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ABSTRACT
Uncertain data management has become crucial in many sensing and
scientific applications. As user-defined functions (UDFs) become
widely used in these applications, an important task is to capture
result uncertainty for queries that evaluate UDFs on uncertain data.
In this work, we provide a general framework for supporting UDFs
on uncertain data. Specifically, we propose a learning approach
based on Gaussian processes (GPs) to compute approximate output
distributions of a UDF when evaluated on uncertain input, with guar-
anteed error bounds. We also devise an online algorithm to compute
such output distributions, which employs a suite of optimizations
to improve accuracy and performance. Our evaluation using both
real-world and synthetic functions shows that our proposed GP ap-
proach can outperform the state-of-the-art sampling approach with
up to two orders of magnitude improvement for a variety of UDFs.

1. INTRODUCTION
Uncertain data management has become crucial in many appli-

cations including sensor networks [9], object tracking and monitor-
ing [22], severe weather monitoring [13], and digital sky surveys [2].
Data uncertainty arises due to a variety of reasons such as measure-
ment errors, incomplete observations, and using inference to recover
missing information [22]. When such data is processed via queries,
its uncertainty propagates to processed results. The ability to capture
the result uncertainty is important to the end user for interpreting the
derived information appropriately. For example, knowing only the
mean of a distribution for the result cannot distinguish between a
sure event and a highly uncertain event, which may result in wrong
decision making; knowing more about the distribution can help the
user avoid such misunderstanding and ill-informed actions.

Recent work on uncertain data management has studied inten-
sively relational query processing on uncertain data (e.g., [4, 7, 16,
19, 20, 23]). Our work, however, is motivated by the observation
that real-world applications, such as scientific computing and finan-
cial analysis, make intensive use of user-defined functions (UDFs)
that process and analyze the data using complex, domain-specific
algorithms. In practice, UDFs can be provided in any form of exter-
nal code, e.g., C programs, and hence are treated mainly as black
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boxes in traditional databases. These UDFs are often expensive to
compute due to the complexity of processing. Unfortunately, the
support for UDFs on uncertain data is largely lacking in today’s
data management systems. Consequently, in the tornado detection
application [13], detection errors cannot be distinguished from true
events due to the lack of associated confidence scores. In other
applications such as computational astrophysics [2], the burden of
characterizing UDF result uncertainty is imposed on the program-
mers: we observed that the programmers of the Sloan digital sky
surveys manually code algorithms to keep track of uncertainty in
a number of UDFs. These observations have motivated us to pro-
vide system support to automatically capture result uncertainty of
UDFs, hence freeing users from the burden of doing so and returning
valuable information for interpreting query results appropriately.

More concretely, let us consider two examples of UDFs in the
Sloan digital sky surveys (SDSS) [2]. In SDSS, nightly observations
of stars and galaxies are inherently noisy as the objects can be too
dim to be recognized in a single image. However, repeated obser-
vations allow the scientists to model the position, brightness, and
color of objects using continuous distributions, which are commonly
Gaussian distributions. Assume the processed data is represented
as (objID, posp, redshiftp, ...) where pos and redshift are un-
certain attributes. Then, queries can be issued to detect features or
properties of the objects. We consider some example UDFs from an
astrophysics package [1]. Query Q1 below computes the age of each
galaxy given its redshift using the UDF GalAge. Since redshift
is uncertain, the output GalAge(redshift) is also uncertain.
Q1: Select G.objID, GalAge(G.redshift)

From Galaxy G

A more complex example of using UDFs is shown in query
Q2, which computes the comoving volume of two galaxies whose
distance is in some specific range. This query invokes two UDFs
ComoveV ol and Distance on uncertain attributes redshift and
pos respectively, together with a selection predicate on the output
of the UDF Distance.
Q2: Select G1.objID, G2.objID, Distance(G1.pos, G2.pos)

ComoveVol(G1.redshift, G2.redshift, AREA)
From Galaxy AS G1, Galaxy AS G2
Where Distance(G1.pos, G2.pos) ∈ [l, u]

Problem Statement. In this work, we aim to provide a general
framework to support UDFs on uncertain data, where the func-
tions are given as black boxes. Specifically, given an input tu-
ple modeled by a vector of random variables X, which is char-
acterized by a joint distribution (either continuous or discrete),
and a univariate, black-box UDF f , our objective is to character-
ize the distribution of Y = f(X). In the example of Q2, after
the join between G1 and G2, each tuple carries a random vec-
tor, X = {G1.pos,G1.redshift,G2.pos,G2.redshift, . . .}, and
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two UDFs produce Y1 = Distance(G1.pos,G2.pos) and Y2 =
ComoveV ol(G1.redshift,G2.redshift, AREA).

Given the nature of our UDFs, exact derivation of result distri-
butions may not be feasible, and hence approximation techniques
will be explored. A related requirement is that the proposed solution
must be able to meet user-specified accuracy goals. In addition, the
proposed solution must be able to perform efficiently in an online
fashion, for example, to support online interactive analysis over a
large data set or data processing on real-time streams (e.g., to detect
tornados or anomalies in sky surveys).

Challenges. Supporting UDFs as stated above poses a number
of challenges: (1) UDFs are often computationally expensive. For
such UDFs, any processing that incurs repeated function evaluation
to compute the output will take a long time to complete. (2) When
an input tuple has uncertain values, computing a UDF on them will
produce a result with uncertainty, which is characterized by a distri-
bution. Computing the result distribution, even when the function is
known, is a non-trivial problem. Existing work in statistical machine
learning (surveyed in [5]) uses regression to estimate a function, but
mostly focuses on deterministic input. For uncertain input, existing
work [12] computes only the mean and variance of the result, instead
of the full distribution, and hence is of limited use if this distribution
is not Gaussian (which is often the case). Other work [15] computes
approximate result distributions without bounding approximation
errors, thus not addressing user accuracy requirements. (3) Further,
most of our target applications require using an online algorithm
to characterize result uncertainty of a UDF, where “online” means
that the algorithm does not need an offline training phase before
processing data. Relevant machine learning techniques such as [12,
15] belong to offline algorithms. In addition, a desirable online
algorithm should operate with high performance in order to support
online interactive analysis or data stream processing.

Contributions. In this paper, we present a complete framework
for handling user-defined functions on uncertain data. Specifically,
our main contributions include:

1. An approximate evaluation framework (§2): We propose a
carefully-crafted approximation framework for computing UDFs
on uncertain data, including approximation metrics and objectives.
These metrics, namely discrepancy and KS measures, are a natural
fit of range queries and intuitive to interpret. While many approx-
imation metrics exist in the statistics literature, our choices of the
metrics and objectives combined allow us to provide new theoretical
results regarding the error bounds of output distributions.

2. Computing output distributions with error bounds (§3 and
§4): We employ an approach of modeling black-box UDFs using a
machine learning technique called Gaussian processes (GPs). We
choose this technique due to its abilities to model functions and
quantify the approximation in such function modeling.

Given the GP model of a UDF and uncertain input, our contri-
bution lies in computing output distributions with error bounds. In
particular, we provide an algorithm that combines the GP model
of a UDF and Monte Carlo (MC) sampling to compute output dis-
tributions. We perform an in-depth analysis of the algorithm and
derive new theoretical results for quantifying the approximation of
the output, including bounding the errors of both approximation of
the UDF and sampling from input distributions. These error bounds
can be used to tune our model to meet accuracy requirements. To
the best of our knowledge, this work is the first to quantify output
distributions of Gaussian processes.

3. An optimized online algorithm (§5): We further propose an
online algorithm to compute approximate output distributions that
satisfy user accuracy requirements. Our algorithm employs a suite of
optimizations of the GP learning and inference modules to improve

performance and accuracy. Specifically, we propose local inference
to increase inference speed while maintaining high accuracy, online
tuning to refine function modeling and adapt to input data, and
an online retraining strategy to minimize the training overhead.
Existing work in machine learning [12, 15, 14, 17] does not provide
a sufficient solution to such high-performance online training and
inference while meeting user-specified accuracy requirements.

4. Evaluation (§6): We conduct a thorough evaluation of our
proposed techniques using both synthetic functions with controlled
properties, and real functions from the astrophysics domain. Results
show that our GP techniques can adapt to various function com-
plexities, data characteristics, and user accuracy goals. Compared
to MC sampling, our approach starts to outperform when function
evaluation takes more than 1ms for low-dimensional functions, e.g.,
up to 2 dimensions, or when function evaluation takes more than
100ms for high-dimensional ones, e.g., 10 dimensions. This result
applies to real-world expensive functions as we show using the real
UDFs from astrophysics. For the UDFs tested, the GP approach can
offer up to two orders of magnitude speedup over MC sampling.

2. AN APPROXIMATION FRAMEWORK
In this section, we first propose a general approximate evaluation

framework, and then present a baseline approach based on Monte
Carlo sampling to compute output distributions of UDFs.

