodes
from the server to the SCPU is significant. Paying this
penalty for transferring entire leaf nodes is acceptable since
it enables CorrectDB to support projections and complex
selection predicates. However, note that in the experiments
above we have not considered any projection operations i.e.,
the entire tuple is part of the result. Once projections are
introduced CorrectDB regains the performance advantage
even for large tuple sizes, as described next.
Projections. Next, we add projections into the mix. We
fix the tuple size to 512 bytes and vary the number of pro-
jected attributes in the select condition of the test query
for each run. Each tuple is divided into 16 equal sized at-
tributes. Figure 4(c) illustrates that CorrectDB performs
better for all cases by 1.5-7x. If p tuples are projected out
then the number of signatures to be aggregated increases by
p per tuple in the query result [25]. This causes the higher
execution times for signature aggregation as compared to
CorrectDB even for large tuple sizes.

Both Signature Aggregation and CorrectDB have the same
VO size and hence, are equivalent on this metric. Figure
7(a) summarizes which solution (CorrectDB or signature
aggregation) performs better for each combination of the
parameters, tuple size, result size, and number of projected
attributes.
Join Queries. For evaluating join queries (CorrectDB
and AIM [32]) we use two sets of relations R and S with
106 tuples each and varying tuple sizes. Each relation has a
B+-Tree on its key attribute and an MHT based ADS. The
test queries are of the form

SELECT * FROM R, S WHERE R.key = S.key AND R.key > ’LB’
AND R.key < ’UB’

We note that in case of AIM the VO size is not constant
but varies with the query result size. Since non-trivial VO
sizes result in large server-client data transfers we include
the data transfer time (network latency) as a measurement
parameter. We evaluate the performance on both Foreign
Key (FK) and Equi (EQ) joins, as in [32], to keep the com-
parisons consistent.
Foreign Key (FK) Join. In a FK joins each tuple in
relation R matches at least one tuple in the other relation

536

 0

 100

 200

 300

 400

 500

 600

 700

10
0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4

to
ta

l
q

u
e

ry
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

number of tuples in the query result (log scale)

CorrectDB
Signature Aggregation

128 bytes64 bytes32 bytes16 bytes

(a) Small tuple sizes (no projections).

 0

 200

 400

 600

 800

 1000

 1200

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

to
ta

l
q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

number of tuples in the query result (log scale)

CorrectDB
Signature Aggregation

512 bytes256 bytes

(b) Large tuple sizes (no projections).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10
0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4

to
ta

l
q

u
e

ry
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

number of tuples in the query result (log scale)

CorrectDB
Signature Aggregation

#proj attr=8#proj attr=4#proj attr=2#proj attr=1

(c) Varying # projected attributes.

Figure 4: Comparison of CorrectDB and Signature Aggregation [22, 25] for Range queries (with/without projections)

 0

 20

 40

 60

 80

 100

 120

32 64 128 256 512

to
ta

l
e
x
e
c
u
ti
o
n
/t
ra

n
s
fe

r
ti
m

e
 (

s
)

tuples size (bytes)

CorrectDB
AIM query processing only

(a) FK join without VO data transfer
times.

 0

 50

 100

 150

 200

 250

 300

 350

 400

32 64 128 256 512

to
ta

l
e
x
e
c
u
ti
o
n
/t
ra

n
s
fe

r
ti
m

e
 (

s
)

tuples size (bytes)

CorrectDB
AIM (with VO data transfer)

(b) FK join with VO transfer (10 Mbps
link).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

32 64 128 256 512

to
ta

l
q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

tuples size (bytes)

CorrectDB

AIM (with VO data transfer)

(c) Equi join - 10 Mbps link.

Figure 5: Comparison of CorrectDB and AIM [32] for Foreign Key and Equi-Join queries.

S. This results in large query result sizes. Figure 5(a) shows
the total query execution times for CorrectDB and AIM for
various tuple sizes. Note that the data transfer times are
not included here. We see that when compared on process-
ing times alone, AIM outperforms CorrectDB for tuple sizes
up to 256 bytes. However, note that the VO size for AIM
ranges from 19 MB to 260 MB. Hence, once we consider the
data transfer times as well it is observed that the perfor-
mance relationship inverses. This is depicted in figure 5(b)
which also includes the server to client VO transfer times.
Figure 5(b) considers a link capacity of 10 Mbps. As seen
now CorrectDB features significantly lower overall execution
times by factors up to 5x.

