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ABSTRACT
A basic step in integration is the identification of linkage points,
i.e., finding attributes that are shared (or related) between data
sources, and that can be used to match records or entities across
sources. This is usually performed using a match operator, that
associates attributes of one database to another. However, the mas-
sive growth in the amount and variety of unstructured and semi-
structured data on the Web has created new challenges for this task.
Such data sources often do not have a fixed pre-defined schema and
contain large numbers of diverse attributes. Furthermore, the end
goal is not schema alignment as these schemas may be too hetero-
geneous (and dynamic) to meaningfully align. Rather, the goal is to
align any overlapping data shared by these sources. We will show
that even attributes with different meanings (that would not qual-
ify as schema matches) can sometimes be useful in aligning data.
The solution we propose in this paper replaces the basic schema-
matching step with a more complex instance-based schema analy-
sis and linkage discovery. We present a framework consisting of
a library of efficient lexical analyzers and similarity functions, and
a set of search algorithms for effective and efficient identification
of linkage points over Web data. We experimentally evaluate the
effectiveness of our proposed algorithms in real-world integration
scenarios in several domains.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; H.2.5 [Database Man-
agement]: Heterogeneous Databases

Keywords
Record Linkage, Entity Resolution, Link Discovery, Schema
Matching, Data Integration

1. INTRODUCTION
Many increasingly important data management and mining tasks

require integration and reconciliation (or fusion) of data that re-
side in large and heterogeneous data sources. Data integration is
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Table 1: Data set statistics for the example scenario
Data Source Records# Fact# Distinct Paths#

DBpedia 24,367 1.9 Million 1,738
Freebase 74,971 1.9 Million 167

SEC 1,981 4.5 Million 72

generally defined as combining data to provide users with a uni-
fied view of the data [15] whereas in data fusion, duplicates are
merged and conflicting attributes values are identified and possi-
bly repaired in order to provide a single consistent value for each
data attribute [3]. Data fusion therefore involves duplicate detec-
tion, also known as Entity Resolution or record linkage, where the
goal is to identify data records that refer to the same entity. The
first step in a data integration or fusion system is identification of
linkage points between the data sources, i.e., finding correspon-
dences between attributes in the data sources. Traditionally, this is
performed by schema matching, where the goal is to identify the
schema elements of the various data sources that are semantically
related. However, the massive growth in the amount of unstruc-
tured and semi-structured data in data warehouses and on the Web
has created new challenges for this task. In what follows, we first
describe an example real-world integration scenario and then de-
scribe the unique challenges not addressed in previous work.

Consider a scenario where data about public companies is gath-
ered from different sources on the Web. We have collected three
data sets from online sources: Freebase [28], DBpedia [23], and the
U.S. Securities and Exchange Commission (SEC) [29]. The data
sets are respectively extracted using Freebase’s Metaweb Query
Language, DBpedia’s SPARQL endpoint, and IBM SystemT [4]
applied on the online SEC forms. Each of the three data sets is
converted into a collection of JSON encoded records. Each JSON
record is a tree representing various facts about a public company
(an entity). Table 1 shows some statistics over these data sets. One
can see that the three data sets are very different in structure. JSON
trees in DBpedia have over 1700 different paths (or attributes), and
describe 1.9 million facts (or entity-attribute-value triples), while
JSON trees in SEC have only 72 distinct paths, but describe 4.5 mil-
lion facts. This shows that DBpedia contains very heterogeneous
records, while records in the SEC data set have a more consistent
structure. Another observation is that Freebase has over 74,000
JSON records describing 1.9 million facts, while SEC has only ap-
proximately 2,000 records, but describes 4.5 million facts. The
SEC data contains much more elaborate records than Freebase.

The three data sets should have significant overlap due to the
common topic (public companies). Despite the fact that the SEC
data has the greatest structural regularity, this data does not sub-
sume the other data sets, so alignment and use of these data sets

445



together can provide more information than any single source.
Toward data integration, we first need to identify linkage points,
i.e., paths (attributes) in the JSON trees that are shared or related
among the data sets and that are useful in identifying entities that
can be linked (a formal definition is given in the next section).
One possible approach is to apply schema matching algorithms
[18] based on the schema information of the data sets. A purely
schema-based matching algorithm would fail in many cases. For
instance, DBpedia contains the labels dbpedia:stockSymbol,
dbpedia:stockTicker and dbpedia:tickerSymbol for
stock symbols.1 Further investigation of the instances reveals that
each of these three attributes in DBpedia actually contain only a
single value, perhaps because the DBpedia extraction algorithm has
been unable to extract the stock symbols from Wikipedia. So, the
label name in this case does not reflect the data, and is not use-
ful for matching. Moreover, matching Freebase and SEC based
on the ticker symbol and stockSymbol attributes results in
ambiguous links (one company matched with more than one com-
pany on the other side). This happens because some (subsidiary)
companies in Freebase share stock symbols with their parent com-
panies. This shows that these stock symbol attributes are not as
strong linkage points as one would expect.

Even if the schema labels are meant to be representative
and can be used for matching schema elements, there could be
differences in data representation and style that make match-
ing the records difficult. In fact, our experience in this and
other similar scenarios (as described in Section 5) show that
for the most interesting and useful linkage points, schema la-
bels and values do not match using simple string comparison.
For example, there are different attribute labels used for URLs
(e.g., url in Freebase, foaf:page and foaf:homepage in
DBpedia) and there are different ways of writing URLs (e.g.,
http://ibm.com vs. http://www.ibm.com/). Another
example is different representations of identifiers, e.g., the unique
identifiers in SEC, called CIKs, are fixed-length numbers such
as #0000012345 stored in an attribute labeled cik but Free-
base represents them as /business/cik/12345 stored in the
identifier attribute id. There are also cases where only a part of
the values can be used to link the records. For example, URI
http://dbpedia.org/resource/Citigroup in DBpe-
dia matches with ID /en/topic/citigroup in Freebase,
and URL http://www.audi.com/ matches with name Audi.
Since Citigroup and Audi are relatively rare names, (URI,ID)
and (URL,name) attribute pairs can effectively be used to link these
records. However, such linkage points can easily be missed un-
less the user has a thorough knowledge of both data sets. Gaining
such knowledge could be challenging as it may require examining
a large and representative portion of the data to understand when
an attribute could be useful in linking a portion of the data.

