
Distributed Time-aware Provenance

Wenchao Zhou◦ Suyog Mapara∗ Yiqing Ren∗ Yang Li∗
Andreas Haeberlen∗ Zachary Ives∗ Boon Thau Loo∗ Micah Sherr◦
∗University of Pennsylvania, Philadelphia, PA ◦Georgetown University, Washington, DC

{wzhou, msherr}@cs.georgetown.edu
{yangli2, suyogm, yiqingr, ahae, zives, boonloo}@cis.upenn.edu

ABSTRACT
The ability to reason about changes in a distributed system’s state
enables network administrators to better diagnose protocol mis-
configurations, detect intrusions, and pinpoint performance bottle-
necks. We propose a novel provenance model called Distributed
Time-aware Provenance (DTaP) that aids forensics and debugging
in distributed systems by explicitly representing time, distributed
state, and state changes. Using a distributed Datalog abstraction
for modeling distributed protocols, we prove that the DTaP model
provides a sound and complete representation that correctly cap-
tures dependencies among events in a distributed system. We addi-
tionally introduce DistTape, an implementation of the DTaP model
that uses novel distributed storage structures, query processing, and
cost-based optimization techniques to efficiently query time-aware
provenance in a distributed setting. Using two example systems
(declarative network routing and Hadoop MapReduce), we demon-
strate that DistTape can efficiently maintain and query time-aware
provenance at low communication and computation cost.

1. INTRODUCTION
Troubleshooting the performance, configuration, and security prob-
lems of complex distributed applications and systems is becoming
increasingly difficult. Such problems do not necessarily have a sin-
gle, readily apparent cause; rather, they can arise from a particular
combination of behaviors, both within the network and at different
hosts, which can be very hard to find. Thus, it would be useful
if distributed systems supported automated network-wide diagnos-
tics that could assist administrators in determining the root cause(s)
of a malfunction (debugging) [18], identifying the source of an in-
trusion (forensics) [10], or discovering the reason for suboptimal
distributed performance (performance profiling) [20].

The key challenge in each of these tasks is to inspect the data
flows, dependencies, and updates to distributed (networked) nodes’
state — often in ways that are not predictable in advance. Existing
domain-specific solutions [4, 18] typically work by recording some
forensic data at each node, e.g., a list of past routing changes, which
are then used to answer the administrator’s questions on demand.
However, tailoring the schema and the introspection mechanisms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 2
Copyright 2012 VLDB Endowment 2150-8097/12/12... $ 10.00.

to each new application is cumbersome and inflexible. It would be
preferable to have a generic solution that can be applied to arbitrary
distributed systems.

As a first step towards enabling this, the system could track data
provenance [2]; however, the above tasks involve a number of ques-
tions that traditional data provenance cannot answer very well. To
explain why, we consider a simple use case from Internet inter-
domain routing: a network operator wants to investigate why his
route to eBay changed from r1 to r2 a minute ago. To support this
scenario:

• We must be able to capture historical information about past
states and interactions within the systems, not just about the cur-
rent state. Traditionally, data provenance records relationships
among state within tables; historical provenance would record
relationships among entries in event logs.

• We must take messages and timing into account, rather than
simply looking at global sequences of events. In a distributed
system, the local clocks of the different nodes can be slightly
out of sync, messages take time to propagate from one node to
another and are sometimes lost by the network, etc.

• We must choose the right cost tradeoff. For instance, if some of
the distributed nodes’ operations are deterministic, provenance
could be recorded at multiple levels of detail: one could record
the entire record of state derivations, or instead just record the
inputs and use deterministic replay to re-derive missing state.

• We must have the ability to distribute the storage of the prove-
nance to keep communication costs down: for performance rea-
sons, centrally archiving the system’s entire provenance is im-
practical. This means that we also need the ability to detect
when nodes tamper with the provenance; otherwise, a com-
promised node could cover its traces and avoid detection.

The problems listed above require a set of solutions that are beyond
the scope of a single paper. In prior work [23, 25], we have already
made some progress towards the fourth goal by demonstrating how
to maintain and query provenance in a system that is potentially
compromised. In this paper, we tackle the remaining three goals
from a database perspective, and we address the key question of
what should be modeled in a time-aware provenance solution.

Specifically, this paper develops the foundations of distributed
time-aware provenance (DTaP), which can meet the above require-
ments. DTaP captures time, distribution, and causality of updates;
it enables the administrator of a distributed system to pose “ad hoc”
queries over the system’s prior states, communications patterns,
event orderings, and more. We present a formal model and the
semantics of DTaP. Finally, using a Datalog abstraction for model-
ing distributed protocols, we prove that DTaP provides a sound and

49

complete representation of the causality of events in a distributed
system. Due to practical challenges in distributed systems (such
as loosely synchronized clocks, node failures, and interactions via
message passing) we had to rethink several of the key design deci-
sions behind data provenance in the design of DTaP.

We also study how much provenance information needs to be
recorded for DTaP, and how much can be reconstructed on demand.
We show that, based on a combination of recursive view mainte-
nance and logging/deterministic replay, a recursive query can re-
construct the provenance of an update event that occurred at a spe-
cific time in the past. Thus, we obtain two alternative strategies for
maintaining provenance: a proactive scheme in which provenance
deltas are logged, and a reactive scheme in which only nondeter-
ministic events (such as incoming messages) are logged. With the
reactive approach, the provenance tree can be reconstructed on de-
mand by re-executing portions of the distributed system.

The proactive and the reactive schemes have different tradeoffs:
for instance, the proactive scheme tends to require more storage
space but can often provide lower query latencies. Thus, the op-
timal strategy for a given application depends on factors such as
query frequency, system runtime, and the ratio of local vs. dis-
tributed derivations. To exploit these tradeoffs, we have developed
cost models for both schemes, and we describe techniques for de-
termining the optimal maintenance strategy at runtime.

Finally, we present DistTape, a DTaP storage and query engine
that supports DTaP queries. DistTape uses a declarative network-
ing [12] engine for maintaining and querying the provenance graph,
which is coupled with a logging and replay system. DistTape in-
crementally maintains and queries provenance in a workload-aware
fashion, guarantees consistent and complete query results despite
network variability (such as instabilities or oscillations), and ex-
plains not only why a given datum exists, but also why it has ap-
peared, changed, or disappeared.

Using two example applications (declarative network
routing [12] and Hadoop MapReduce [6]) with a combination of
realistic network simulations and an actual testbed deployment, we
demonstrate that DistTape is able to efficiently maintain and exe-
cute provenance queries at scale. Moreover, we validate that our
cost model can accurately estimate the system’s performance. In
summary, this paper contributes:

• The DTaP model for distributed time-aware provenance (Sec-
tions 2 and 3);

• Proactive and reactive techniques for maintaining and querying
provenance (Section 4);

• Cost models for both techniques, as well as a set of optimizations
based on these models (Section 5); and

• An experimental evaluation in the context of DistTape, a practi-
cal DTaP storage and query engine (Section 6).

2. SYSTEM MODEL
Before we present DTaP in Section 3, we first introduce a dis-
tributed system model (based on distributed Datalog) and some ba-
sic concepts that will be useful for our formal definitions. We also
describe some key challenges that DTaP needs to address in order
to support a range of network forensic capabilities.

2.1 Overview
We consider a distributed system that consists of a set of nodes
N = {N1, N2, ..., Nn} that are connected by a network and can
communicate by sending messages. The state of a node at a given

point in time can be expressed as a set of tuples (typically with
fixed schemas). We model user input as tuples that are inserted
or deleted directly by users, and computations performed by the
system as derivations of new tuples from existing tuples. We say
that a tuple is a base tuple if it was inserted directly by a user;
otherwise we say that it is a derived tuple. Derived tuples can be
sent from one node to another as messages.

For concreteness, we use Network Datalog (NDlog) [12], a dis-
tributed variant of Datalog, to describe the possible derivations and
dependencies among tuples that can exist in the system. (However,
it should be possible to apply DTaP to distributed systems written
in other languages, including legacy systems, as long as the depen-
dencies between incoming and outgoing tuples can be modeled in
a similar way; see, e.g., [23, 24]). To illustrate NDlog, we consider
the simple example of a MINCOST protocol for network routing,
in which the nodes compute the lowest-cost path between each pair
of nodes using the following rules:

mc1 cost(@S,D,C) :- link(@S,D,C).
mc2 cost(@S,D,C) :- link(@Z,S,C1),

mincost(@Z,D,C2), C=C1+C2.
mc3 mincost(@S,D,MIN<C>) :- cost(@S,D,C).

As in traditional Datalog, each NDlog rule has the form p :- q1,

q2, ..., qn., which can be read informally as “p should be de-
rived whenever q1, q2, ..., and qn all exist at the same time”. ND-
log supports a location specifier in each predicate, which is written
as an @ symbol followed by the node on which the tuple resides.
For example, any cost tuples that are derived via rule mc1 should
reside on the same node as the corresponding link tuples, since
both carry the same location specifier @S.