2.1 Approximation Metrics and Objectives
Since UDFs are given as black boxes and have no explicit formula,

computing the output of the UDFs can be done only through function
evaluation. For uncertain input, computing the exact distribution
requires function evaluation at all possible input values, which is
impossible when the input is continuous. In this work, we seek
approximation algorithms to compute the output distribution given
uncertain input. We now present our approximation framework
including accuracy metrics and objectives.

We adopt two distance metrics between random variables from the
statistics literature [11]: the discrepancy and Kolmogorov–Smirnov
(KS) measures. We choose these metrics because they are a natural
fit of range queries, hence allowing easy interpretation of the output.
Definition 1 Discrepancy measure. The discrepancy measure, D,
between two random variables Y and Y ′ is defined as:
D(Y, Y ′) = supa,b:a≤b |Pr[Y ∈ [a, b]]− Pr[Y ′ ∈ [a, b]]|.

Definition 2 KS measure. The KS measure (or distance) between
two random variables Y and Y ′ is defined as:
KS(Y, Y ′) = supy |Pr[Y ≤ y]− Pr[Y ′ ≤ y]|.

The values of both measures are in [0, 1]. It is straightforward
to show that D(Y, Y ′) ≤ 2KS(Y, Y ′). Both measures can be
computed directly from the cumulative distribution functions (CDFs)
of Y and Y ′ to capture their maximum difference. The KS distance
considers all one-sided intervals, i.e., [−∞, c] or [c,∞], while the
discrepancy measure considers all two-sided intervals [a, b].

In practice, users may be interested only in intervals of length at
least λ, an application-specific error level that is tolerable for the
computed quantity. This suggests a relaxed variant of the discrep-
ancy measure, as follows.

Definition 3 λ-discrepancy. Given the minimum interval length λ,
the discrepancy measure Dλ between two random variables Y and
Y ′ is:
Dλ(Y, Y ′) = supa,b:b−a≥λ |Pr[Y ∈ [a, b]]− Pr[Y ′ ∈ [a, b]]|.

This measure can be interpreted as: for all intervals of length at least
λ, the probability of an interval under Y ′ does not differ from that
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under Y by more than Dλ. These distance metrics can be used to
indicate how well one random variable Y ′ approximates another
random variable Y . We next state the our approximation objec-
tive, (ε, δ)-approximation, using the discrepancy metric; similar
definitions hold for the λ-discrepancy and the KS metric.
Definition 4 (ε, δ)-approximation. Let Y and Y ′ be two ran-
dom variables. Then Y ′ is an (ε, δ)-approximation of Y iff with
probability (1− δ), D(Y, Y ′) ≤ ε.

For query Q1, (ε, δ)-approximation requires that with probability
(1− δ), the approximate distribution of GalAge(G.redshift)
does not differ from the true one more than ε in discrepancy. For
Q2, there is a selection predicate in the WHERE clause, which
truncates the distribution of Distance(G1.pos, G2.pos) to
the region [l, u], and hence yields a tuple existence probability (TEP).
Then, (ε, δ)-approximation requires that with probability (1−δ), (i)
the approximate distribution of Distance(G1.pos, G2.pos)
differs from the true distribution by at most ε in discrepancy measure,
and (ii) the result TEP differs from the true TEP by at most ε.

2.2 A Baseline Approach
We now present a simple, standard technique to compute the

query results based on Monte Carlo (MC) simulation. However, as
we will see, this approach may require evaluating the UDF many
times, which is inefficient for slow UDFs. This inefficiency is the
motivation for our new approach presented in Sections 3–5.
A. Computing the Output Distribution. In recent work [23], we
use Monte Carlo simulation to compute the output distribution of
aggregates on uncertain input. This technique can also be used
to compute any UDF Y = f(X). The idea is simple: draw the
samples from the input distribution, and perform function evaluation
to get the output samples. The algorithm is as follows.

Algorithm 1 Monte Carlo simulation
1: Draw m samples x1 . . .xm ∼ p(x).
2: Compute the output samples, y1 = f(x1), ..., ym = f(xm).
3: Return the empirical CDF of the output samples, namely Y ′,

Pr(Y ′ ≤ y) = 1
m

∑
i∈[1..m] 1[yi,∞)(y).

1(·) is the indicator function. It is shown in [23] that if m =
ln(2δ−1)/(2ε2), then the output Y ′ is an (ε, δ)-approximation of
Y in terms of KS measure, and (2ε, δ)-approximate in terms of
discrepancy measure. Thus, the number of samples required to
reach the accuracy requirement ε is proportional to 1/ε2, which is
large for small ε. For example, if we use the discrepancy measure
and set ε = 0.02, δ = 0.05, then m required is more than 18000.
B. Filtering with Selection Predicates. In many applications, users
are interested in the event that the output is in certain intervals. This
can be expressed with a selection predicate, e.g., f(X) ∈ [a, b], as
shown in query Q2. When the probability ρ = Pr[f(X) ∈ [a, b]]
is smaller than a user-specified threshold θ, this corresponds to an
event of little interest and can be discarded. For high performance,
we would like to quickly check whether ρ < θ for filtering, which
in turn saves the cost from computing the full distribution f(X).

While drawing the samples as in Algorithm 1, we derive a confi-
dence interval for ρ to decide whether to filter. By definition we have
ρ =

∫
1(a ≤ f(x) ≤ b)p(x)dx. Let h(x) = 1(a ≤ f(x) ≤ b)

and m̃ be the number of samples drawn so far (m̃ ≤ m). And let
{hi|i = 1 . . . m̃} be the samples evaluated on h(x). Then, hi are
iid, Bernoulli samples, and ρ can be estimated by ρ̃, computed from

the samples, ρ̃ =
∑m̃

i=1 hi

m̃
. The following result, which can be de-

rived from the Hoeffding’s inequality in statistics, gives a confidence
interval for ρ.

Remark 2.1 With probability (1 − δ), ρ ∈ [ρ̃ − ε̃, ρ̃ + ε̃], where

ε̃ =
√

1
2m̃

ln 2
1−δ .

If the user specifies a threshold θ to filter low-probability events,
and ρ̃+ ε̃ < θ, then we can drop this tuple from output.

3. EMULATING UDFS WITH GAUSSIAN
PROCESSES

In the next three sections, we present an approach that aims to
be more efficient than MC sampling by requiring many fewer calls
to the UDF. The main idea is that every time we call the UDF, we
gain information about the function. Once we have called the UDF
enough times, we ought to be able to approximate it by interpolating
between the known values to predict the UDF at unknown values.
We call this predictor an emulator f̂ , which can be used in place of
the original UDF f , and is much less expensive for many UDFs.

We briefly mention how to build the emulator using a statistical
learning approach. The idea is that, if we have a set of function
input-output pairs, we can use it as training data to estimate f . In
principle, we could build the emulator using any regression pro-
cedure from statistics or machine learning, but picking a simple
method like linear regression would work poorly on a UDF that did
not meet the strong assumptions of that method. Instead, we build
the emulator using a learning approach called Gaussian processes
(GPs). GPs have two key advantages. First, GPs are flexible methods
that can represent a wide range of functions and do not make strong
assumptions about the form of f . Second, GPs produce not only a
prediction f̂(x) for any point x but also a probabilistic confidence
that provides “error bars” on the prediction. This is vital because we
can use this to adapt the training data to meet the user-specified error
tolerance. Building an emulator using a GP is a standard technique
in the statistics literature; see [15] for an overview.

In this section, we provide background on the basic approach to
building emulators. In Section 4, we extend to uncertain inputs and
aim to quantify the uncertainty of outputs of UDFs. We then propose
an online algorithm to compute UDFs and various optimizations to
address accuracy and performance requirements in Section 5.

3.1 Intuition for GPs
We give a quick introduction to the use of GPs as emulators,

closely following the textbook [18]. A GP is a distribution over
functions; whenever we sample from a GP, we get an entire function
for f whose output is the real line. Fig. 1(a) illustrates this in one di-
mension. It shows three samples from a GP, where each is a function
R→ R. Specifically, if we pick any input x, then f(x) is a scalar
random variable. This lets us get confidence estimates, because once
we have a scalar random variable, we can get a confidence interval
in the standard way, e.g., mean ± 2*standard deviation. To use
this idea for regression, notice that since f is random, we can also
define conditional distributions over f , in particular, conditional
distribution of f given a set of training points. This new distribu-
tion over functions is called the posterior distribution, and it is this
distribution that lets us predict new values.

3.2 Definition of GPs
Just as the multivariate Gaussian is an analytically tractable distri-

bution over vectors, the Gaussian process is an analytically tractable
distribution over functions. Just as a multivariate Gaussian is de-
fined by a mean and covariance matrix, a GP is defined by a mean
function and a covariance function. The mean function m(x) gives
the average value E[f(x)] for all inputs x, where the expectation is
taken over the random function f . The covariance function k(x,x′)
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Figure 1: Example of GP regression. (a) prior functions, (b) posterior
functions conditioning on training data

returns the covariance between the function values at two input
points, i.e., k(x, x′) = Cov(f(x), f(x′)).

