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ABSTRACT
Frequent itemset mining is an important problem in the
data mining area. Extensive efforts have been devoted to
developing efficient algorithms for mining frequent itemsets.
However, not much attention is paid on managing the large
collection of frequent itemsets produced by these algorithms
for subsequent analysis and for user exploration. In this pa-
per, we study three structures for indexing and querying
frequent itemsets: inverted files, signature files and CFP-
tree. The first two structures have been widely used for
indexing general set-valued data. We make some modifi-
cations to make them more suitable for indexing frequent
itemsets. The CFP-tree structure is specially designed for
storing frequent itemsets. We add a pruning technique based
on length-2 frequent itemsets to make it more efficient for
processing superset queries. We study the performance of
the three structures in supporting five types of containment
queries: exact match, subset/superset search and immedi-
ate subset/superset search. Our results show that no struc-
ture can outperform other structures for all the five types of
queries on all the datasets. CFP-tree shows better overall
performance than the other two structures.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data Mining

Keywords
Indexing frequent itemsets, inverted files, signature files,
CFP-tree

1. INTRODUCTION
The frequent itemset mining problem was first proposed

by Agrawal et al. [2] in 1993 and it has become an im-
portant problem in the data mining area since then. Let
D = {t1, t2, · · · , tN} be a transaction database and I =
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{a1, a2, · · · , an} be the set of items appearing in D, where
ti (i ∈ [1, N ]) is a transaction and ti ⊆ I. Every subset of
I is called an itemset. If an itemset contains k items, then
it is called a length-k itemset. The support of itemset X in
database D is defined as the number of transactions in D
containing X, that is, suppD(X) = |{t|t ∈ D and X ⊆ t}|.
Given a user-specified minimum support threshold min sup,
if suppD(X) ≥ min sup, then X is called a frequent item-
set in D. The task of frequent itemset mining is to find all
the frequent itemsets with respect to min sup from a given
transaction dataset.

Frequent itemset mining is often interactive and iterative.
Users may not know exactly what they want at the begin-
ning, and they may need to try different parameters and
iteratively examine the set of frequent itemsets from dif-
ferent points of view to find things that are interesting to
them. For example, in [12, 25], OLAP operations, such as
slicing, dicing, drilling down and rolling up, are used to ex-
plore rules to systemically discover useful knowledge from
phone usage data. It is very costly if a fresh mining is per-
formed every time a user makes a request because frequent
itemset mining is often very time-consuming. An alterna-
tive approach is to pre-compute frequent itemsets with a
relatively low minimum support threshold and then answer
user queries using the pre-computed frequent itemsets. The
number of frequent itemsets in a dataset can be undesirably
large, especially on dense datasets. It is therefore important
to store and index frequent itemsets properly so that user
queries can be answered promptly.

Supporting efficient retrieval of frequent itemsets is also
very important for problems or algorithms that are built
on top of frequent itemset mining, such as association rule
mining [2], associative classification [11], frequent itemset
based clustering [5] and exploratory hypothesis testing [13].
In these problems, the set of frequent itemsets is repeatedly
queried with different constraints. For example, association
rule mining aims to find rules of the form X ⇒ Y , where X
and Y are two disjoint itemsets. We can generate association
rules in two different ways. One way is to find all the super-
sets of each itemset X, and then for each superset Y of X,
form a tentative association rule X ⇒ (Y −X). The other
way is to find all the subsets of X, and then for each subset
Y of X, form an tentative association rule Y ⇒ (X − Y ).
Either way, we need a proper structure to store and index
frequent itemsets so that rules can be generated efficiently.

Indexing and querying frequent itemsets has not drawn
much attention in the data mining community. Only a few
papers address this problem [16, 1, 20, 15], and the tech-
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niques proposed in these papers have not been comprehen-
sively compared. In this paper, we study the performance
of three structures for indexing and querying frequent item-
sets. Two index structures, inverted files and signature files,
are two classical structures for indexing set-valued data.
They are employed for indexing frequent itemsets in [16,
20]. We make some modifications to the two structures
to make them more suitable for indexing frequent itemsets.
The third structure called CFP-tree [15] is specially designed
for storing frequent itemsets compactly. During our study,
we observed that CFP-tree is less efficient than the other two
structures for processing superset queries when the number
of frequent items is large. We use a pruning technique based
on frequent length-2 itemsets to make it more efficient.
The rest of the paper is organized as follows. Section 2

presents related work. Section 3 defines the problem. The
three structures are described in Section 4, 5 and 6 respec-
tively. Experiment results are reported in Section 7. Finally,
Section 8 concludes the paper.

2. RELATED WORK
Different approaches have been proposed to support fre-

quent itemset queries. A simple approach is to pre-compute
frequent itemsets with a sufficiently low threshold and then
store and index them properly to support efficient retrieval.
A more sophisticated approach is to cache and reuse the
results of previous queries. In [17], if a query cannot be an-
swered using previous results stored in a knowledge cache,
then the original database is accessed. Another approach is
to reduce frequent itemset number by considering represen-
tative itemsets only [24]. The above approaches are com-
plementary to each other. The third approach can provide
a quick and approximate answer. If users need accurate in-
formation, they can retrieve the information from the cache
or from pre-computed itemsets on disk, or mine from the
original database. The focus of this paper is on indexing
and querying pre-computed frequent itemsets on disk.
Inverted files [8] and signature files [4] are two classical

indexing structures for set-valued data, and both of them
have many variations. These two structures have been used
for indexing frequent itemsets and association rules. Morzy
et al. [16] use a group bitmap index structure for retrieving
association rules, which is essentially a sequential signature
file. Winarko and Roddick [23] use signature files to index
temporal patterns. Tuzhilin et al. [20] use B+ trees to index
the support and the confidence of the rules and use inverted
files to index patterns. In Opportunity Map [12], a hash-tree
is used to store classification rules.
There are a couple of structures that are specially designed

for storing and querying frequent itemsets. Aggarwal et al.
[1] use a graph structure, called adjacency lattice, to store
frequent itemsets. This structure contains many pointers,
which not only take up a lot of space but also make the
structure not disk-friendly. CFP-tree [14, 15] avoids this
problem by using a prefix-tree structure to store patterns. It
keeps only one child pointer for each itemset. CFP-tree also
effectively utilizes the sharing and redundancy in frequent
itemsets to save space.
Inverted files and signature files have been compared in

various contexts. Zobel et al. [26] compare them on text
databases and they conclude that inverted files are more su-
perior. Helmer and Moerkotte [9] study their performance
for supporting containment queries on set-valued attributes

Table 1: An example dataset
TID Transactions
1 a, c, e, f, m, p
2 b, e, v
3 a, b, f, m, p
4 d, e, f, h, p
5 a, c, d, m, v
6 a, c, h, m, s
7 a, f, m, p, u
8 a, b, d, f, g

Table 2: Frequent itemsets (min sup=3)
ID Itemsets ID itemsets ID itemsets
1 a:6 9 ac:3 17 acm:3
2 b:3 10 af:4 18 afm:3
3 c:3 11 am:5 19 afp:3
4 d:3 12 ap:3 20 amp:3
5 e:3 13 cm:3 21 fmp:3
6 f:5 14 fm:3 22 afmp:3
7 m:5 15 fp:4
8 p:4 16 mp:3

of low cardinality. Their results also show that inverted files
exhibit better overall performance. Here we study the per-
formance of the two structures and CFP-tree in the context
of frequent itemsets. We believe our study will be useful for
building frequent itemset mining based systems.

