
Efficient SimRank-based Similarity Join Over Large
Graphs ∗

Weiguo Zheng1, Lei Zou1†, Yansong Feng1, Lei Chen2 Dongyan Zhao1

1Peking University, China;
{zhengweiguo,zoulei,fengyansong,zhaody}@pku.edu.cn

2 Hong Kong University of Science and Technology, China;
leichen@cse.ust.hk

ABSTRACT
Graphs have been widely used to model complex data in many
real-world applications. Answering vertex join queries over large
graphs is meaningful and interesting, which can benefit friend rec-
ommendation in social networks and link prediction, etc. In this
paper, we adopt “SimRank” to evaluate the similarity of two ver-
tices in a large graph because of its generality. Note that “Sim-
Rank” is purely structure dependent and it does not rely on the
domain knowledge. Specifically, we define a SimRank-based join
(SRJ) query to find all the vertex pairs satisfying the threshold in a
data graph G. In order to reduce the search space, we propose an
estimated shortest-path distance based upper bound for SimRank
scores to prune unpromising vertex pairs. In the verification, we
propose a novel index, called h-go cover, to efficiently compute
the SimRank score of a single vertex pair. Given a graph G, we
only materialize the SimRank scores of a small proportion of ver-
tex pairs (called h-go covers), based on which, the SimRank score
of any vertex pair can be computed easily. In order to handle large
graphs, we extend our technique to the partition-based framework.
Thorough theoretical analysis and extensive experiments over both
real and synthetic datasets confirm the efficiency and effectiveness
of our solution.

1. INTRODUCTION
Recently, graph model has attracted extensive attentions in many

fields, such as bioinformatics, chemistry, software engineering, traf-
fic network and semantic web. Much real-world data in these do-

†corresponding author: Lei Zou, zoulei@pku.edu.cn∗This work was supported by NSFC under Grant No.61003009,
61272344, 61202233. Yansong Feng and Dongyan Zhao were also
supported by National High Technology Research and Develop-
ment Program of China under Grant No. 2012AA011101. Lei
Chen’s work is supported in part by the Hong Kong RGC GRF
Project No.611411, National Grand Fundamental Research 973
Program of China under Grant 2012-CB316200, HP IRP Project,
Microsoft Research Asia Grant,and Grant from Huawei Noahs ark
lab. Lei Zou’s work was partially supported by State Key Labora-
tory of Software Engineering(SKLSE), Wuhan University, China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 7
Copyright 2013 VLDB Endowment 2150-8097/13/05... $ 10.00..

mains can be modeled as graphs, where vertices represent different
objects and edges model their pairwise relationships. Full stud-
ies over these graph data require effective graph data management
techniques. Therefore, various types of queries, such as, subgraph
search [32, 34], shortest-path query [3], reachability query [31, 30],
pattern match query [4, 35, 7], and similarity join query [28] have
been investigated. In our work, we focus on the similarity join
problem between two vertex sets in a graph. Specifically, given
two sets of vertices in a graph and a specified threshold θ, the re-
sults are the vertex pairs whose similarity scores are no less than
θ.

In this paper, we would not adopt any domain dependent sim-
ilarity function. Instead, we utilize “SimRank” [10], a structural-
context similarity measure, to evaluate the similarity of two vertices
in a large graph. SimRank is purely structure dependent which fol-
lows the intuition that “two objects are similar if they are related to
similar objects”[10]. Because of its generality, SimRank has been
widely used in many applications, such as link-prediction in social
networks [20] and recommendation systems [1].

The SimRank-based join (SRJ) query in this paper is defined as
follows: Given two vertex sets U and V in a large graph G and a
threshold θ, SRJ returns the vertex pairs (u, v) (u ∈ U and v ∈ V),
whose SimRank scores are no less than θ. The following examples
demonstrate the usefulness of SRJ queries in real-life applications.

��
�����	

������

�����	

������

�����
��
������

����
�����������

��

��
��

��

��

��
��

���
���

Figure 1: A Social Network

1) IT Company Recruitment in Social Networks. Assume that
an IT company is launching a new project. It should recruit one
project manager and one product manager. Recently, more and
more employers prefer to use some professional social networks,
such as LinkedIn 1, to seek candidates. Figure 1 shows a fictitious
graph model (G) of a professional social network, where vertices
represent active users and the edges indicate the friendship rela-
tions between two users. Assume that v1, v3 and v6 are project
managers, v5 and v10 are product managers. As we know, as a suc-
cessful group, the team members should have a healthy relationship

1http://www.linkedin.com/

493

among them and the low communication cost between group mem-
bers is of great importance. Thus, we expect that the project man-
ager and the product manager trust each other. In sociology, there is
an interesting observation: the more similar two individuals are, the
greater the trust between them is [23]. In Aristotle’s Rhetoric and
Nichomachean Ethics, Aristotle noted that people “love those who
are like themselves” [2]. Plato observed in Phaedrus that “similar-
ity begets friendship” [24]. Therefore, we would like to find a pair
of project manager and product manager who are similar to each
other. Here, we use SimRank to evaluate the similarity, which is
based on the intuition that “two users are similar if they have many
common friends”. In this example, SRJ query will return some
promising candidate pairs (in LinkedIn network), such as (v1, v10)
and (v5, v6).

�

�!

�!

�!

"#

"#

#$

#$

��
��

��

��

��

��
��

��

Figure 2: Scientific Paper Citation Network

2) Bibliometric Analysis of Scientific Papers. Usually, we
model a bibliographic network as a directed graph, where vertices
represent papers labeled with specified research areas (e.g., Database
(DB), Information Retrieval (IR), Machine Learning (ML), Artifi-
cial Intelligence (AI)), a directed edge starting from vi to v j ex-
ists if paper vi cites paper v j. Figure 2 is such a model of biblio-
graphic graph. Let us consider the following scenario: To enable
cross-disciplinary studies in DB and IR, a scientist wants to find
some paper pairs (vi, v j), where vi and v j are derived from DB and
IR respectively, but they focus on a similar topic. Although there
are some noteworthy similarity measures, such as co-citation [27]
and bibliographic coupling [14], they only compute the similarity
scores of any two vertices according to their immediate neighbors.
In Figure 2, papers in DB area are not cited directly by any paper
in IR area. Different from co-citation and bibliographic coupling,
SimRank exploits the entire graph structure to determine the sim-
ilarity rather than merely considering neighbors. Thus, SRJ query
provides more cross-disciplinary work in DB and IR to users.

Although there exist some other pair-wise metrics for vertices,
e.g. shortest path distances, SimRank captures the global structure
of the graph to evaluate the structural-context “similarity” between
two vertices. It is based on the random walk model, and it consid-
ers all possible paths between two vertices, while the shortest path
distance emphasizes the “connection” and it only considers a sin-
gle path (i.e., the shortest path) between two vertices. Due to their
respective strengths, the two measures (SimRank and shortest path
distances) are used in different applications. In this work, we focus
on the “SimRank” measure.

SimRank-based join (SRJ) queries have many potential applica-
tions, but it is not an easy task to answer the SRJ query, because
it invokes expensive SimRank computation. A straightforward ap-
proach to answer SRJ queries is as follows: Given two sets of ver-
tices U and V , we can first compute the pairwise SimRank scores
for all the vertex pairs (ui, v j), where ui ∈ U and v j ∈ V . Then, the
vertex pairs satisfying the threshold are returned to users. Although
lots of efforts have been made to compute SimRank in the literature
[21, 8, 17, 18, 19], those methods are not efficient enough to answer
SRJ queries. We briefly review the existing SimRank computation
approaches and classify them into the following categories.

Computing All-Pairwise SimRank. Many methods focus on
computing SimRank between all-pairwise vertices. Obviously, it
is inefficient to employ these methods to compute SimRank scores
between all-pairwise vertices on the fly to answer SRJ query, since
we only need SimRank scores of a partial set of vertex pairs. On
the other hand, it is not desirable to store SimRank scores between
all-pairwise vertices for a large graph G, as it requires O(|V(G)|2)
space complexity, where |V(G)| is the number of vertices in graph
G.

Computing Single-Source SimRank. Li et al. rewrite the Sim-
Rank equation into a non-iterative form, based on which it can
derive approximate SimRank scores from one source vertex to all
vertices [17]. However, its space cost is O(k2|V(G)|2), where k �
|V(G)| [17].

Computing Single-Pair SimRank. Li et al. propose to compute
SimRank of a single vertex-pair (vi, v j) by online enumerating all
paths rooted at vi and v j, respectively [19]. Apparently, it is quite
expensive to do that in a large graph.

Link-based Similarity Join. The most similar work to SRJ is
the link-based similarity join proposed in [28], which delivers the
top-k results. Our work differs from their study in that we focus
on the threshold-based problem. Moreover, because the method in
[28] adopts the iterative computation model to compute SimRank
online, it is not efficient in a large graph.