In traditional data integration systems, identification of link-
age points is performed either manually (possibly using a user-
interface designed for matching schema elements) or by an auto-
matic or semi-automatic schema matching algorithm. However,
the size and heterogeneity of the schema, along with schema errors
present in many sources that use automated information extraction,
make many existing schema-based approaches inaccurate in align-
ing may data sets. In addition, the size and heterogeneity of Web
data makes existing instance-based approaches [14, 22] ineffective
and inefficient in aligning data.

1The data we have used was retrieved in January 2010. DBpedia data and schema have
considerably changed since then, so the statistics and examples here may no longer be
current, but can be verified using the data dumps available on our project page [30].

In this paper, we present a framework for identification of link-
age points for multi-source Web data integration. Our framework
includes a novel class of search algorithms to identify strong link-
age points (that is, attributes that can be used to link entities across
data sets) even when such attributes are weak schema matches. Im-
portantly, we are specifically looking for attributes that help in iden-
tification of entities that can be linked. So unlike in schema match-
ing, we are not interested in finding all corresponding attributes
(for example, matching color and colour). As a result, our
search can be much more focused. Our algorithms take advantage
of 1) a library of lexical analyzers, 2) fast record-level and token-
level inverted indices, 3) a library of similarity functions, and 4) a
set of filtering strategies to filter false-positive results of the search.
We have implemented and experimentally evaluated the framework
in several real world Web data integration scenarios such as the
one described above. We show the effectiveness of different com-
ponents of the framework in discovering linkage points in these
scenarios, and how the discovered linkage points can enhance the
record linkage process.

Next, we present our problem definition. Section 3 presents
our proposed framework, and Section 4 presents the details of the
search algorithms for attribute selection and identification of link-
age points. We present a thorough experimental evaluation of the
search algorithms in Section 5. Sections 6, 7, and 8 conclude the
paper with a summary of the results, brief overview of the related
work, and a few interesting directions for future work.

2. PRELIMINARIES
Our framework is designed for use on any semistructured data

format. We present a simple data model for representing tree-
structured documents. We make use of a set LABELS of constants
for representing attribute labels (in a tree, an attribute is named by
one of these labels or a path of these labels), and a set VALUES of
constants representing (atomic) attribute values. The data model
DM and sets DICTIONARY and LIST are defined recursively.

• If x ∈ VALUES, then x ∈ DM
• If l1, l2, . . . , ln ∈ LABELS are distinct labels, and
v1, v2, . . . , vn ∈ DM, then {l1 : v1, l2 : v2, . . . , ln : vn} ∈
DICTIONARY. All dictionaries are in DM (DICTIONARY ⊆
DM).

• If v1, v2, . . . , vn ∈ DM, then [v1, v2, . . . , vn] ∈ LIST. All
lists are in DM (LIST ⊆ DM).
• Nothing else is in DM.

We refer to an element x ∈ DM as a document.
We define FLAT to be an operator that maps nested lists to flat

sets defined as:

FLAT(x) =

{
{x} if x 6∈ LIST⋃
i FLAT(vi) if x = [v1, v2, . . . , vn]

If x = {l1 : v1, l2 : v2, . . . , ln : vn}, then we define x[li] = vi,
and KEYS(x) = {l1, l2, . . . , ln}.

DEFINITION 1 (PATH AND EVALUATION). A path p is a se-
quence of labels, written p = 〈root, l1, l2, . . . , ln〉 where li ∈
LABELS. We write p · ln+1 to mean 〈root, l1, l2, . . . , ln, ln+1〉.
Given a document x, we define the evaluation of a path p, denoted
by Jp|xK as:

Jroot|xK = FLAT(x)

Jp · l|xK =
⋃
{FLAT(y[l]) : y ∈ Jp|xK ∧ l ∈ KEYS(y)}

DEFINITION 2 (DATA SETS, ATTRIBUTES AND INSTANCES).
A data set, D, is defined as a collection of documents:
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sec_company[j] =
{
  "cik": "0001011006",
  "name": "YAHOO INC",
  "director": {
    "cik": "0001238512",
    "fullname": "BOBSTOCK ROY J",
    "number_of_shares": "1995"
  },
}

freebase_company[i] =
{
  "id": "/business/cik/0001011006",
  "name": "Yahoo!",
  "key": ["YHOO","Yahoo"],
  "founded": "1995",
  "key_people": [
    {
      "name": { "Roy J. Bobstock" },
      "title": "Chairman"
    }, {
      "name": { "Tim Morse" },
      "title": ["Employee","CEO"]
    }
  ]
}
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Figure 1: Example records, paths, and their evaluations

D = {r1, r2, . . . , rn} where ri ∈ DM. We refer to r ∈ D
as the records of D. (These records are what we have informally
called entities in the introduction.)

An attribute of r ∈ D is a path, p, such that:

Jp|rK ∩ VALUES 6= ∅

We sometimes refer to an attribute 〈root, l1, . . . , lk〉 in data set
D as D -> l1 -> . . . -> lk. The set of all attributes of r
in the data set is denoted as Attrr(D). Similarly, Attr(D) =⋃
r∈D Attrr(D).
The instances of attribute p in a record r are defined as

Instancesr(p) = Jp|rK ∩ VALUES. The instances of a data set
D are InstancesD(p) =

⋃
r∈D Instancesr(p).

We sometimes refer to the set of instances of a data set (or more
formally record-attribute-instance triples) as the set of facts.

EXAMPLE 1. Figure 1 shows two example records from
two data sets along with their JSON representation. One
record describes the company Yahoo! in the Freebase
data, and the other describes the same company in the
SEC data set. The LABELS set includes {"id", "name",
"key", "founded", "key people", "title", "cik",
"director", "fullname", "number of shares"} while
the VALUES set includes {"/business/cik/0001011006",
"Yahoo!", "YHOO", "Yahoo", "1995", "Roy J.
Bobstock", "Chairman", "Tim Morse", "Employee",
"CEO", "0001011006", "YAHOO INC", "0001238512",
"BOBSTOCK ROY J"}. In the first record, "key":
["YHOO", "Yahoo"] is a LIST while {"name": {"Roy J.
Bobstock"}, "title": "Chairman"} is a DICTIONARY. An
example path in the first record is p = 〈root, key people, name〉.
The evaluation of this path given the first record is {"Roy J.
Bobstock", "Tim Morse"}. Therefore this path is also an
attribute, which we also refer to as freebase company ->
key people -> name, and its set of instances is {"Roy J.
Bobstock", "Tim Morse"}. The first record contains 10
instances (or facts) while the second record contains 5 instances.