In this program, the base tuple link(@S,D,C) exists if node S

has a direct link to node D with cost C. The tuple cost(@S,D,C)

is derived when S has a (possibly indirect) path to D with total cost
C, which can either be a direct link (mc1) or a path through another
node Z (mc2). Rule mc3 aggregates all paths with the same sources
and destinations to compute the minimal path cost.

In NDlog, the tuples themselves are stored in relational tables;
each relation can have an optional primary key. The protocol runs
continuously, and tuples can be derived or underived in response
to changes to base tuples. For instance, mincost tuples may be
updated if the cost of a link changes, since this can change the
lowest-cost route.

2.2 NDlog Execution Model
Next, we briefly describe the execution model for NDlog rules. Our
treatment here is informal and example-based; formal definitions
and proofs are deferred to Section 3.

The execution of a NDlog program consists of insertions and
deletions of individual tuples; we refer to these as events. Causal
dependencies can exist between events; for instance, the insertion
of a derived tuple causally depends on the insertion of the tuple(s)
from which it was derived. It is these causal dependencies that will
be captured by DTaP.

NDlog programs are executed using pipelined semi-naı̈ve eval-
uation (PSN) [12]. PSN first requires rewriting each NDlog rule
into delta rules of the form action :- event, conditions,

. . .. As an example, the generated delta rules for rule mc2 in the
MINCOST program are:

d1 +cost(@S,D,C) :- +link(@Z,S,C1),
mincost(@Z,D,C2), C=C1+C2.

d2 -cost(@S,D,C) :- -link(@Z,S,C1),
mincost(@Z,D,C2), C=C1+C2.

d3 +cost(@S,D,C) :- link(@Z,S,C1),
+mincost(@Z,D,C2), C=C1+C2.

50

d4 -cost(@S,D,C) :- link(@Z,S,C1),
-mincost(@Z,D,C2), C=C1+C2.

d1-d2 and d3-d4 are delta rules for the link and mincost pred-
icates, respectively. Rules d1 and d3 describe insertions (+), and
d2 and d4 describe deletions (-). For instance, in rule d2, -link
is the event, mincost is the condition predicate, and -cost is the
action that is taken when the event occurs and the condition holds.

For rules with aggregates (e.g. mc3), a similar set of insert/delete
delta rules can be generated. The main difference here is that the
action would result in an update of an aggregate in the rule head.

Since derivations can involve tuples on remote nodes (such as
the rule mc2 above), nodes must notify each other when they locally
derive a tuple that could trigger a derivation on a remote node. This
is done by sending a message that encodes the update. We assume
that each transmitted message is eventually received, if retransmit-
ted sufficiently often. Messages can be reordered by the network.

In PSN evaluation, each node has an update pool in which it
buffers all updates whose effects have not yet been applied to its tu-
ple set. The pool is initially empty, but updates can be added due to
local inputs or due to messages received from other nodes. When-
ever a node’s pool is not empty, the node deterministically picks an
update according to some policy1, applies it to the tuple set, and
then determines whether any additional (un)derivations have been
triggered by the change. If so, the corresponding updates are added
to the pool. This process continues until the pool becomes empty.

2.3 Execution Traces
The execution of an NDlog program can be characterized by the
sequence of events that take place; we refer to this sequence as
an execution trace. An execution trace can be used to explain a
derivation that occurred during the execution – we can simply re-
play it and check which event triggered the derivation, and which
conditions held at that time. A full trace can recursively explain
all derivations; if we are only interested in some specific deriva-
tions (e.g., the ones queried by the network operator), a subtrace is
generally sufficient.

Figure 1 shows an example scenario during the execution of the
MINCOST program. At some past time t2, the network protocol
has changed its min-cost path between node c and a in response to
updated link information that claimed there existed a shorter path
between the two nodes. Figure 2 shows a part of the corresponding
execution during which +mincost(c,a,4) is derived. The expla-
nation for this event consists of the following subtrace (event tuples
are highlighted in bold):

• At time t2@b, node b discovered a new link to node a and thus
inserted the base tuple +link(@b,a,1).

• Rule mc1 was triggered by +link(@b,a,1), resulting in
+cost(@b,a,1).

• Rule mc3 was used to derive +mincost(@b,a,1) from
+cost(@b,a,1).

• Rule mc2 (specifically its delta rule d3) was triggered by
+mincost(@b,a,1). The condition was satisfied by the exist-
ing tuple link(@b,c,3) that had been derived at time t0; the
resulting update +cost(@c,a,4) was shipped to node c.

• At time t3@c, c received +cost(@c,a,4) from b and derived
+mincost(@c,a,4) using rule mc3, which replaced the higher-
cost mincost(@c,a,5).

1PSN execution requires FIFO processing of updates for eventual
consistency, but other policies could be used instead.

Note that the ordering of edges (arrows) in Figure 2 reflects
causality, in the form of a happens-before relationship. For exam-
ple, +link(@b,c,1) happens before +cost(@b,a,1) as a result
of executing rule mc1.

2.4 Challenges and Requirements
The aim of DTaP is to provide an explanation for the derivation
of any network state. For example, in Figure 2, a network operator
may issue a query asking for the explanation of -mincost(@c,a,5)
at a particular time t3 at node c. DTaP’s explanations should pro-
vide the entire chain of events, leading from +link(@b,c,3) at
time t3. To illustrate why this is a challenging problem, we con-
sider the following realities in any distributed systems:

• Continuous processing. Distributed systems run continuously:
nodes constantly process new information and update their state
in response to local events and incoming messages from other
nodes. Thus, a given tuple might have existed at time tx but not
at time ty , or it might have existed at both times, but for different
reasons. DTaP should store enough information to return the
correct explanation for a given time.

• Updates. Sometimes it is important to understand not only why
a certain tuple exists, but also why it has appeared or changed.
For example, to understand the route update presented in Fig-
ure 1, one would not only need to understand the derivation of
the latest route, but also explain why the previous route was re-
placed by the current one. Existing distributed provenance en-
gines such as ExSPAN [25] are unable to deal with recording ex-
planations that evolve over time, let alone provide an explanation
that causally links -mincost(@c,a,5) and +mincost(c,a,4)
at time t3.

• Lack of synchrony. There is no ‘global’ time that could be used
to order events. For instance, when c received the message in
Figure 2, its local clock might show an earlier time than b’s clock
when it sent the message! Also, since information takes time to
propagate from node to node, there may not be a single, globally
consistent explanation: if a tuple is obtained through a long chain
of derivations from tuples on other nodes, some of the underlying
tuples may already have changed or disappeared. Hence, DTaP
must capture time and dependencies at a logical level, based on
rule execution and tuple instances.

• Network effects. Messages can be delayed and reordered. For
instance, if link(a,b,1) is added and withdrawn within a short
period of time, mincost(@c,a,4) would subsequently also be
derived and deleted in quick succession, increasing the likeli-
hood that the insert and subsequent delete messages are reordered
in the network. The explanations of +mincost(@c,a,4) or
-mincost(@c,a,4) should still be accurate in the presence of
such message orderings. Message delays further complicate this,
since reordering can separately happen to the actual network
derivations and to the corresponding provenance metadata.

3. DTAP MODEL
We use NDlog’s execution model as a basis for formalizing DTaP.
Given a distributed system in NDlog, DTaP provenance data are
used to provide an explanation as to why a given tuple τ or update
event is located on node Ni at time t. Tuple τ can be viewed as a
materialization point that applies a sequence of the update events
on τ . Intuitively, the answer for a provenance query on the exis-
tence of τ on node Ni at time t can be formulated as a sequence of

51

a b

c
5

1

3

at time t2 > t1

a b

c
5 3

at time t1

Figure 1: An example network, where
the best path between node c and a
changed at time t2, due a change of the
network topology.

+link(@b,a,1) +cost(@b,a,1)

+mincost(@b,a,1) +cost(@c,a,4)
+mincost(@c,a,4)
-mincost(@c,a,5)

a

b

c

mc2mc3

mc3

t2@b t3@c Timeline

link(@b,c,3)+link(@b,c,3)
mc1

t0@b

…
…

…
…

Figure 2: An execution subtrace of the MINCOST program that corresponds to scenario in
Figure 1 and provides an explanation of +mincost(@c,a,4). Rectangles indicate that a rule
is fired, dashed arrows indicate local event triggering, solid arrows indicate cross-node
messages, and shaded boxes indicate the conditions for events.

query results for the update events (up to time t) on τ .2 Hence, we
focus our discussion on the provenance of update events.

3.1 Definitions
We now provide a more formal definition of the terms that were
introduced in the preceding section. Our definitions are in terms of
delta rules as described in Section 2.2.
Definition (Update): An update is either +τ or −τ , where τ is a
tuple that is being derived (+) or underived (−). We write4τ to
denote an update of either type.

Definition (Event): An event d@Ni = (e, r, t, c, e′) represents the
fact that delta rule r was triggered by update e and generated a
set of updates e′ at time t (relative to Ni’s local clock), given the
precondition c. The precondition c is a set of tuples that existed on
Ni at time t that are used in the event.

Definition (Trace): A trace E of a system execution is an ordered
sequence of events d1@Ni1 , d2@Ni2 , ..., dm@Nim .