In order to address SRJ queries, we adopt a filter-and-refine frame-
work that is also considered in other graph database work as well.
To avoid unnecessary SimRank computation, as far as we know, we
are the first to propose a shortest-path distance-based upper bound
for SimRank score. Due to the high cost of computing shortest-path
distance on the fly, we adopt existing shortest-path distance estima-
tion techniques to establish a new upper bound for Sim(vi, v j) with
low computation cost. The search space of SRJ queries can be re-
duced greatly with the upper bound. In the refinement phase, we
need to compute SimRank scores of the remaining vertex pairs.
Obviously, it is costly to compute Sim(vi, v j) on the fly. However,
it is not desirable to materialize all pairwise SimRank scores due
to square space complexity O(|V(G)|2). Therefore, we propose to
materialize SimRank scores of a partial set of vertex pairs (called
h-go cover vertex pairs, see Definition 3.2) rather than those of all-
pairwise vertex pairs in offline processing. Consequently, it reduces
the storage cost greatly. Moreover, based on the SimRank scores
of these h-go cover vertex pairs, we propose an efficient way to
compute a single pair-wise SimRank score in online processing.

To summarize, we make the following contributions.

• In order to reduce the search space of SRJ queries, we pro-
pose a novel upper bound for SimRank scores.

• We propose an efficient way to compute the SimRank score
of a vertex pair by materializing SimRank scores of a partial
set of vertex pairs (called h-go cover vertex pairs). In order to
handle large graphs, we propose a partition-based solution.

• We prove that finding the minimum number of h-go cover
vertex pairs is NP-hard. Thus, two efficient algorithms are
proposed to find the approximate solutions. More impor-
tantly, we provide thorough theoretical analysis about the ef-
fectiveness of our algorithms.

• We conduct extensive experiments over both real and syn-
thetic graphs to confirm that the proposed method answers
SRJ queries efficiently.

Organization. The rest of this paper is organized as follows.
Section 2 defines the problem to be addressed in this paper and

494

Table 1: Frequently-used Notations
Notation Definition and Description
G A labeled unweighted simple graph
N = |VG | The number of vertices in G
va, vb Two vertices in G
e(va, vb) An edge in G
d(va) the degree of va
dist(va, vb) the shortest distance between va and vb
Sim(va, vb) The SimRank score of va and vb
Rk(va, vb) The SimRank score of va and vb on iteration k
Gb The block-graph of G
VC(G) The vertex cover of G
Gp The vertex-pair graph of G
G̃p The similarity graph of a vertex-pair graph Gp

XGp The h-go cover of Gp

n A node in Gp or G̃p

S (n) The similarity score of node n in Gp or G̃p

gives an overview of our solution. To answer SRJ queries effi-
ciently, Section 3 introduces an upper bound of SimRank score and
presents two index techniques of computing h-go covers. Section 4
describes the operations for answering SRJ queries in large graphs.
Section 5 reports the experimental results, followed by the related
work in section 6. Finally, Section 7 concludes the paper.

2. PRELIMINARIES
In this section, we formally define the problem to be addressed

and review the terminologies used in this paper. We also give an
overview of our solution in this section. Table 1 lists the frequently-
used notations throughout the paper. For clarity, we use the term
“vertex” to denote the vertices in the original graph G. The vertices
in other graphs, such as vertex-pair graph or similarity graph (de-
fined in Definitions 3.1 and 3.5 respectively), are called “nodes”.

2.1 Problem Definition
A labeled graph G is defined as G = (VG, EG), where VG is a set

of vertices and EG is a set of edges. In this paper, we focus on the
undirected graph, although the method can be used in the directed
graph with minor modifications.

DEFINITION 2.1. (SimRank [10]) Given two vertices v1 and
v2 in graph G, the SimRank score between v1 and v2 (denoted as
Sim(v1, v2)) is defined as follows:

Sim(v1, v2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if v1 = v2;

c
|I(v1)||I(v2)|

|I(v1)|∑
i=1

|I(v2)|∑
j=1

Sim(Ii(v1), I j(v2)), otherwise

(1)
where c is a decay factor between 0 and 1, |I(v1)| and |I(v2)|

denote the number of neighbors of v1 and v2 respectively, Ii(v1)
and I j(v2) denote the i-th neighbor of v1 and j-th neighbor of v2,
respectively.

Problem Definition (SimRank-based Join (SRJ) Query)2. Given
two set of vertices U and V of a graph G (i.e., U ⊂ VG,V ⊂ VG)
and a user specified threshold θ, SRJ delivers the vertex pairs (u, v)
whose SimRank scores are no less than θ, i.e., Sim(u, v) ≥ θ, where
u ∈ U and v ∈ V .

2We only focus on the problem of threshold-based query in this pa-
per. To answer the top-k query, we can sample the SimRank scores
of the datasets, and then update the threshold dynamically based
on the obtained answers. Further discussions of better methods to
answer the top-k query are beyond the scope of this paper.

Figure 3 shows a running example. Suppose the two sets of ver-
tices are {v1, v3, v4} and {v2, v5} and θ = 0.1. After computing the
SimRank scores of G (suppose that the decay constant c = 0.6), we
have Sim(v1, v2) = 0.244, Sim(v1, v5) = 0.237, Sim(v3, v2) = 0.09,
Sim(v3, v5) = 0.028, Sim(v4, v2) = 0.193, and Sim(v4, v5) = 0.066.
Three SimRank scores are larger than the threshold. Therefore,
(v1,v2), (v1,v5) and (v4,v2) are the query results of SRJ.

����

����

��

Figure 3: A Running Example Graph G

A baseline solution to solve this problem is as follows: Given
two sets of vertices U and V , we perform a nested loop join algo-
rithm. In the inner loop, for each candidate vertex pair (u, v), u ∈ U
and v ∈ V , we compute the SimRank score Sim(u, v). And then the
vertex pairs whose SimRank scores are no less than the threshold
are returned as final results.

Obviously, it is an inefficient solution, since we need to compute
SimRank scores for many vertex pairs. It is expensive to compute
Sim(·, ·) on the fly in terms of query response time. To efficiently
answer SRJ queries, another simple method is to materialize Sim-
Rank scores of all vertex pairs. Unfortunately, the space cost of
storing all pairs of SimRank is extremely high, especially when the
graph is large.

2.2 The Overview of Our Solution
In order to answer SRJ queries efficiently, we propose a filter-

and-refine framework. Specifically, we first build an upper bound
(for SimRank) with the light computation cost. Using the upper
bound, we can filter out some vertex pairs whose SimRank upper
bounds are less than the threshold θ. If a vertex pair (v1, v2) still
survives after the pruning, we need to compute Sim(v1, v2). We
propose an efficient solution to compute Sim(v1, v2) by materializ-
ing SimRank scores of a partial set of vertex pairs. The overall
framework is given in Figure 4.

�������
�	
��

������
�	
��

%���& %

 ��'���(
(���	
��

%����
�
���
�)*����
����& %�

+*�� 	����
(���	
��

,
��� ,�'$��
(���(

��'��
�
&�
����� -���

��'��
�
&� ,�'$��
(��� �. /�0�1

"(2��(

Figure 4: The Overview of Our Solution

495

Offline Phase. Since our proposed upper bound is based on the
shortest path estimation technique, we select some landmark ver-
tices in graph G and store the shortest distances between each ver-
tex and these landmarks. We call them the landmark index.

Furthermore, given a graph G, we generate a vertex-pair graph
Gp, over which a h-go cover is computed. We prove that minimiz-
ing the size of h-go cover is NP-hard. Thus, we design two heuristic
solutions to select “h-go cover vertex pairs” for index construction.
Finally, we materialize the h-go cover X together with correspond-
ing SimRank scores as the index. We call them h-go cover index.

Online Phase. In the online phase, we first prune the search
space to avoid the expensive SimRank computation, and then verify
all the candidate pairs passing the filter.

1) Pruning: Since we design an estimated shortest path distance-
based upper bound for SimRank score, based on the landmark in-
dex, we can filter out some vertex pairs whose upper bounds are
smaller than θ. Therefore, many expensive SimRank computations
could be avoided.

2) Refining: In the refining process, we need to compute Sim-
Rank scores for all candidate vertex pairs. Based on the h-go cover
index, we design an efficient solution to compute the SimRank
scores on the fly.

Furthermore, we also design a partition-based solution to handle
SPJ queries over a very large graph, which is discussed in Section
4.

3. TECHNIQUES FOR SRJ QUERY

3.1 SimRank Upper Bound
Let us recall the SimRank definition in Equation 1. A solution to

Equation (1) for a graph G can be reached by iterating to a fixed-
point. For the k-th iteration, we introduce an iterative similarity
function Rk(v1, v2), which denotes the similarity score between v1

and v2 on the k-th iteration. Initially, R0(v1, v2) is defined as

R0(v1, v2) =

{
1, if v1 = v2,
0, otherwise.