A GP is a distribution over functions with a special property:
if we fix any vector of inputs (x1, . . . ,xn), the output vector f =
(f(x1), f(x2), . . . , f(xn)) has a multivariate Gaussian distribution.
Specifically, f ∼ N (m,K), where m is the vector (m(x1) . . .m(xn))
containing the mean function evaluated at all the inputs and K is a
matrix of covariances Kij = k(xi,xj) between all the input pairs.

The covariance function has a vital role. Recall that the idea
was to approximate f by interpolating between its values at nearby
points. The covariance function helps determine which points are
“nearby”. If two points are far away, then their function values should
be only weakly related, i.e., their covariance should be near 0. On
the other hand, if two points are nearby, then their covariance should
be large in magnitude. We accomplish this by using a covariance
function that depends on the distance between the input points.

In this work, we use standard choices for the mean and covariance
functions. We choose the mean function m(x) = 0, which is a
standard choice when we have no prior information about the UDF.
For the covariance function, we use the squared exponential one,
which in its simplest form is k(x,x′) = σ2

fe
− 1

2l2
‖x−x′‖2 , where

‖·‖ is Euclidean distance, and σ2
f and l are its parameters. The signal

variance σ2
f primarily determines the variance of the function value

at individual points, i.e., x = x′. More important is the lengthscale
l, which determines how rapidly the covariance decays as x and x′

move farther apart. If l is small, the covariance decays rapidly, so
sample functions from the result GP will have many small bumps;
if l is large, then these functions will tend to be smoother.

The key assumption made by GP modeling is that at any point
x, the function value f(x) can be accurately predicted using the
function values at nearby points. GPs are flexible to model different
types of functions by using an appropriate covariance function [18].
For instance, for smooth functions, squared-exponential covariance
functions work well; for less smooth functions, Matern covariance
functions work well (where smoothness is defined by “mean-squared
differentiability”). In this paper, we focus on the common squared-
exponential functions, which are shown experimentally to work well
for the UDFs in our applications (see §6.4). In general, the user
can choose a suitable covariance function based on the well-defined
properties of UDFs, and plug it into our framework.

3.3 Inference for New Input Points
We next describe how to use a GP to predict the function outputs

at new inputs. Denote the training data byX∗ = {x∗i |i = 1, . . . , n}
for the inputs and f∗ = {f∗i |i = 1, . . . , n} for the function values.
In this section, we assume that we are told a fixed set ofm test inputs
X = (x1, x2, ..., xm) at which we wish to predict the function
values. Denote the unknown function values at the test points by
f = (f1, f2, ..., fm). The vector (f∗, f) is a random vector because
each fi:i=1...m is random, and by the definition of a GP, this vector
simply has a multivariate Gaussian distribution. This distribution is:

[
f∗

f

]
∼ N

(
0,
[
K(X∗, X∗) K(X∗, X)
K(X,X∗) K(X,X)

])
, (1)

where we have written the covariances as matrix with four blocks.
The blockK(X∗, X) is an n×mmatrix of the covariances between
all training and test points, i.e., K(X∗, X)ij = k(x∗i ,xj). Similar
notions are for K(X∗, X∗), K(X,X), and K(X,X∗).

Now that we have a joint distribution, we can predict the unknown
test outputs f by computing the conditional distribution of f given
the training data and test inputs. Applying the standard formula for
the conditional of a multivariate Gaussian yields:

f |X,X∗, f∗ ∼ N (m,Σ),where (2)

m = K(X,X∗)K(X∗, X∗)−1f∗

Σ = K(X,X)−K(X,X∗)K(X∗, X∗)−1K(X∗, X)

To interpret m intuitively, imagine that m = 1, i.e., we wish to
predict only one output. Then K(X,X∗)K(X∗, X∗)−1 is an n-
dimensional vector, and the mean m(x) is the dot product of this
vector with the training values f∗. So m(x) is simply a weighted
average of the function values at the training points. A similar
intuition holds when there is more than one test point, m > 1. Fig.
1(b) illustrates the resulting GP after conditioning on training data.
As observed, the posterior functions pass through the training points
marked by the black dots. The sampled functions also show that the
further a point is from the training points, the larger the variance is.

We now consider the complexity of this inference step. Note that
once the training data is collected, the inverse covariance matrix
K(X∗, X∗)−1 can be computed once, with a cost of O(n3). Then
given a test point x (or X has size 1), inference involves computing
K(X,X∗) and multiplying matrices, which has a cost of O(n2).
The space complexity is also O(n2), for storing these matrices.

3.4 Learning the Hyperparameters
Typically, the covariance functions have some free parameters,

called hyperparameters, such as the lengthscale l of the squared-
exponential function. The hyperparameters determine how quickly
the confidence estimates expand as test points move further from the
training data. For example, in Fig. 1(b), if the lengthscale decreases,
the spread of the function will increase, meaning that there is less
confidence in the predictions.

We can learn the hyperparameters using the training data (see
Chapter 5, [18]). We adopt maximum likelihood estimation (MLE),
a standard technique for this problem. Let θ be the vector of hyperpa-
rameters. The log likelihood function isL(θ) := log p(f∗|X∗,θ) =
logN (X∗;m,Σ); here we useN to refer to the density of the Gaus-
sian distribution, and m and Σ are defined in Eq. (2). MLE solves
for the value of θ that maximizes L(θ). We use gradient descent,
a standard method for this task. Its complexity is O(n3) due to
the cost of inverting the matrix K(X∗, X∗)−1. Gradient descent
requires many steps to compute the optimal θ; thus, retraining often
has a high cost for large numbers of training points. Note that when
the training data X∗ changes, θ that maximizes the log likelihood
L(θ) may also change. Thus, one would need to maximize the log
likelihood to update the hyperparameters. In §5.3, we will discuss
retraining strategies that aim to reduce this computation cost.

4. UNCERTAINTY IN QUERY RESULTS
So far in our discussions of GPs, we have assumed that all the

input values are known in advance. However, our work aims to
compute UDFs on uncertain input. In this section, we describe how
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f , f̂ , f̃ true function, mean function of the GP, and a sam-
ple function of the GP, respectively.

fL, fS upper and lower envelope functions of f̃ (with high
probability)

Y , Ŷ , Ỹ output corresponding to f , f̂ , f̃ , respectively.
YL, YS output corresponding to fL, fS , respectively.
Ŷ ′ estimate of Ŷ using MC sampling. (Similarly for

Y ′L and Y ′S)
ρ̃, ρ̂ probability of Ỹ and Ŷ , in a given interval [a, b].
ρU , ρL upper and lower bounds of ρ (with high prob.).
ρ̃′, ρ̂′, ρ′U , ρ′L MC estimates of ρ̃, ρ̂, ρU and ρL respectively.
n number of training points.
m number of MC samples.

Table 1: The main notation used in GP techniques.
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Ŷ

YGP

YS

YL

Uncertain X

Y'L

Y'S

Y'

MC Sampling

f(x)  (Y)   
f(x)+zασ(x)  (YL)

f(x)-zασ(x)  
(YS)

YL

y

X y

Pr
(Y≤y)

Y

(c)

YS

a bx
(b)

^

^ ^

^
^

(a)

~
Y'GP

Figure 2: GP inference for uncertain input. (a) Computation steps (b)
Approximate function with bounding envelope (c) Computing probabil-
ity for interval [a, b] from CDFs

to compute output distributions using a GP emulator given uncertain
input. We then derive theoretical results to bound the errors of the
output using our accuracy metrics.

4.1 Computing the Output Distribution
We first describe how to approximate the UDF output Y = f(X)

given uncertain input X. When we approximate f by the GP em-
ulator f̂ , we have a new approximate output Ŷ = f̂(X), having
CDF, Pr[Ŷ ≤ y] =

∫
1(f̂(x) ≤ y)p(x)dx. This integral cannot

be computed analytically. Instead, a simple, offline algorithm is to
use Monte Carlo integration by repeatedly sampling input values
from p(x). This is very similar to Algorithm 1, except that we call
the emulator f̂ rather than the UDF f , which is a cheaper operation
for long-running UDFs. The algorithm is detailed as below.

Algorithm 2 Offline algorithm using Gaussian processes
1: Collect n training data points, {(x∗i , y∗i ), i = 1..n} by evaluat-

ing y∗i = f(x∗)
2: Learning a GP via training using the n training data points, to

get GP ∼ (f̂(·), k(·, ·)).
3: For uncertain input, X ∼ p(x):
4: Draw m samples, x1, ...,xm, from the distribution p(x).
5: Predict function values at the samples via GP inference to get
{(f̂(xi), σ

2(xi)), i = 1..m}
6: Construct the empirical CDF of Ŷ from the samples, namely
Ŷ ′, Pr(Ŷ ′ ≤ y) = 1

m

∑
i∈[1..m] 1[f̂i,∞)(y), and return Ŷ ′.