Definition (Subtrace): A subtrace E ′ ⊆ E of a trace E is a sub-
sequence of E , i.e., E ′ consists of a subset of the events in E in the
same order. In particular, we write E|Ni to denote the subtrace
that consists of all the events on Ni in E .

Definition (Happens-before): Given a (sub)trace E and two events
di@Ni and dj@Nj in E , we consider di@Ni to have happened
before dj@Nj iff di@Ni precedes dj@Nj in E .

Note that the happens-before relation can order events on different
nodes independent of their node-local timestamps.

3.2 Provenance Model
Given an execution trace E of a specific NDlog program, DTaP
encodes the provenance for the trace in a directed graph G(E) =
(V,E), in which each vertex v ∈ V represents an event in the trace,
and each edge (v1, v2) ∈ E represents a direct causal dependency
between two such events. This graph is used to answer queries.
Vertices. DTaP’s provenance graph can contain the following six
types of vertices:

• INSERT(t, n, τ) and DELETE(t, n, τ): Tuple τ was inserted (deleted)
on node n at time t.

• DERIVE(t, n, r, τ) and UNDERIVE(t, n, r, τ): Tuple τ was derived
(underived) via delta rule r on node n at time t.

• SEND(t, n,4τ, n′) and RECEIVE(t, n′,4τ, n): An update4τ was
sent (received) on node n at time t to (from) node n′.

2For instance, one could internally maintain a pointer for each up-
date that points to the latest previous update on the same tuple.
These pointers chain together related updates to ensure fast lookup
during query execution.

The last two vertices are needed because a derivation on one node
can involve tuples on another; the corresponding messages are rep-
resented explicitly in G.
Graph construction. The vertices are connected with edges ac-
cording to the following guidelines:

• When a base tuple is inserted, an INSERT vertex is added.

• If a node Ni derives a tuple τ via delta rule r, a DERIVE vertex is
added, which has incoming edges from all of r’s preconditions,
as well as from the triggering event, i.e., the INSERT that caused
r to fire. The DERIVE vertex is then connected to a new INSERT

vertex (if τ is local to Ni) or a new SEND vertex (if τ is sent to
another node).

• When a message is received from another node, a RECEIVE vertex
is added, with an incoming edge from the corresponding SEND

vertex. The RECEIVE vertex is then connected to a new INSERT

vertex.

• Whenever an INSERT vertex is added for a tuple τ that already
has at least one derivation, an incoming edge is added to τ ’s
most recent INSERT vertex (recall that tuples can have more than
one derivation).

• When a tuple τ1 displaces another tuple τ2 due to a primary-
key or aggregation constraint, an update edge is added from τ1’s
INSERT vertex to τ2’s DELETE vertex.

The guidelines for deletions and underivations are analogous. Note
that the graph is acyclic because edges are always added between
an existing vertex and a new vertex, but never between two existing
vertices. It is also monotonic because, as the execution E continues,
new vertices and edges can be added but are never removed. Given
the instantiated provenance graphG(E), the provenanceG(4τ, E)
of an update event 4τ on node Ni at time t is simply the subtree
of G(E) that is rooted at the corresponding INSERT(t,Ni, τ) (or
DELETE(t,Ni, τ)) vertex.
Example. Let us revisit our running example from the previous
sections. Figure 3 shows a piece of the DTaP graph that explains the
deletion of the tuple mincost(@c,a,5) on node c at time t3 that
resulted from a new link between a and b that was added at time t2.
Consequently, the edge at the DELETE vertex of mincost(@c,a,5)
(indicated by a dotted line) corresponds to an aggregation con-
straint — that is, the minimal cost changed because a lower-cost
path to node a became available. The updated lowest
cost (cost(@c,a,4)) was derived on node b at time t2 (and sub-
sequently sent to node c) because a) a link b-c with cost three
already existed at time t2 (since its insertion at time t0), and b)
the tuple mincost(@b,a,1) was newly derived at t2 via rule mc3.
The latter derivation was caused by the insertion of the base tuple
link(@b,a,1), which corresponds to the addition of the new link.

52

DELETE(t3, c, mincost(@c,a,5))

INSERT(t3, c, cost(@c,a,4))

update
INSERT(t3, c, mincost(@c,a,4))

INSERT(t2, b, mincost(@b,a,1))INSERT(t0, b, link(@b,c,3))

……

SEND(t2, b, +cost(@c,a,4))

RECEIVE(t3, b, +cost(@c,a,4))

DERIVE(t2, b, mc2, cost(@c,a,4))

DERIVE(t2, b, mc3, mincost(@b,a,1))

DERIVE(t3, c, mc3, mincost(@c,a,4))

Figure 3: The DTaP provenance graph for explaining the dele-
tion of mincost(@c,a,5).

Note that the additional time dimension on the provenance graph
enables another use of provenance: querying the effects of an up-
date event. For example, if we want to determine how the insertion
of the new link a-b has affected the system, we can simply locate
the corresponding INSERT vertex in the graph and traverse the edges
in the reverse direction.

3.3 Derivations and System Snapshots
Consider a delta rule of the form ∆τ :- ∆τ1, τ2, . . . , τk. Since
DTaP is used to explain a state change, i.e., the appearance or disap-
pearance of particular tuples, only the provenance of the triggering
tuple ∆τ1 is relevant. For example, in Figure 3, mincost(@c,a,4)
is derived from delta rule d2 for rule mc2. The DERIVE vertex for
mincost(@c,a,4) at time t2 is connected to the INSERT vertex for
the triggering event +mincost(@b,a,1) and the INSERT vertex for
+link(@b,c,3). If there are previous updates to link(@b,c,3)

that occur before time t2, these updates need to be included as part
of the full provenance information. As a storage and querying opti-
mization, instead of storing full provenance information of all pre-
conditions, we introduce a new vertex that provides a compact rep-
resentation of per-node state at a given time:

• EXIST(t, n, τ): State of tuple τ at a particular node n at its local
time tn. This vertex includes all vertices {INSERT(t, n, τ)|t ≤
tn}∪{DELETE(t, n, τ)|t ≤ tn}. To retrieve the snapshot value of
τ at time t, one can simply replay the sequence of insertions and
deletions, canceling out deleted insertions according to standard
bag semantics.

With the use of an EXIST vertex, we can summarize this informa-
tion: all updates to link(@b,c,3) are replaced with a single EXIST

vertex that indicates system state at the rule triggering time.

3.4 Correctness
Given the provenance G(4τ, E) of an update event4τ , G should
be “consistent” with the trace representation of the execution E .
We say G(4τ, E) is correct if it is possible to extract a subtrace
fromG that has the properties of validity, soundness, completeness,
and minimality. We first describe our subtrace extraction algorithm,
followed by the correctness properties themselves.
Subtrace extraction. Given G(4τ, E), the original subtrace can
be obtained by running an algorithm A based on topological sort.
Briefly,A converts each vertex in the provenance graph to an event
and then uses a topological ordering to assemble the events into
a trace – in other words, if two vertices v1, v2 ∈ V correspond
to events e1, e2 and are connected by an edge (v1, v2) ∈ E, then

e1 will appear in the trace before e2. This is possible because the
provenance graph is acyclic.
Correctness of subtrace. The extracted subtrace A(∆τ, E) must
satisfy the following four properties (theorems and proofs for all
four properties are presented in [21]):

Property (Validity): A(∆τ, E) is valid if, given the initial state
S′, for all events di@Ni = (ei, ri, ti, ci, e

′
i) ∈ A(∆τ, E), (a)

there exists dj@Nj = (ej , rj , tj , cj , e
′
j) that precedes di@Ni in

A(∆τ, E), ei ∈ e′j , and (b) for all τk ∈ ci, τk ∈ Si−1, where

S0
d1@N1−−−−→ S1 ... Si−2

di−1@Ni−1−−−−−−−→ Si−1.
A(∆τ, E) corresponds to a correct execution of the NDlog program
whose provenance is being captured. Any event that triggers a delta
rule evaluation must be generated before the rule is evaluated, and
the conditions of the rule evaluation must hold at the time of the
rule evaluation.

Property (Soundness): A(∆τ, E) is sound if it is a subtrace of
some E ′ that is equivalent to E (written as E ′ ∼ E). We say two
traces E and E ′ are equivalent if, for all nodes Ni, E|Ni = E ′|Ni .
A(∆τ, E) must preserve all happens-before relationships among
events in the original execution trace obtained from running the
NDlog program. Ideally, we would like A(∆τ, E) to be a subtrace
of E . However, without synchronized clocks, we cannot always
order concurrent events on different nodes. For practical purposes
E and E ′ must be indistinguishable: each node must observe the
same sequence of events in the same order.

Property (Completeness): A(∆τ, E) is complete if it ends with
the event ∆τ .
A(∆τ, E) must include all events necessary to reproduce τ . Note
that the validity property already requires that any event that is
needed for ∆τ be included inA(∆τ, E); hence, we can simply ver-
ify the completeness property of a valid trace by checking whether
it ends with ∆τ .

Property (Minimality): A(∆τ, E) is minimal if no valid trace
E ′⊂A(∆τ, E) is complete.
A(∆τ, E) must not include any events that do not contribute to τ .