(2)

Iteratively, Rk+1(v1, v2) is computed from Rk(·, ·) as follows:

Rk+1(v1, v2) =
c

|I(v1)||I(v2)|
|I(v1)|∑

i=1

|I(v2)|∑
j=1

Rk(Ii(v1), I j(v2)) (3)

Theoretically, Sim(v1, v2) = lim
k→∞

Rk(v1, v2) for all v1, v2 ∈ VG. The

time complexity required for k iterations is O(kN2d2), where k is
the number of iterations, N is the number of vertices of G, d is
the average degree of vertices. Moreover, it requires O(N2) space
to store the results Rk(·, ·). Hence, it is extremely time and space
consuming to compute SimRank scores in large graphs.

According to the iterative computation model of SimRank, we
give the following Lemma.

LEMMA 3.1. For any two vertices v1 and v2, the difference be-
tween the (k+1)-th and the k-th iteration of SimRank scores holds:

0 ≤ Rk+1(v1, v2) − Rk(v1, v2) ≤ ck+1. (4)

PROOF. 1) If v1 = v2 or I(v1) = Ø or I(v2) = Ø, according to
SimRank definition, Rk+1(v1, v2) − Rk(v1, v2) = 0 < ck+1.

2) For the general case of v1 � v2, I(v1) � Ø and I(v2) � Ø, the
proof is organized by mathematical induction.

(Induction Basis.)(k = 0)
R1(v1, v2) − R0(v1, v2)) = R1(v1, v2)

= c
|I(v1)||I(v2)|

|I(v1)|∑
i=1

|I(v2)|∑
j=1

R0(Ii(v1), I j(v2))

Since 0 ≤ R0(Ii(v1), I j(v2)) ≤ 1,

0 ≤ R1(v1, v2) − R0(v1, v2)) ≤ c·|I(v1)||I(v2)|·1
|I(v1)||I(v2)| = c ,

the induction basis R1(v1, v2) − R0(v1, v2)) ≤ c is proved.
(Inductive step.)
Provided that Equation (4) holds for a given integer k(k > 0) for

all vertex pairs, i.e.,

0 ≤ Rk(v1, v2) − Rk−1(va, vb) ≤ ck, (5)

where v1, v2 ∈ V(G)
let us prove Equation (4) holds for (k + 1) as well.
Rk+1(v1, v2) − Rk(v1, v2)

= c
|I(v1)||I(v2)|

|I(v1)|∑
i=1

|I(v2)|∑
j=1

Rk(Ii(v1), I j(v2))

− c
|I(v1)||I(v2)|

|I(v1)|∑
i=1

|I(v2)|∑
j=1

Rk−1(Ii(v1), I j(v2))

= c
|I(v1)||I(v2)| ×

|I(v1)|∑
i=1

|I(v2)|∑
j=1

[Rk(Ii(v1), I j(v2)) − Rk−1(Ii(v1), I j(v2))]

Based on Equation (5),
0 ≤ Rk+1(v1, v2) − Rk(v1, v2)
≤ c
|I(v1)||I(v2)| · |I(v1)||I(v2)| · ck = ck+1

(Conclusion.) According to the above analysis, if Equation (4)
holds for a given integer k(k > 0) for all vertex pairs, Equation
(4) will hold for k + 1. We have proved that Equation (4) holds
for k = 0. Therefore, according to the induction method, we can
conclude that Lemma 3.1 holds.

As shown in Lemma 3.1, in the computation process of Sim-
Rank, the SimRank score difference between the (k+1)-th and k-th
iteration decreases exponentially in terms of the number of itera-
tion steps. Based on this lemma, we can deduce an upper bound for
SimRank score of a vertex pair.

Considering any two vertices v1 and v2, if their pairwise shortest
path distance3 is not shorter than h, the SimRank score is 0 in the
first
0.5(h − 1)� iterations. Specifically, we obtain the following
lemma.

LEMMA 3.2.

dist(v1, v2) ≥ h⇒ Rk(v1, v2) = 0, 0 ≤ k ≤
0.5(h − 1)�
where h ≥ 1, dist(v1, v2) is the shortest path distance between v1

and v2, Rk(v1, v2) denotes the iterative similarity score between v1

and v2 in the k-th iteration.

PROOF. (Proof by Induction) (Induction Basis.) When h = 1,
we know v1 � v2, and R0(v1, v2) = 0 based on the initial case.

(Inductive step.) provided that Lemma 3.2 holds for a given h
and h ≥ 1, i.e., if dist(v1, v2) ≥ h, Rk(v1, v2) = 0, 0 ≤ k ≤
0.5(h −
1)�.

Let us prove that it also holds for h + 1. For any two vertices v1

and v2 with dist(v1, v2) ≥ h + 1, let k0 =
0.5(h − 1)�. When h is an
odd number,
0.5h� = k0, Rk(v1, v2) = 0, 0 ≤ k ≤
0.5h� based on
the hypothesis. When h is an even number,
0.5h� = k0 + 1.

Rk0+1(v1, v2) = c
|I(v1)||I(v2)|

|I(v1)|∑
i=1

|I(v2)|∑
j=1

Rk0
(Ii(v1), I j(v2)).

Because dist(v1, v2) ≥ h + 1, the shortest paths between their
neighbors are not shorter than h − 1. Since h is an even number,

0.5(h−2)� = k0. According to the hypothesis, Rk0

(Ii(v1), I j(v2)) = 0
in the first
0.5(h − 1)� iterations. Hence, if dist(v1, v2) ≥ h + 1,
Rk(v1, v2) = 0, 0 ≤ k ≤
0.5(h)�.
3Here, the shortest path distance means the minimal number of
hops between v1 and v2, i.e., each edge weight is 1.

496

It has shown that if dist(v1, v2) ≥ h, Rk(v1, v2) is equal to 0 when
0 ≤ k ≤
0.5(h − 1)�. On the basis of Lemmas 3.1 and 3.2, we give
a SimRank upper bound of any vertex pair.

THEOREM 3.1.

dist(v1, v2) ≥ h⇒ Sim(v1, v2) ≤ c
0.5(h−1)�+1

1 − c
where h ≥ 1.

PROOF. Initially, Sim(v, v) = 1 and others are 0, v ∈ V(G). Con-
sider any two vertices v1 and v2 and dist(v1, v2) ≥ h. For the sim-
plicity of presentation, let t denote (
0.5(h − 1)�). We know that
R(v1, v2) = 0 in the first t iterations according to Lemma 3.2.

Since Rk+1(v1, v2) − Rk(v1, v2) ≤ ck+1,
Rt+1(v1, v2) ≤ Rt(v1, v2) + ct+1 = ct+1

and then

Rt+s(va, vb) ≤ s∑
i=1

ct+i ≤ ct+1(1−cs)

1−c

when s→ ∞,
s(v1, v2) = lim

s→∞Rt+s(v1, v2) ≤ ct+1

1−c =
c
0.5(h−1)�+1

1−c .

If we know the shortest path distance between two vertices, their
upper bound of SimRank will be calculated according to Theorem
3.1. However, it is also expensive to compute the shortest path
between two vertices on the fly. Fortunately, the shortest path dis-
tance estimation techniques are well studied in the literature [25,
29]. Therefore, we can utilize existing methods to deduce the lower
bound for the shortest path distance between two vertices. Conse-
quently, we draw the following theorem about the upper bound for
SimRank score, which is used in our paper.

THEOREM 3.2.

distLB(v1, v2) ≥ h⇒ Sim(v1, v2) ≤ Simu(v1, v2) (6)

where Simu(v1, v2) = c
0.5(h−1)�+1

1−c , h ≥ 1 and distLB(v1, v2) denotes the
lower bound for the shortest path distance between v1 and v2 in G.

PROOF. Omitted due to space limit.

To make our paper self-contained, we review the shortest path
distance estimation technique in brief. Note that, any estimation
method [25, 29] can be applied in our problem, since these methods
are orthogonal to our solution. In this paper, we adopt the method
in [25]. The main idea of [25] is to select a set W of landmark
vertices and compute the approximation according to Equation (7).

distLB(v1, v2) = max
vu∈W

distl(v1, v2) (7)

where distl(v1, v2) is defined in Equation (8).

distl(v1, v2) = |dist(v1, vu) − dist(v2, vu)| (8)

Equation (8) is based on the triangle inequality. The key step of
estimating the lower bound is how to find the landmarks. Here, we
adopt the heuristic method as discussed in [25]: First, the vertex
with the smallest degree is selected as the first landmark. Then,
we select the next landmark which is the farthest away from all
selected landmarks so far. The above process is iterated until that a
predefined number of landmarks are selected. According to recent
studies, shortest path distance estimation technique could provide
precise distance estimation in a very large graph, even in a billion-
node graph. Interested readers may refer to [25, 29] for details.