In addition to returning the CDF of Ŷ ′, we also want to return
a confidence of how close Ŷ ′ is to the true answer Y . Ideally, we
would do this by returning the discrepancy metric, D(Ŷ ′, Y ). But
it is difficult to evaluate D(Ŷ ′, Y ) without many calls to the UDF

f , which would defeat the purpose of using emulators. So instead
we ask a different question, which is feasible to analyze. The GP
defines a posterior distribution over functions, and we are using the
posterior mean as the best emulator. The question we ask is how
different would the query output be if we emulated the UDF using a
random function from the GP, rather than the posterior mean? If
this difference is small, this means the GP’s posterior distribution
is very concentrated. In other words, the uncertainty in the GP
modeling is small, and we do not need more training data.

To make this precise, let f̃ be a sample from the GP posterior
distribution over functions, and define Ỹ = f̃(X) (see Fig. 2a for
an illustration for these variables). That is, Ỹ represents the query
ouput if we select the emulator randomly from the GP posterior
distribution. The confidence estimate that we will return will be an
upper bound on D(Ŷ ′, Ỹ ).

4.2 Error Bounds Using Discrepancy Measure
We now derive a bound on the discrepancy D(Ŷ ′, Ỹ ). An impor-

tant point to note is that there are two sources of error here. The first
is the error due to Monte Carlo sampling of the input and the second
is the error due to the GP modeling. In the analysis that follows, we
bound each source of error individually and then combine them to
get a single error bound. To the best of our knowledge, this is the
first work to quantify the output distributions of GPs.

The main idea is that we will compute a high probability envelope
over the GP prediction. That is, we will find two functions fL and
fS such that fS ≤ f̃ ≤ fL with probability at least (1− α), for a
given α. Once we have this envelope on f̃ , then we also have a high
probability envelope of Ỹ , and can use this to bound the discrepancy.
Fig. 2 (parts b & c) gives an illustration of this intuition.
Bounding Error for One Interval. To start, assume that we have
already computed a high probability envelope. Since the discrepancy
involves a supremum over intervals, we start by presenting upper
and lower bounds on ρ̃ := Pr[Ỹ ∈ [a, b] | f̃ ] for a single fixed
interval [a, b]. Now, ρ̃ is random because f̃ is; for every different
function f̃ we get from the GP posterior, we get a different ρ̃.

For any envelope (fS , fL), e.g., having the form f̂(x)±zσ(x) as
shown in Fig. 2, define YS = fS(X) and YL = fL(X). We bound
ρ̃ (with high probability) using YS and YL. For any two functions
g and h, and any random vector X, it is always true that g ≤ h
implies that Pr[g(X) ≤ a] ≥ Pr[h(X) ≤ a] for all a. Putting this
together with fS ≤ f̃ ≤ fL, we have that

ρ̃ = Pr[f̃(X) ≤ b]− Pr[f̃(X) ≤ a] ≤ Pr[fS(X) ≤ b]− Pr[fL(X) ≤ a]

In other words, this gives the upper bound:

ρ̃ ≤ ρU := Pr[YS ≤ b]− Pr[YL ≤ a] (3)

Similarly, we can derive the lower bound:

ρ̃ ≥ ρL := max(0,Pr[YL ≤ b]− Pr[YS ≤ a]) (4)

This is summarized in the following result.

Proposition 4.1 Suppose that fS and fL are two functions such
that fS ≤ f̃ ≤ fL with probability (1 − α). Then ρL ≤ ρ̃ ≤ ρU ,
with probability (1− α), where ρU and ρL are as in Eqs. 3 and 4.

Bounding λ-discrepancy. Now that we have the error bound for
one individual interval, we use this to bound the λ-discrepancy
Dλ(Ỹ , Ŷ ). Using the bounds of ρ̃, we can write this discrepancy as

Dλ(Ỹ , Ŷ ) = sup
[a,b]

|ρ̃− ρ̂| ≤ sup
[a,b]

max{|ρL − ρ̂|, |ρU − ρ̂|},

where the inequality applies the result from Proposition 4.1. This is
progress, but we cannot compute ρL, ρU , or ρ̂ exactly because they
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Algorithm 3 Compute λ-discrepancy error bound

1: Construct the empirical CDFs, Ŷ ′, Y ′S and Y ′L, from the output
samples. Let V be the set of values of these variables.

2: Precompute maxb≥b0(Pr[Ŷ ′ ≤ b] − Pr[Y ′L ≤ b]) and
maxb≥b0(Pr[Y ′S ≤ b]− Pr[Ŷ ′ ≤ b]) ∀b0 ∈ V .

3: Consider values for a, s.t. [a, a+ λ] lies in the support of Ŷ ′.
a is in V , enumerated from small to large.

4: For a given a:
(a) Get Pr[Ŷ ′ ≤ a], Pr[Y ′S ≤ a], and Pr[Y ′L ≤ a].
(b) Get maxb≥a+λ(Pr[Y ′S ≤ b]− Pr[Ŷ ′ ≤ b]).
Find smallest b1 s.t. Pr[Y ′L ≤ b1] ≤ Pr[Y ′S ≤ a], and then get
maxb≥b1(Pr[Ŷ ′ ≤ b] − Pr[Y ′L ≤ b]). This is done by using
the precomputed values in Step 2.
(c) Compute max(ρ′U − ρ̂′, ρ̂′ − ρ′L) from the quantities in (a)
and (b). This is the error bound for intervals starting with a.

5: Increase a, repeat step 4, and update the maximum error.
6: Return the maximum error for all a, which is εGP .

require integrating over the input X. So we will use Monte Carlo
integration once again. We compute Y ′L and Y ′S , as MC estimates
of YL and YS respectively, from the samples in Algorithm 2. We
also define (but do not compute) Ỹ ′, the random variable resulting
from MC approximation of Ỹ with the same samples. An identical
argument to that of Proposition 4.1 shows that

Dλ(Ỹ ′, Ŷ ′) = sup
[a,b]
|ρ̃′ − ρ̂′| ≤ sup

[a,b]
max{|ρ′L − ρ̂

′|, |ρ′U − ρ̂
′|} := εGP ,

where adding a prime means to use Monte Carlo estimates.
Now we present an algorithm to compute εGP . The easiest way

would be to simply enumerate all possible intervals. Because Ŷ ′,
Y ′S , and Y ′L are empirical CDFs over m samples, there are O(m2)
possible values for ρ′U , ρ′L, and ρ̂′. This can be inefficient for large
numbers of samples m, as we observed empirically.

Instead, we present a more efficient algorithm to compute this
error bound, as shown in Algorithm 3. The main idea is to (i) pre-
compute the maximum differences between the mean function and
each envelope function considering decreasing values of b (Step 2),
then (ii) enumerate the values of a increasingly and use the pre-
computed values to bound ρ̃′ for intervals starting with a (Steps 3-5).
This involves taking a pass through the m points in the empirical
CDF of Ŷ ′. Then for a given value of a, use binary search to find
the smallest b1 s.t. Pr[Y ′L ≤ b1] ≤ Pr[Y ′S ≤ a]. The complexity of
this algorithm is O(m logm). More details are available in [24].
Combining Effects of Two Sources of Error. What we return to
the users is the distribution of Ŷ ′, from which ρ̂′ can be computed
for any interval. As noted, there are two sources of error in ρ̂′: the
GP modeling error and the MC sampling error. The latter arises from
having Ŷ ′, Y ′L, and Y ′S to approximate Ŷ , YL, and YS respectively.
The GP error is from using the mean function to estimate ρ̃. We can
combine these into a single error bound on the discrepancy:

Dλ(Ŷ ′, Ỹ ) ≤ Dλ(Ŷ ′, Ỹ ′) +Dλ(Ỹ ′, Ỹ ).

This follows from the triangle inequality that Dλ satisfies because
it is a metric. Above we just showed that Dλ(Ŷ ′, Ỹ ′) ≤ εGP .
Furthermore, Dλ(Ỹ ′, Ỹ ) is just the error due to a standard Monte
Carlo approximation, which, as discussed in §2, can be bounded
with high probability by, say, εMC , depending on the number of
samples. Also, the two sources of error are independent. This yields
the main error bound of this paper, which we state as follows.

Theorem 4.1 If MC sampling is (εMC , δMC)-approximate and GP
prediction is (εGP , δGP )-approximate, then the output has an error
bound of (εMC + εGP ) with probability (1− δMC)(1− δGP ).

Computing Simultaneous Confidence Bands. Now we describe
how to choose a high probability envelope, i.e., a pair (fS , fL) that
contains f̃ with probability 1− α. We will use a band of the form
fS = f̂(x)− zασ(x) and fL = f̂(x) + zασ(x). The problem is
to choose zα. An intuitive choice would be to choose zα based on
the quantiles of the univariate Gaussian, e.g., choose zα = 2 for a
95% confidence band. This would give us a point-wise confidence
band, i.e., at any point x, we would have fS(x) ≤ f̃(x) ≤ fL(x).
But we need something stronger. Rather, we want (fS , fL) such
that the probability that fS(x) ≤ f̃(x) ≤ fL(x) at all inputs x
simultaneously is at least 1− α. An envelope with this property is
called a simultaneous confidence band.