3. PRELIMINARIES
The frequent itemset mining problem has been briefly de-

scribed at the beginning of Section 1. Here we give an exam-
ple. This example is also used in the next three sections to
illustrate the three structures. Table 1 shows a transaction
dataset. Let min sup=3. Frequent itemsets are shown in
Table 2. To save space, a frequent itemset {i1, i2, · · · , im}
with support n is represented as i1i2 · · · im : n.

Given two itemsets X and Y , if ∀i ∈ X, we have i ∈ Y ,
thenX is called a subset of Y and Y is called a superset ofX,
denoted as X ⊆ Y or Y ⊇ X. If X ⊆ Y and |X| = |Y | − 1,
then X is a called an immediate subset of Y and Y is called
an immediate superset of X.

Let F be a set of frequent itemsets. We are interested in
the following containment queries on F :

• Exact match: find the support of itemset X.

• Subset/superset search: find all the subsets or super-
sets of X and their support.

• Immediate subset/superset search: find all the imme-
diate subsets/supersets of X and their support.

If an itemset is in the answer set of a query, we call it a hit.
The above queries are common in interactive frequent

itemset mining and in frequent itemset based applications.
Exact match is the simplest point query. Subset search and
superset search can be used to retrieve itemsets that con-
tain or are contained in a particular set of items. They can
also be used in association rule generation. In associative
classification, subset search can be used to find the set of
itemsets that are contained in an instance. Immediate sub-
set/superset search can be used to explore frequent itemsets.
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In the next three sections, we use the complete set of
frequent itemsets to describe the three structures. It is not
difficult to extend the three structures and their associated
algorithms for indexing and querying other types of itemsets,
such as frequent closed itemsets and generators [18].

4. INVERTED FILES

4.1 The inverted file index
An inverted file [8] consists of a directory and a number of

inverted lists. The directory contains all the items in I, so
we also call it the item directory. Each item in the directory
has a pointer pointing to its inverted list. The inverted list of
an item i contains the references to the itemsets containing
i. Figure 1 shows the inverted file built on the frequent
itemsets in Table 2.

3, 9, 13, 17

6, 10, 14, 15, 18, 19, 21, 22

7, 11, 13, 14, 16, 17, 18, 20, 21, 22

8, 12, 15, 16, 19, 20, 21, 22

a

b

c

d

e

m

p

f

1, 9, 10, 11, 12, 17, 18, 19, 20, 22

2

4

5

Directory Inverted lists

Figure 1: Inverted file constructed on frequent item-
sets in Table 2

The inverted lists of some items can be very long, and only
part of them are needed for answering queries. For exact
match, only the itemsets that are of the same length as the
query itemset can possibly be a hit. For superset (subset)
search, only the itemsets that are no shorter (longer) than
the query itemset can be in the answer set. To reduce query
processing cost, we split the inverted list of an item i into
k sub-lists based on itemset length, where k is the maximal
length of the itemsets containing i. We add a directory
called length directory to store the references to the k sub
inverted lists. An entry in a length directory has two fields:
the reference to the corresponding sub inverted list and the
size of the sub inverted list. Figure 2 shows how the inverted
list of item a is split into 4 sub-lists based on itemset length.
The length directory is colored in grey. The numbers in the
length directory are the number of itemset references in the
respective sub inverted lists.
The benefits of using length directories are two-fold. First,

they reduce I/O cost and computation cost considerably be-
cause now we need to read and process portions of inverted
lists instead of entire inverted lists. Secondly, lengths of fre-
quent itemsets are needed for processing queries except for
superset queries, and length directories store them in a com-
pact way. The space overhead for storing length directories
is O(

∑
i∈I ki), where ki is the maximal length of the fre-

quent itemsets containing item i, and it is usually less than
20. An alternative strategy is to store lengths of itemsets
together with references to itemsets within inverted lists as
in [9]. The length of an itemset X is stored |X| times, so
the space overhead is O(

∑
X∈F |X|), which is usually orders

of magnitude larger than that of length directories.

1 9, 10, 11, 12 17, 18, 19, 20 22

1

2

3

4

1

4

4

1

Figure 2: Length directory of item a.

4.2 Implementation details
In our implementation, we use consecutive integers to rep-

resent items, and use an array to store the item directory.
The i-th entry in the item directory contains the reference
to the length directory of item i. The length directories are
also stored using arrays.

As in [9], we use lightweight compression techniques [22]
to reduce the size of inverted lists. The references in in-
verted lists occupy one or more bytes depending on their
values. To reduce the number of bytes needed for storing
references, we sort the references in ascending order and
store the differences between consecutive references instead.
The same compression is done for itemsets.

All components are stored on pages of 4096 bytes. In-
verted lists that are larger than one page are stored on con-
secutive pages. Inverted lists that are no larger than one
page are not allowed to span two pages. The same applies
to frequent itemsets. Frequent itemsets are mined using FP-
growth [7], and they are stored in their output order.

4.3 Query processing using inverted files
To find the supersets of a query itemset Q and their sup-

port, we retrieve the inverted lists of the items in Q and then
intersect them. We use a couple of optimization techniques
to reduce query processing cost.

• We utilize length directories to avoid retrieving por-
tions of inverted lists that do not contain references
to hit itemsets. For example, for superset search, we
access only sub inverted lists that contain references
to itemsets no shorter than Q.

• We fetch inverted lists from the shortest to the longest.
If at some point, the number of possible hits is smaller
than the number of pages occupied by the next in-
verted list to be fetched, then we stop fetching subse-
quent inverted lists, and we retrieve itemsets directly.
This technique is called early termination.