In summary, we select some landmark vertices in G and record
the shortest path distance between each vertex and the landmark
vertices. We call these as the landmark index, which can be used to
compute the SimRank score upper bound (see Equations 6 and 7).

��
��0��

�

�

�

�

�

�
� ��

�� ��

��

��

��

��0��

��0����0��

��0��

��0��

��0��

��0��

��0����0��

��0��

��0��

��0�� ��0��

(a) 2-go cover of Gp

��0��

��

��0��

��0����0�� ��0��

��0��

��0��

��0����0��

��0����0��

��0��

��0��

��0��

�

�

�

�

�

�
� ��

�� ��

��

��

��

(b) vertex cover of Gp

Figure 5: The 2-go cover and vertex cover of vertex-pair graph
Gp

3.2 Index-based SimRank Computation
After the pruning process, there are some remaining vertex pairs

whose similarity upper bounds are larger than θ. Now, we dis-
cuss how to compute SimRank scores for those remaining vertex
pairs. As discussed in Section 3.1, the time complexity of comput-
ing SimRank is O(kN2d2). Hence, it is time consuming to compute
SimRank scores in an iterative model. It is not desirable to store
SimRank scores of all vertex pairs, due to the large space complex-
ity O(N2). Therefore, we propose a novel index-based solution to
compute SimRank scores for all the remaining vertex pairs.

According to Equation (1), the SimRank score between two ver-
tices is computed by the SimRank scores of their neighbors. Logi-
cally, we can construct a vertex-pair graph Gp, in which each node
represents a vertex pair of G.

DEFINITION 3.1. (Vertex-pair Graph)[10]. Given a graph G,
the corresponding vertex-pair graph is defined as three tuples Gp =

(Vp, Ep, S p), where Vp is a set of nodes, Ep is a set of edges, S p is
a set of SimRank scores, and

• Each node n ∈ Vp represents a vertex pair (vi, v j), where
vi, v j ∈ V(G). The node n is associated with SimRank score
Sim(vi, v j) computed from the original graph G;

• There is an edge between nodes n1(vi1 , v j1) and n2(vi2 , v j2) in
Gp if and only if: 1) both edges (vi1 , vi2) and (v j1 , v j2) exist
in graph G; or 2) both edges (vi1 , v j2) and (v j1 , vi2) exist in
graph G.

Note that, each node n in Gp corresponds to a vertex pair in G.
Thus, we use “node” and “vertex pair” interchangeably when the
context is clear. Given the graph G in Figure 3, its corresponding
vertex-pair graph Gp is shown in Figure 5(a). Each node in Gp

denotes a vertex pair in G. There is an edge between n1(v1, v4) and
n2(v2, v5) in Gp because (v1, v2) ∈ E(G) and (v4, v5) ∈ E(G). Note
that, in this section, we assume that Gp can be cached in memory.
We will discuss a partition-based solution to handle a large graph
G in Section 4. Furthermore, GP is not stored as index structures.
Only h-go cover vertex pairs (Definition 3.2) together with their
corresponding SimRank scores are index elements.

LEMMA 3.3. In the vertex-pair graph Gp, the SimRank score
of a node nk can be computed through the SimRank scores of its
neighbor nodes in Gp as

S (nk) =
c
|I(nk)|

|I(nk)|∑
i=1

S (ni) (9)

where I(nk) is the neighbors of node nk in Gp, and ni ∈ I(nk).

497

PROOF. For each neighbor ni = (vai, vbi) of node nk = (vak, vbk),
vertices vai and vbi are the neighbors of vak and vbk respectively.
|I(nk)|∑

i=1

S (ni) =
|I(nk)|∑

i=1

Sim(vai, vbi)

=
|I(vak)|∑

i=1

|I(vbk)|∑
j=1

Sim(Ii(vak), I j(vbk)),

and |I(nk)| = |I(vak)||I(vbk)|. Therefore Equation (1) is equivalent
to Equation (9).

According to Lemma 3.3, given a node in Gp, its SimRank score
can be calculated from its neighbors in Gp. Therefore, we pro-
pose to store the SimRank scores of a set of nodes in Gp, based on
which, the SimRank score of any node can be recovered easily. To
achieve that, we propose “h-go cover vertex pairs” and “path-tree”
as follows.

DEFINITION 3.2. (h-go cover). A h-go cover of a vertex-pair
graph Gp, denoted as XGp , is a set of vertices whose removal leaves
a graph without simple paths longer than h.

According to the h-go cover definition, for each path of length
no shorter than h in Gp, at least one of its nodes is contained in
XGp . For notation simplicity, we also use X instead of XGp when
the context is clear.

DEFINITION 3.3. (path tree). Given a node n in an vertex-pair
graph GP, the path tree of node n is defined as a tree T (n), where

• n is the root and its neighbors in Gp are its children in T (n).

• The children of an intermediate node in T (n) are its neigh-
bors in Gp except for its ancestors in T (n).

THEOREM 3.3. Given a path T (n) and a h-go cover X of Gp,
T (n) must be besieged by X and the besieged depth is h, namely,
for each branch P (in T (n)) with length longer than h, there must
exist at least one node n′, where n′ ∈ P ∧ n′ ∈ X, and the number
of hops from n to n′ is no larger than h.

PROOF. It can be proved according to Definitions 3.2 and 3.3.

A path tree of node n2(v3, v4) is shown in Figure 6, and this path
tree is besieged by the grey nodes. The part (of the path tree) that
is besieged by the grey nodes is called besieged region. Note that,
the same vertex pair may occur twice or more times in a path tree.
For example, (v1, v4) occurs three times in the path tree, as shown
in Figure 6.

������
����	

�����

�����

�����

�����

�����

�����

�����

�����
�����

���������� �����

�����

����� ���������� �����

����� ����� ����� �����

��

���

���

��

��

��

��

���

�������
�����

Figure 6: An example of path tree

If we only store the SimRank scores of nodes in XGp , for each
node n � XGp , the SimRank score of n could be calculated from the
SimRank scores of nodes in XGp . Let us first illustrate the main idea
by the following running example. The grey nodes X={n4(v2, v4),

Table 2: Table TB with SimRank scores of 2-go cover vertex
pairs

Vertex ID Vertex ID SimRank Scores
v2 v4 0.193
v4 v5 0.066
v2 v5 0.237
v4 v4 1
v5 v5 1

n6(v4, v5), n10(v2, v5), n13(v4, v4), n14(v5, v5)} in Figure 5(a) are a 2-
go cover of Gp. Assume that we need to compute the SimRank
score of n2(v3, v4). According to Definition 3.3, we generate the
path tree of node n2, i.e., T (n2). Note that, it is not necessary to
generate the whole path tree T (n2). Instead, we only consider the
region besieged by h-go cover X. According to SimRank defini-
tion (Equation 1), we can get a system of linear equations in three
variables (S (n1), S (n2) and S (n3)) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S (n2) =
c
3

(S (n1) + S (n10) + S (n14))

S (n1) =
c
4

(S (n2) + S (n3) + S (n4) + S (n13))

S (n3) =
c
2

(S (n1) + S (n6))

where S (n4), S (n6), S (n10), S (n13) and S (n14) are known quan-
tities, as n4, n6, n10 and n14 are 2-go cover nodes. Solving the
system of linear equations leads to the SimRank score of n2, i.e.,
Sim(v3, v4), by existing algorithms, such as Gaussian elimination[9].

Obviously, different h-go covers in the vertex-pair graph Gp will
affect the query performance. We postpone the discussion about
selecting h-go cover to Section 3.3. Given a graph G, assume that
its h-go cover vertex pairs X are given. We store the h-go cover
vertex pairs together with their corresponding SimRank scores in a
triple column table B (as shown in Table 2), where the vertex pair
is the primary key. On the observation that the Sim(vx, vx) = 1, it is
not necessary to store them.

Given any two vertices v1 and v2 in G, we propose Algorithm 1 to
compute Sim(v1, v2) resorting to the h-go cover vertex pairs X (i.e.,
the table TB) and the original graph G. Note that, the vertex-pair
graph Gp is not stored as the index structure. If Sim(v1, v2) is not
stored in table TB, according to Definitions 3.1 and 3.3, we generate
the path tree T of n(v1, v2) by depth-first-search (DFS) traversal
over G from vertices v1 and v2, simultaneously. Once some branch
of T encounters some vertex pair in h-go cover X, the branch is
terminated. In this way, we can get the besieged region of T by
h-go cover X (steps 4-13 in Algorithm 1). For each non-leaf node
in T , we gain an equation according to SimRank definition. By
going over all the non-leaf nodes in T , we will obtain a system of
linear equations. Solving the system of linear equations leads to the
SimRank score of Sim(v1, v2).

Correctness. Each equation in the system of equations is gener-
ated according to Equation (9). So the analytic solutions are cor-
rect.