We will still use a band of the form f̂(x) ± zασ(x), but we
will need to choose a zα large enough to get a simultaneous con-
fidence band. Say we set zα to some value z. The confidence
band is satisfied if Z(x) := | f̃(x)−f̂(x)

σ(x)
| ≤ z for any x. Therefore,

if the probability of supx∈X Z(x) ≥ z is small, the confidence
band is unlikely to be violated. We adopt an approximation of this
probability due to [3], i.e.,

Pr[sup
x∈X

Z(x) ≥ z] ≈ E[ϕ(Az(X)], (5)

where the set Az(X) := {x ∈ X : Z(x) ≥ z} is the set of
all inputs where the confidence band is violated, and ϕ(A) is the
Euler characteristic of the set A. Also, [3] provides a numerical
method to approximate Eq. (5) that works well for small α, i.e., high
probability that the confidence band is correct, which is precisely the
case of interest. The details are somewhat technical, and are omitted
for space; see [3, 24]. Overall, the main computational expense is
that the approximation requires computing second derivatives of
the covariance function, but we have still found it to be feasible
in practice. Once we computed the approximation to Eq. (5), we
compute the confidence band by setting zα to be the solution of the
equation Pr[supx∈X Z(x) ≥ zα] ≈ E[ϕ(Az(X)] = α.

4.3 Error Bounds for KS Measure
The above analysis can be applied if the KS distance is used as

the accuracy metric in a similar way. The main result is as follows.

Proposition 4.2 Consider the mean function f̂(x) and the envelope
f̂(x) ± zσ(x). Let f̃(x) be a function in the envelope. Given
uncertain input X, let Ŷ = f̂(X) and Ỹ = f̃(X). ThenKS(Ỹ , Ŷ )

is largest when f̃(x) is at either the boundary of the envelope.

Proof sketch. Recall that KS(Ỹ , Ŷ ) = supy |Pr[Ỹ ≤ y] −
Pr[Ŷ ≤ y]. Let ym correspond to the supremum in the for-
mula of KS. Wlog, let KS =

∫
(1[f̂(x) ≤ ym] − 1[f̃(x) ≤

ym])p(x)dx > 0. That is, for some x, f̂(x) ≤ ym < f̃(x). Now
suppose there exists some x′ s.t. f̃(x′) < f̂(x′), the KS distance
would increase if f̂(x′) ≤ f̃(x′). This means, KS becomes larger
when f̃(x) ≥ f̂(x) for all x; or, f̃(x) lies above f̂(x) for all x.
Also, it is intuitive to see that among the functions that lie above
f̂(x), f̂(x) + zσ(x) yields the largest KS error, since it maximizes
1[f̂(x) ≤ y] − 1[f̃(x) ≤ y], ∀y . (Similarly, we can show that
if KS =

∫
(1[f̃(x) ≤ ym] − 1[f̂(x) ≤ ym])p(x)dx > 0, KS is

maximized if f̃(x) lies below f̂(x) for all x.)
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Figure 3: Choosing a subset of training points for local inference

As a result, let YS and YL be the output computed using the upper
and lower boundaries f̂(x) ± zσ(x) respectively. Then, the KS
error bound is max(KS(Ŷ , YS),KS(Ŷ , YL))

We can obtain the empirical variables Ŷ ′, Y ′S , and Y ′L via Monte
Carlo sampling as before. We also analyze the combining effects
of the two sources of error, MC sampling and GP modeling, as for
the discrepancy measure. We obtain a similar result: the total error
bound is the sum of the two error bounds, εMC and εGP . The proof
is omitted due to space constraints but available in [24].

5. AN OPTIMIZED ONLINE ALGORITHM
In Section 4.1, we present a basic algorithm (Algorithm 2) to

compute output distributions when Gaussian processes model our
UDFs. However, this algorithm does not satisfy our design con-
straints as follows. This is an offline algorithm since the training
data is fixed and learning is performed before inference. Given an
accuracy requirement, it is hard to know the number of training
points, n, needed beforehand. If we use larger n, the accuracy is
higher, but the performance suffers due to both the training cost
O(n3) and the inference cost O(n2). We now seek an online al-
gorithm that is robust to UDFs and input distributions in meeting
accuracy requirements. We further optimize it for high performance.

5.1 Local Inference
We first propose a technique to reduce the cost of inference while

maintaining good accuracy. The key observation is that the co-
variance between two points xi and xj is small when the distance
between them is large. For example, the squared-exponential co-
variance function decreases exponentially in the squared distance,

k(xi,xj) = σ2
f exp{− ||xi−xj ||2

l2
}. Therefore, the far training

points have only small weights in the weighted average, and hence
can be omitted. This suggests a technique that we call local infer-
ence with the steps shown in Algorithm 4. (We refer to the standard
inference technique as global inference.)

Algorithm 4 Local inference
Input: Input distribution p(x). Training data: {(x∗i , y∗i ), i =
1 . . . n}, stored in an R-tree.
1: Draw m samples from the input distribution p(x) and construct

a bounding box for the samples.
2: Retrieve a set of training points, called X∗L, that have distance

to the bounding box less than a maximum distance specified by
the local inference threshold Γ (discussed more below).

3: Run inference using X∗L to get the function values at the sam-
ples. Return the CDF constructed from the inferred values.

Fig. 3 illustrates the execution of local inference to select a subset
of training point given the input distribution. The darker rectangle
is the bounding box of the input samples, and the lighter rectangle
includes the training points selected for local inference.

Choosing the training points for local inference given a thresh-
old. The threshold Γ is chosen so that the approximation error in

f̂(xj), for all samples xj , is small. That is, f̂(xj) when computed
using either global or local inference does not differ much. Revisit
global inference as in Eq. 2. The vectorK(X∗, X∗)−1y∗, called α,
can be updated once the training data changes, and stored for later in-
ference. Then, computing f̂(xj) = K(xj , X∗)K(X∗, X∗)−1y∗ =
K(xj , X∗)α involves a vector dot product. Note that the cost of
computing this mean is O(n); the high cost of inference O(n2) is
due to computing the variance σ2(xj) (see §3.3 for more detail).

If we use a subset of training points, we approximate f̂(xj) with
f̂L(xj) = K(xj , X∗L)αL. (αL is the same as α except that the
entries in α that do not correspond to a selected training point are
set to 0). Then the approximate error γj , for the sample j, is:

γj ≈ K(xj , X
∗)α−K(xj , X

∗
L)αL

= K(xj , X
∗
L̄)αL̄ =

∑
l∈L̄

k(xj ,x
∗
l )αl,

whereX∗L̄ are the training points excluded from local inference. Ulti-
mately, we want to compute γ = maxj |γj |, which is the maximum
error over all the samples. The cost of computing γ by considering
every j is O(mn), as j = 1...m, which is high for large m.

We next present a more efficient way to compute an upper bound
for γ. We use a bounding box for all the samples xj as constructed
during local inference. For any training point with index l, x∗l , let
xnear be the closest point from the bounding box to x∗l and xfar
be the furthest point from the bounding box to x∗l (see Fig. 3 for an
example of these points). For any sample j we have:

k(xfar,x
∗
l ) ≤ k(xj ,x

∗
l ) ≤ k(xnear,x

∗
l )

Next, by multiplying withαl, we have the upper and lower bounds
for k(xj ,x

∗
l )αl. With these inequalities, we can obtain an upper

bound γupper and lower bound γlower for γj , ∀j. Then,

γ = max
j
|γj | ≤ max(|γupper|, |γlower|)

Computing this takes time proportional to the number of excluded
training points, which is O(n). For each of these points, we need
to consider the sample bounding box, which incurs a constant cost
when the dimension of the function is fixed. After computing γ,
we compare it with the threshold Γ. If γ > Γ, we expand the
bounding box for selected training points and recompute γ until we
have γ ≤ Γ. Note that Γ should be set to be small compared with
the domain of Y , i.e., the error incurred for every test point is small.
In §6, we show how to set Γ to obtain good performance.

We mention an implementation detail to make the bound γ tighter,
which can result in fewer selected training points for improved
performance. We divide the sample bounding box into smaller
non-overlapping boxes as shown in Fig. 3. Then for each box, we
compute its γ, and then return the maximum of all these boxes.

Complexity for local inference. Let l be the number of selected
training points; the cost of inference isO(l3 +ml2 +n). O(l3) is to
compute the inverse matrix K(X∗L, X

∗
L)−1 needed in the formula

of variance; O(ml2) is to compute the output variance; and O(n)
is to compute γ while choosing the local training points. Among
the costs, O(ml2) is usually dominant (esp. for high accuracy
requirement). This is an improvement compared to global inference,
which has a cost of O(mn2), because l is usually smaller than n.