It may be possible that in certain settings such as private
clouds, the client-server link capacities are larger thereby
favoring AIM. Hence, in figure 6(a) we re-compare for dif-
ferent link capacities. In conclusion, up to link capacities of
50 Mbps CorrectDB performs better.

We note that in most commercial settings today, available
link capacities for home and businesses range from 1 Mbps to
30 Mbps, increased capacity being available with increased
costs [6]. For commercial cloud services such as Amazon
EC2 the available TCP bandwidth from external clouds to
EC2, has been benchmarked in the 7-27 Mbps range [27].
Equi (EQ) Join. Unlike FK join where each tuple in
relation R matches at least one tuple in the other relation
S equi join has a small result set, which we fix at 31000
as in [32]. This reduces the processing times for AIM to
construct the VO and makes the VO size small. CorrectDB
uses the same processing mechanisms for both FK and EQ
joins thereby having similar performance for both queries.

Figure 5(c) shows the execution times for EQ join queries
for a link capacity of 10 Mbps, while Figure 6(b) compares
the times for varying data link capacities. For capacities >
5 Mbps AIM performs similarly or better.

Figure 7(b) summarizes which solution (CorrectDB or
AIM) performs better for each combination of the parame-
ters, join type (FK or EQ), tuple size, and link capacity.

As seen in figures 7(a) and 7(b) using trusted hardware
makes CorrectDB the preferred QA solution for a wide range
of the parameter space. Note that, in addition, this greatly
increases the functionality that can be provided, e.g., sup-
port for arbitrary joins, aggregation queries, compliance, ac-
cess control etc (section 4).
Updates. Update operations are evaluated using the range
query data sets and test queries of the form

UPDATE key=key+1 FROM R where R.key>’LB’ AND R.key<’UB’

Updates are a highly favorable scenario for CorrectDB.
As discussed in section 4 existing QA solutions cannot per-
form updates server-side. Instead, the data owner obtains
the relevant tuples from the server, modifies them locally
along with the ADS, and re-uploads to the server. Hence
the data transfer overheads are significant. Therefore, as
shown in figure 8(a) CorrectDB outperforms [22, 25] even
for higher tuple sizes, no projections, and high bandwidth
links (50 Mbps). In fact, for update operations CorrectDB
outperforms in the entire parameter space.
Aggregations. To evaluate aggregate operations we use
the same data setup as for range queries. The test queries
are of the form.

SELECT SUM(key) FROM R where R.key > ’LB’ AND R.key < ’UB’

Figure 8(b) shows data transfer time in other approaches
vs the time required to do the entire computation within the
SCPU and only send the result to the client. The link ca-
pacity considered is 10 Mbps. As seen, total query execution
time in CorrectDB is lower for result sizes > 102. Note that,
here we only compare the data transfer time in other solu-
tions and not the total query execution time, which would
include the server processing and client verification. We do

537

 0

 500

 1000

 1500

 2000

 2500

32 64 128 256 512

to
ta

l
q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

tuples size (bytes)

CorrectDB

AIM, 1 Mbps link

AIM, 5 Mbps link

AIM, 10 Mbps link

AIM, 50 Mbps link

AIM, 100 Mbps link

(a) FK join query

 0

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512

to
ta

l
q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

tuples size (bytes)

CorrectDB

AIM, 1 Mbps link

AIM, 5 Mbps link

AIM, 10 Mbps link

AIM, 50 Mbps link

AIM, 100 Mbps link

(b) EQ join query

Figure 6: Effect of data link capacity on performance of AIM compared to CorrectDB.

(a) CorrectDB and Signature Aggregation (Range queries) (b) CorrectDB and AIM (Join queries)
Figure 7: Performance maps for CorrectDB, Signature Aggregation [22, 25] and AIM [32]. A box shaded with the

color of a specific solution indicates that this solution has better performance (lower total query execution time) for

the set of parameters corresponding to that box.

this specifically to demonstrate the significant data transfer
overhead for aggregations in existing QA solutions. If over-
all query execution times are added to results of figure 8(b),
then CorrectDB outperforms for all result sizes.

Further, we also compare the costs of performing aggre-
gation operations in CorrectDB with just the data transfer
costs in other approaches. For this, we use the derivation
of costs of data transmission and the SCPU cycles based on
the work from [6, 30] which also take into consideration the
acquisition and operating costs of SCPUs and of traditional
server hardware. The cost of a single SCPU CPU cycle is 56
picocents [30] while a single bit transfer from cloud to client
environment costs up to 3500 picocents [6].