3.3 h-go Cover Selection
Given a path tree T (n), the lower the besieged depth of T (n) by

h-go cover X is, the less variables the system of equations has. As
a result, Algorithm 1 will have a faster online performance. There-
fore, the key is how to select an optimal h-go cover in Gp. However,
Theorem 3.4 tells us that it is a NP-hard problem.

THEOREM 3.4. The problem of finding a h-go cover that has
the fewest nodes is NP-hard.

498

Algorithm 1 QuerySim(v1, v2,TB,G)

Require: Two vertices vi, v j in G and the table TB with SimRank scores of
h-go cover vertex pairs.

Ensure: Sim(v1, v2).
1: if Sim(v1, v2) is stored in TB then
2: return Sim(v1, v2);
3: else
4: push the vertex pair (v1, v2) into stack st
5: while st � φ do
6: pop the top vertex pair (vx, vy)
7: add (vx, vy) into tree T
8: for each neighbor v′x of vx do
9: for each neighbor v′y of vy do

10: if vertex pair (v′x, v′y) � TB then
11: push (v′x, v′y) into stack st
12: else
13: add (v′x, v′y) into tree T
14: for each non-leaf vertex pair (vx, vy) ∈ T do
15: generate an equation based on Equation (9)
16: Sim(v1, v2)← solve the system of linear equations
17: return Sim(v1, v2)

PROOF. We can reduce the set cover problem which is known
to be NP-hard to a h-go cover problem. Given an instance of the
set cover problem, U = {u1, u2, . . . uk} is the universe elements, n
sets S = {s1, s2, . . . sn} where si (1 ≤ i ≤ n) is a set. We can replace
each element ui with a h-length path pj in G, i.e., there is a bijection
f (ui)↔ pj for all the h-length paths. What is more, the complexity
of enumerating all the h-length paths in G is polynomial. The set
cover problem is reduced to h-go cover problem. Since the opti-
mization version of the set cover is NP-hard, finding a h-go cover
that uses the fewest nodes is NP-hard.

Therefore, we propose two heuristic methods to select h-go cov-
ers in a vertex-pair graph Gp.

3.3.1 Set Cover based Method
We have proved that finding a h-go cover with the minimum

number of nodes in Gp is a NP-hard problem by reducing the min-
imum set-cover (MSC) problem to our case. Therefore, we adopt
the greedy algorithm of MSC to find the h-go cover. Specifically,
for each node n ∈ Gp, we enumerate all paths with lengths no
longer than h containing node n. All paths are collected to form
a path-set PS . We select a node n that appears in the maximum
number of paths in P. The node n is put into X and all paths con-
taining n are removed from PS . We repeat the above steps until no
path is left in PS . The details are described in Algorithm 2.

THEOREM 3.5. The approximate ratio of the set-cover based
method for finding h-go cover is 2× h ln(|V(G)| × dp), where |V(G)|
denotes the number of vertices in V(G) and dp denotes the average
vertex degree in Gp.

PROOF. It can be proved according to the set-cover problem.

Although the set-cover based method provides a good approxi-
mate ratio to select go cover X, it requires to enumerate all length-h
paths in Gp. It may be inefficient in terms of time and space com-
plexity. Therefore, we propose the second method to select h-go
cover X.

3.3.2 Similarity Graph based Method

DEFINITION 3.4. (Vertex Cover). A vertex cover over a given
graph G is a set of vertices such that each edge of G is adjacent to
at least one vertex of this set.

Algorithm 2 XSelection(Gp, h)

Require: Gp and a given constant h.
Ensure: h-go cover X.
1: a set PS ← ∅
2: for each ni ∈ Gp do
3: compute the h-length paths that contains ni
4: number these paths with a unique id
5: add id into PS
6: construct a path set si consisting of these ids.
7: h-go cover X ← ∅
8: while PS � ∅ do
9: select the set s with maximum size

10: i← the id of s
11: X ← ni
12: for each element e in s do
13: remove e from PS
14: return X

We denote a vertex cover of a graph Gp as VC(Gp). Finding a
vertex cover with the minimum number of vertices is a classical
NP-hard problem. Lots of approximate algorithms have been pro-
posed to find the approximate vertex cover [6, 16, 12]. In this paper,
we adopt a simple strategy to compute the vertex cover. Specif-
ically, repeatedly take both endpoints of an edge into the vertex
cover, and then remove them together with all the vertices incident
to them, until that all all edges are covered [5].

According to the definition of vertex cover, it is straightforward
to know that if a node is not in VC(Gp), all its neighbors must be
in VC(Gp). An example of vertex cover in Gp is the set of grey
vertices in Figure 5(b).

Clearly, VC(Gp) is a 1-go cover of Gp. Nevertheless, it only
saves about half of the storage cost. Obviously, when the graph
is large, it is still costly to store the index. To further reduce the
storage cost, we propose the similarity graph to select a h-go cover
X in Gp.

DEFINITION 3.5. (Similarity Graph). Given a vertex-pair graph
Gp = (Vp, Ep, S p), the similarity graph of Gp, denoted by G̃p

1
=

(Vs, Es, S s), is defined as follows:

• Vs = VC(Gp);

• We introduce an edge (ni, nj) into G̃p
1

if and only if at least
one of following conditions hold:
1) ni ∈ I(nj), where I(nj) denotes the neighbor nodes of n j in
Gp; or
2) ∃n ∈ V(Gp), n � VC(Gp) ∧ n ∈ I(ni) ∧ n ∈ I(nj).

• S s is the SimRank score set of Vs, and the score of each node
is equal to that of the corresponding node in Gp.

��0��

�

�

��

�

�
�

� ��

�3� �3�

��3

��0��

��0��

��0��

��0��
��0��

��0��

��0��
��

��0��

��
��0��

��0���

Figure 7: The process of generating similarity graphs

Analogously, given a similarity graph G̃p
1
, we can also define

the second level similarity graph G̃p
2

from the first level similar-

ity graph G̃p
1

based on Definition 3.5. Iteratively, we can define

499

the k-th level similarity graph, as shown in Figure 7. We repeat

the above process until that the vertex cover over G̃p
k

is small

enough (namely, VC(G̃p
k
) can be cached in memory). The algo-

rithm of generating similarity graphs is presented in Algorithm 3.
Note that, similarity graphs are not necessary to be stored as the
index. We only store the vertex cover of the last level similarity

graph as the h-go cover, namely X = VC(G̃p
k
). Theorem 3.6 gives

the upper bound for besieged depth of each path tree, if we select

X = VC(G̃p
k
).

Algorithm 3 SG-generation(Gp, k)

Require: A vertex-pair graph Gp, the level depth of the similarity graphs
k.

Ensure: The h-go cover X of Gp.
1: Find the vertex cover VC(Gp) for Gp

2: VC(G̃p0
)← VC(Gp)

3: i← 1
4: for i ≤ k do
5: Generate the similarity graph G̃pi

for VC(G̃pi−1
) based on Definition

3.5

6: VC(G̃pi
)← Find vertex cover for G̃pi

7: i← i + 1

8: X ← Find the vertex cover for G̃pk

9: return X

THEOREM 3.6. Given a vertex-pair graph Gp, the vertex pairs
selected by Algorithm 3 is a h-go cover, where h = 2k+1 − 1, where
k denotes the level of the similarity graph.

PROOF. The proof is organized by mathematical induction.
Induction Basis: When we only generate the similarity graph for

Gp, i.e., k =0, the distance between each uncovered vertex and that
in the cover set is 1, therefore h = 20+1 − 1 = 1.

Inductive step: provided that it holds for G̃k, i.e., h = 2k+1 − 1.
The distance of two nodes in G̃k is at most 2k according to the

definition of similarity graph. When we generate the G̃k+1 from G̃k,
h = 2k+1 − 1 + 2k+1 = 2k+2 − 1.

Notice that, Theorem 3.6 gives the upper bound for h in the worst
case, although h is exponential to k. Usually, the path tree depth h
of most of the nodes (i.e., the vertex pairs) is much smaller than the
upper bound.

3.4 Putting It All Together
The total process of answering SRJ queries has two phases: of-

fline and online.
Offline phase Given a graph G, we first select some landmarks

and store the shortest distances between each vertex and these land-
marks. Then, we generate a vertex-pair graph Gp. According to the
methods in Section 3.3, we select a h-go cover X over Gp. We store
the h-go cover X together with the corresponding SimRank scores
in table TB, as shown in Table 2.

Online phase For any vertex pair (vi, v j) ∈ U � V , we first
compute Simu(vi, v j) (i.e., the upper bound for Sim(vi, v j)) accord-
ing to Theorem 3.2. If Simu(vi, v j) < θ, (vi, v j) is pruned safely.
Otherwise, we compute Sim(vi, v j) by employing Algorithm 1. The
vertex pairs whose SimRank scores are no less than θ are returned
as answers. The formal description is presented in Algorithm 4.