5.2 Online Tuning
Our objective is to seek an online algorithm for GPs: we start with

no training points and collect them over time so that the function
model gets more accurate. We can examine each input distribution
on-the-fly to see whether more training points are needed given
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an accuracy requirement. This contrasts with the offline approach
where the training data must be obtained before inference.

To develop an online algorithm, we need to make two decisions.
The first decision is how many training points to add. This is a task
related to the error bounds from §4, that is, we add training points
until the upper bound on the error is less than the user’s tolerance
level. The second decision is where the training points should be,
specifically, what input location xn+1 to use for the next training
point. A standard method is to add new training points where
the function evaluation is highly uncertain, i.e., σ2(x) is large. We
adopt a simple heuristic for this: we cache the Monte Carlo samples
throughout the algorithm, and when we need more training points,
we choose the sample xj that has the largest predicted variance
σ2(xj), compute its true function value f(xj), and add it to the
training data set. After that, we run inference, compute the error
bound again, and repeat until the error bound is small enough. We
have experimentally observed that this simple heuristic works well.

A complication is that when we add a new training point, the
inverse covariance matrix gets bigger K(X∗, X∗)−1, so it needs to
be recomputed. Recomputing it from scratch would be expensive,
i.e., O(n3). Fortunately, we can update it incrementally using the
standard formula for inverting a block matrix (see [24] for details).

5.3 Online Retraining
In our work, the training data is obtained on the fly. Since dif-

ferent inputs correspond to different regions of the function, we
may need to tune the GP model to best fit the up-to-date training
data, i.e., to retrain. A key question is when we should perform
retraining (as mentioned in §3.4). It is preferable that retraining
is done infrequently due to its high cost of O(n3) in the number
of training points and multiple iterations required. The problem of
retraining is less commonly addressed in existing work for GPs.

Since retraining involves maximizing the likelihood function
L(θ), we will make this decision by examining the likelihood func-
tion. Recall also that the numerical optimizer, e.g., gradient descent,
requires multiple iterations to find the optimum. A simple heuristic
is to run training only if the optimizer is able to make a big step
during its very first iteration. Given the current hyperparameters θ,
run the optimizer for one step to get a new setting θ′, and continue
with training only if ||θ′ − θ|| is larger than a pre-set threshold ∆θ .

In practice, we have found that gradient descent does not work
well with this heuristic, because it does not move far enough during
each iteration. Instead, we use a more sophisticated heuristic based
on a numerical optimizer, called Newton’s method, which uses both
the first and the second derivatives ofL(θ). Mathematical derivation
shows that second derivatives of L(θ) are:

L′′(θj) =
1

2
tr[(

∂K−1

∂θj
y∗y∗TK−1+K−1y∗y∗T

∂K−1

∂θj
−
∂K−1

∂θj
)
∂K

∂θj

+ (K−1y∗y∗TK−1 −K−1)
∂2K

∂θ2
j

],

where tr[·] is the trace of a matrix. ∂K/∂θj and ∂2K/∂θ2
j can be

updated incrementally. (The details are shown in [24].)

5.4 A Complete Online Algorithm
We now put together all of the above techniques to form a com-

plete online algorithm to compute UDFs on uncertain data using
GPs. The main idea is, starting with no training data, given an input
distribution, we use online tuning in §5.2 to obtain more training
data, and run inference to compute the output distribution. Local
inference in §5.1 is used for improved performance. When some
training points are added, we use our retraining strategy to decide
whether to relearn the GP model by updating its hyperparameters.

Algorithm 5 OLGAPRO: Compute output distribution using Gaus-
sian process with optimizations
Input: Input tuple X ∼ p(x). Training data: T = {(x∗i , y∗i ), i =
1..n}; hyperparameters of the GP: θ. Accuracy requirement for the
discrepancy measure: (ε, δ).
1: Draw m samples for X, {xj , j = 1..m}, where m depends on

the sampling error bound εMC < ε.
2: Compute the bounding box for these samples. Retrieve a subset

of training points for local inference given the threshold Γ (see
§5.1). Denote this set of training point TΓ.

3: repeat
4: Run local inference using TΓ to get the output samples

{(f̂(xj), σ
2(xj)), j = 1..m}.

5: Compute the discrepancy error bound Dupper using these
samples (see §4.2).

6: If Dupper > εGP , add a new training point at the sample
with largest variance, i.e., (x∗n+1, f(x∗n+1)) (see §5.2), and
insert this point into the training data index. Set n := n+ 1.

7: until Dupper ≤ εGP
8: if one or more training points are added then
9: Compute the log likelihood L(θ) = log p(y∗|X∗,θ) and its

first and second derivatives, and estimate δθ (see §5.3).
10: if δθ ≤ ∆θ then
11: Retrain to get the new hyperparameters θ′. Set θ := θ′.
12: Rerun inference.
13: end if
14: end if
15: Return the distribution of Y , computed from samples {f̂(xj)}.

Our algorithm, which we name OLGAPRO, standing for ONline
GAussian PROcess, is shown as Algorithm 5. The objective is to
compute the output distribution that meets the user-specified accu-
racy requirement under the assumption of GP modeling. The main
steps of the algorithm involve: (a) Compute the output distribution
by sampling the input and inferring with the Gaussian process (Steps
1-4). (b) Compute the error bound (Steps 5-7). If this error bound
is larger than the allocated error bound, use online tuning to add a
new training point. Repeat this until the error bound is acceptable.
(c) If one or more training points have been added, decide whether
retraining is needed and if so perform retraining (Steps 8-12).

Parameter setting. We further consider the parameters used
in the algorithm. The choice of Γ for local inference in step 2 is
discussed in §5.1). The allocation of two sources of error, εMC

and εGP is according to Theorem 4.1, ε = εMC + εGP . Then
our algorithm automatically chooses the number of samples m to
meet the accuracy requirement εMC (see §2 for the formula). For
retraining, setting the threshold ∆θ , mentioned in §5.3, smaller will
trigger retraining more often but potentially make the model more
accurate, while setting it high can give inaccurate results. In §6, we
experimentally show how to set these parameters efficiently.

Complexity. The complexity of local inference is O(l3 +ml2 +
n) as shown in §5.1. Computing the error bound takes O(m logm)
(see §4.2). And, retraining takes O(n3). The number of samples
m is O(1/ε2MC), while the number of training points n depends on
εGP and the UDF itself. The unit cost is basic math operations, in
contrast to complex function evaluations as in standard MC simula-
tion. This is because when the system converges, we seldomly need
to add more training points, or to call function evaluation. Also,
at convergence, the high cost of retraining can be avoided; the
computation needed is for inference and computing error bounds.
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Hybrid solution. We now consider a hybrid solution that com-
bines our two approaches: direct MC sampling, and GP modeling
and inference. The need for a hybrid solution arises since functions
can vary in their complexity and evaluation time. Therefore, when
given a black-box UDF, we explore these properties on the fly and
choose the better solution. We can measure the function evaluation
time while obtaining training data. We then run GPs to convergence,
measure its inference time, and then compare the running times of
the two approaches. Due to space constraints, the details of this
solution are deferred to [24]. In §6, we conduct experiments to
determine the cases where each approach can be applied.

5.5 Online Filtering
In the presence of a selection predicate on the UDF output, similar

to the filtering technique for Monte Carlo simulation (§2), we also
consider online filtering when sampling with a Gaussian process.
Again, we consider selection with the predicate a ≤ f(x) ≤ b. Let
(f̂(x), σ2(x)) be the estimate at any input point x. With the GP
approximation, the tuple existence probability ρ̃ is approximated
with ρ̂ = Pr[f̂(x) ∈ [a, b]]. This is exactly the quantity that we
bounded in §4.2, where we showed that ρ̃ ≤ ρU . So in this case, we
filter tuples whose estimate of ρU is less than our threshold. Again,
since ρU is computed from the samples, we can check this online
for filtering decision as in §2.

6. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed

techniques using both synthetic functions and data with controlled
properties, and real workloads from the astrophysics domain.

6.1 Experimental Setup
We first use synthetic functions with controlled properties to test

the performance and sensitivity of our algorithms. We now describe
the settings of these functions, input data and parameters used.

A. Functions. We generate functions (UDFs) of different shapes
in terms of bumpiness and spikiness. A simple method is to use
Gaussian mixtures [10] to simulate various function shapes (which
should not be confused with the input and output distributions of the
UDF and by no means favors our GP approach). We vary the number
of Gaussian components, which dictates the number of peaks of
a function. The means of the components determine the domain,
and their covariance matrix determines the stretch and bumpiness of
the function. We denote the function dimensionality d; this is the
number of input variables of the function. We observe that in real
applications, many functions have low dimensionality, e.g., 1 or 2
for astrophysics functions. For evaluation purposes, we vary d in a
wider range of [1,10]. Besides the shape, a function is characterized
by the evaluation time, T , which we vary in the range 1µs to 1s.