Algorithm 1 shows the pseudo-codes of superset search.
We first fetch the length directories of the items in Q (line
1). The size of the length directory of item i is the maximal
length of the itemsets containing item i. The supersets of
Q must contain all the items in Q, so the maximal length
of the supersets of Q, denoted as L, cannot be larger than
the minimal size of the length directories (line 2). Next,
for each length l between |Q| and L, we get the references
to the length-l supersets of Q by intersecting IV T (i)[l]s,
where i ∈ Q and IV T (i)[l] is the sub inverted list of item i
which contain references to length-l itemsets. We fetch the
sub inverted lists from the shortest to the longest (line 5-9).
We terminate the retrieval of inverted lists if the number of
possible hits is no larger than the number of pages occupied
by the next sub inverted list (line 10-11). The final set of
references may contain itemsets that are not supersets of
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Algorithm 1 InvFile Superset Search Algorithm

Input:
Q is the query itemset;

Description:
1: Retrieve the length directories of the items in Q;
2: L=the minimal size of the length directories retrieved;
3: A={};
4: for all l=|Q| to L do
5: Sort items in Q in ascending order of |IV T (i)[l]|;
6: Let Q = {i1, i2, · · · , ik} after sorting, where k = |Q|;
7: if IV T (i1)[l] is not empty then
8: Al=IV T (i1)[l];
9: for all j=2 to k do
10: if |Al| ≤ |IV T (ij)[l]|/PAGE SIZE then
11: break; //Early termination;
12: else
13: Al=Al

⋂
IV T (ij)[l];

14: A = A
⋃

Al;
15: Retrieve itemsets using the references in A;

Algorithm 2 InvFile Subset Search Algorithm

Input:
Q is the query itemset;

Description:
1: Retrieve the length directories of the items in Q;
2: A={};
3: for all l=1 to |Q| do
4: Sort items in Q in ascending order of |IV T (i)[l]|;
5: Let Q = {i1, i2, · · · , ik} after sorting, where k = |Q|;
6: Al=IV T (i1)[l];
7: for all t=1 to |Al| do
8: Al[t].miss = 0;
9: for all j=2 to k do
10: if |Al| ≤ |IV T (ij)[l]|/PAGE SIZE AND l+j−1 > |Q|

then
11: break; //Early termination;
12: else
13: A′

l={r|r ∈ (Al
⋃

IV T (ij)[l]), l + r.miss ≤ |Q|};
14: Al=A′

l;
15: A = A

⋃
Al;

16: Retrieve itemsets using the references in A;

Q because of early termination. We need to do a checking
before we output the itemsets.
At line 4 of Algorithm 1, if we allow l to take only one

value |Q|, then the algorithm can be used to process exact
match queries. If we allow l to take only one value |Q|+ 1,
then it can be used to process immediate superset queries.
It is more complicated to use inverted files to do subset

search. The subsets of Q cannot contain items outside Q.
We check this based on the following Lemma.

Lemma 1. Let Q be the query itemset and Q′ be a subset
of Q. If an itemset X is a subset of Q, then we must have
|X|+ |Q′ −X| ≤ |Q|.

Proof. Both X and Q′ are subsets of Q, so |X|+ |Q′ −
X| ≤ |X|+ |Q−X| = |Q|.

Algorithm 2 shows the pseudo-codes for subset search.
Only itemsets of length between 1 and |Q| are considered(line
3). For every length l ∈ [1, |Q|], we fetch the sub inverted
lists from the shortest to the longest (line 4). Initially, all
the references in IV T (i1)[l] are put into the answer set Al

(line 6). For every reference r in Al, we record the number
of inverted lists that do not contain r, denoted as r.miss.
Initially, r.miss is set to 0 (line 7-8). When we join Al with

a subsequent sub inverted list IV T (ij)[l] (line 13), there are
three cases:

1. r occurs in both Al and IV T (ij)[l]. In this case, r
is put into the new answer set A′

l and r.miss is un-
changed.

2. r occurs in Al but not in IV T (ij)[l]. In this case,
r.miss is increased by one. If l + r.miss is still no
larger than |Q|, then r is put into the new answer set
A′

l. Otherwise, it is discarded based on Lemma 1.

3. r occurs in IV T (ij)[l] but not in Al. In this case,
r.miss is set to j − 1 since r does not appear in the
previous j − 1 inverted lists. If l + r.miss = l + j −
1 ≤ |Q|, then r is put into the new answer set A′

l.
Otherwise, r is discarded.

The early termination technique can still be used in subset
search, but under a more restricted condition. In subset
search, the size of Al may increase when more inverted lists
are joined. We observe that the only situation that the size
of Al increases is when the third case occurs. For the third
case, we have l+ j−1 ≤ |Q|. If l+ j−1 > |Q|, the size of Al

cannot increase any more, and we can safely apply the early
termination technique if Al is small enough (line 10-11).

In Algorithm 2, if we allow l to take only one value |Q|−1
at line 3, then it finds the immediate subsets of Q.

I/O cost analysis. Let HQ be the number of hits of a
query Q. In the worst case, the inverted lists of all the items
in Q are retrieved. Hence, the number of page accessed in
the worst-case is

∑le
l=ls

∑
i∈Q |IV T (i)[l]|/PAGE SIZE +

HQ. For exact match, ls = le = |Q|; for immediate subset
search, ls = le = |Q| − 1; for immediate superset search,
ls = le = |Q|+ 1; for subset search, ls = 1, and le = |Q|; for
superset search, ls = |Q| and le = L, where L is the minimal
size of the length directories of the items in Q.

5. SIGNATURE FILES
The signature file index maps itemsets to fixed-length sig-

natures, and then uses bit operations on signatures to elim-
inate most of the itemsets that are not hits of a query. Bit
operations are much more efficient than set comparison op-
erations, hence the signature file index can reduce the query
processing cost greatly. Signature files have many variations.
We combine the advantages of signature trees and extendible
signature hashing to create a new variation called extendible
signature tree.

5.1 The extendible signature tree structure
A signature is a length-L bitmap. Given a single item i,

we use sig(i) to denote its signature. We map i to sig(i)
as follows. Initially, all the bits of sig(i) is set to 0. We
use a random number generator, which uses i as the seed,
to generate k random numbers between 1 and L. For every
generated random number n, the n-th bit of sig(i) is set to 1.
The signature of an itemset X = {i1, i2, · · · , it}, denoted as
sig(X), is the superimposition of the signatures of the items
in X. That is, sig(X)=sig(i1)|sig(i2)| · · · |sig(it), where “|”
is the bitwise or operator.

Given two signatures sig1 and sig2, if every bit in sig1
that is 1 is also 1 in sig2, then we say sig1 is contained in
sig2, denoted as sig1 ⊆ sig2. We use sig[js : je] to denote
a segment of signature sig starting from position js and
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ending at position je, where 1 ≤ js ≤ je ≤ L. We call
sig[1 : j] the length-j prefix of signature sig. Signatures
have the following properties.

Property 1. Given two itemsets X and Y , if X = Y ,
then sig(X) = sig(Y ).

Property 2. Given two itemsets X and Y , if X ⊆ Y ,
then sig(X) ⊆ sig(Y ).