As a result, it can be seen from figure 8(c), that CorrectDB
also performs significantly better in terms of cost above a
minimal result set size of around 100. This is because a
fixed lower bound cost is incurred in transferring a single
data page from the server to the SCPU.

7. DISCUSSION
Data Privacy and QA. An efficient SCPU-based solu-
tion for data privacy and confidentiality in the presence of
a curious but otherwise trusted server is TrustedDB [30].
TrustedDB partitions relational data into private (encrypted)
and public parts. A client query is then split in such a way
that private data is decrypted only inside the SCPU while
processing on public attributes is done by the host server.
TrustedDB supports full SQL and leverages the use of very
fine grained encryption (at the attribute level) to off-load

significant query operations to the server. TrustedDB does
not provide any QA guarantees and although, it may be fea-
sible to endow TrustedDB with an additional layer of QA,
we chose not to do so here for several reasons.

Firstly, since TrustedDB employs fine-grained attribute
level encryption, it can keep the SCPU-side processing min-
imal by offloading range, projection and aggregation opera-
tions (on public attributes) to the server. However, to date,
we do not have a single authentication data structure (ADS)
that can verify the integrity of all these query operations.
Hence, if QA were to be added here, a separate ADS is
needed for each operation. This increases server-side stor-
age, the SCPU-server data transfers and SCPU-side pro-
cessing. In short, the overheads of adding QA far exceed
the original cost of privacy resulting in a solution that is
efficient neither for privacy nor for QA.

Secondly, for illustration purposes, we felt it was impor-
tant to clearly outline the cost and performance benefits of
trusted hardware over existing QA work without the addi-
tional overheads of privacy.

However, CorrectDB allows for a certain degree of pri-
vacy at minimal cost by employing tuple level encryption in
update/insert operations.

All tuple attributes are encrypted, except for the search
attribute(s) on which the B+-Tree is built. The search at-
tribute is not protected to aid the server in query processing.
Also, since projections, aggregations, and the final process-
ing of queries are done inside the SCPU, the tuple data is
only decrypted within, on demand.

We measure the overhead of providing data privacy in

538

 0

 500

 1000

 1500

 2000

10
0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4
10

0
10

1
10

2
10

3
10

4

to
ta

l
q

u
e

ry
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

number of tuples in the query result (log scale)

CorrectDB
Signature Aggregation

512 bytes256 bytes128 bytes64 bytes

(a) Update operations (50 Mbps link).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

10
0

10
1

10
2

10
3

10
4

10
5E

x
e
c
/D

a
ta

 t
ra

n
s
fe

r
T

im
e
 (

µ
s
)-

lo
g
 s

c
a
le

number of tuples in query result (log scale)

CorrectDB execution
Other(s) data transfer

(b) Aggregations execution time.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

10
0

10
1

10
2

10
3

10
4

10
5E

x
e
c
/T

ra
n
s
fe

r
C

o
s
t
(p

ic
o
c
e
n
ts

)-
lo

g
 s

c
a
le

number of tuples in query result (log scale)

CorrectDB execution
Other(s) data transfer

(c) Aggregations execution cost.

Figure 8: CorrectDB aggregate and update operations.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10
0

10
1

10
2

10
3

10
4

10
5

%
 o

f
to

ta
l
q

u
e

ry
 e

x
e

c
u

ti
o

n
 t

im
e

number of tuples in the query result (log scale)

Server processing time
SCPU processing time

Server<->SCPU data transfer time
Client verification time

(a) Time profile (512 byte tuples).

32
64

128
256

512
10

110
210

310
410

5
 0

 20
 40
 60
 80

 100
 120

(%)

CorrectDB data privacy overhead (%)

tuple size (bytes)

tuples in result

(%)

(b) Range queries.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

32 64 128 256 512

O
v
e
rh

e
a
d
 (

%
)

tuple size (bytes)

CorrectDB data privacy overhead (%)

(c) Equi join.

Figure 9: CorrectDB query profile and data privacy overheads (as percentage of total query execution time).