4. MAINTENANCE AND QUERYING
This section presents techniques for generating and maintaining
provenance information modeled by DTaP, followed by distributed
query processing strategies for efficiently retrieving provenance data.

4.1 Representation of the Provenance Graph
DistTape uses a distributed Datalog (based on NDlog) evaluation
engine to store provenance information. Provenance data are incre-
mentally maintained as distributed views [11] over network state.
DistTape makes use of four provenance tables – called prov,
ruleExec, send, and recv – that are incrementally updated as the
NDlog rules that model the protocols are executed. These tables
store DTaP’s provenance graph in a distributed fashion.
Tuple instances: The prov table maintains information about each
tuple (including both current tuples and tuples that existed in the
past) as well as the specific rule that triggered its derivation. Entry
prov(@N,VID,Time,RLoc,RID) indicates that the tuple on node
N with unique identifier VID was derived at time Time by a rule
execution on node RLoc that is uniquely identified by RID. If N
and RLoc are different, the tuple was sent from RLoc to N, and this
communication is recorded in additional recv and send entries
(see below). VID is generated based on a cryptographic hash of the

53

+/- Loc VID Time RLoc RID Derivation
+ b V ID1 = SHA1(“ + link” + b + c + 3 + t0) t0 null null +link(@b,c,3)
+ b V ID2 = SHA1(“ + link” + b + a + 1 + t2) t2 null null +link(@b,a,1)
+ b V ID3 = SHA1(“ + mincost” + b + a + 1 + t2) t2 b RID1 +mincost(@b,a,1)
+ c V ID4 = SHA1(“ + cost” + c + a + 4 + t3) t3 c RID2 +cost(@c,a,4)
+ c V ID5 = SHA1(“ + mincost” + c + a + 4 + t3) t3 c RID3 +mincost(@c,a,4)
− c V ID6 = SHA1(“ − mincost” + c + a + 5 + t3) t3 c RID3 -mincost(@c,a,5)

Table 1: An example prov relation based on Figure 3. The table is horizontally partitioned across all nodes, based on the location
specifier Loc. The last column is not stored in the table; it is included here to show the derivation that corresponds to each entry. The
first column indicates an insertion (+) or a deletion (−).

+/- RLoc RID Rule ExecTime Event CList Derivation
+ b RID1 = SHA1(“mc3” + b + V ID2 + t2) mc3 t2 V ID2 null mincost(@b,a,1)
+ b RID2 = SHA1(“mc2” + b + V ID1 + V ID2 + t2) mc2 t2 V ID2 (V ID1) cost(@c,a,4)
+ c RID3 = SHA1(“mc3” + c + V ID4 + t3) mc3 t3 V ID4 null mincost(@c,a,4)

Table 2: An example ruleExec relation that corresponds to the DERIVE vertices shown in Figure 3. The last column shows the
derivation rule that was executed in each instance.

Sender VID STime RID Derivation
b V ID4 t2 RID2 cost(@c,a,4)

Receiver VID RTime Sender STime Derivation
c V ID4 t3 b t2 cost(@c,a,4)

Table 3: Example send and recv relations that correspond to the SEND and RECEIVE vertices in Figure 3.

contents of the tuple and the time of its derivation; similarly, RID is
a hash of the rule identifier, node location, and VID of the derived
tuple. For base tuples, RID is set to null.

In order to correctly generate the above entries, NDlog programs
undergo an automatic rewrite process to include the RID and RLoc

information with each tuple derivation. This process ensures that
the appropriate prov entry will be generated on the node to which
the derivation is sent.
Rule execution instances: The ruleExec table maintains infor-
mation about each execution of a rule (not just about each rule). En-
try ruleExec(@RLoc,RID,Rule,ExecTime,Event,CList)

indicates the execution of a Rule on RLoc at time ExecTime, trig-
gered by an event Event (i.e., a tuple that changed, appeared, or
disappeared) while the preconditions in CList were holding.
Message transmissions and arrivals: The send and recv tables
maintain information about message exchanges.
send(@Sender,VID,STime,RID) and recv(@Receiver,VID,

RTime,Sender,STime) refer to the rule execution identified by
RID that affected the tuple identified by VID; the corresponding
message was sent by Sender at time STime and received at time
RTime. Whenever a rule execution causes a message to be sent,
send and recv entries are generated at the sender and receiver,
respectively, and are timestamped using each node’s local clock.
To handle clock skew, the receiver stores the sender’s timestamp at
message transmission; this timestamp is included in each message
along with the (un)derived tuple. This information is used during
query processing to correctly match up send and recv entries.

Given the distributed nature of provenance storage, these ta-
bles are naturally partitioned based on their first attributes, and
distributed among the nodes. For instance, prov entries are co-
located with the tuples to which the update events were applied,
and ruleExec entries are located on the nodes on which the rule
executions were performed.

Tables 1, 2, and 3 show the entries for the tables above, based
on the example provenance tree shown in Figure 3. The vertices
defined by our provenance model (Section 3.2) are encoded in the
above provenance tables as follows: INSERT and DELETE vertices are
respectively represented as tuple insertions (+prov) and deletions
(-prov). Likewise, DERIVE and UNDERIVE are stored as +ruleExec
and -ruleExec. Edges between INSERT / DERIVE and DELETE /

UNDERIVE pairs are represented by the RID and VID pairings in
each prov entry. recv and send entries correspond to the RECV

and SEND vertices. For each tuple uniquely identified by its pri-
mary key, each EXIST vertex consists of all updates (i.e., +prov and
-prov) ordered by their timestamps.

4.2 Maintaining Provenance with Delta Rules
The DTaP graph can be captured via the evaluation of delta rules
(see Section 2.2) of the form action :- event, conditions.
In a delta rule of the form 4p :- p1, . . . ,4pi, . . . , pn, the event
(in this case,4pi) is represented as an INSERT or DELETE vertex, the
conditions (the other pk) are represented as a sequence of INSERT

(or DELETE) vertices that support the existence of pk (EXIST vertex),
and the action (4p) is represented as a DERIVE or UNDERIVE vertex.

When a delta rule 4p :- p1, . . . ,4pi, . . . , pn is fired at time t,
DistTape performs the following steps:

• Generate a +ruleExec or -ruleExec tuple with timestamp t to
represent the rule execution, and maintain pointers to the trigger-
ing event4pi and preconditions p1, . . . , pn (excluding pi).

• Generate a +prov or -prov tuple with timestamp t to represent
the insertion or deletion event 4p, and to maintain a pointer to
the generated +/-ruleExec tuple.

• If the generated event 4p needs to be sent to another node,
generate a pair of send and recv tuples at the sender and the
receiver, respectively, with timestamps that correspond to each
node’s local clock.

• Finally, if the generated event 4p results in a violation of a
primary-key or aggregation constraint (e.g., the newly-generated
tuple displaces another), generate an additional +prov or -prov
tuple to represent the deletion caused by 4p. This corresponds
to the update edge from Section 3.2.

4.3 Proactive and Reactive Maintenance
To answer provenance queries about past tuples or updates, the
DTaP model contains a temporal dimension. This could in prin-
ciple be implemented with provenance versioning, i.e., by keep-
ing a full copy of the provenance whenever it changes. However,
this would require an enormous amount of storage, particularly for
long-running distributed systems with frequent updates. Moreover,

54

provenance
extractor

prov(@N, VID, Time, RID, RTime, RLoc)

ruleExec(@RLoc, RID, Rule, RTime,
CList, Trigger)

provQuery(@N, VID, Time)

execQuery(@RLoc, RID, Time)

prov.VID = provQuery.VID

execQuery.RID = ruleExec.RID

project (prov.RLoc, prov.RID, prov.RTime)
as execQuery(@RLoc, RID, Time)

project (execQuery.RLoc,
ruleExec.Trigger / ruleExec.CList[i],

execQuery.Time)
as provQuery(@N, VID, Time)

log

Figure 4: Logical query plan for recursive provenance queries.
Underlined attributes are primary keys.

provenance versioning is unnecessary because DTaP’s provenance
is monotonic: the provenance of historic updates and tuples (which
eventually make up a major portion of a provenance graph) is im-
mutable.

For better efficiency, DistTape maintains provenance incremen-
tally, i.e., it considers only the ‘deltas’ between adjacent versions,
which are sufficient to reconstruct the full provenance graph. Dist-
Tape can store these deltas in two different ways:

• Explicit deltas (proactive). In this approach, all of the +prov,
-prov, +ruleExec, and -ruleExec entries are stored explic-
itly in a temporally ordered log that is indexed by time. Com-
pared to provenance versioning, the storage cost is consider-
ably lower; however, the full provenance information must be
reconstructed from the deltas before a query can be answered.
To permit fast reconstruction of EXIST vertices during query ex-
ecution (see Section 4.4), DistTape maintains reverse-time or-
dered pointers between all +/- prov entries that correspond
to the same tuple. For instance, in Table 1, the prov entry
with VID4 (+mincost(@c,a,4)) points to the entry with VID5

(-mincost(@c,a,5)) which in turn points to another entry for
+mincost(@c,a,5).