4. PARTITION-BASED SRJ QUERY
As mentioned above, if graph G is very large, it is not trivial

to generate vertex-pair graph Gp due to its large space cost. Li

Algorithm 4 SRJQuery(U,V, θ, TB,G)

Require: two vertex sets U and V in G, threshold θ and the table TB which
stores the SimRank scores of h-go cover XGp .

Ensure: SRJ results
1: results← ∅
2: for each vertex pair (vi, v j) ∈ U � V do
3: Compute the Simu(vi, v j) based on Theorem 3.2
4: if Simu(vi, v j) ≥ θ then
5: Sim(vi, v j)← QuerySim(vi, v j,TB,G) //call Algorithm 1
6: if Sim(vi, v j) ≥ θ then
7: Add (vi, v j) into results
8: return results

et al. exploit the block structure of graph to compute SimRank
scores of all pairwise vertices [18]. The same idea is also employed
in computing Pagerank [11]. We propose the partition-based h-go
cover index construction and SimRank score computation in this
section. Note that, the landmark index has a good scalability up to
a graph with billions of vertices [29]. Thus, in this section, we do
not discuss the landmark index construction and the upper bound
computation in a very large graph, since they are the same with that
in Section 3.1.

4.1 Partition-based Approach to Compute Sim-
Rank

To make our paper self-contained, this section reviews the partition-
based SimRank computation in [18] briefly. Interested readers could
refer to [18] for more details.

DEFINITION 4.1. A graph G is decomposed into n block G1,...,Gn.
A vertex v in block Gi is called a boundary vertex if it has one neigh-
bor in another block G j, where Gi � G j. The edge that connects
two vertices in two different blocks is called a crossing edge.

DEFINITION 4.2. A graph G is decomposed into n blocks G1,...,Gn.
The block-graph Gb has n nodes, where each node corresponds to
one block Gi. There is an edge between two nodes in Gb if and only
if there are some crossing edges between the corresponding blocks.

�

���

%�

%�

%�

����

����
��

���

���

��
���

��

����

��

����	
��
���������������

�	��

Figure 8: The block structures of a graph

A graph G is decomposed into n blocks G1,...,Gn. We use MVGi

to denote all boundary vertices in Gi and SimGb (Gi,G j) to denote
the SimRank score of two nodes in block-graph Gb, where the two
nodes correspond to Gi and G j, respectively.

Given two vertices v1 and v2 of G. If the two vertices are in the
same block Gi, we can simply obtain their SimRank score by the
procedure QuerySim (Algorithm 1).

Sim(v1, v2) = SimGi (v1, v2) (10)

where SimGi (v1, v2) denotes the local SimRank score in block Gi.

500

Let us consider two vertices v1 and v2 in two different blocks Gi

and G j, respectively. We compute Sim(v1, v2) as follows:

Sim(v1, v2) = SimGi (v1,Gi) · SimGb (Gi,G j) · SimG j (v2,G j) (11)

where

SimGi (v1,Gi) =
1

|MVGi |
∑

vi∈MVGi

(SimGi (v1, vi)) (12)

SimG j (v2,G j) =
1

|MVG j |
∑

v j∈MVG j

(SimG j (v2, v j)) (13)

Algorithm 5 sketches the query processing of SimRank score of
any two vertices. When v1 and v2 are in different blocks, we need to
compute the SimRank score of vi and v j (vi and v j are the two cor-
responding vertices that represent Gi and G j in the block-graph Gb

), and the SimRank scores SimGi (v1,Gi) and SimG j (v2,G j), and then
compute Sim(v1, v2) according to Equation (11). Consequently, we
can obtain the SimRank score of any two vertices.

Algorithm 5 QuerySimB(v1, v2, TBi , TB j , TBb)

Require: Two vertices v1 and v2 in Graph G, v1 ∈ block Gi, v2 ∈ block G j,
the table TBi and TB j with SimRank scores of h-go cover of Gi and G j
respectively, and the table TBb with SimRank scores of h-go cover of

Gb.
Ensure: Sim(v1, v2).
1: if Gi = G j then
2: Sim(v1, v2)← QuerySim(v1, v2,TBi ,Gi)
3: else
4: SimGb (Gi,G j)← QuerySim(vi, v j,TBb ,G

b)
5: for each vx ∈ MVGi do
6: Sim(v1, vx)← QuerySim(v1, vx,TBi ,Gi)
7: compute SimGi (v1,Gi) according to Equation (12)
8: for each vx ∈ MVG j do
9: Sim(v2, vx)← QuerySim(v2, vx,TB j ,G j)

10: compute SimG j (v2,G j) according to Equation (13)

11: compute Sim(v1, v2) according to Equation (11)
12: return Sim(v1, v2)

4.2 Index Building In A Large Graph
According to the computation model in Section 4.1, it is straight-

forward to extend our method in a large graph. Assume that a graph
is partitioned into n blocks G1,...,Gn, respectively. We generate a
block-graph Gb. Then, for each block Gi (i = 1, ..., n) and Gb, we
employ the methods in Section 3.3 to select h-go covers in each XGi

and XGb , separately. At running time, given two vertices v1 and v2,
bases on h-go covers in each block and block-graph, it is easy to
compute Sim(v1, v2) according to Equations (10) and (11).

5. EXPERIMENTS
In this section, we evaluate our method over large graphs, and

compare it with existing solutions, such as LS-join [28], ISP [19]
and NI [17]. We also evaluate the effectiveness of SRJ queries in
this section.

5.1 Datasets&Setup
We use both synthetic and real datasets. Our method has been

implemented using standard C++. The experiments are conducted
on a P4 3.0GHz machine with 4G RAM running Linux. The default
values of parameters are θ = 0.1, c = 0.2, which is the same with
the parameter value in [28].

Synthetic Datasets. Two different synthetic graph models are
used in our experiments, namely, Erdos Renyi (ER) and Scale Free

(SF) models. In ER model, N vertices are connected by M ran-
domly chosen edges. The default values of N and M are 100K
and 500K, respectively. The vertex degrees of SF graphs satisfy
the power law distribution. We use the graph generator gengraph
win 4 to generate SF graphs. There are two parameters α and N
(the number of vertices) in the generator gengraph. The default
values of α and N are 2.5 (Usually, 2 < α < 3 [26]) and 100K,
respectively.

Real Datasets. Yeast is a protein-protein interaction network
in budding yeast, where each vertex represents a protein and an
edge denotes the interaction between two proteins. It consists of
2361 vertices and 7182 edges. The proteins are partitioned into 13
clusters according to PIN class information. Each class is assigned
a distinct vertex label, namely, there are 13 kinds of labels in the
yeast graph.

Cora [22] is a citation network5, where a vertex represents a pa-
per and an edge denotes the reference relationship between two
corresponding vertices. It has 220K vertices and 710K edges. Each
vertex (corresponding to one paper) is assigned a label according to
the research area it belonging to, such as Database (DB), Artificial
Intelligence (AI) and Information Retrieval (IR).

Coauthor is extracted from PROXIMITY DBLP dataset6. It is an
undirected and unweighted graph, where each vertex corresponds
to an author and each edge is introduced if the corresponding au-
thors have at least one co-author paper. Each vertex (author) is
assigned a label to denote his research areas, such as, DB, IR and
AI. The network has 388K vertices, 1040K edges and 11 vertex
labels.

We evaluate the efficiency of our method (Sections 5.2 to 5.4)
and compare it with existing solutions, followed by the effective-
ness study of SRJ queries in Section 5.5.

5.2 Evaluating Offline Performance
In our experiment, we find that the set-cover based solution can-

not work when |V(G)| > 1K, since there are an exponential number
of paths to be enumerated. For example, a ER model graph with
1K vertices may have about 500 millions of paths of length 3. The
similarity graph-based solution shows better scalability. Here, we
introduce a metric storage compression ratio ρ, which is defined as
Equation (14) as follows:

ρ =
|X|

|V(G)| × |V(G)| (14)

where |X| denotes the number of h-go cover nodes. Figure 9(a)
shows that ρ decreases with the increasing of the level of similarity
graph. Notice that, level 0 means materializing the SimRank scores
of all vertex pairs without any storage reduction technique. From
Figure 9(a), we know that the number of h-go cover nodes tends to
be stable when the level is larger than 3. In Yeast graph, the number
of h-go nodes is about 1

10
of all vertex pairs, as shown in Figure

9(a). Therefore, h-go cover provides an efficient way to reduce the
storage cost. In order to handle large graphs, such as Co-author
and Cora, we present a partition-based solution. Specifically, we
partition a large graph into different blocks by existing partition
tool (such as METIS [13]) and each block has about 1K vertices.
Table 3 reports the index building time and the index sizes on large
graphs, which confirm the good scalability of our method.