B. Input Data. By default, we consider uncertain data following
Gaussian distributions, i.e., the input vector has distribution charac-
terized by N (µI ,ΣI). µI is drawn from the given support of the
function [L,U ]. ΣI determines the spread of the input distributions.
For simplicity, we assume the input variables of a function are in-
dependent, but supporting correlated input is not harder—we just
need to sample from the joint distributions. We also consider other
distributions including exponential and Gamma. We note that han-
dling other types of distributions is similar due to the same reason
(the difference is the cost of sampling).

C. Accuracy Requirement. We use the discrepancy measure
as the accuracy metric in our experiments. The user specifies the
accuracy requirement (ε, δ) and the minimum interval length λ. λ
is set to be a small percentage (e.g., 1%) of the range of the function.
This requirement means that with probability (1−δ), for any interval

of length at least λ, the probabilities of an interval computed from
the approximate and true output distributions do not differ from each
other by more than ε. For the GP approach, the error bound ε is
allocated to two sources of error, GP error bound εGP and sampling
error bound εMC , where ε = εGP + εMC . We also distribute δ so
that 1− δ = (1− δGP )(1− δMC).

Our default setting is as follows. The domain of function [L,U ] =
[0, 10], input standard deviation σI = 0.5, function evaluation
time T = 1ms, accuracy requirement (ε = 0.1, δ = 0.05). The
reported results are averaged from 500 output distributions or when
the algorithm converges, whichever is larger.

6.2 Evaluating our GP Techniques
We first evaluate the individual techniques employed in our Gaus-

sian process algorithm, OLGAPRO. The objective is to understand
and set various internal parameters of our algorithm.
Profile 1: Accuracy of function fitting. We first choose four two-
dimensional functions of different shapes and bumpiness (see Fig.
4). These functions are the four combinations between (i) one or five
components, (ii) large or small variance of Gaussian components,
which we refer to as F1, F2, F3, and F4. First, we check the
effectiveness of GP modeling. We vary the number of training points
n and run basic global inference at test points. Fig. 5(a) shows the
relative errors for inference, i.e., | f̂(x)−f(x)

f(x)
|, evaluated at a large

number of test points. The simplest function F1 with one peak and
being flat needs a small number of training points, e.g., 30, to be
well approximated. In contrast, the most bumpy and spiky function
F4 requires the largest number of points, n > 300, to be accurate.
The other two functions are in between. This confirms that the GP
approach can model functions of different shapes well, however
the number of training points needed varies with the function. In
the later experiments, we will show that OLGAPRO can robustly
determine the number of training points needed online.
Profile 2: Behavior of error bound. We next test the behavior
of our discrepancy error bound, which is described in §4.2 and
computed using Algorithm 3. We compute the error bounds and
measure the actual errors. Fig. 5(b) shows the result for the function
F4, which confirms that the error bounds are actual upper bounds
and hence indicates the validity of GP modeling. More interestingly,
it shows how tight the bounds are (about 2 to 4 times of the actual
errors). As λ gets smaller, more intervals are considered for the
discrepancy measure; thus, the errors and error bounds, the suprema
for a larger set of intervals, get larger. We test the other functions
and observe the same trends. In the following experiments, we use
a stringent requirement: setting λ to be 1% of the function range.
Profile 3: Allocation of two sources of error. We also examine
the allocation of the user-specified error bound ε to the errors from
GP modeling and MC sampling, εGP and εMC , as in Theorem 4.1.
The details are omitted due to space constraints, but are discussed
in [24]. In general, we set εMC to be 0.7ε for good performance.

In the next three experiments, we evaluate three key techniques
employed in our GP approach. The default function is F4.
Expt 1: Local inference. We first consider our local inference
technique as shown in §5.1. We compare the accuracy and running
time of local inference with those of global inference. For now,
we fix the number of training points to compare the performance
of the two inference techniques. We vary the threshold Γ of local
inference from 0.1% to 20% of the function range. Recall that
setting Γ small corresponds to using more training points and hence
similar to global inference. Our goal is to choose a setting of Γ so
that local inference has similar accuracy as global inference while
being faster. Figs. 5(c) and 5(d) show the accuracy and running time,
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(a) Funct1 (b) Funct2 (c) Funct3 (d) Funct4

Figure 4: A family of functions of different smoothness and shape used in evaluation.

respectively. We see that for most of values Γ tested, local inference
is as accurate as global inference while offering a speedup from 2 to
4 times. We repeat this experiment for other functions and observe
that for less bumpy functions, the speedup for local inference is less
pronounced, but the accuracy is always comparable. This is because
for smooth functions, far training points still have a high weight in
inference. In general, we set Γ about (0.05x function range), which
results in good accuracy and improved running time.
Expt 2: Online tuning. In §5.2, we proposed adding training points
on-the-fly to meet the accuracy requirement. We now evaluate
our heuristics of choosing samples with the largest variance to
add. We compare it with two following heuristics: Given an input
distribution, a simple one is to choose a sample of the input at
random. Another heuristics is what we call “optimal greedy”, which
considers all samples, simulates adding each of them to compute a
new error bound, and then picks the sample having the most error
bound reduction. This is only hypothetical since it is prohibitively
expensive to simulate adding every sample. For only this experiment,
we assume that each input has 400 samples for “optimal greedy” to
be feasible. We start with just 25 training points and add more when
necessary. Fig. 5(e) shows the accumulated number of training
points added over time (for performance, we restrict that no more
than 10 points can be added for every input). As observed, our
technique using the largest variance requires fewer training points,
hence runs faster, than randomly adding points. Also, it is close to
our “optimal greedy” while being much faster to be run online.
Expt 3: Retraining strategy. We now examine the performance
of our retraining strategy (see §5.3). We vary our threshold ∆ for
retraining and compare this strategy with two other strategies: eager
training when one or more training points are added, and no training.
Again, we start with a small number of training points and add more
using online tuning. Figs. 5(f) and 5(g) show the accuracy and
running time respectively. As expected, setting ∆ smaller means
retraining more often and is similar to eager retraining, while larger
∆ means less retraining. We see that setting ∆ less than 0.5 gives
best performance, as fewer retraining calls are needed while the
hyperparameters are still good estimates. We repeat this experiment
with other functions and see that conservatively setting ∆ = 0.05
gives good performance for this set of functions. In practice, ∆ can
be chosen in reference with the hyperparameter values.

6.3 GP versus Monte Carlo Simulation
We next examine the performance of our complete online algo-

rithm, OLGAPRO (Algorithm 5). The internal parameters are set as
above. We also compare this algorithm with the MC approach.
Expt 4: Varying user-specified ε. We run the GP algorithm for
all four functions F1 to F4. We vary ε in the range of [0.02, 0.2].
Fig. 5(h) shows the running time for the four functions. (We verify
that the accuracy requirement ε is always satisfied, and omit the
plot due to space constraints.) As ε gets smaller, the running time
increases. This is due to the fact that the number of samples is
proportional to 1/ε2MC . Besides, small εGP requires more training
points, hence higher cost for inference. This experiment also verifies

the effect of the function complexity on the performance. A flat
function like F1 needs much fewer training points than a bumpy,
spiky function like F4, thus running time is about two orders of
magnitude different. We also repeat this experiment for other input
distributions including Gamma and exponential distributions, and
observe very similar results, which is due to our general approach
of working with input samples. Overall, our algorithm can robustly
adapt to the function complexity and the accuracy requirement.
Expt 5: Varying evaluation time T . The tradeoff between the
GP and MC approaches mainly lies in the function evaluation time
T . In this experiment, we fix ε = 0.1 and vary T from 1µs to 1s.
Fig. 5(i) shows the running time of the two approaches for all four
functions. Note that the running time for MC sampling is similar
for all functions, hence we just show one line. As observed, the GP
approach starts to outperform the sampling approach when function
evaluation takes longer than 0.1ms for simple functions like F1,
and up to 10ms for complex functions like F4. Also we note that
our GP approach is almost insensitive to function evaluation time,
which is only incurred during the early phase. After convergence,
function evaluation occurs only infrequently. This demonstrates the
applicability of the GP approach for long running functions.