Property 3. Given two signatures sig1 and sig2, if sig1
⊆ sig2, then ∀js, je ∈ [1, L] and js ≤ je, we have sig1[js :
je] ⊆ sig2[js, : je].

Based on the above properties, we compare the signature
of an itemset with the signature of the query itemset first.
Only if the two signatures satisfy the containment condition,
we then proceed to compare the two itemsets. Note that
different itemsets may be mapped to the same signature, so
using signatures can produce false hits. We eliminate false
hits by checking the itemsets before outputting them.
If the number of frequent itemsets is large, the number

of signatures can also be very large. It is still costly to
compare every signature with that of the query itemset. In
[9], Helmer and Moerkotte show that using an extendible
signature hashing index (ESH) reduces the query cost con-
siderably. An ESH consists of a directory and a number
of buckets. The directory contains 2d entries, where d is
called the depth of the directory. The length-d prefix of a
signature determines which entry the signature is mapped
to. A directory entry points to a bucket and the signatures
that are mapped to the entry are put into the bucket. If a
bucket overflows, we need to split the bucket by increasing
the depth of the directory if necessary. The size of the di-
rectory cannot be increased beyond a certain threshold, as
further increase leads to a too large directory. The threshold
is usually set to around 20.
The main problem with ESH is that the number of sig-

natures that are mapped to directory entries are often not
evenly distributed. On the frequent itemsets generated on
the datasets in the FIMI repository (http://fimi.ua.ac.
be/data/), we have observed that it is often the case that
the majority of the entries do not match any signatures,
while a small portion of entries match thousands of or more
signatures. To solve this problem, we use an extendible di-
rectory tree to replace the flat directory, and we call our
structure extendible signature tree (EST).
Figure 3 shows the EST constructed on the itemsets in

Table 2. The length of signatures L is 6. The number of
bits per item k is 1. The signatures of individual items are
as follows:
a: 100000, b: 000001, c: 010000, d: 000001
e: 010000, f: 001000, m: 000100, p: 000010

The size of a directory is controlled by its depth d. The value
of d cannot exceed a threshold dmax. In Figure 3, dmax is
set to 2, so the maximum directory size is 4. A directory
entry points to either a bucket or a child directory. As in
[9], a bucket contains the signatures that are mapped to the
entry. If a directory has a child directory, then it is called
an internal directory. Otherwise, it is called a leaf directory.
Given a signature sig, its first d0 bits determines which

entry it is mapped to in the root directory, where d0 is the
depth of the root directory. If the entry points to a child
directory with depth d1, then the next d1 bits of sig decide

hierarchical extendible 
directory

signatures

0
1

0
1

00
01
10
11

d=2

d=1

d=1

itemsets

b: 3
d: 3

c: 3
e: 3

p: 4

f: 5
fp: 4

m: 5

cm: 3

mp: 3

fm: 3
fmp: 3

a: 6

ac: 3

ap: 3

af: 4
afp: 3

am: 5

acm: 3

amp: 3

afm: 3
afmp: 3

00 0 010
00 0 100
00 0 110

00 0 001

00 1 000
00 1 010
00 1 100
00 1 110

01 0000
01 0100

10 0 000
10 0 010
10 0 100
10 0 110

10 1 000
10 1 010
10 1 100
10 1 110

11 0100
11 0000

Figure 3: Extendible signature tree constructed on
frequent itemsets in Table 2. L=6, k=1, dmax=2,
cmax = 4.

which entry sig is mapped to in the child directory, and so
on. When the bucket of an entry E overflows, we increase
the depth of the directory containing E first to split the
bucket. If the depth of the directory already reaches dmax,
then we create a new directory and let E point to the new
directory. The bucket is split accordingly. This way, the
depth of an internal directory is always dmax, and the depth
of a leaf directory ranges from 1 to dmax. In Figure 3, we
set the maximum capacity of a bucket to be 4 signatures.

An extendible directory tree often requires less space than
the corresponding flat directory. If we use the flat direc-
tory structure in Figure 3 and keep the maximum capacity
of a bucket at 4, then the depth of the directory is 3 and
the number of entries is 8. If we insert one more signature
“000101”, then the bucket pointed by entry “000” need to
be split. The depth of the directory need to be increased by
1, and the total number of entries becomes 16. For the ex-
tendible directory tree, we only need to increase the depth of
the child directory pointed by entry “00”. The total number
of entries is 10.

5.2 Implementation details
The maximal depth of the directories, denoted as dmax,

should neither be too large nor too small. If dmax is too
large, then many entries in the directories are wasted as in
a flat directory. If it is too small, then the overhead is too
high. In our implementation, we set dmax to 8. The size of
internal directories is always 256 (=28) and the size of leaf
directories ranges from 2 to 256.

All components are stored on pages of 4096 bytes. We
use a clustered strategy to store signatures and itemsets.
Itemsets that are mapped to the same signature are stored
side by side on disk. Hence each signature is stored only
once and it has a pointer pointing to the set of itemsets that
are mapped to it. Signatures that are mapped to the same
directory entry are stored together as well.
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5.3 Query processing using EST
Algorithm 3 shows the pseudo-codes for processing exact

match on an EST structure. Initially, D is set to be the root
directoryD0 and its depth is d0, and j=0. We use the first d0
bits of sig(Q) to locate the corresponding entry in directory
D0, which is D0[sig(Q)[1 : d0]]. If this entry points to a
directory D′ with depth d′ (line 2), we then check the next d′

bits of sig(Q) to see whether entry D′[sig(Q)[d0+1 : d0+d′]]
points to a directory or a bucket recursively (line 3). This
process is repeated until we reach an entry pointing to a
bucket. We then compare sig(Q) with the signatures stored
in the bucket. If a signature sig matches sig(Q) (line 4), we
then fetch the itemsets that are mapped to sig and compare
them with Q (line 5).

Algorithm 3 EST Exact Search Algorithm

Input:
Q is the query itemset;
D is the current directory;
j is number of bits in sig(Q) that have been checked;

Description:
1: d = the depth of directory D;
2: if D[sig(Q)[j + 1 : j + d]] points to a directory D′ then
3: EST Exact Search(Q, D′, j + d);
4: else if sig(Q) occurs in the bucket pointed by D[sig(Q)[j+1 :

j + d]] then
5: Retrieve and validate the itemsets that are mapped to

sig(Q);

Algorithm 4 shows the pseudo-codes for processing subset
queries on EST. Initially, D is the root directory D0 and
its depth is d0, and j=0. To find subsets of Q, we first
enumerate all the length-d0 bitmaps that are contained in
sig(Q)[1 : d0] using the algorithm by Vance and Maier [21].
Then for each of these bitmaps B (line 2), if the correspond-
ing entry D0[B] points to a directory D′ with depth d′ (line
3), we look at the next d′ bits of sig(Q) by calling Algo-
rithm 4 recursively (line 4). This process is repeated until
we reach a bucket. For each of the buckets reached, we com-
pare sig(Q) with the signatures stored in the bucket to get
those signatures that are contained in sig(Q). Then for each
sig ⊆ sig(Q) (line 6), we fetch its itemsets to see whether
they are subsets of Q (line 7).
The other three types of queries are processed similarly.