4http://fabien.viger.free.fr/liafa/generation/
5http://people.cs.umass.edu/ mccallum/data.html
6http://kdl.cs.umass.edu/data/dblp/dblp-info.html

501

� � � �

���

�
�	

�
�

��
�

�
��

��
��

�
���

	�

�ρ

������������

(a) ρ vs. Similarity Graph
Level

0 2 4 6

10

20

30

40

50

60

in
de

x
si

ze
 (M

B
)

level number

(b) Index Size vs. Similarity
Graph Level

Figure 9: Offline Results on Yeast

Table 3: Index building time and index time on large graphs
Dataset |VG | |EG | Index building time(s) Index size(MB)
ER100K 100k 400k 343.136 175.597
S F100K 100k 250k 283.468 127.645

Yeast 2361 7182 80.316 9.579
Cora 220k 710k 1617.356 188.126

Coauthor 338k 1040k 2673.352 948.972

5.3 Evaluating Single-pair SimRank Compu-
tation

According to the framework of our SRJ query, we need to com-
pute SimRank scores for all the remaining vertex pairs after prun-
ing. Thus, we design an efficient SimRank computation method
for a single vertex pair (Algorithm 1). As mentioned in Section 1,
almost all existing methods focus on computing SimRank scores of
all vertex pairs except for [17] and [19]. In this section, we com-
pare QuerySimB (Algorithm 5) with two existing methods ISP and
NI to compute SimRank. Figure 10 shows that our h-go cover-
based computation method outperforms ISP and NI by an order of
magnitude. Although ISP is designed for computing SimRank of a
single-pair, it needs to online enumerate paths between two vertices
to compute SimRank score. NI [17] is not as good as our approach,
because it is devised to compute a single-source SimRank scores,
i.e., the SimRank scores between a given vertex and all other ver-
tices in G.

5.4 Evaluating SRJ Query Performance
In this section, we evaluate our method in both synthetic and real

datasets and compare it with LS-join [28]. We utilize two different
measures, i.e., query response time and pruning power. Given two
vertex sets U and V of a graph G, the pruning power τ is defined as

� � � � � � � � � ��

����

���

���

��
��

��
�

	��
��

��
!

"#�$!"��%!

&'*
+&
,���-'��

(a) Results on ER graphs

2 4 6 8 10

10−2

100

102

ru
nn

in
g

tim
e

(s
)

|V(G)| (K)

ISP
NI
QuerySim

(b) Results on SF graphs

Figure 10: Running time vs. |VG |

0.2 0.4 0.6 0.8100

101

102

ru
nn

in
g

tim
e

(in
 s

ec
)

c

LS−join
SRJ

(a) Results on Yeast

0.2 0.4 0.6 0.8101

102

103

ru
nn

in
g

tim
e

(in
 s

ec
)

c

LS−join
SRJ

(b) Results on Coauthor

Figure 11: Running time vs. c

0.2 0.4 0.6 0.8

20

40

60

80

100

pr
un

e
po

w
er

 τ
 (%

)
c

SRJ

(a) Results on Yeast

0.2 0.4 0.6 0.8

20

40

60

80

100

pr
un

e
po

w
er

 τ
 (%

)

c

SRJ

(b) Results on Coauthor

Figure 12: Prune power τ vs. c

follows:

τ =
f ilternumber

|U | × |V | (15)

where f ilternumber denotes the number of vertex pairs that can be
pruned by Theorem 3.2 without computing their SimRank scores.
|U | and |V | denotes the number of vertices (in G) in U and V , re-
spectively.

As LS-join works on the top-k queries and our method works
on the threshold queries, the two methods cannot be compared
directly. To enable comparison, we first perform our method to
find some vertex pairs whose SimRank scores are not less than the
threshold θ. Then, we set the parameter k in LS-join method as the
number of delivered matches by our method.

5.4.1 Effect of the Decay Constant c
To study the effect of c, we fix the threshold θ to be 0.1 and vary

c from 0.1 to 0.9. As shown in Figure 11, the gap of the running
time between SRJ and LS-join increases rapidly with increasing of
the decay factor c. Though the decay factor may affect the esti-
mated upper bound, which results in more candidate vertex pairs,
the SimRank computation process of our method is independent
of the decay factor c. However, LS-join is based on the iterative
computation and its convergent rate is determined by c.
τ describes the prune power. As shown in Figure 12, when the

decay constant c is small, more than half of all the the vertex pairs
can be pruned in Yeast and Coauthor. As c increases, the prune
power decreases, because the SimRank scores between the vertex
pairs increase with respect to c. When c is larger than 0.5, the
prune power changes a little, because a pair of vertex can be pruned
only if their shortest path distance is longer than 12 according to
Theorem 3.2. Thus, only a small proportional of the vertex pairs
can satisfy this constraint, which can be pruned.

502

0.02 0.04 0.06 0.08 0.1100

101

102
ru

nn
in

g
tim

e
(in

 s
ec

)

ϑ

LS−join
SRJ

(a) Results on Yeast

0.02 0.04 0.06 0.08 0.1101

102

103

ru
nn

in
g

tim
e

(in
 s

ec
)

ϑ

LS−join
SRJ

(b) Results on Coauthor

Figure 13: Running time vs. θ

���� ���� ���� ���� ����

��

��

��

��

���

��
��

��
�

7
��

�τ
��9

!

ϑ

':;

(a) Results on Yeast

0.02 0.04 0.06 0.08 0.10

20

40

60

80

100

pr
un

e
po

w
er

 τ
 (%

)

ϑ

SRJ

(b) Results on Coauthor

Figure 14: Prune power τ vs. θ

5.4.2 Effect of the Threshold θ
To study the effect of threshold θ, we fix the decay constant to be

0.1 and vary the θ from 0.01 to 0.1. Figure 13 depicts the running
time with regard to θ. The running time of both our method (de-
noted as SRJ) and LS-join decrease as θ increases. One of the rea-
sons is that the number of join results decreases. Figure 13 shows
that SRJ outperforms LS-join by almost an order of magnitude.

As shown in Figure 14, the number of vertices of pruned by the
estimated upper bound increases as the threshold increases. When
threshold is set to be 0.05, all vertex pairs with estimated shortest
path distance no less than 3 are pruned according to Theorem 3.2.
Even though the threshold increases from 0.05 to 0.1, we still can-
not prune the vertex pairs whose estimated shortest path distances
are less than 3. Thus, the pruning power is stable when the thresh-
old increases from 0.05 to 0.1, as shown in Figure 14.

5.5 Effectiveness Evaluation
To prove the effectiveness of SRJ, we analyze the results over

two real datasets Cora and Coauthor. In this section, we focus on
the case studies of SRJ queries to check whether the results returned
by SRJ are reasonable. Evaluating the superiorities of SimRank is
beyond this article’s scope, and it has been fully studied in [10].

Finding similar papers in cross-disciplinary studies in Cora net-
works. The aim is to find pairs of paper: (1) The two papers are
derived from two areas (such as IR and DB), and (2) they focus
on similar problems. Figures 15(a) and 15(b) shows two examples.
In each example, vertex sets U and V have three vertices (in Cora
network) corresponding to three papers, respectively. Note that the
class labels of papers are assigned by authors of Cora data [22].
Let us see an example in Figure 15(a). One pair is “Knowledge in-
tegration for structured information sources containing text” (from
IR area) and “Heuristic joins to integrate structured heterogeneous

data” (from DB area). They both focus on the data integration prob-
lem. More examples can be found in Figure 15(a) and (b).

Finding researchers that share the similar research interests in
DBLP networks. Given two groups of authors, we want to find
some pairs of authors who share the similar research interests. A
case study is presented in Figure 15(c). One returned pair is Cai-
Nicolas Ziegler and Karen H. L. Tso-Sutter. Cai-Nicolas Ziegler is
interested in social network and recommendation, while Karen H.
L. Tso-Sutter focuses on the recommender systems. Note that the
two authors do not have collaboration in DBLP data. We report five
author pairs in Figure 15(c).

6. RELATED WORK
Graph model has attracted extensive attentions in the database

community. Many research problems over graphs have been pro-
posed, such as, subgraph search [32, 34], approximate subgraph
search [33, 15], shortest-path query [3], graph pattern match [4,
35] and similarity join query [28]. In this paper, we focus on the
problem of SimRank-based similarity join.

SimRank is a link-based similarity measure [10], which is ap-
plicable to any domain with object-to-object relationships. Many
algorithms have been proposed to improve the efficiency [21, 8,
17, 18, 19]. Generally speaking, they can be divided into three
categories, as discussed in Section 1.

The first one is the methods that compute all-pairwise SimRank.
Most existing methods focus on computing SimRank scores be-
tween all-pairwise vertices. D. Lizokin et al. propose some opti-
mization techniques to improve the time complexity from O(N4)

to min(O(N · M),O(N3

log2 N)), where M denotes the number of edges

in graph G [21]. It also introduces a threshold sieving heuristic.
To handle large graphs, the authors of [8] compute approximate
SimRank scores by using a database of fingerprint trees, which is
a compact representation of precomputed random walks. Li et al.
propose a partition-based method BlockSimRank to compute Sim-
Rank scores with time complexity O(N4/3) [18]. It partitions the
graph into blocks and computes the local and global similarities
respectively.