A lexical analyzer (or tokenizer) l is defined as a function that
takes an atomic value v and converts it into a set of tokens v. Some
analyzers only split the string value into a set of tokens such as
word tokens or q-grams (substrings of length q of the string). Other
analyzers perform string transformations (or normalization) by for
example removing specific characters or changing letter case in ad-
dition to tokenization (or without any tokenization). We refer to the
set of tokens of all the instance values of attribute p in record r as
Instanceslr(p). Similarly, InstanceslD(p) represents the set of
all the tokens of all the instance values of attribute p in data set D.

A record matching function is defined as a Boolean function
f(rs, rt) that returns true if the two records rs and rt match, ac-
cording to a matching criteria. The matching criteria can be defined
using an attribute matching function f(ps,pt)(rs, rt), that returns
true if the instance values of the two attributes Instancesrs(ps)
and Instancesrt(pt) are relevant. Using a Boolean relevance
function r(Vs, Vt), we say that two sets of values Vs and Vt are
relevant if r(Vs, Vt) is true. There are several ways to define the
notion of relevance. For example, two sets Vs and Vt can be con-
sidered relevant if there exists vs ∈ Vs and vt ∈ Vt such that vs and
vt are similar. Two atomic values vs and vt are considered simi-
lar if their similarity score according to a value similarity function
sim() is above a threshold θ, i.e., sim(vs, vt) ≥ θ.

DEFINITION 3 (LINKAGE POINT). We define a linkage point
between two data sets Ds and Dt as a pair of attributes (ps, pt)
such that for some attribute matching function f , the following set
is non-empty:

M(ps,pt) = {(rs, rt)|rs ∈ Ds ∧ rt ∈ Dt ∧ f(ps,pt)(rs, rt)} (1)

M is referred to as the linkage set.

EXAMPLE 2. In Figure 1, the attribute ps =
〈root, key people, name〉 in the first record and attribute
pt = 〈root, director, full name〉 in the second record
form a linkage point (ps, pt) using the attribute matching and
relevance functions defined above, Jaccard similarity between
lowercase word tokens as sim(), and threshold θ = 0.4 since
sim(”Roy J. Bobstock”, ”BOBSTOCK ROY J”) = 2/4 = 0.5.
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Figure 2: SMaSh framework

To align data, we need to find attributes containing values that
when linked can help to identify related records (entities). To do
this, we use two measures, strength and coverage. Given a po-
tential linkage point (ps, pt), the strength measures how identi-
fying the links between values of these attributes are. Strength
is defined as the percentage of distinct records that can be linked
by a pair of attributes. For example, in Figure 1, attribute
freebase company -> founded and sec company ->
director -> number of shares can be used to link the
two records. However, if many other companies are founded in
the same year or have the same number of shares, this linkage set
will also link these records with several other records and there-
fore form a linkage point with low strength. The coverage mea-
sures how many records are linkable. While high coverage is bet-
ter, strong linkage points that have good, but not full, coverage are
still useful to link subsets of records.

DEFINITION 4 (STRENGTH & COVERAGE). We define the
strength of a linkage set as the percentage of distinct records that
appear in the set, i.e.:

strength(M(ps,pt)) =
|S(ps,pt)|+ |T(ps,pt)|
|M(ps,pt)| × 2

(2)

where S(ps,pt) = {s|∃t : (s, t) ∈ M(ps,pt)} and T(ps,pt) =
{t|∃s : (s, t) ∈M(ps,pt)}.

We define the coverage of a linkage set as the percentage of
source and target records that appear in the set:

coverage(M(ps,pt)) =
|S(ps,pt)|+ |T(ps,pt)|
|Ds|+ |Dt|

(3)

3. FRAMEWORK
Our framework for linkage point discovery takes input data sets

and returns a (ranked) set of linkage points. The discovery is per-
formed in a scalable, online fashion, suitable for large Web data
sets, and is illustrated in Figure 2.

Task Scheduler, Storage and Indexing Backend. The backend
includes a task scheduler that manages (Web) data retrieval, index-
ing, and discovery tasks, in addition to fast memory and disk-based
key-value store, and indexing engines. All the tasks are performed
in a way that at any point, partial results can be made available
to users of the system. The task scheduler prioritizes tasks and
keeps track of their status. Depending on the size of the data, index,
and the type of the discovery process, the memory-based key-value
store can be used or can be replaced by a disk-based index.

Register and Load Data Sets. This component allows users to
register a wide variety of data sets. The input could be in XML,
RDF (XML, N3 or NTriples), JSON, relational, or CSV format.
The data can also come directly from a set of popular Web APIs
including those that support SPARQL or the Freebase API. Users
can then load data, which will transform their data into our custom

JSON format for representing data sets, store it locally, and create
basic statistics to help optimize linkage point discovery. Note that
our techniques will apply to Web sources that publish data sets of
records representing entities of a single type (that is, one data set
could be a set of companies, another could be a set of clinical tri-
als, etc.) Furthermore, we make the assumption that each data set
represents a set of distinct entities (with few duplicates). This as-
sumption is commonly met by most Web sources which are gener-
ally curated. Of course if it is not, we could apply a pre-processing
deduplication on each source.

Analyze and Index. This component constructs the set of at-
tributes (as defined in Section 2) and indexes the attribute values
using one of the following analyzers available in the lexical ana-
lyzer library of the system.
• Exact analyzer does not make any change to the string.
• Lower analyzer turns the string value into lowercase.
• Split analyzer breaks the string into a set of tokens by splitting

them by whitespace after using the lower analyzer. E.g., “IBM
Corp.” turns into two terms “ibm” and “corp.”.
• Word token analyzer first replaces all the non-alphanumeric

characters with whitespace and then uses the split tokenizer
to tokenize the string. E.g., “http://ibm.com” is tokenized into
terms “http”, “ibm” and “com”.
• The q-gram analyzer tokenizes the string into the set of

all lowercase substrings of length q. It also replaces all
whitespaces with q − 1 occurences of a special character
such as $. E.g., a 3-gram tokenizer will tokenize “IBM
Corp.” into “$$i”, “$ib”,“ibm”,“bm$”,“m$$”,“$$c”,“$co”,
“cor”,“orp”,“rp.”,“p.$” and “.$$”.

Note that the analyzer library can be extended with other domain-
specific analyzers based on the application.