CorrectDB. Figure 9(b) shows the overhead for the set of
range queries while figure 9(c) shows the data privacy over-
head for the EQ join query tests. We observe that the over-
head decreases with tuple size. For small result set sizes as
in the case of EQ join queries data privacy is added with
very little overhead.
Optimized Solutions. Note that, instead of a general-
purpose processor, at the expense of functionality, it is pos-
sible to design specific optimized solutions targeted at par-
ticular query characteristics. E.g., for EQ join queries we
can modify the leaf nodes to store the hash of individual
tuples instead of entire tuple contents. This reduces the
size of the leaf nodes and thereby the data transfer times
from the server to SCPU. To illustrate, for tuple size of
512 bytes from above experiments the transfer times are re-
duced by up to 95%. Such optimizations greatly improve
the performance of CorrectDB. However, we chose to opt
out of such targeted solutions that limit functionality, since
we posit that the benefits of utilizing trusted hardware are
seen in the increased functionality offered (section 4) at bet-
ter/comparable performance.
Security. Although the SCPU resides server-side in physi-
cal possession of the service provider who also performs man-
agement tasks such as software updates, the overall security
of the solution remains intact. This is because the tamper-
resistant design and Outbound Authentication mechanisms
of trusted hardware at any point in time provide the fol-
lowing. (i) Guarantee that the remote trusted module was
not tampered with. (ii) On-demand proof to clients that
the trusted hardware module runs the correct software code
stack, including the correct user-land modules as well as the
underlying OS and SCPU hardware logic. (iii) Enable setup
of secure communication channels between clients and the
remote trusted modules.

 0

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512

to
ta

l
q

u
e

ry
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

tuples size (bytes)

CorrectDB

AIM, 1 Mbps link

AIM, 5 Mbps link

AIM, 10 Mbps link

AIM, 50 Mbps link

AIM, 100 Mbps link

AIM, 1 Gbps link

Figure 10: Equi-Join Comparison for new 4765 SCPU

which yields faster results for all cases.

Due to space constraints we refer the reader to [30, 29] for
details of Outbound Authentication and its applications.
New SCPU. Older SCPU technology is now being re-
placed by new and improved SCPUs such as the recently an-
nounced IBM 4765 [1], which features more RAM (128MB+),
two faster 400MHz CPUs, and a significantly faster PCIe bus
for increased 100MB/s+ throughputs.

Initial intuitions suggest that the overall cost and effi-
ciency proposition of the new 4765 will increase the current
CorrectDB advantages by a factor of 4-6x. E.g., the higher
PCIe throughput alone decreases overall query execution
time by a factor of 3.5x, since we know from figure 9(a)
that the server-SCPU conduit bandwidth often dominates.
Figure 10 projects the expected performance of CorrectDB
on the new platform indicating that CorrectDB will likely
out-perform in the entire parameter space.
Query Optimization. [3] details query optimization tech-
niques in a trusted hardware model.
Trusted Hardware in Data Management. Due to
space constraints we direct the reader to existing work [30]
that summarizes the work on this topic.

539

8. CONCLUSIONS
This paper’s contributions are threefold. (i) a compar-

ative survey of existing QA research, (ii) the insight that
trusted hardware significantly reduces overall costs (despite
its higher price), increases performance and provides en-
hanced QA functionality, and (iii) the design and develop-
ment of CorrectDB, a trusted hardware based DBMS pro-
viding QA for a wide range of query types on both read-only
and dynamic data sets.

9. REFERENCES
[1] IBM 4765 PCIe Cryptographic Coprocessor. Online at

http://www-03.ibm.com/security/cryptocards/.

[2] TPC-H. Online at http://www.tpc.org/tpch/.

[3] S. Bajaj and R. Sion. Trusteddb: A trusted hardware
based database with privacy and data confidentiality.
IEEE Transactions on Knowledge and Data
Engineering, 99(PrePrints):1, 2013.

[4] B. Carminati. Secure data outsourcing. In L. Liu and

M. T. Özsu, editors, Encyclopedia of Database
Systems. Springer US, 2009.

[5] Y. Chen and R. Sion. On securing untrusted clouds
with cryptography. In E. Al-Shaer and K. B. Frikken,
editors, WPES, pages 109–114. ACM, 2010.

[6] Y. Chen and R. Sion. To cloud or not to cloud?
musings on costs and viability. In SOCC. ACM, 2011.

[7] W. Cheng, H. Pang, and K. lee Tan. Authenticating
multi-dimensional query results in data publishing. In
In DBSec, 2006.

[8] P. Devanbu, M. Gertz, C. Martel, and S. G.
Stubblebine. Authentic data publication over the
internet. pages 291 – 314, 2003.

[9] Einar Mykletun and Gene Tsudik. Aggregation
Queries in the Database-As-a-Service Model. Data and
Applications Security, 4127, 2006.