• Per-node input logs (reactive). In this approach, DistTape main-
tains only the non-deterministic inputs (recv entries for incom-
ing messages, as well as tuple insertions and deletions) at each
node. If the underlying application is deterministic, DistTape can
replay these inputs at query time to reproduce the original execu-
tion of that node, and reconstruct the provenance on the fly. As
an optimization, each derived tuple sent across nodes needs only
to include the sender’s timestamp.

The first approach represents a proactive style of provenance main-
tenance in which provenance information is stored explicitly in
the form of deltas; the second approach represents a reactive style
in which provenance information is reconstructed at query time.
There exists a tradeoff between the two: the proactive approach
results in lower query latencies (since there is less overhead for re-
construction) but requires more storage space.

4.4 Query Execution
For ease of exposition, we limit our discussion to the scenario in
which the query result of interest is the entire provenance for the
given update 4τ at time t. To query the provenance of such an
update, DistTape executes a distributed recursive query that recon-
structs the relevant subtree of the provenance graph from the four
tables we have described in Section 4.1. Figure 4 shows the log-
ical query plan for evaluating this distributed recursive query; the

query starts at the root of the subtree and iteratively adds vertices
and edges until a fixpoint is reached (at the base tuples). The results
are then returned in the form of tuples from the prov, ruleExec,
send, and recv tables that encode the relevant subtree.

In Figure 4, the initial query is represented as an input tuple
provQuery(@N,VID,Time) to the logical plan. Based on this tu-
ple, DistTape carries out the following steps:

• Step 1: Retrieve rule execution instances. Since the VID

uniquely identifies 4τ , DistTape uses it as a lookup into the
prov table (via a database join) and then retrieves the corre-
sponding RID used to derive the tuple, as well as the location
RLoc at which the rule was fired. This corresponds to the gen-
eration of the DERIVE or UNDERIVE vertex. If RLoc is different
from Loc (i.e., the tuple was derived from a remote rule execu-
tion), additional RECV and SEND vertices are generated by joining
the VIDs of derived tuples with the recv and send tables3; for
readability, these extra operations have been omitted from Fig-
ure 4. Next, DistTape generates execQuery tuples to trigger
queries on the ruleExec table.

• Step 2: Expand dependent derivations. DistTape ships the re-
sulting execQuery(@RLoc,RID,Time) tuple to RLoc and there
joins it with the local ruleExec table to recursively expand the
child derivations that have resulted in 4τ . Here, multiple addi-
tional provQuery tuples are generated: one for the trigger event
for the delta rule RID, and another for each condition predicate
value that occurred during the execution of RID. Each expansion
generates an INSERT or DELETE vertex, depending on whether the
trigger event was an insertion or a deletion, and each expanded
condition generates an EXIST vertex, which includes additional
INSERT and DELETE vertices to explain why the condition held at
the relevant Time.

• Repeat until fixpoint. Steps 1 and 2 are performed recursively
until all child nodes are expanded. As the query progresses, the
provQuery events are recursively propagated from the root of
the provenance tree (where the queried update resides) towards
the child nodes in order to construct the entire subtree. Each
level of the tree can be expanded in parallel at different nodes.
Upon reaching the leaf nodes (which correspond to base tuples),
the query results are returned back to the root along the reverse
path. At each level, the parent node only returns its portion of the
query result (subtree) after all the child nodes have completed
their respective subqueries.

For our prototype, we have implemented the query plan from Fig-
ure 4 in NDlog, and we execute it on a distributed recursive query
engine [12]. To customize the query and to return other annota-
tions of provenance [9], DistTape supports user-defined functions
for augmenting the query plan.

4.5 Reconstructing Provenance on Demand
Steps 1 and 2 assume that the entire prov and ruleExec tables are
already constructed and available when the query is issued. To sup-
port the proactive and reactive maintenance techniques from Sec-
tion 4.3, DistTape needs an additional provenance extraction oper-
ator to reconstruct the prov and ruleExec entries from deltas or
input logs whenever a provQuery or execQuery is received.
Reconstruction with provenance deltas. When the log consists of
deltas, the prov entries are reconstructed as follows. Given a query

3After retrieving the recv entry based on VID and RTime, we use
the STime (sender’s timestamp) attribute in recv to fetch the ap-
propriate send entry on the sender’s side. This avoids explicit time
synchronization.

55

provQuery(@N,VID,Time), the provenance extractor is invoked
using VID and Time as the lookup keys. Using a fast binary-search
data structure indexed by time, the extractor searches the log for
an entry corresponding to VID at time Time, and returns the cor-
responding +/-prov tuple. In some cases, if an EXIST vertex is
required, the provenance extractor first finds the latest prov entry
at time Time and then follows the chain of updates backwards in
time to retrieve all tuples with a VID smaller than Time. An anal-
ogous mechanism is used to reconstruct the ruleExec tuples by
searching for the corresponding RID and RTime.
Reconstruction with input logs. In the reactive implementation,
instead of searching for the appropriate prov and ruleExec en-
tries, reconstruction involves replaying the entire log (messages and
changes to base tuples) at the relevant nodes until the specified in-
put time (Time or RTime) is reached. Each recv entry from the log
is replayed on a reference implementation of the distributed system
to regenerate prov and ruleExec entries.

In theory, one can always start replaying the input logs from
the very beginning of the system execution. However, this can be
costly when the application has been active for a long time, partic-
ularly if the derivation rules are computationally expensive. Dist-
Tape reduces this overhead by periodically recording a checkpoint.
Each node only checkpoints its local state – specifically, the cur-
rently extant tuples and any unprocessed updates in the local pool.
This is sufficient because each node replays only its local execution,
and it allows DistTape to avoid the complex mechanisms needed for
consistent global checkpoints. The input log can then be incremen-
tally applied, starting from the latest checkpoint.

A possible optimization is to cache prov and ruleExec entries
from previous replays in case they can be used in a subsequent
query. This avoids unnecessary replays. Additional methods for
improving querying and maintenance performance are discussed in
the next section.

5. COST-BASED OPTIMIZATIONS
The maintenance approaches introduced in the previous section
offer a spectrum of tradeoffs between maintenance overhead and
querying performance. The best tradeoff depends on a variety of
factors, some of which we discuss below.
Querying frequency. We expect that the cost for query processing
will be a function of (1) how frequently queries are issued, (2) how
far apart the checkpoints are in the log, and (3) how much work
is required to replay a log segment. If queries are expected to be
rare, we can save space by maintaining input logs and taking check-
points only occasionally. In this case, answering a query can be
expensive because the relevant parts of the provenance graph must
be reconstructed by replaying the execution of certain nodes from
their latest checkpoint.

If queries are more frequent, we can trade some space for a lower
query-processing cost by (1) taking checkpoints more frequently,
which reduces the expected length of the log segment that needs to
be replayed, and/or (2) maintaining provenance deltas rather than
input logs. The latter reduces the computational cost because replay
needs only to incrementally apply the changes to the provenance
data, instead of repeating the processing steps that produced them.
System runtime. Many distributed systems run for an indefinite
amount of time. For example, the Internet’s interdomain routing
system has been running for decades. In such systems, checkpoints
are indispensable because it is not practical for the querier to replay
the execution of the system, or even just a single node, from the
very beginning. On the other hand, there are distributed systems
that run only for a limited time. For example, in this case, replaying

NDlog Program
Npred # of predicates in rule body
Ndep Node-level depth of the provenance graph
Nexec # of derivation rules triggered by a message
Ndup # of duplicate derivations per tuple
System Performance
Slog/Schk Size of a log entry / checkpoint
Tw
log/T

r
log Time taken to append / retrieve a log entry

Tw
chk/T

r
chk Time taken to save / load a checkpoint

Trule Time taken to execute a delta rule
Tlatency Average propagation delay between two nodes
Input Workload
Fmsg Message freq. (# of messages per unit time)
Fqry Query freq. (# of queries per unit time for the

entire system)
Ichk Checkpoint interval (# of unit time between adja-

cent checkpoints)

Table 4: Summary of the statistics used for optimizations.

the entire log may be practical, and if so, we can save even more
space by not maintaining checkpoints at all.
Local derivations. Distributed systems differ in the relative fre-
quency of remote derivations (i.e., derivations that involve mes-
sage exchanges between nodes). When most derivations are re-
mote, both provenance deltas and input logs should perform equally
well since most state changes (which are recorded in provenance
deltas) are due to incoming messages (which are recorded in the
input logs). However, there are systems where most derivations
are local; for example, a distributed machine-learning algorithm
might just send a very few messages to transfer the raw data and
the results. In this case, input logs should consume significantly
less space than provenance deltas, but they would need much more
computation when the provenance graph needs to be reconstructed
to answer a query.

5.1 Cost Model
In order to decide which maintenance strategy(-ies) to adopt, we
develop a cost model that captures the tradeoffs between mainte-
nance and querying overhead. Our cost model takes as its inputs a
set of runtime statistics collected from the system, including work-
load properties (e.g., message and query frequencies), the charac-
teristics of the running protocol (e.g., the ratio of local derivations),
and the measured overhead for reading and writing log entries.