Search and Discover Linkage Points. This component
searches for linkage points. The search uses a similarity function
over the values indexed in the previous component using one of the
available analyzers. We use a library of common similarity func-
tions that includes the following.
• Intersection similarity function returns the intersection size of

the two value sets. Given two value sets V1 and V2:

intersect(V1, V2) = |V1 ∩ V2| (4)

• Jaccard returns the Jaccard coefficient of the two value sets:

jaccard(V1, V2) =
|V1 ∩ V2|
|V1 ∪ V2|

(5)

• Dice returns the Dice coefficient of the two value sets:

dice(V1, V2) =
2|V1 ∩ V2|
|V1|+ |V2|

(6)

• MaxInc returns the maximum inclusion degree of one value set
in another:

maxinc(V1, V2) =
|V1 ∩ V2|

min(|V1|, |V2|)
(7)

The similarity library also includes functions that quantify the
similarity of a (single) value string to the values in a set of instance
values. These functions are based on well-established relevance
functions (with highly efficient implementations) in information
retrieval, such as Cosine similarity with tf-idf [20] and the Okapi
BM25 [19]. These relevance functions are used to quantify the rel-
evance of a query to a document. We use the same approach to
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determine the closeness of a value string v1 ∈ V1 to a value string
v2 ∈ V2. For brevity, we describe only one such relevance func-
tion, the BM25 measure which is considered the state-of-the-art in
document retrieval systems [19], though our system includes of a
library of these functions.
• BM25 similarity score is defined as follows:

bm25(v1, v2) =
∑

t∈v1∩v2

ŵv1(t) · wv2(t) (8)

where v1 and v2 are the set of tokens in v1 and v2 (tokenized
using one of the above-mentioned analyzers), and:

ŵv1(t) =
(k3+1)·tfv1 (t)

k3+tfv1 (t)

wv2(t) = log
(
N−nt+0.5
nt+0.5

)
(k1+1)·tfv2 (t)

K(v2)+tfv2 (t)

K(v) = k1
(
(1− b) + b |v|

avgvl

)
and tfv(t) is the frequency of the token t in string value v, |v|
is the number of tokens in v, avgvl is the average number of
tokens per value, N is the total number of values in the set of
values V2, nt is the number of records containing the token t
and k1, k3 and b are a set of independent parameters [19].

Filter, Rank and Aggregate. Our search algorithm uses the
above measures to create a set of candidate linkage points that is
then filtered, ranked and aggregated. Filtering can be performed
using several measures, for example:
• Cardinality filter removes a linkage point (ps, pt) if the cardi-

nality of its corresponding linkage set M(ps,pt) is small, i.e.,
|M(ps,pt)| < θl where θl is a user-defined cardinality thresh-
old. A low cardinality of the linkage set may indicate an ac-
cidental match, or a linkage point that results in a very small
number of links and therefore may not be desired depending on
the application.
• Coverage filter uses the coverage measure from Definition

4 to remove a linkage point (ps, pt) if the coverage of its
linkage set is less than a user-defined threshold θc, i.e.,
coverage(M(ps,pt)) < θc. The user selects a higher cover-
age threshold if it is known in advance that the set of entities
the two data sets describe have a high overlap, and so a high
coverage can indicate a high recall in the final linkage results.
• Strength filter uses the strength measure from Definition 4 to

remove a linkage point (ps, pt) if strength(M(ps,pt)) < θs
where θs is a user-defined strength threshold. A high strength
threshold can guarantee a higher precision in the final link-
age results, although it may lower the recall depending on how
clean each source is, and the data characteristics that may result
in accidental matches.

The framework also includes a Web interface for task manage-
ment and monitoring, visualization of the results and evaluation
based on user feedback. Such results can be used, for example, to
define entity resolution rules in the user’s preferred language such
as LinQL [10], Dedupalog [1], or HIL [11].

4. SEARCH ALGORITHMS
In this section, we present the details of our proposed search

algorithms for linkage point discovery. The search process starts
from a source data set, and goes through all its attributes. For each
attribute, the set of instances (or a sample of this set) is retrieved
from the index. Then the target data set is searched for similar
values using a similarity function.

Algorithm 1: SMaSh-S
Input : Data sets Ds and Dt,

A set similarity function f ,
A lexical analyzer l,
A matching threshold θ

Output: (Ranked) list of pairs of paths (ps, pt)
1 foreach attribute ps in Ds do
2 foreach attribute pt in Dt do
3 score(ps, pt)← f(InstanceslDs

(ps), Instances
l
Dt

(pt))

4 end
5 end
6 return pairs of (ps, pt) with score(ps, pt) ≥ θ (in descending order of
score(ps, pt))

4.1 SMaSh-S: Search by Set Similarity
Algorithm 1 shows our simplest realization of the search strat-

egy, which we refer to as the SMaSh-S algorithm. This algorithm
goes through the set of attributes in the source data, and for each
attribute ps in the source data set Ds retrieves the set of instance
values InstancesDs(ps) and calculates the similarity of this set
with all the instance value sets in Dt using the given set similarity
function. The result is all pairs of attributes (ps, pt) that have simi-
larity score above the given threshold θ, along with the value of the
similarity score. A higher similarity threshold θ results in higher
precision but lower recall.

We can create a linkage set M(ps,pt) for all the returned pairs
by Algorithm 1 using an attribute matching function that returns
true if the intersection of Instanceslrs(ps) and Instanceslrt(pt)
is non-empty. Therefore, all the pairs returned by Algorithm 1 are
linkage points (as defined in Definition 3).

Assuming that f() is one of the set similarity functions dis-
cussed in Section 3, the average complexity of this algorithm
is |Attr(Ds)| × |Attr(Dt)| × Averagep∈D(|InstanceslD(p)|)
whereD = Ds∪Dt for similarity computation, plus |Attr(Ds)|×
|Attr(Dt)|×log(|Attr(Ds)|×|Attr(Dt)|) for sorting the results.

4.2 SMaSh-R: Record-based Search
The SMaSh-S algorithm can effectively find linkage points for

data sets whose (tokenized) instance values have a sufficient over-
lap, and very few of the overlapping sets of values are accidental,
i.e., only a few instance values are shared between unrelated at-
tributes. Therefore, the performance of the algorithm is highly af-
fected by the choice of lexical analyzer. Using simpler analyzers
(such as exact or lower)) can result in high-quality linkage points
only if the data sets follow the same style and formats (something
that is not very common on the Web), and more complex analyzers
(such as q-gram based tokenizers) can result in a large number of
accidental matches.