[10] M. T. Goodrich, R. Tamassia, and A. Schwerin.
Implementation of an authenticated dictionary with
skip lists and commutative hashing. In DISCEX,
pages 68 – 82. IEEE Computer Society Press, 2001.

[11] H. Hacigumus, B. Iyer, and S. Mehrotra. Efficient
execution of aggregation queries over encrypted
relational databases. In DASFAA, volume 2973, pages
633–650, 2004.

[12] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi.
Verifying spatial queries using voronoi neighbors. In
Proceedings of GIS, pages 350–359. ACM, 2010.

[13] IBM 4764 PCI-X, 4765 PCIe Cryptographic
Coprocessors. Online at
http://www-03.ibm.com/security/cryptocards/.

[14] Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner
Sailer and Leendert van Doorn. Building the IBM
4758 Secure Coprocessor. IEEE, 34(10), 2001.

[15] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for
outsourced databases. In Proceedings of SIGMOD,
pages 121 – 132. ACM, 2006.

[16] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated index structures for aggregation
queries. ACM Trans. Inf. Syst. Secur.,
13(4):32:1–32:35, Dec. 2010.

[17] X. Lin, J. Xu, and H. Hu. Authentication of
location-based skyline queries. In Proceedings of
CIKM, pages 1583–1588. ACM, 2011.

[18] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz,
A. Kwong, and S. Stubblebine. A general model for
authenticated data structures. Algorithmica, Volume
39 Issue 1, pages 21 – 41, 2004.

[19] R. C. Merkle. A certified digital signature. In
Proceedings on Advances in cryptology, pages 218–238.
Springer-Verlag New York, Inc., 1989.

[20] E. Mykletun, M. Narasimha, and G. Tsudik.
Signature bouquets: Immutability for
aggregated/condensed signatures. In ESORICS, 2004.

[21] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and integrity in outsourced databases.
ACM TOS, Volume 2 Issue 2, pages 107 – 138, 2006.

[22] M. Narasimha and G. Tsudik. Dsac: integrity for
outsourced databases with signature aggregation and
chaining. In Proceedings of CIKM. ACM, 2005.

[23] H. Pang, A. Jain, K. Ramamritham, and K. Tan.
Verifying completeness of relational query results in
data publishing. In Proceedings of SIGMOD, pages
407 – 418. ACM, 2005.

[24] H. Pang and K.-L. Tan. Authenticating query results
in edge computing. In Proceedings of ICDE, page 560.
IEEE Computer Society, 2004.

[25] H. Pang, J. Zhang, and K. Mouratidi. Scalable
verification for outsourced dynamic databases.
Proceedings of the VLDB Endowment, Volume 2 Issue
1, pages 802 – 813, 2009.

[26] S. Papadopoulos, D. Papadias, W. Cheng, and K.-L.
Tan. Separating authentication from query execution
in outsourced databases. In Proceedings of ICDE,
pages 1148 – 1151. IEEE Computer Society, 2009.

[27] S. Sanghrajka, N. Mahajan, and R. Sion. Cloud
performance benchmark series, network performance:
Amazon ec2. Online at www.cloudcommons.org.

[28] S. Singh and S. Prabhakar. Ensuring correctness over
untrusted private database. In Proceedings of EDBT,
pages 476 – 486. ACM, 2008.

[29] S. W. Smith. Outbound authentication for
programmable secure coprocessors. In Proceedings of
ESORICS, pages 72–89. Springer-Verlag, 2002.

[30] Sumeet Bajaj and Radu Sion. TrustedDB: A Trusted
Hardware based Database with Privacy and Data
Confidentiality. In Proceedings of SIGMOD, pages
205–216. ACM, 2011.

[31] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity
auditing of outsourced data. In Proceedings of VLDB,
pages 782 – 793. VLDB Endowment, 2007.

[32] Y. Yang, D. Papadias, S. Papadopoulos, and
P. Kalnis. Authenticated join processing in outsourced
databases. In Proceedings of SIGMOD, pages 5 – 18.
ACM, 2009.

[33] Y. Yang, S. Papadopoulos, D. Papadias, and
G. Kollios. Authenticated indexing for outsourced
spatial databases. pages 631 – 648, 2009.

[34] Z. Yang, S. Gao, J. Xu, and B. Choi. Authentication
of range query results in mapreduce environments. In
Proceedings of CloudDB, pages 25–32. ACM, 2011.

[35] Q. Zheng, S. Xu, and G. Ateniese. Efficient query
integrity for outsourced dynamic databases. 2012.

540