Algorithm 4 EST Subsets Search Algorithm

Input:
Q is the query itemset;
D is the current directory;
j is number of bits in sig(Q) that have been checked;

Description:
1: d = the depth of directory D;
2: for all length-d bitmap B such that B ⊆ sig(Q)[j+1 : j+ d]

do
3: if D[B] points to a directory D′ then
4: EST Subsets Search(Q, D′, j + d);
5: else
6: for all sig in the bucket pointed by D[B] such that

sig ⊆ sig(Q) do
7: Retrieve and validate the itemsets that are mapped

to sig;

I/O cost analysis. Let x be the number of signatures
that need to be accessed for a query Q. Given a signature
sig, we need to access at most L/dmax directories to find the
directory entry pointing to sig, where dmax is the maximum

depth of a directory. The directory I/O cost is thus bounded
by min{PD, x · L/dmax}, where PD is the number of pages
needed for storing the whole directory tree. The signature
I/O cost is bounded by x · C, where C is the maximum
number of pages that a bucket pointed by a directory entry
can have. The pattern I/O cost is bounded by x ·Ps, where
Ps is the maximal number of pages needed for storing the
patterns that are mapped to the same signature. The total
I/O cost is thus upper bounded by min{PD, x · L/dmax}+
x · C + x · Ps. For exact match, x=1; for immediate subset
search, x =

∑k
t=0

(
lQ
t

)
; for immediate superset search, x =

∑k
t=0

(
L−lQ

t

)
; for subset search, x = 2|lQ| − 1; for superset

search, x = 2L−|lQ|, where k is number of bits per item and
lQ is number of 1s in sig(Q).

6. CFP-TREE

6.1 The CFP-tree structure
The CFP-tree structure is specially designed for storing

and querying frequent itemsets [15]. It resembles a set-
enumeration tree [19]. The CFP-tree storing the frequent
itemsets in Table 2 is shown in Figure 4. Each node in a
CFP-tree is a variable-length array. If a node contains mul-
tiple entries, then each entry contains exactly one item. If
a node has only one entry, then it is called a singleton node.
Singleton nodes can contain more than one item. For exam-
ple, node 2 in Figure 4 is a singleton node with two items
m and a. Every entry in a CFP-tree represents one or more
itemsets with the same support, and these itemsets con-
tain the items on the path from the root to the entry. For
instance, node 2 represents 3 itemsets: {c,m}, {c, a} and
{c,m, a}, and these three itemsets have the same support of
3. Let E be an entry and X be an itemset represented by
E. Entry E stores three pieces of information: (1) m items
(m ≥ 1), (2) the support of X, and (3) a pointer pointing
to the child node of E. In the rest of this paper, we use
E.items, E.support and E.child to denote them.

ma:3

ma:3 a:3

a:5m:3 a:4f:4

b:3 c:3 d:3 e:3 p:4 f:5 m:5 a:61

2 3

4

5

6

7

Figure 4: CFP-tree constructed on the frequent
itemsets in Table 2

For every entry E in a multiple-entry node, only the items
after E can appear in the subtree pointed by E and these
items are called candidate extensions of E. If a candidate
extension of E actually occurs in the subtree pointed by
E, then it is called a frequent extension of E. In the root
node of Figure 4, items d, e, p, f , m and a are candidate
extensions of entry c, while item b is not. Items m and a are
also frequent extensions of entry c.

The CFP-tree structure allows different itemsets to share
the storage of their prefixes as well as suffixes, which makes
it a very compact structure for storing frequent itemsets.
Prefix sharing is easy to understand. For example, item-
sets {c,m} and {c, a} share the same prefix {c} in Fig-
ure 4. Suffix sharing occurs when a candidate extension
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of an entry E occurs in the same set of transactions as
the itemset represented by E. Let i be a candidate ex-
tension of E and X be an itemset represented by E. If
supp(X) = supp(X ∪ {i}), then for any itemset Z, we must
have supp(X ∪ Z) = supp(X ∪ {i} ∪ Z). In other words,
X and X ∪ {i} have the same extensions. A singleton node
containing item i is created to enable the sharing between
X and X ∪ {i}. In Figure 4, itemset {p} and {p, f} have
the same support, so a singleton node containing item f is
created, which is node 3, to allow {p} and {p, f} to share
the same subtree.
An entry E may represent multiple itemsets. These item-

sets are enumerated by combining three set of items: Xm,
Xs and E.items, whereXm is the set of items in the multiple-
entry nodes and Xs is the set of items in the singleton nodes
on the path from the root to the parent of E respectively.
The items in Xm decide the unique path from the root to
the parent of E, hence they must be included in the itemsets
represented by E. The items in Xs are optional. Including
or excluding them leads to different itemsets with the same
support. The itemsets represented by E should contain at
least one item in E. As a result, the number of itemsets rep-
resented by entry E is 2|Xs| · (2|E.items| − 1). Let us look at
an example. For node 4, we have Xm = {p}, Xs = {f} and
E.items = {m, a}. Hence node 4 represents 21 · (22 − 1)=6
itemsets: {p,m}, {p, a}, {p,m, a}, {p, f,m}, {p, f, a} and
{p, f,m, a}. This example also shows that if there are more
than one singleton node on a path, the space saved by suffix
sharing multiplies.

6.2 Implementation details
We sort the entries in a multiple-entry node in ascend-

ing order of their support as in [15]. Using this order, the
constructed CFP-tree is more balanced. The reason is as fol-
lows. The first item in the node has the largest number of
candidate extensions, but it also has the lowest support, so
few of its candidate extensions can be frequent. Subsequent
items becomes more and more frequent but the number of
their candidate extensions becomes smaller and smaller, so
their subtrees cannot be too large either. The last item has
the highest support, but it has no candidate extensions.
The CFP-tree nodes are stored on pages of 4096 bytes in

depth-first order. A node in stored before its child nodes. If
the size of a node is larger than page size, then it is stored
on several consecutive pages. Nodes that are no larger than
one page are not allowed to span two pages.