Algorithm 2 shows an alternative search strategy that we refer
to as the SMaSh-R algorithm. This algorithm first picks a sample
of values (analyzed using analyzer l) for each source attribute. For
each value in the sample set, it then searches the target data set
for the top k similar values (i.e., values with value similarity score
above a user-defined threshold τ using a string similarity function
sim()). This search (Lines 4-6 in Algorithm 2) can be performed
very efficiently using proper indices and state-of-the-art keyword
search algorithms as described in Section 3. The algorithm then
takes the average of the similarity score for each attribute in the
result among all the record-attribute-value triples returned. If this
score is above a user-defined threshold θ, the attribute pair will be
returned as a linkage point.

For each attribute pair in the output of Algorithm 2, one can
derive a non-empty linkage set using an attribute matching func-
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Algorithm 2: SMaSh-R
Input : Data sets Ds and Dt,

A lexical analyzer l,
A value similarity function sim(),
Value similarity threshold τ ,
Value of k for top-k search,
Sample value set size σv ,
A matching threshold θ

Output: (Ranked) list of pairs of attributes (ps, pt)
1 foreach attribute ps in Ds do
2 Query Set← { Up to σv random values in InstanceslDs

(ps)}
3 foreach value q in Query Set do

4
M ← {(rt, pt, v)|pt ∈ Attrrt (Dt)∧

v ∈ Instanceslrt (pt) ∧ sim(v, q) ≥ τ}
5 Mtopk ← {(rt, pt, v) ∈M with top k highest sim(v, q)}
6 MS ← Multiset {(pt, sim(v, q))|∃rt : (rt, pt, v) ∈Mtopk}
7 end
8 score(ps, pt)← Average sim value for all (pt, sim) ∈MS

9 end
10 return pairs of (ps, pt) with score(ps, pt) ≥ θ (in descending order of

score(ps, pt))

tion that returns true if at least one value vs in Instancesrs(ps)
and one value vt in Instancesrt(pt) have similarity score
sim(vs, vt) ≥ τ . Therefore, all the pairs returned by Algorithm
2 are linkage points (as defined in Definition 3).

The average complexity of this algorithm is |Attr(Ds)|× (σv×
(O(lookup) + k) + log(|Attr(Dt)|) where O(lookup) is the av-
erage complexity of a probe in the search index. This algorithm is
clearly more efficient than SMaSh-S assuming that the search index
is built in a preprocessing phase. In Section 5, we show that small
samples (that is, small values of σv � |Attr(Dt)|) can work very
well in practice.

4.3 SMaSh-X: Improving Search by Filtering
The strategy used in the SMaSh-R algorithm can improve the

search performance especially for more complex analyzers that are
an important part of an effective search strategy. However, low-
quality results (irrelevant pairs returned as linkage points) are un-
avoidable when dealing with highly heterogeneous data. Therefore,
we propose an effective filtering strategy to improve the accuracy
of the linkage points returned by the SMaSh-S and SMaSh-R al-
gorithms. We refer to the resulting algorithm as the SMaSh-X al-
gorithm. The filtering portion of the algorithm is shown in Algo-
rithm 3. This part of the algorithm takes as input a set of linkage
points along with their scores from the previous algorithms, creates
a carefully selected subset of linkage sets for each linkage point,
and filters out the linkage points whose linkage (sub-)sets do not
have a user-defined strength, coverage, or cardinality.

A key issue in Algorithm 3 is effective and efficient creation of
a subset of the linkage set that can effectively be used to prune
irrelevant pairs from the results. For each pair (ps, pt), the algo-
rithm first picks a sample set of size σs out of all the instances
InstanceslDs

(ps). Then, for each value in the sample set, the
set of records containing the value (in attribute ps) are looked up.
This lookup can efficiently be performed using a reverse index built
during the indexing phase. Then the set of matching records in
the target data set are retrieved using the attribute matching func-
tion. For attribute pairs found using the SMaSh-S algorithm, the
attribute matching function is a Boolean function that returns true
if the intersection of Instanceslrs(ps) and Instanceslrt(pt) is
non-empty. For attribute pairs found using the SMaSh-R algo-
rithm, the matching function is a Boolean function that returns

Algorithm 3: SMaSh-X filtering
Input : Data sets Ds and Dt,

List L of linkage points with their score (ps, pt)

with corresponding attribute matching function
f() and lexical analyzer l,
Sample linkage set size σs,
Cardinality threshold κ,
Smoothing cutoff limit λ,
Coverage threshold χ,
Strength threshold τ ,
Matching threshold θ

Output: (Ranked) list of pairs of paths (ps, pt)
1 foreach pair (ps, pt) ∈ L do
2 M(ps,pt)

← ∅
3 V ← Sample of size σs of InstanceslDs

(ps)

4 foreach v ∈ V do
5 Rs ← {rs ∈ Ds|v ∈ Instanceslrs (ps)}
6 Construct rs with path ps and value v such that

Instanceslrs (ps) = {v}
7 Rt ← {rt ∈ Dt|f(ps,pt)

(rs, rt)}
8 if |Rs| > λ then
9 Rs ← subset of size λ of Rs

10 end
11 if |Rt| > λ then
12 Rt ← subset of size λ of Rt

13 end
14 M(ps,pt)

←M(ps,pt)
∪ {(rs, rt)|rs ∈ Rs ∧ rt ∈ Rt}

15 end
16 if strength(M(ps,pt)

) > τ and coverage(M(ps,pt)
) > χ

17 and Cardinality of both ps and pt are above κ
18 then
19 score′(ps, pt)← score(ps, pt)× strength(M(ps,pt)

)

20 end
21 end
22 return pairs of (ps, pt) with score′(ps, pt) ≥ θ (in descending order of

score′(ps, pt))

true if at least one value vs in Instancesrs(ps) and one value vt
in Instancesrt(pt) have similarity score sim(vs, vt) ≥ τ . The
matching records can be retrieved and saved (cached) while per-
forming the SMaSh-S or SMaSh-R algorithms to speed up the fil-
tering operation.

When the matching source/target record pairs are found, they are
added to the linkage set M(ps,pt), but we limit the size of each set
of matching records to a user-defined limit λ. This can be seen
as a way to smooth the strength measure, in order to decrease the
effect of those infrequent values that match with a very large num-
ber of records, such as a non-standard null value representation (for
example, None or N/A) that are very common in Web data.