The model parameters are summarized in Table 4 and are broadly
classified into three categories: (1) properties of the NDlog pro-
gram that the system executes, (2) properties of the nodes on which
the system is deployed, and (3) properties of the workload. Unless
otherwise specified, model parameters are system-wide; they are
obtained by profiling the deployed system at runtime. Each node
first averages its local statistics (e.g., the number of messages per
unit time), and then the results are averaged across all nodes.
NDlog program. The first set of parameters relate to the distributed
protocol itself. Since we have assumed (in Section 2.1) that the pro-
tocol is specified in NDlog, the properties are expressed in terms of
the structure of the program. Npred denotes the average number of
predicates in a rule body; for instance, in the MINCOST program
from Section 2.1, rule mc2 has a complexity of two because its rule
body contains the predicates link and mincost. Ndep denotes the
average node-level depth of a provenance tree for any tuple derived
using the program. Note that this is not the same as vertex-level
depth; for instance, in Figure 3, Ndep = 2, since the graph is par-
titioned at nodes c and b. Nexec is the number of derivation rules
that are triggered (executed) by an incoming message at a given
node. This includes all local rules executed until a local fixpoint is

56

reached. For instance, in the MINCOST program from Section 2.1,
an incoming path message will trigger rule r3, which may further
trigger rule r2 (if the received path is optimal). Finally, Ndup is
the average number of duplicate derivations per tuple. Npred can be
analyzed statically from the protocol specification, whereas Ndep

and Nexec are collected at runtime, e.g., by observing the previous
provenance query results and rule executions.
System performance. The next set of properties relates to the run-
time environment in which the distributed system is deployed, e.g.
with respect to I/O, computation power, and message propagation
delay in the network. Slog and Schk are the average sizes of a log
entry and a checkpoint, respectively; Tw

log and T r
log are the times

required to append and retrieve a log entry; Tw
chk and T r

chk are the
times required to save and load a checkpoint; Trule is the average
execution rule execution time; and Tlatency is the average propa-
gation delay between two nodes.
Input workload. The final set of properties relate to external in-
puts that drive the execution of the protocol. For example, the rate
at which links are updated in the MINCOST program has a direct
impact on the number of times rules are fired on a node and the
size of the log. Rather than capture the rate of change at a predi-
cate level, we instead measure the average frequency of incoming
messages at each node during protocol execution, denoted as Fmsg .
Unlike other parameters, Fqry represents a system-wide total, i.e.,
it represents the number of queries issued to the entire network.

DistTape captures parameters at a coarse granularity (typically,
system-wide averages of per-node averages). Our model can cap-
ture costs at finer granularity, e.g., at the level of individual re-
lational operators, but the requisite fine-grained data leads to a
massive number of parameters. As we show in Section 6, coarse-
grained statistics are sufficient for the model to provide accurate
estimates on actual system performance.

5.2 Applying the Cost Model
The proactive and reactive provenance maintenance techniques of-
fer storage and latency tradeoffs: the proactive scheme has a higher
log storage overhead but offers lower query latency than the reac-
tive strategy. DistTape applies the above cost model to estimate
the storage and latency overheads, and then, as discussed in Sec-
tion 5.3, selects the strategy that is likely to perform best.

• Storage overhead. In the proactive approach, the log stores
+/-prov, +/-ruleExec, and incoming recv tuples as they are
generated by the underlying protocol. Each log entry requires
Slog space. With a message frequency of Fmsg , the recv tu-
ple yields a storage overhead of Fmsg × Slog , and the prov and
ruleExec yield 2× Fmsg ×Nexec × Slog .

For the reactive approach, DistTape needs only maintain one log
entry for each incoming message. Here, the storage overhead
is (Fmsg × Slog) + (Ichk × Schk), where the former term de-
notes the cost of storing the messages and the latter is the cost of
storing the checkpoints.

• Query latency. We consider the time taken to construct a ver-
tex (Tvertex) in the provenance graph in both the proactive and
reactive cases.

In the proactive approach, given a delta rule execution, three log
retrievals are required to get the recv, prov, and ruleExec en-
tries for the trigger event. We repeat this retrieval process for all
duplicate derivations. Hence, Tvertex = 3× T r

log ×Ndup.

In the reactive approach, checkpoints need to be retrieved and
replayed, requiring T r

chk time. The expected number of log mes-
sages that must be retrieved and replayed by executing rules be-
tween two checkpoint intervals isFmsg×Ichk. Hence, Tvertex =
T r
chk + Fmsg × Ichk ×Nexec × Trule.

To estimate the average per-query latency, we multiply by the
average depth of the tree, and the time to replay each vertex
(Tvertex) and propagation delays in sending the query results
along the path of the tree, resulting in Ndep × (Tvertex + 2 ×
Tlatency). By taking into account the query frequency (Fqry),
one can further estimate the aggregate latency of all queries over
a period of time.

5.3 Optimizations using the Cost Model
The above cost model can be used to select the maintenance mode
that is likely to perform best according to a given metric. The
choice of proactive or reactive provenance depends upon the un-
derlying protocol and workload, as well as the metric (i.e., storage
or query latency) that the administrator of the distributed system
would like to optimize. If the administrator’s goal is simply to
minimize storage (resp. latency), then the straightforward approach
of selecting the maintenance mode that incurs the least storage
(resp. latency) cost is sufficient. More flexibility can be achieved
with more complex objective functions; for instance, the adminis-
trator can adopt a strategy that uses reactive provenance when the
estimated latency is lower than some threshold value.

Selecting the appropriate provenance maintenance mechanism
can be done either prior to system deployment or at runtime. In the
former approach, which we have adopted for our prototype imple-
mentation, DistTape relies on performance profiles that capture the
costs of a representative system. Cost-based analysis of the perfor-
mance profile determines whether proactive or reactive provenance
maintenance is likely to yield better performance.

Another possibility is dynamic adaptation, that is, adjusting the
provenance maintenance mechanism at runtime. This requires the
ability to reconstruct provenance from a log that contains a mix of
provenance deltas and per-node input logs. Here, DistTape takes
advantage of the property that the two maintenance modes are in-
terchangeable. For instance, given a query for a prov entry at time
t, DistTape can start replaying the log from the most recent check-
point before t. If a recv message is encountered, the execution
rules are fired to derive the corresponding prov and ruleExec tu-
ples. On the other hand, if a +/-prov delta is read from the log, it
can similarly be used to directly update the prov table.

6. EVALUATION
We have built a DistTape prototype based on the RapidNet declar-
ative networking engine [16]. We extended RapidNet by adding
logging and replay capabilities to its distributed query processor in
order to support time-aware provenance graphs and process time-
based provenance queries.

DistTape enables time-aware network provenance for both ex-
isting declarative networks as well as legacy systems. In the latter
case, dependencies at each node must be extracted and modeled
as distributed Datalog programs. The question of how to extract
provenance from applications and how to support legacy systems
has been studied in prior work (cf. [23]) and existing techniques
can be used for this purpose. For example, if the legacy system’s
source code is available, dependencies can be explicitly reported to
DistTape by adding upcalls to the code; if the code is not available,
provenance can be inferred by observing the nodes’ inputs and out-
puts and by correlating them with an external specification of the

57

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100

A
v
g
.
B

a
n
d
w

id
th

 U
ti
liz

a
ti
o
n
 (

K
B

p
s
)

Number of Nodes

NoProv
Proactive
Reactive

ExSPAN
SNP

Figure 5: Average per-node bandwidth
utilization (KBps).

 0

 1

 2

 3

 4

 5

 6

 20 40 60 80 100

A
v
g
.
S

to
ra

g
e
 C

o
s
t
(M

B
)

Number of Nodes

Proactive
Reactive-NoChk

Reactive-Chk
SNP-Chk

Figure 6: Average per-node storage
overhead (MB).

 0.1

 1

 10

 100

 1000

 20 40 60 80 100

A
v
g
.
Q

u
e
ry

 L
a
te

n
c
y
 (

s
)

Number of Nodes

Proactive
Reactive-NoChk

Reactive-Chk
SNP-Chk

Figure 7: Query latencies (seconds) for
various network sizes.

application’s protocol. Given the availability of existing techniques
to extract provenance, we concentrate our evaluation on DistTape’s
ability to efficiently provide time-aware provenance.

We evaluate DistTape using the following maintenance tech-
niques from Section 4: (1) NoProv is a baseline in which no prove-
nance information is maintained or queried; (2) Proactive main-
tains provenance proactively using logs to store provenance deltas;
and (3) Reactive-Chk and Reactive-NoChkmaintain provenance
reactively, with (Chk) or without (NoChk) checkpointing using per-
node input logs.

We compare DistTape to two prior distributed provenance sys-
tems: ExSPAN [25], which maintains provenance only for the deriva-
tions of current system state (and not historical state), and
(2) SNP-Chk (Secure Network Provenance [23]), which supports
tamper-evident historical provenance with periodic checkpointing.
To make the results comparable, we use the same checkpoint inter-
val for both Reactive-Chk and SNP-Chk.

We measure DistTape’s main overheads: storage overhead due
to logs, communication overhead from provenance maintenance
and querying messages, CPU overhead due to executing rules and
maintaining provenance, query latency from network propagation
delays, and computation at each node due to log replays.