6.3 Query processing using CFP-tree
Algorithm 5 shows the pseudo-codes for processing exact

match queries on a CFP-tree. When it is first called, cnode is
the root node and Q′ = Q. To find the support of an itemset
Q, we simply match Q against the CFP-tree. When match-
ing Q against a singleton node, if all the items in Q′ are
contained in E.items (line 2), then E is the entry represent-
ing Q and we output the support of E (line 3). Otherwise,
if E has a child node (line 4), then the search is performed
on the child node recursively (line 5). If E does not have a
child node (line 6), it means the CFP-tree does not contain
Q (line 7). When matching Q against a multiple-entry node
cnode, we first check whether cnode contains all the items in
Q′ (line 9). If some item i in Q′ does not appear in cnode,
then there is no need to visit the subtrees pointed by entries
in cnode because they do not contain item i either. Other-

wise, we find the first entry E in cnode such that E.items
is in Q′ (line 10). The search on E is the same as that on
the entry in a singleton node (line 11-16).

Algorithm 5 CFP-tree Exact Match Algorithm

Input:
cnode is a CFP-tree node;
Q′ is the set of items in Q that have not be covered yet;

Description:
1: if cnode contains only one entry E then
2: if Q′ − E.items = ∅ then
3: output E.support;
4: else if E.child �= NULL then
5: CFP-tree Exact Match(E.child, Q′ − E.items);
6: else
7: Output “not found”;
8: else if cnode contains multiple entries then
9: if all items in Q′ occur in cnode then
10: E = the first entry in cnode such that E.items ∈ Q′;
11: if Q′ − E.items = ∅ then
12: Output E.support;
13: else if E.child �= NULL then
14: CFP-tree Exact Match(E.child, Q′ − E.items);
15: else
16: Output “not found”;

To search for the subsets of an itemset Q, we also match
Q against the CFP-tree as in exact match, but the paths vis-
ited do not need to contain all the items in Q. The pseudo-
codes are shown in Algorithm 6, where itemsets Xm and
Xs are used to enumerate the itemsets represented by an
entry as described previously. When Algorithm 6 is first
called, cnode is the root node, Q′ = Q, Xm = Xs = ∅.
When matching Q against a singleton node, the items of
the singleton node that do not appear in Q are discarded,
and those that are contained in Q are put into Xs (line 5).
When matching Q against a node with multiple entries, all
the subtrees that are pointed by entries containing an item
in Q are visited and only these subtrees are visited (line 7-8).

The immediate subsets of an itemset Q contain exactly
one less item than Q. To find the immediate subsets of Q,
we need to add one more parameter nmiss to Algorithm 6,
which records the number of items in Q that does not occur
on the current path. Initially nmiss=0. If nmiss is increased
to 1, then we switch to exact match by calling Algorithm 5.

Algorithm 6 CFP-tree Subset Search Algorithm

Input:
cnode is a CFP-tree node;
Q′ is the set of items in Q that have not be covered yet;
Xm is the set of items in multiple-entry nodes;
Xs is the set of items in singleton nodes;

Description:
1: if cnode contains only one entry E then
2: if E.items

⋂
Q′ �= ∅ then

3: output itemsets by combining Xm, Xl and
E.items

⋂
Q′;

4: if E.child �= NULL AND Q′ − E.items �= ∅ then
5: CFP-tree Subset Search(E.child, Q′ − E.items, Xm,

Xs
⋃
(E.items

⋂
Q′));

6: else if cnode contains multiple entries then
7: for all entry E ∈ cnode do
8: if E.items ∈ Q′ then
9: output itemsets by combining Xm, Xl, E.items;
10: if E.child �= NULL AND Q′ − E.items �= ∅ then
11: CFP-tree Subset Search(E.child, Q′ − E.items,

Xm
⋃

E.items, Xs);
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Algorithm 7 CFP-tree Superset Search Algorithm

Input:
cnode is a CFP-tree node;
Q′ is the set of items in Q that have not be covered yet;
Xm is the set of items in multiple-entry nodes;
Xs is the set of items in singleton nodes;

Description:
1: if cnode contains only one entry E then
2: if (Q′ − E.items) = ∅ then
3: output itemsets by combining Xm, Xl, E.items;
4: if E.child �= NULL then
5: CFP-tree Superset Search(E.child, Q′ − E.items, Xm,

Xs
⋃

E.items);
6: else if cnode contains multiple entries then
7: if all items in Q′ occur in cnode then
8: if Q′ �= ∅ then
9: E′ = the first entry in cnode whose item is in Q′;
10: else
11: E′ = the last entry of cnode;
12: for all entry E ∈ cnode, E before E′ or E=E′ do
13: if (Q′ − E.items) = ∅ then
14: Output itemsets by combining Xm, Xs and

E.items;
15: if E.child �= NULL then
16: CFP-tree Superset Search(E.child, Q′ − E.items,

Xm
⋃

E.items, Xs);

Algorithm 7 shows the pseudo-codes for superset search.
As in exact match, a multiple-entry node must contain all
the items in Q′ (line 7). Let E′ be the first entry in cnode
such that E′.items ∈ Q′. We then visit only the sub-
trees pointed by entries before E′ and E′ itself (line 12).
The subtrees pointed by entries after E′ do not contain
E′.items ∈ Q′, so there is no need to visit them. In the root
node of Figure 4, to search for the supersets of {p,m, a}, we
need to access the subtrees pointed by b, c, d, e and p only.
If the number of entries in a CFP-tree node is large, then

superset search can be very costly because the number of
entries before E′ can be large and all of their subtrees need
to be visited. Many of them do not contain all the items in
Q′. In [15], a 32-bit bitmap is stored in each entry to avoid
unnecessary traversal. If an item i appears in the subtree
pointed by an entry E, then item i is hashed to a number k
(k ∈ [0, 31]), and the k-th bit of the bitmap of E is set to 1.
The subtree of an entry E is visited only if for every item in
Q′, the bit that the item is hashed to is 1 in the bitmap of
E. During our study, we found that this pruning technique
is not effective. The reason is as follows: if the number of
items in a subtree is large, then almost all the bits in the
bitmap is 1 and the subtree cannot be pruned; if the number
of items in a subtree is small, then the subtree is small too
and the cost saved is minimal even if the subtree can be
pruned. Furthermore, the bitmaps increase the size of the
CFP-tree considerably which may make CFP-tree perform
worse than that without the bitmaps in some cases.
We have observed that most of the unnecessary traversal

happens at the child nodes of the root node because the
number and the size of these nodes are relatively large. We
use a pruning technique based on length-2 frequent itemsets
(denoted as F2) to reduce unnecessary traversal. It is based
on the observation that when the number of distinct items
in a dataset is large, usually the dataset is sparse and the
probability that an item is frequent with another item is
relatively low. Consequently, the probability that all the
items in the query itemset Q are frequent with a particular

item is low too. In the root node, for every entry E before
E′, before we visit the child node of E (line 15), we first
check whether all the items in Q are frequent extensions of
E. To facilitate this checking, we build a list called inverted
frequent extension list for each frequent item i, and this list
contains all the items i′ in the root node such that item i is
a frequent extension of i′. We denote this list as INV FE(i)
and we use a hash table to store it. To check whether all
the items in Q are frequent with E, we simply look for the
item of E in INV FE(i) for all i ∈ Q. This step takes O(|Q|)
time on average, and it is generally less costly than visiting
the child node of E, which may contain hundreds of entries.
The subtree pointed by E is visited only if the item of E
is found in INV FE(i) for all i ∈ Q. This way, most of the
subtrees pointed by entries before E′ can be pruned.