When the linkage set sample is created, its strength, coverage
and cardinality are checked and the pair is omitted from the results
if any of the values are below the thresholds. Finally, the score is
adjusted by the strength measure to lower the rank of those linkage
points that have lower strength, and potentially remove them if the
adjusted score drops below the matching threshold θ.

The worst case complexity of the algorithm is |L|· log |L|×σs×
λ2 assuming that the lookup in Lines 5 and 7 can be performed in
O(1) by indexing (caching) the similarity results while generating
L. We show in Section 5 that a small sample size σs is sufficient
in practice. A small constant λ value results in both better per-
formance and accuracy. The user needs to pick the right value of
input parameters cardinality threshold κ, coverage threshold χ, and
strength threshold τ depending on data characteristics such as the
amount of noise in the input data. For example, the strength thresh-
old can be lowered to accommodate for data sets that are not very
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Table 2: Data set statistics
Entity Source Data Set Rec# Fact# Attr#

Freebase fbComp 74,971 1.92M 167
Company SEC secComp 1,981 4.54M 72

DBpedia dbpComp 24,367 1.91M 1,738
Freebase fbDrug 3,882 92K 56

Drug DrugBank dbankDrug 4,774 1.52M 145
DBpedia dbpDrug 3,662 216K 337
Freebase fbMovie 42,265 899K 57

Movie IMDb imdbMovie 14,405 483K 41
DBpedia dbpMovie 15,165 1.57M 1,021

clean and may contain duplicates. The values of χ and κ should be
increased if the application requires a large coverage, and lowered
if a high recall in the record linkage process is needed. We discuss
automatic selection of parameters in Sections 5.5 and 6.

5. EXPERIMENTS
In this section, we present the results of evaluating the SMaSh

algorithms in real-world integration scenarios.

5.1 Data Sets
Table 2 shows the statistics of the data sets for three real-world

integration scenarios. All these scenarios are similar to our motivat-
ing example described in Section 1, where the goal is to discover
linkage points that can be used to perform entity resolution. In
other words, we are looking for linkage points whose correspond-
ing linkage sets (or a significant part of the linkage sets) consist of
record pairs that refer to the same real-world entity.

Each scenario involves resolution of a single entity type, and in-
cludes three data sources. Two data sources Freebase [28] and DB-
pedia [23] are shared in all the scenarios. As described earlier, the
Freebase data is downloaded in JSON format using a query writ-
ten in Metaweb Query Language (MQL) to fetch all the attributes
related to each entity type. DBpedia data is fetched from DBpe-
dia’s SPARQL endpoint in RDF/N-Triples format and converted
into JSON. Company scenario uses data extracted from the U.S. Se-
curities and Exchange Commission (SEC) online form files using
IBM’s SystemT [4] with output in JSON format. The drug scenario
uses information about drugs extracted from DrugBank [24], which
is an online open repository of drug and drug target data. Movie
scenario uses movie data from the popular online movie database,
IMDb [25]. IMDb contains a huge number of movies, TV shows
and episodes, and even video games, from all around the world. For
our experiments in this section, we pick a sample of movies that are
most likely to appear on DBpedia or Freebase, to make sure that the
data sets overlap. Our system is capable of automatically picking a
high-quality sample of a data source to guarantee overlap with other
sources, the details of which are beyond the scope of this paper.

5.2 Settings & Implementation Details
The framework shown in Figure 2 is implemented using a num-

ber of state-of-the-art storage, indexing, and task management sys-
tems. As our storage engine, we use Redis [26], which is an open-
source networked, in-memory key-value store with optional disk-
based persistence. We use Redis as our storage backend and as the
backend for indexing of all the value sets for efficient set similarity
computation. We use separate Redis servers to store the original
data sets, meta-data and task information, and reverse indices for
each lexical analyzer. We experiment with seven different analyz-
ers, namely exact, lower, split, word token, 2-gram, 3-gram, and
4-gram analyzers. This results in nine Redis server instances (two

Table 3: Summary of algorithm parameters
Algorithm Par. Description Default
All θ Matching threshold 0.5
SMaSh-R τv Value similarity threshold 0.5

k Value of k for top-k search 200
σv Sample value set size 20, 000

SMsSh-X τs Strength threshold 0.6
κ Cardinality threshold 30
χ Coverage threshold 0.001
λ Smoothing cutoff limit 50
σs Sample value set size to build

linkage set
1, 000

for data and meta-data, seven for analyzers). For our run-time ex-
periments, we ran the Redis instances for each scenario on one of
three servers each with an Intel X3470 Xeon Processor, and 24GB
of RAM. For a fair comparison, we have made sure that the Redis
instances for each experiment fully fit in memory and no swapping
occurs. For the SMaSh-R algorithm and implementation of our
search index for theBM25 similarity measure, we use Xapian [27]
search engine library that includes a built-in implementation of the
BM25 function along with a highly efficient disk-based index.

A summary of the input parameters of the system is shown in
Table 3. Unless specifically noted, we use the default parameter
values in Table 3. Note that these default values are ones that one
would naturally choose as a reasonable value for an initial experi-
mentation. We have not performed any learning or experimentation
with a specific data set to derive these values. In the next section,
we also report on the effect of changing these values for each of the
algorithms and data sets.

5.3 Accuracy Results
For the scenarios in this paper, we consider a linkage point to be

relevant if it consists of attributes that are semantically related and
it can be used to perform entity resolution, i.e., (a significant por-
tion of) its corresponding linkage set consists of record pairs that
refer to the same real-world entity. To find the ground truth, we
went through the daunting task of examining hundreds of linkage
points for each scenario that were found using several different set-
tings of each of the algorithms (overall 336 sets of results for each
scenario). We constructed the linkage sets for each of the linkage
points and went through a sample to verify that a large number of
records in the linkage sets refer to the same real-world entity. We
also manually inspected a sample of matching records (e.g., records
that represent IBM in Freebase, DBpedia and SEC) to make sure
there are no linkage points that none of our algorithms can iden-
tify. Table 9 shows some example linkage points in the company
scenario that have been found. The full ground truth along with the
data sets and the details of all the results obtained are available on
our public project web page [30].