6.1 Maintenance Overhead and Query Latency
Our first set of experiments executes multiple instances of Dist-
Tape using the ns-3 [14] network simulator. (ns-3 is a discrete
event-driven network simulator that, like its predecessor ns-2, emu-
lates all layers of the network stack and supports configurable loss,
packet queuing, and network topology models.) By first running
DistTape over ns-3, we can study the scalability trends of DistTape
in a more controlled and repeatable environment. In Section 6.2,
we will revisit a similar set of experiments on a smaller scale within
our local cluster testbed.

Our experiments focus on the provenance maintenance and query-
ing overheads of a declarative path-vector routing protocol called
PATHVECTOR that consists of four rules. PATHVECTOR is an ex-
tension of the MINCOST protocol from Section 2.1; it stores an
additional path attribute that encodes the actual path from a given
source to a destination. PATHVECTOR computes the shortest path
(with minimal hop count) between any two nodes. We have chosen
to evaluate PATHVECTOR because path-vector protocols are used
widely; for example, they serve as the basis for the Internet’s inter-
domain routing protocol.

For our experiments, we use the declarative version of PATHVEC-
TOR that was previously developed by Loo et al. [12]. The program
is executed continuously over a dynamic network; as links are up-
dated, new mincost tuples are derived, and provenance logs are
generated for subsequent reconstruction. Each DistTape node runs
the PATHVECTOR protocol; in steady state, we add or delete two

links every second. Our simulations last for 300 virtual seconds and
are executed on machines with X3450 Xeon 2.66 GHz processors
and 4 GB memory that run Fedora 12 (64-bit).
Provenance bandwidth overhead. In our first experiment, we
vary the number of simulated DistTape nodes from 20 to 100. Fig-
ure 5 shows the average amount of bandwidth used by each node;
since checkpointing increases only local storage and does not result
in any additional communication, we show only the results for the
reactive maintenance without checkpoints (labeled as Reactive).
As expected, NoProv’s bandwidth usage is the lowest. We also ob-
serve that Proactive and Reactive incur roughly the same band-
width overhead. The reason is that both techniques add a few at-
tributes (such as sender timestamp, address, and tuple identifier) to
each message that is sent as part of the protocol execution. In both
cases, the per-node bandwidth requirement in the 100-node net-
work is less than 10.5 KBps. In comparison, ExSPAN’s overhead is
lower – only 88% of that of DistTape’s Proactive and Reactive

– because ExSPAN messages do not contain timestamps for track-
ing historical information. SNP is the most expensive: it consumes
2.5 times more bandwidth than DistTape. The overhead is due to
a 1,024-bit signature and an acknowledgment that SNP includes in
each message it transmits.
Provenance storage overhead. DistTape’s per-node storage over-
heads are shown in Figure 6. We report only the storage used for
logs (i.e., the overhead incurred by DistTape), so we omit the results
for NoProv and ExSPAN, which maintain no logs. In Reactive-Chk
and SNP-Chk, checkpoints are taken once every minute.

Proactive produces the largest logs because it explicitly stores
each change to the prov and ruleExec tuples. Reactive-NoChk
produces the smallest logs, at approximately one third of the size
of the Proactive logs. The storage overhead for Reactive-Chk
grows linearly with network size. Beyond a network size of 80,
Reactive-Chk actually exceeds Proactive, since checkpoints
grow with the size of the network. However, we note that the
crossover point depends on additional factors such as the update
rate of base tuples. Overall, the storage overhead is modest: in the
largest network (100 nodes), it amounts to 2.65 MB in 300 sec-
onds (approximately 9 KBps). The logs maintained by SNP-Chk

and Reactive-Chk are fairly similar, and their checkpoints have
roughly the same size; nevertheless, SNP-Chk’s storage overhead is
more than twice as high because it must also record the signatures
and acknowledgments in the log.
Query latency. Our second set of experiments evaluates the query
latency of Proactive, Reactive-NoChk, and Reactive-Chk.
We use the same experimental setup as above. Additionally, we
randomly issue 100 queries from different nodes, each of which
retrieves the provenance of a particular tuple derived in the past.

Figure 7 shows the average query latency for various network
sizes. Since query latency depends on the depth of each provenance

58

tree (which is bounded by the network diameter), we observe a
diminishing increase in query latency as network size increases.

With Proactive, each query’s latency is dominated by net-
work propagation delay; hence, the average query latency is within
0.34 seconds. Reactive-Chk must additionally replay the logs
from a given checkpoint, resulting in a higher average query la-
tency: 37.7 seconds on average, for a network size of 100. SNP-Chk
needs 4.8 seconds more than Reactive-Chk because it must also
perform integrity checks on the checkpoints and logs during re-
play, which involves verifying the cryptographic signatures. As
expected, Reactive-NoChk’s query latency is the highest because
it must replay the entire log; however, recall from Figure 6 that
Reactive-NoChk also has a much lower storage overhead than the
other schemes, so there is a tradeoff between storage overhead and
latency. We do not consider ExSPAN for this experiment because it
does not support historical queries.

6.2 Cost Model Validation on Actual Testbed
We next validate the cost model presented in Section 5.1. Our goal
is to show that the model accurately predicts the storage and la-
tency costs in a variety of different configurations. In particular,
we show that, based on measurements of the parameters described
in Table 4 (e.g., number of predicates, message frequencies, etc.)
and the storage and query formulas specified in Section 5.2, Dist-
Tape accurately estimates the storage overhead and query latency.

We repeat the previous experimental setup on actual physical
machines in a local cluster testbed. Here, we utilize machines with
a similar hardware/software configuration as the machine used in
simulation. The machines are connected using high-speed Gigabit
Ethernet. All DistTape nodes run the same code as before, but com-
municate using actual network sockets instead of ns-3’s simulated
network stack.
Path-vector. We deploy the path-vector protocol on 60 DistTape
nodes (utilizing 60 cores on 15 cluster machines) for a duration
of 900 seconds. Table 5 shows the differences between the esti-
mated per-node storage (predicted using the cost model) and the
corresponding actual storage overhead for each experimental run,
repeated for different link update intervals. In both Proactive

and Reactive-Chk (with a per-minute checkpoint interval), our
results indicate that our cost model is accurate: the differences
between the estimated and the measured storage costs range from
0.7% to 20.5%. Unlike the simulation results, the storage overhead
for Reactive-Chk is significantly higher than Proactive. This
is largely due to the relatively large checkpoints (compared to the
I/O logs) that dominate the storage cost for Reactive-Chk. Our
cost model is able to provide accurate estimation, such that users
can fine-tune the checkpoint intervals accordingly.

Table 6 shows the differences between estimated and measured
query latencies in a similar setup. The execution time is lower than
in the earlier simulations, since our testbed experiments are car-
ried out with lower update frequency, resulting in shorter log replay
times between checkpoints. As before, our cost model accurately
predicts query latencies for different frequencies of link updates;
the differences between the estimated and measured latencies range
from 0.0% to 10.0%.
Hadoop. We next validate the accuracy of our cost model on Hadoop
MapReduce (version 1.0.0) [6]. We modified Hadoop so that the
dependencies between incoming and outgoing tuples are reported
to DistTape and modeled as NDlog rules. Briefly, MapReduce con-
sists of a map followed by a reduce phase. In the Map phase, each
Map worker applies the user-defined Map function on each input
tuple, and then locally combines intermediate results based on the
partitioning key. In the reduce phase, a reduce worker combines the

Upd. Interval Proactive Reactive-Chk
(seconds) Estimated Actual Estimated Actual

4 1.0 MB 0.83 MB 4.4 MB 4.01 MB
2 1.4 MB 1.41 MB 4.5 MB 4.41 MB
1 2.2 MB 2.15 MB 4.8 MB 5.03 MB

Table 5: Comparisons between estimated storage (obtained
from the cost model) and actual measured storage (in MB) for
the path-vector protocol.

Upd. Interval Proactive Reactive-Chk
(seconds) Estimated Actual Estimated Actual

4 0.011 s 0.010 s 2.7 s 2.5 s
2 0.012 s 0.012 s 3.3 s 3.6 s
1 0.013 s 0.014 s 4.9 s 4.7 s

Table 6: Comparisons between estimated average query la-
tency (obtained from cost model) and actual measured end-to-
end latency (in seconds) for the path-vector protocol.

outputs from Map workers and performs the reduce function. The
dependency logic between incoming and output tuples of the map
and reduce phases can be modeled as two NDlog rules each. Hence,
the number of rules triggered per input (Table 4) is Nexec = 2.

We run Hadoop’s WordCount program on up to 40 cores within
our cluster. The program (WordCount) counts the number of oc-
currences of each word, given an input document size of 9.1 GB
derived from the WebBase dataset (dated 12/2010). In the first
setup, 100 map tasks and 40 reduce tasks are executed, while in
the second setup, 40 map tasks and 16 reduce tasks are executed.