To find the immediate supersets of Q, we modify Algo-
rithm 7 by adding one more parameter nextra, which is the
number of items outside Q on the current path. Initially,
nextra=0. If nextra is increased to 1, we switch to exact
match by calling Algorithm 5. The above pruning technique
based on F2 is applicable for immediate superset search too.

I/O cost analysis. The largest node in a CFP-tree is the
root node. If the root node can be accommodated in one
page, then all other nodes can be stored within one page
as well. If the root node takes many pages, it means the
number of distinct items in the dataset is very large and the
dataset must be sparse. As a result, the child nodes of the
root node must be much smaller than the root node and
usually they can be stored within one page. In the following
analysis, we assume all the nodes can be stored within one
page except the root node, and we analyze the number of
nodes that a query needs to access. We use f(|Q|) to denote
the number of nodes to be accessed for a queryQ in the worst
case. For exact match, f(|Q|) = |Q|. Let E be the leftmost
entry in the root node containing an item in Q. Searching
for the subsets of Q can be decomposed into searching for
the subsets of Q that contain E.item in the subtree of E and
searching for the subsets of (Q− {E.item}) on the right of
E. Hence we have f(|Q|) = 2f(|Q|−1) and f(1)=1. Solving

the recursive formula, we have f(|Q|) = 2|Q|−1. Similarly,
searching for the immediate subsets of Q can be decomposed
into searching for the immediate subsets of Q that contain
E.item in the subtree of E and searching for (Q−E.item).
We have f(|Q|) = f(|Q| − 1) + |Q| − 1 and f(1)=0. Solving
the recursive formula, we get f(|Q|) = |Q|(|Q|−1)/2. Let n
be the number of distinct items in a CFP-tree. Q has n−|Q|
possible immediate supersets. Hence for immediate superset
search, f(|Q|) = (n−|Q|) · |Q|+1. The number of supersets

of Q is upper bounded by
∑L

l=|Q|
(
n−|Q|
l−|Q|

)
, where L is the

maximal length of frequent itemsets. Hence for superset
search, f(|Q|) is upper bounded by

∑L
l=|Q|(l ·

(
n−|Q|
L−|Q|

)
).

7. A PERFORMANCE STUDY
Our experiments are conducted on a Dell Optiplex 990

with 3.40GHz CPU, 8GB memory, 500GB SATA hard drive
and 64-bit Windows 7. All the three structures were im-
plemented using C++ and complied using Microsoft Visual
Studio 2010.

7.1 Experiment settings
We use both synthetic and real datasets in our experi-

ments. On each dataset, we mine frequent itemsets with re-
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Figure 5: Impact of item number, transaction number and transaction length

spect to a minimum support threshold, and then randomly
pick 1000 frequent itemsets as queries. Let Lmax be the
maximal length of frequent itemsets. Queries are selected
from itemsets with length between 2 and Lmax-1. This way,
all of the queries have at least one hit except for a few long
immediate superset queries. Queries of different lengths are
uniformly distributed. In the results shown below, we report
the average number of pages accessed for the 1000 queries
by each structure, which includes the number of pages ac-
cessed for retrieving the indexes and frequent itemsets, but
does not include the output cost. The output cost is the
same for all the methods.
Parameter tuning for EST. The extendible signature

tree (EST) structure has three parameters: k, L and C,
where k is the number of bits per item, L is the length of
signatures, and C is the maximum number of pages that
the bucket pointed by a directory entry can have. We stud-
ied the impact of the three parameters on the performance
of EST. We found that with the increase of C, the query
processing time of EST increases very gradually. EST is
sensitive to k and L. The best value for k is 1. When k=1
and L is between 32 and 64, EST has near-optimal perfor-
mance. In the experiments below, the following parameters
are used: k=1, C=2 and L=32.
We implemented two versions of CFP-tree, one uses the

pruning technique based on F2 (denoted as “CFP-tree F2”),
the other one does not (denoted as “CFP-tree”). For in-
verted files, we also implemented two versions, one uses
length directories (denoted as “INV+LenDir”) and the other
one stores lengths of itemsets explicitly in inverted lists as
in [9] (denoted as “INV”). We also build inverted files on
the original dataset and answer queries using the dataset di-
rectly. For subset and superset search, we use FP-growth [6]
to mine frequent itemsets once relevant transactions are re-
trieved. This method is denoted as “INV on Data”. We also
include the method that sequentially scans frequent item-
sets, which are compressed using the light-weight compres-
sion technique, as the baseline (denoted as “Scan”).

7.2 Effect of data characteristics
We use synthetic datasets to study the effect of item num-

ber, transaction number and transaction length, and we
use IBM QUEST synthetic data generator [3] to generate
datasets. When one parameter is varied, other parame-
ters are fixed as follows: transaction number is fixed at 2M,
transaction length is fixed at 40 and item number is fixed at
20K. The number of frequent itemsets is fixed at 20M.

Figure 5 shows the impact of the three parameters. EST
is relatively stable with respect to item number. The cost of
the three inverted file based methods decreases with the in-
crease of item number because inverted lists become shorter.
The cost of CFP-tree increases with the increase of item
number because the root node becomes larger.

The performance of the structures built on frequent item-
sets mainly depends on the size of the frequent itemsets, not
on the size of the original transaction dataset. Hence trans-
action number and transaction length have little impact on
the performance of the several structures except for “INV
on Data”. The cost of “INV on data” increases linearly
with respect to the two parameters. Note that here the I/O
cost of “INV on Data” includes only the cost for retriev-
ing relevant transactions. For subset/superset search, the
final itemsets are generated from the retrieved transactions
using FPgrowth [6], which is often computationally expen-
sive. Hence, even though “INV on Data” has lower I/O cost
than EST and CFP-tree for superset search when transac-
tion number is smaller than frequent itemset number, the
overall cost of “INV on Data” for superset search is much
higher than that of EST and CFP-tree.

All the three types of structures are at least an order of
magnitude better than sequentially scanning frequent item-
sets. EST has the best performance for exact match, and
relatively good performance for immediate subset/superset
search. CFP-tree has the best performance for (immediate)
subset search, and has the worst performance for (immedi-
ate) superset search especially when item number is large.
“CFP-tree F2” is able to reduce the cost for (immediate)
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Figure 6: Size and construction time of the several structures.