5.3.1 Measures
To evaluate the accuracy of the results, we use well-known mea-

sures from IR, namely precision, recall, F measure, reciprocal rank,
and fallout. Precision is the percentage of the linkage points in the
output that are relevant. Recall is the percentage of the relevant
linkage points in the output of the algorithm. The F measure is the
weighted harmonic mean of precision and recall, i.e.,

Fβ =
1 + β2

β2

Re
+ 1

Pr

(9)
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Figure 3: Best precision/recall values for all scenarios

We report the F2 scores that weights recall twice as much as preci-
sion since in our scenarios, a low recall value negatively affects the
ability to perform entity resolution whereas a low precision (and a
high recall) only results in more linkage points to be examined for
relevance. We also report Reciprocal Rank (RR) which is defined as
the multiplicative inverse of the rank of the first correct answer. RR
measures the ability of the algorithm to return a relevant result to
the user high in the ranked results. Fallout is the percentage of all
the possible non-relevant results that are returned in the output. A
high fallout score indicates too many irrelevant results in the output
and therefore poor performance of the algorithm.

5.3.2 Evaluation Results
We have thoroughly evaluated all the algorithms using all the

above mentioned analyzers and similarity functions, and a wide
range of parameters. Here, we only report our most interesting ob-
servations. First, we report the highest accuracy results achieved
by each of the algorithms in each of the scenarios. The highest
accuracy is the best result obtained for each algorithm over all pos-
sible choices of analyzers and similarity functions (we discuss how
to choose the right settings in Section 5.5). As a baseline, we use
the SMaSh-S algorithm with intersection as the similarity function
along with exact or lower analyzers. This setting of the SMaSh-S
algorithm resembles the case where a user tries to manually exam-
ine the intersection of all the values for all the attributes by issuing
standard queries over Web APIs or an RDBMS.

Table 4 and Figure 3 show the best accuracy results achieved
for each SMaSh algorithm in each of the scenarios using different
analyzers and similarity functions. The second column in Table
4 shows the number of linkage points in the ground truth, which
varies from 2 (in fbMovie vs. imdbMovie scenario where the
sources are very different in structure and values) to 76 (in fbComp
vs. dbpComp scenario where the two data sets share a large num-
ber of values that are extracted from Wikipedia). Note that in Table
4, the best precision (and recall) reported may be from a setting
different than that of the best F2. Also note that in Figure 3, each
data point may be from a different setting that achieves the best
precision or recall, and so is different from a traditional precision-
recall curve. The results show that in the majority of the scenar-
ios, SMaSh-X outperforms the other algorithms, whereas SMaSh-
R outperforms SMaSh-S and all the algorithms significantly im-
prove the baseline performance.

Table 5 shows the highest F2 score achieved in each scenario
along with the analyzer and similarity function that achieved this

Table 5: Best accuracy results for each scenario
Scenario Best F2

ds1 ds2 analyzer sim F2

fbComp secComp wordsplit BM25 0.83
fbComp dbpComp lower intersect 0.55
dbpComp secComp wordsplit BM25 0.61
fbDrug dbankDrug exact maxinc 0.71
fbDrug dbpDrug wordsplit BM25 0.65
dbpDrug dbankDrug wordsplit BM25 0.62
fbMovie imdbMovie exact,lower intersect 0.5
fbMovie dbpMovie exact intersect 0.56
dbpMovie imdbMovie split BM25 0.70
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Figure 4: Effect of sample size σv on accuracy

score. The SMaSh-X algorithm has performed best in all the sce-
narios, although different analyzers and similarity functions result
in the highest F2. This shows that as expected, there is no single an-
alyzer/similarity function that can work well in all scenarios. How-
ever, intersection and BM25 similarity functions have performed
best along with exact, lower and word token analyzers. In some
scenarios, the highest accuracy result obtained is relatively low.
For example, in the fbMovie-dbpMovie scenario, the best F2

obtained is 0.56 and the maximum precision is only 0.30. The
reason behind this low accuracy is again the inability of one sin-
gle strategy to find all the linkage points even in a single scenario.
In the fbMovie-dbpMovie data, there are attributes that contain
URLs of movies on which a q-gram or word token analyzer is not
suitable whereas there are attributes containing movie titles that re-
quire these analyzers.

Figure 4 shows the effect of sample size value σv on the SMaSh-
X algorithm for the three company data scenarios, using word token
analyzer and BM25 similarity function. The effect is highly similar
for other analyzers and scenarios. As shown in the figure, very
low sample size values below 250 will result in poor quality and
in some cases reasonable results which only shows small sets of
random values can sometimes be used to find high-quality linkage
points. On the other hand there is no significant change after σv =
1000 for most cases, which shows the effectiveness of using only a
sample of values in the SMaSh-R (and SMaSh-X) algorithm.

Figure 5 shows the effect of each of the filtering methods of the
SMaSh-X algorithm on the maximum F2 score achieved using dif-
ferent settings (shown in the same order as Table 5). All the filters
are effective in all the scenarios (except for one), but each filter be-
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Table 4: Best accuracy results of the SMaSh algorithms
Scenario Best Precision Best Recall Best F2 Best Fallout Best Reciprocal Rank
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fbComp secComp 36 0.03 0.13 0.57 1.00 0.19 0.84 0.97 0.97 0.09 0.40 0.68 0.83 0.03 0.02 0.00 0.00 0.33 1.00 1.00 1.00
fbComp dbpComp 76 0.22 0.22 0.21 1.00 0.57 0.57 0.55 0.55 0.43 0.43 0.42 0.55 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
dbpComp secComp 13 0.02 0.04 0.15 0.50 0.33 0.89 0.89 0.89 0.06 0.17 0.43 0.61 0.00 0.00 0.00 0.00 0.01 1.00 0.25 1.00
fbDrug dbankDrug 17 0.14 0.21 0.36 1.00 0.76 0.94 0.94 0.94 0.40 0.50 0.52 0.71 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00
fbDrug dbpDrug 26 0.07 0.14 0.27 0.60 0.58 0.92 0.88 0.88 0.25 0.36 0.48 0.65 0.01 0.01 0.00 0.00 0.33 1.00 1.00 1.00
dbpDrug dbankDrug 24 0.01 0.05 0.31 0.60 0.86 0.95 0.91 0.86 0.07 0.20 0.47 0.62 0.03 0.01 0.00 0.00 1.00 1.00 0.50 1.00
fbMovie imdbMovie 2 0.00 0.01 0.08 0.50 0.50 0.50 0.50 0.50 0.02 0.03 0.25 0.50 0.09 0.08 0.00 0.00 0.25 0.25 0.11 1.00
fbMovie dbpMovie 22 0.02 0.03 0.05 0.30 0.73 0.95 0.95 0.91 0.09 0.14 0.19 0.56 0.01 0.01 0.00 0.00 1.00 1.00 0.14 1.00
dbpMovie imdbMovie 8 0.01 0.01 0.50 1.00 0.71 0.71 0.71 0.71 0.04 0.07 0.41 0.69 0.01 0.01 0.00 0.00 0.20 0.50 1.00 1.00
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Figure 5: Effect of different filters on accuracy

haves differently depending on the scenario. On the other hand, the
combination of all the filters performs consistently and relatively
comparably to individual filters.