Unlike the earlier path-vector experiment, the MapReduce exe-
cution is a one-time execution of static input data (as opposed to
a continuously executed routing protocol). Since there is no need
to perform periodic checkpoints for the duration of the program
execution, we compare only Proactive and Reactive-NoChk.
Table 7 shows that the Proactive approach incurs 12 times larger
storage overhead than Reactive-NoChk (which only needs to main-
tain the original input files and the intermediate data communicated
from map workers to reduce workers). This is largely due to the
fact that the SHA1-based IDs assigned to prov and ruleExec en-
tries are significantly larger than the input keywords: on average, a
word is around 14 B (due to a large amount to HTML-specific tags),
whereas each prov (or ruleExec) tuple is 35 B4, i.e., the average
size of a log entry (Table 4) is Slog = 35 B. Previous work [8,
15] has shown that MapReduce-specific optimization is possible to
further reduce the size of log entries, however, we decide to retain
the general-purpose provenance encoding in our evaluation.

Our estimated storage overhead is calculated based on the for-
mula introduced in Section 5.2: the storage overhead is Nmsg ×
(Slog + 2 × Nexec × Slog), where Nmsg denotes the number of
input records to the map and reduce workers. Given that each input
event triggers exactly two derivation rules, our cost model accu-
rately estimates the storage overhead based on the number of input
records to the map and reduce workers (reported by Hadoop).

Table 8 summarizes the average query latencies. We observe
that, as expected, Proactive results in a lower query latency since
no replay is necessary. Nevertheless, even with replay,
Reactive-NoChk returns each query within 66 seconds. Replay
latency is higher when the number of map/reduce workers is re-
duced since each worker is responsible for a larger set of input tu-
ples (hence increasing the replay overhead of reexecuting the spe-

4In the Hadoop experiment, we use the first 80 bits of the SHA1
hashes for the IDs of prov and ruleExec tuples.

59

Number of Proactive Reactive-NoChk
Map/Reduce Estimated Actual Estimated Actual

100/40 115.6 GB 115.6 GB 9.7 GB 9.7 GB
40/16 113.9 GB 113.9 GB 9.5 GB 9.5 GB

Table 7: Comparisons between estimated storage (obtained
from the cost model) and actual measured storage (in GB) for
Hadoop MapReduce.

Number of Proactive Reactive-NoChk
Map/Reduce Estimated Actual Estimated Actual

100/40 6 s 8 s 41 s 47 s
40/16 15 s 19 s 62 s 66 s

Table 8: Comparisons between estimated average query la-
tency (obtained from cost model) and actual measured end-to-
end latency (in seconds) for Hadoop MapReduce

cific worker to generate dependency logic between incoming / out-
going tuples). In all cases, we note that our cost-model provides a
good estimation of query latency.

7. RELATED WORK
Provenance [1] has proven to be a versatile concept. It has been
successfully applied to a variety of areas, including probabilistic
databases [17, 19], collaborative databases [5], file systems [7, 13],
and scientific computations [3]. In contrast to existing provenance
models, DTaP explicitly represents distributed state, includes a tem-
poral dimension, and supports provenance of state changes.

ExSPAN [25] describes how data provenance can be efficiently
distributed and queried in a distributed system using a relational en-
coding, horizontal data partitioning, and a distributed Datalog im-
plementation. However, unlike DistTape, ExSPAN supports only
provenance of the current state of a distributed system; it cannot
answer queries about state changes or past system states.

SNP [23] can answer provenance queries in distributed systems
that have been partially compromised by a malicious adversary.
SNP supports a form of historical provenance, but its use of tamper-
evident logs and cryptographic signatures incurs high computation
and storage costs. Although appropriate for the adversarial settings
in which it is designed to operate, SNP may be overly burdensome
for many other applications. DistTape can be seen as a generaliza-
tion of SNP to many different storage models, and its cost-based
techniques can be used to adaptively choose the best strategy for a
given application.

An initial version of DistTape’s provenance model has been pre-
sented in a workshop paper [22]. The present paper adds (1) a
refined model that is a provably sound and complete representation
of causal dependencies between events in a distributed system; (2)
a system for maintaining and querying provenance that combines
distributed recursive view maintenance, logging, and system re-
play; (3) cost-based optimization techniques for choosing between
proactive and reactive styles of provenance maintenance/querying;
and (4) an implementation and an experimental evaluation.

8. CONCLUSION
In this paper, we have presented DistTape, a time-aware provenance
system for querying distributed systems for changes in state over
time. We have proven that the DTaP model satisfies four correct-
ness properties (validity, soundness, completeness, and minimal-
ity), and have developed a complete prototype implementation. Our
evaluation demonstrates the efficiency of provenance maintenance
and querying, and showcases various proactive/reactive

maintenance strategies with and without the use of checkpointing.
These techniques have different tradeoffs in storage, computation,
and bandwidth, which motivate our use of cost functions for decid-
ing which strategy to use based on collected system statistics.

Acknowledgments
This work is partially supported by NSF grants CCF-0820208,
CNS-0845552, CNS-1054229, CNS-1065130, CNS-1149832,
CNS-1204347, CNS-1223825 and IIS-0812270, and AFOSR MURI
grant FA9550-08-1-0352. This material is based upon work sup-
ported by the Defense Advanced Research Project Agency (DARPA)
and Space and Naval Warfare Systems Center Pacific under Con-
tract No. N66001-11-C-4020. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Defense
Advanced Research Project Agency and Space and Naval Warfare
Systems Center Pacific.

9. REFERENCES
[1] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of

data provenance. In Proc. ICDT, pages 316–330, 2001.
[2] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how,

and where. Foundations and Trends in Databases, 1(4):379–474, 2009.
[3] S. B. Davidson and J. Freire. Provenance and scientific workflows: challenges

and opportunities. In Proc. SIGMOD, pages 1345–1350, 2008.
[4] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating

internet routing instabilities. In Proc. SIGCOMM, pages 205–218, 2004.
[5] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update exchange with

mappings and provenance. In Proc. VLDB, pages 675–686, 2007.
[6] Hadoop. http://hadoop.apache.org/.
[7] R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with secure

provenance. ACM Trans. Storage, 5(4):1–43, 2009.
[8] R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and reduce

workflows. In Proc. CIDR, pages 273–283, 2011.
[9] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data provenance. In

Proc. SIGMOD, pages 951–962, 2010.
[10] S. T. King and P. M. Chen. Backtracking intrusions. ACM Trans. Comput. Syst.,

23(1):51–76, 2005.
[11] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo. Maintaining recursive

views of regions and connectivity in networks. IEEE Trans. on Knowl. and
Data Eng., 22:1126–1141, 2010.

[12] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking. Commun.
ACM, 52:87–95, 2009.

[13] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-aware storage systems. In Proc. USENIX ATC, pages 43–56, 2006.

[14] Network Simulator 3. http://www.nsnam.org/.
[15] H. Park, R. Ikeda, and J. Widom. Ramp: A system for capturing and tracing

provenance in mapreduce workflows. PVLDB, 4(12):1351–1354, 2011.
[16] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.
[17] C. Ré and D. Suciu. Approximate lineage for probabilistic databases. Proc.

VLDB Endowment, 1(1):797–808, 2008.
[18] R. Teixeira and J. Rexford. A measurement framework for pin-pointing routing

changes. In Proc. ACM SIGCOMM Network Troubleshooting Workshop, pages
313–318, 2004.

[19] J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In Proc. CIDR, pages 262–276, 2005.

[20] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kandula, and C. Kim.
Profiling network performance for multi-tier data center applications. In Proc.
NSDI, pages 57–70, 2011.

[21] W. Zhou. Secure time-aware provenance for distributed systems. University of
Pennsylvania Ph.D. dissertation, 2012. Available at
http://netdb.cis.upenn.edu/papers/zhou-thesis.pdf.

[22] W. Zhou, L. Ding, A. Haeberlen, Z. Ives, and B. T. Loo. TAP: Time-aware
provenance for distributed systems. In Proc. TaPP, pages 1–6, 2011.

[23] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
network provenance. In Proc. SOSP, pages 295–310, 2011.

[24] W. Zhou, Q. Fei, S. Sun, T. Tao, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr.
NetTrails: A declarative platform for provenance maintenance and querying in
distributed systems. In Proc. SIGMOD, pages 1323–1326, 2011.

[25] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and
maintenance of network provenance at Internet-scale. In Proc. SIGMOD, pages
615–626, 2010.

60

http://hadoop.apache.org/
http://www.nsnam.org/
http://netdb.cis.upenn.edu/rapidnet/
http://netdb.cis.upenn.edu/papers/zhou-thesis.pdf

	Introduction
	System Model
	Overview
	NDlog Execution Model
	Execution Traces
	Challenges and Requirements

	DTaP Model
	Definitions
	Provenance Model
	Derivations and System Snapshots
	Correctness

	Maintenance and Querying
	Representation of the Provenance Graph
	Maintaining Provenance with Delta Rules
	Proactive and Reactive Maintenance
	Query Execution
	Reconstructing Provenance on Demand

	Cost-based Optimizations
	Cost Model
	Applying the Cost Model
	Optimizations using the Cost Model

	Evaluation
	Maintenance Overhead and Query Latency
	Cost Model Validation on Actual Testbed

	Related Work
	Conclusion
	References