Datasets #transactions #items avg tlen max tlen size
connect 67,557 129 43 43 0.34MB

BMS-POS 515,597 1657 6.5 164 11.1MB
T40I20D2000k 2,000,000 12,228 40.0 78 427.9MB

Table 3: Datasets

superset search by using the pruning technique based on F2

when item number is large. “INV+LenDir” has the best per-
formance for (immediate) superset search, but it performs
the worst for (immediate) subset search. “INV+LenDir” is
several times better than “INV” for exact match and im-
mediate subset/superset search, which indicates that length
directories are very effective in reducing query cost.

7.3 Scalability
We use two real datasets and one synthetic dataset to

study the scalability of the several structures with respect to
the number of frequent itemsets. Table 3 shows some statis-
tics of the datasets. The 4th and 5th columns are the average
and maximal transaction length respectively. Dataset con-
nect is obtained from http://fimi.ua.ac.be/data/, and it
is very dense. Dataset BMS-POS is contributed by Blue
Martini Software for KDD cup 2000 [10], and it is very
sparse. The last dataset is generated using IBM QUEST
synthetic data generator [3] with the following parameters:
tlen=40, nitems=20 and ntrans=2000. The number of dis-
tinct items in the three datasets is in the order of 100, 1000
and 10000 respectively. We intentionally use such three
datasets as item number has a significant impact on the
performance of CFP-tree and inverted files.
Figure 6 shows the size and construction time of the sev-

eral structures when the number of frequent itemsets is in-
creased from 5M to 160M. The size and construction time
of EST and inverted files exclude the size and mining time
of frequent itemsets. We use a separate curve to show the
time for mining frequent itemsets and the space for storing
them, denoted as “FreqPats”. FPgrowth [6] is used to mine
frequent itemsets. The light-wight compression technique is
used to reduce the space for storing frequent itemsets.
EST is dozens of times smaller than frequent itemsets.

The size of inverted files is close to that of frequent itemsets.
On all the three datasets, using length directories reduces
the size of inverted files. On connect, CFP-tree is hundreds
of times smaller than frequent itemsets stored in a flat for-
mat, and it is even several times smaller than the EST index.
This makes CFP-tree extremely efficient on connect. On the
other two datasets, the size of CFP-tree is similar to that

of frequent itemsets. The inverted frequent extension lists
generated for F2 pruning take little space.

CFP-tree is constructed directly from datasets, so its con-
struction cost is no more than frequent itemset mining cost.
Figure 6 shows that the construction time of CFP-tree is less
than frequent itemset mining time on all the three datasets,
partly because of its smaller output size. Inverted files and
EST require additional cost to build the index on top of fre-
quent itemsets, and their construction cost is nearly linear
to the size of frequent itemsets. EST takes slightly longer
time to build than inverted files.

Figure 7 shows the query processing cost of the several
structures on the three datasets. Queries are generated as
described in Section 7.1. The two inverted file based indexes
show linear scalability for all the five types of queries as
the size of inverted lists increases linearly with respect to
the number of frequent itemsets. EST scales linearly for
subset/superset queries, and sub-linearly for the other three
types of queries. CFP-tree shows sub-linear scalability for
all the five types of queries.

On connect, CFP-tree is extremely efficient due to the
compactness of the structure as shown in Figure 6 (a). It
performs the best for all the five types of queries. For sub-
set/superset search, it is hundreds of times better than EST
and inverted files. We observed the same result on other
very dense datasets like mushroom, chess and pumsb. On
BMS-POS and T40I20D2000k, EST is the best for exact
match and nearly the best for immediate subset/superset
search, CFP-tree is the best for (immediate) subset search,
and “INV+LenDir” is the best for superset search. This is
consistent with Figure 5. It is obvious that “CFP-tree F2
has the best overall performance on connect and BMS-POS.
If we take the sum of the cost of the five types of queries
as the overall cost, “CFP-tree F2” also has the best overall
performance on T40I20D2000k.

In the above experiments, frequent itemsets are picked as
queries and almost every query has at least one hit. Next we
study the scalability of the several structures for processing
queries without hits. We randomly pick items that occur in
the original dataset to form queries. Nearly all the queries
generated in this way have a few hits for subset search and
have no hit for the other four types of queries. We again
generate 1000 queries, and the distribution of queries of dif-
ferent lengths is the same as in the previous experiment.
Figure 8 shows that the I/O cost of all the three structures
drops significantly. “INV+LenDir” has the biggest drop
while EST has the smallest drop. On connect, CFP-tree still
has the best performance, and “INV+LenDir” still performs
worse than CFP-tree and EST. On BMS-POS, CFP-tree and
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Figure 7: Scalability of the several structures for processing queries with hits.
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Figure 8: Scalability of the several structures for processing queries without hits.

“INV+LenDir” have similar performance and they are bet-
ter than EST. On T40I20D2000k, “INV+LenDir” has the
best performance.

8. DISCUSSION AND CONCLUSION
In this paper, we studied the performance of three struc-

tures, EST, CFP-tree and inverted files, for indexing and
querying frequent itemsets. We have proposed techniques
to improve their performance. For CFP-tree, we use a prun-
ing technique based on length-2 frequent itemsets to speed-
up (immediate) superset search. For inverted files, we use
length directories to reduce the cost for retrieving inverted
lists. Our experiment results show that these techniques are
very effective in reducing query processing cost.

We considered five types of queries: exact match, sub-
set/superset search and immediate subset/superset search.
Our results show that all the three structures have reason-
able performance, and no structure can outperform other
structures for all the five types of queries on all the datasets.
Our findings can be summarized as follows:

• On dense datasets with a small number of items, such
as connect, mushroom and pumsb, CFP-tree shows dom-
inant performance due to its compactness. Inverted
files show very poor performance on such datasets be-
cause inverted lists are very long on such datasets.

• On other datasets, for exact match, EST performs the
best; for subset search, CFP-tree performs the best; for

515



superset search, inverted files with length directories
often have the best performance; for immediate subset
search, EST and CFP-tree have similar performance
and both of them are better than inverted files; for
immediate superset search, EST and inverted files are
similar, and both of them are better than CFP-tree.

• Subset/superset queries are the most expensive. EST
is not good at either of them, so it often has worse
overall performance.

• EST is not sensitive to data characteristics. Both in-
verted files and CFP-tree are sensitive to item number.
With the increase of item number, the relative perfor-
mance of CFP-tree worsens while the relative perfor-
mance of inverted files improves.

• CFP-tree shows the best scalability among the three
structures. It scales sub-linearly for queries with hits
and its cost is almost constant for queries without hits.

Among the three structures, CFP-tree requires the least
construction and maintenance cost because it can be con-
structed and maintained using frequent itemset mining tech-
niques[15]. Hence its cost is the same as frequent itemset
mining. The other two require additional cost to build the
index on top of the generated frequent itemsets. The con-
struction cost is linear to the size of frequent itemsets.
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