This result also argues for the use of a hybrid solution as described
in §5.4. Since the function complexity is unknown beforehand, so is
the number of training points. The hybrid solution can be performed
to automatically pick the better approach based on the function’s
complexity and evaluation time, e.g., the GP method is used for
simple functions with evaluation time of 0.1ms or above, and for
only complex functions with longer time.
Expt 6: Optimization for selection predicates. We examine the
performance of online filtering when there is a selection predicate.
As shown in §2 and §5.5, this can be used for both direct MC
sampling and sampling with a GP. We vary the selection predicate,
which in turn affects the rate that the output is filtered. We decide
to filter output whose tuple existence probability is less than 0.1.
Fig. 5(j) shows the running time. As seen, when the filtering rate
is high, online filtering helps reduce the running time, by a factor
of 5 and 30 times for MC and GP respectively. We observe that
the GP approach has a higher speedup because besides processing
fewer samples, it results in a GP model with fewer training points,
or smaller inference cost. Fig. 5(k) shows the false positive rates,
i.e., tuples should be filtered but are not during the sampling process.
We observe that this rate is low, always less than 10%. The false
negative rates are zero or negligible (less than 0.5%).
Expt 7: Varying function dimensionality d. We consider different
functions with dimension d varying from 1 to 10. Fig. 5(l) shows
the running time of these functions for both approaches. Since the
running time using GP is insensitive to function evaluation time,
we show only one line for T = 1s for clarity. We observe that
with GPs, high-dimensional functions incur high cost, because more
training points are needed to capture a larger region. Even with a
high dimension of 10, the GP approach still outperforms MC when
the function evaluation time reaches 0.1s.

478



10-6
10-5
10-4
10-3
10-2
10-1

1

10

 50  100  150  200  250  300  350  400

R
el

at
iv

e 
er

ro
r

Num of training points (n)

Funct1
Funct2
Funct3
Funct4

(a) Profile1: Function fitting

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.02  0.04  0.06  0.08  0.1

A
cc

ur
ac

y 
(D

is
cr

ep
an

cy
)

λ (as percentage of function range)

Error
Error Bound

(b) Profile2: Error bound

 0.05

 0.1

 0.15

 0.2

 0.25

 0.001  0.01  0.1

A
cc

ur
ac

y 
(D

is
cr

ep
an

cy
)

Threshold Γ (as percentage of function range)

LocalInfer Error Bound
GlobalInfer Error Bound

LocalInfer Error
GlobalInfer Error

(c) Expt1: Local inference–Accuracy

 0

 100

 200

 300

 400

 500

 600

 700

 0.001  0.01  0.1

T
im

e 
(m

s)

Threshold Γ (as percentage of function range)

Global Infer.
Local Infer.

(d) Expt1: Local inference–Time

 0

 100

 200

 300

 400

 500

 600

 700

 0  50  100  150  200  250  300  350  400

A
cc

um
ul

at
ed

 n
um

 p
oi

nt
s 

ad
de

d

Number of calls

Random
Largest Variance
Optimal Greedy

(e) Expt2: Online tuning

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.001  0.01  0.1  1

A
cc

ur
ac

y 
(D

is
cr

ep
an

cy
)

Threshold ∆

No Retraining
Thresholding.

Eager Retraining

(f) Expt3: Retraining–Accuracy

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.001  0.01  0.1  1

T
im

e 
(m

s)

Threshold ∆

Eager Retraining
Thresholding.
No Retraining

(g) Expt3: Retraining–Time

1

10

102

103

104

105

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

T
im

e 
(m

s)

Accuracy requirement ε

Funct1
Funct2
Funct3
Funct4

(h) Expt4: Vary accuracy requirement

1

10

102

103

104

105

106

 0.001  0.01  0.1  1  10  100  1000

T
im

e 
(m

s)

Function eval time (ms)

GP: Funct1
GP: Funct2
GP: Funct3
GP: Funct4

MC Sampling

(i) Expt5: Vary evaluation time

10

102

103

104

105

0.19 0.72 0.82 0.97

T
im

e 
(m

s)

Filtering percentage

MC
MC+OF

GP
GP+OF

(j) Expt6: Online filtering–Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0.19 0.72 0.82 0.97

Fa
ls

e 
po

si
tiv

e 
ra

te

Filtering percentage

MC+OF
GP+OF

(k) Expt6: Online filtering–Accuracy

1

10

102

103

104

105

106

107

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(m

s)

Function Dimensionality

GP (evalTime=1s)
MC (evalTime=1ms)

MC (evalTime=10ms)
MC (evalTime=100ms)

MC (evalTime=1s)

(l) Expt7: Vary function dimensionality

Figure 5: Experimental results including profiling and evaluating GP and MC approaches using synthetic data and functions

The results indicate that the hybrid approach is feasible by encod-
ing general rules based on the known dimensionality and observed
evaluation time. When the function is really fast, i.e., T ≤ 0.01ms,
MC sampling is a preferred solution. For most functions we see
in our applications, which have low dimensionality, we use GP ap-
proach for better performance if functions have T ≥ 1ms. For very
high-dimensional functions, we use Monte Carlo approach.

6.4 A Case Study: UDFs in Astrophysics
In this experiment, we consider the application of our techniques

in the astrophysics domain using real functions and data. We exam-
ined functions to compute various astrophysical quantities, available
in a library package [1] and found eight functions computing a scalar
value, which can all be incorporated into our framework; our algo-
rithms treat them as black-box UDFs. Most of these UDFs are one
and two-dimensional, usually have simple shapes but can be slow-
running due to complex numerical computation. We chose three
representative functions, as shown below, that vary in evaluation
time across a range. (See §1 for the queries using these functions.)

FunctName Dim. EvalTime (ms)
AngDist 2 0.00298
GalAge 1 0.29072

ComoveVol 2 1.82085
We use a real dataset from the Sloan digital sky survey (SDSS)

project [21] and extract the necessary attributes for these functions,
which are uncertain and characterized by Gaussian distributions.

We vary the accuracy requirement ε from 0.02 to 0.2. We ver-
ify that output distributions are non-Gaussian; an example output
of AngDist is shown in Fig. 6a. We compare the performance
of Monte Carlo simulation with our algorithm OLGAPRO, which
is shown in Fig. 6. (We verify that the errors are less than ε.)
) Overall, we observe that these UDFs are generally smooth and
non-spiky, hence do not need many training points. The 1D func-
tion GalAge requires about 10 training points, while the two 2D
functions, AngDist and ComoveV ol, require less than 40 points.
OLGAPRO adds most training points for the first few input tuples;
after that, it becomes stable. AngDist is a quite fast function and
OLGAPRO is somewhat slower than MC sampling. For the other
two functions, GalAge and ComoveV ol, whose evaluation time is
about 0.3 and 2 ms respectively, OLGAPRO outperforms MC sam-
pling by one to two orders of magnitude. These results are consistent
with those of the synthetic functions shown above and demonstrate
the applicability of our techniques for the real workloads.

7. RELATED WORK
We discuss several broad areas of research related to our work.
Work on UDFs with deterministic input. Existing work, e.g.,[6],

considers queries invoking UDFs that are expensive to execute and
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Figure 6: Results for real astrophysics functions and SDSS data

proposes reordering the execution of the predicates. Another work
[8] considers functions that are iterative and computed by numerical
methods, whose accuracy varies with computation cost. It proposes
to adaptively execute these functions depending on given queries.
However, this line of work considers only deterministic input, hence
inherently different from our work.

Gaussian process regression with uncertain input. Regres-
sion using GPs has been well studied in the machine learning liter-
ature (see [18] for a survey). However, most of the existing work
considers deterministic input and presents offline solutions, while
we consider uncertain input in an online setting. One line of work
from statistics most related to ours is [15], which uses GPs as emu-
lators to computer code that is slow to run. It briefly mentions using
sampling to handle uncertain input, but does not quantify the ap-
proximation, which we tackle by deriving error bounds. Further, we
present an online algorithm with different novel optimizations. The
prior work [12] computes only the mean and variance of the output.
Since the UDF output in most cases is not Gaussian, this approach
does not fully characterize the output distribution. In addition, [12]
mainly considers input data following Gaussian distributions, while
our work can support input of any distributions.

Optimizations of Gaussian processes. Existing lines of work
[14, 17] propose optimizations for inference with GPs; however, they
work in an offline manner and are not suitable for our online settings
due to the lack of online tuning to obtain training data on the fly
and retraining strategies to reduce the training overhead. Regarding
inference only, the paper [14] suggests pre-dividing the function
domain into fixed local regions corresponding to local models, then
runs inference using the local models and combines the results by
weighting them. This is different from our local inference technique
since all training points are used, and hence can be inefficient for
large training datasets. The work [17] has a more similar idea to
ours by using sparse covariance matrices, which zeroes out low
covariances, to reduce the number of training points under inference.
However, it does not quantify the approximation errors as ours.

8. CONCLUSIONS AND FUTURE WORK
We have examined the problem of supporting user-defined func-

tions on uncertain data. Given the black-box UDFs, we proposed
two approaches: a simple Monte Carlo approach and a more com-
plex, learning approach using Gaussian processes. For the GP ap-
proach, we presented new results to compute the output distributions
and quantify the error bounds. We then presented an online algo-
rithm that can adapt to user accuracy requirements, together with a
suite of novel optimizations. Our evaluation using both real-world
and synthetic functions shows that our proposed GP approach can
outperform the MC approach with up to two orders of magnitude im-
provement for a variety of UDFs. For future work, we plan to study
the support for a wider range of functions such as high-dimensional
input and multivariate output, and consider to extend our techniques
to allow for parallel processing for high performance.
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