The second category is the method computing single-source Sim-
Rank. Li et al. rewrite the SimRank equation into a non-iterative
form, based on which a family of approximate SimRank compu-
tation algorithms are developed. However, the space cost of this
method is O(N2) [17]. The third category is the method comput-
ing single-pair SimRank. The authors of [19] propose to compute
SimRank of a single-pair vertices by online enumerating all paths
rooted at these two vertices, which is quite expensive especially for
large graphs.

The work in [28] is the most closely related one to our work in
this paper. They propose a link-based similarity join with respect
to an e-function generalizing PageRank and SimRank. However,
it adopts the iterative computation model to online compute simi-
larities. We make extensive experiments on both synthetic and real
datasets, which confirm that our method outperforms the method in
[28] significantly.

7. CONCLUSIONS
In this paper, we focus on the SimRank-based join query prob-

lem over large graphs. To reduce the search space, we first design a
novel upper bound for the SimRank score between two vertices in
a graph. In order to compute the SimRank score between two ver-
tices, we propose a “h-go cover” index and present a non-iterative
computation model to compute the SimRank. Specifically, we only
need to materialize a small proportion of the SimRank scores, based

503

�����4#�

�����

������

������

54/#$1
�����46�
��

7�2�����4�
����
��
.��4(
��	
����
�.��'�
��4(���	�(
	�
����4
�)

8..�	��
4��
������4.��
-��2(��4�����4�'���
��
�-�(�(
���������9��
'��
���'�(����
���)4(
��	
���(

�����4#�

�����

������

������

:4/�!1
�����46�
��

+����(
�	4���(4
�
�
����
�4(
��	
����
&�
��������(4��
�
��
�4'������4��
.��
���4�)
��	
��
'����'�
4�
�'���4��
�-�(�(
6&�4$�*6���;4"
#��)4,
��	
���4.��
,�
(

�����4#� ��''�46���	(
����� ��
�4�
����
��
������ #'���4��
�-�(�(

������ ���
���'�(����
���)

$�(��
(
�����4#�
�����
������

������

(a) IR and DB

�����4#�

����

������

�����

54/#$1
�����46�
��

4�������4<�����
<�
2���(4.��4 �����
��
�)
*������

%�'�4,
��
����(
6�)
���4�!$4��
#.��'�
��4$�
������4"
��'����(�
#'������4
�)

	��(�.�	�
��4-=4(&������
�4�4&�����	&=4�.4	��((�(

�����4#�

�����

�����

������

:4/"#1
�����46�
��

��(������4	�'���)
>
&����4(
��
����(

&����&4�����
����=
�����4�
2���(
 �����4��'�
��
������	�4!�=�(��
	��((�.���(
�!$4.��4��	�'�

$�
������46&�4?"��@
�����	

�����4#� ��''�46���	(
���� <�����4�
2���(

����� �!$4/	�(�*
-�(��4���(���1

������ ���(�.�	�
��

�����4#�
�����

�����

������

$�(��
(

(b) IR and AI

"�
&��4#� "�
&��4<�'�

������� ���*<�	���(
A������

������� $�''�4:B
<�&'�

������� C��&��
72�

������� D�����'
�&���

������� 6��46B4+���

54/%�����1

"�
&��4#� "�
&��4<�'�

������ ,��&��
7��(&��

������ :����'��
7������

������� ,
����4 ��
������� E��(47�
(�(

������� 7���4+B4 B
6(�*,�

��

:4/%�����1

"�
&��4#� "�
&��4#� ��''�4#
���(
(
������� ������� $�	�''����4(=(
�'(
������� ������ ,��
���4F���=
������� ������� #.��'�
��4�
����
��
������� ������� ?��F��
4��

��4'���
������� ������ G� 4���	�((��

$�(��
(

(c) Case Study over Coauthor Dataset

Figure 15: Effectiveness Case Study

on which we can recover all the other SimRank scores which are
not materialized. We prove that finding minimum h-go cover is NP-
hard and propose two heuristic methods to select h-go cover. We
evaluate our methods on both synthetic and real datasets. Extensive
experiments show that our method outperforms existing methods
greatly.

8. REFERENCES
[1] Z. Abbassi and V. S. Mirrokni. A recommender system based on

local random walks and spectral methods. In WebKDD/SNA-KDD,
pages 139–153, 2007.

[2] Aristotle. Rhetoric. nichomachean ethics. Rackman transl.
Cambridge: Harvard Univ. Press, 23, 1934.

[3] E. P. F. Chan and H. Lim. Optimization and evaluation of shortest
path queries. VLDB J., 16(3):343–369, 2007.

[4] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph
pattern matching. In ICDE, pages 913–922, 2008.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The MIT Press.

[6] I. Dinur and S. Safra. On the hardness of approximating minimum
vertex cover. Annals of Mathematics, 162(1):439–485, 2005.

[7] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular expressions
to graph reachability and pattern queries. In ICDE, pages 313–338,
2011.

[8] D. Fogaras and B. Rácz. Scaling link-based similarity search. In
WWW, pages 641–650, 2005.

[9] J. E. Gentle. Gaussian elimination. In Numerical Linear Algebra for
Applications in Statistics, pages 87–91, 1998.

[10] G. Jeh and J. Widom. Simrank: a measure of structural-context
similarity. In KDD, pages 538–543, 2002.

[11] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub.
Exploiting the block structure of theweb for computing pagerank. In
Technical Report,Stanford, 2003.

[12] G. Karakostas. A better approximation ratio for the vertex cover
problem. ACM Transactions on Algorithms, 5(4), 2009.

[13] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. J. Parallel Distrib. Comput., 48(1), 1998.

[14] M. M. Kessler. Bibliographic coupling extended in time: Ten case
histories. Information Storage and Retrieval, 1(4):169–187, 1963.

[15] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao.
Neighborhood based fast graph search in large networks. In
SIGMOD Conference, pages 901–912, 2011.

[16] S. Khot and O. Regev. Vertex cover might be hard to approximate to
within 2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.

[17] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast
computation of simrank for static and dynamic information networks.

In EDBT, pages 465–476, 2010.
[18] P. Li, Y. Cai, H. Liu, J. He, and X. Du. Exploiting the block structure

of link graph for efficient similarity computation. In PAKDD, pages
389–400, 2009.

[19] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair simrank
computation. In SDM, pages 571–582, 2010.

[20] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for
social networks. Journal of the American Society for Information
Science and Technology, 58:1019–1031, 2007.

[21] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov. Accuracy
estimate and optimization techniques for simrank computation.
VLDB J., 19(1):45–66, 2010.

[22] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the
construction of internet portals with machine learning. Information
Retrieval Journal, 3:127–163, 2000.

[23] M. McPherson, L. S. Lovin, and J. M. Cook. Birds of a feather:
Homophily in social networks. Annual Review of Sociology,
27:415–444, 2001.

[24] Plato. Laws. plato in twelve volumes. Bury translator. Cambridge:
Harvard Univ. Press, 11, 1968.

[25] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path
distance estimation in large networks. In CIKM, pages 867–876,
2009.

[26] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Reviews of Mordern Physics, 74:47–97, 2002.

[27] H. Small. Co-citation in the scientific literature: A new measure of
the relationship between two documents. Journal of the American
Society for Information Science, 24:265–269, 1973.

[28] L. Sun, R. Cheng, X. Li, D. W. Cheung, and J. Han. On link-based
similarity join. PVLDB, 4(11):714–725, 2011.

[29] K. Tretyakov, A. Armas-Cervantes, L. Garcı́a-Bañuelos, J. Vilo, and
M. Dumas. Fast fully dynamic landmark-based estimation of shortest
path distances in very large graphs. In CIKM, pages 1785–1794,
2011.

[30] S. Trißl and U. Leser. Fast and practical indexing and querying of
very large graphs. In SIGMOD, pages 845–856, 2007.

[31] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling:
Answering graph reachability queries in constant time. In ICDE,
pages 845–856, 2006.

[32] S. Zhang, S. Li, and J. Yang. Gaddi: distance index based subgraph
matching in biological networks. In EDBT, pages 192–203, 2009.

[33] S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph indexing and
approximate matching in large graphs. PVLDB, 3(1):1185–1194,
2010.

[34] P. Zhao and J. Han. On graph query optimization in large networks.
PVLDB, 3(1):340–351, 2010.

[35] L. Zou, L. Chen, and M. T. Özsu. Distancejoin: Pattern match query
in a large graph database. PVLDB, 2(1):886–897, 2009.

504