5.4 Running Times
Table 6 shows the load and indexing times of the nine scenar-

ios. The first column shows the time to load the data from a file,
flatten the structure and index the facts. This time is linear in the
number of the facts in the data set (see Table 2). Note that our sys-
tem is also able to fetch facts directly from Web APIs. The rest
of the columns show the time it takes to index instance value sets
both for SMaSh-S (set similarity calculation) and the IR index for
BM25 similarity, using different analyzers. The time shown in the
second column also includes the time it takes to build the reverse
index for values required for building linkage sets for the SMaSh-X
algorithm. This time is also linear in the size of the facts, although
the complete task is clearly much more expensive than just index-
ing facts. The only exception is the secComp data set which has
indexing time comparable to loading time. This is due to the fact
that the data is automatically extracted from documents and con-
tains a large number of instance values which are repeated in each
record. Since we index value sets, the number of values indexed
is much smaller (788K) than the number of facts (4.54M). Over-
all, these times show the scalability of the framework given that
loading and indexing is a one-time process, and more importantly,
can be done in an incremental fashion. As described in Section 3,
our system supports running the indexing in the background and
gradually updating the results.

The running time for the SMaSh-S algorithm across all the sce-
narios, analyzers, similarity functions, and parameters in our ex-
periments was 22.93 seconds on average, with minimum 1.22 sec-

Table 6: Load and indexing time (seconds)
data set load exact+ lower split word 3-gram
fbComp 117.33 1,277.52 514.99 725.13 894.96 4,109.21

dbpComp 113.31 1,081.80 904.93 1,775.87 3,109.40 19,420.09
secComp 289.61 453.49 287.79 326.99 423.54 2,050.25
fbDrug 5.13 30.58 27.29 29.97 41.55 216.81

dbpDrug 12.39 92.25 70.40 113.99 250.28 1,441.49
dbankDrug 108.36 640.72 391.13 853.64 975.80 8,669.88

fbMovie 62.92 347.91 253.97 266.80 388.03 2,123.57
dbpMovie 93.03 685.64 528.76 926.44 1,680.56 9,835.89

imdbMovie 32.01 407.62 255.51 409.96 453.19 2,513.92

Table 7: Running time of the best performing algorithm for
each scenario

Scenario time (seconds)
ds1 ds2 analyzer sim time

fbComp secComp wordsplit BM25 206.13s
fbComp dbpComp lower intersect 9.47s
dbpComp secComp wordsplit BM25 243.54s
fbDrug dbankDrug exact maxinc 2.49s
fbDrug dbpDrug wordsplit BM25 48.56s
dbpDrug dbankDrug wordsplit BM25 47.60s
fbMovie imdbMovie exact,lower intersect 1.29s
fbMovie dbpMovie exact intersect 5.09s
dbpMovie imdbMovie split BM25 68.47s

onds, maximum 119.37, and 23.95 seconds standard deviation. For
the SMaSh-R algorithm, the average was 338.08 seconds, with a
minimum 14.58, maximum 3648.63, and 451.18 seconds standard
deviation. The time for the filtering part of the SMaSh-X algorithm
varied between 0.69 and 1062.59 seconds with average 138.00 and
246.54 standard deviation. Table 7 shows the running time of the
best-performing algorithms in each scenario (maximum F2 values
shown in Table 5). Note that the SMaSh-R algorithm is consid-
erably slower than the SMaSh-S algorithm in our implementation
due to memory-based implementation of set similarity measures
and disk-based IR index. As the size of the data and index increase
beyond the memory size, we expect SMaSh-R to outperform the
SMaSh-S algorithm. It is important to note that these are the times
to complete running the algorithms, although our framework can
return partial results while the data sets are being loaded, indexed,
and matched. In our experience, our system can return a reasonable
number of linkage points in all the scenarios and settings in just a
few seconds.
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Figure 6: Accuracy of top 5 settings ranked by average match
score

5.5 Finding the Right Settings
In addition to the experiments described above, we have also

tested the ability of our framework to find the right analyzer, simi-
larity function, and parameters, without having a ground truth, and
solely based on the average score of the linkage points returned by
the SMaSh-X algorithm. To verify this, we rank the settings (ana-
lyzer, similarity function, and parameters) by the average score of
the top 5 linkage points returned by the SMaSh-X algorithm. Fig-
ure 6 shows the maximum and average F2 score of the top 5 settings
in this ranking for each of the scenarios, along with the maximum
possible F2 score in all settings. The figure shows that in three of
the scenarios, the best setting is in fact among the top 5 settings, and
except for two cases, the top 5 settings have F2 score comparable
to the highest F2 score. In addition to this, we have also experi-
mented with non-overlapping data sets and in most cases, very few
results are returned by the SMaSh-X algorithm, indicating that the
data sets cannot be linked.

5.6 Record Linkage Results
To show how the discovered linkage points can improve the over-

all record linkage process, we discuss one of the scenarios in more
detail, and compare the results obtained using the baseline algo-
rithm and one of the best performing settings of the SMaSh-X al-
gorithm. Table 8 shows the top 10 linkage points in the Freebase-
SEC Company scenario returned by the baseline algorithm, i.e., the
results of finding the intersection of the set of value strings trans-
formed into lowercase. Table 9 shows the top 10 linkage points
returned by the SMaSh-X algorithm for the same scenario, using
wordsplit analyzer and BM25 similarity function and the default
parameters shown in Table 3.

Although the focus of this paper is not on the final record link-
age algorithm, and there are many ways that the discovered linkage
points can be used to establish links between the records, here we
show how the discovered linkage points can be used to enhance
the results of two simple linkage algorithms. The first algorithm
matches two records if the values of the attributes in the linkage
point match using the same matching function used to discover the
linkage points. If the matching function returns a similarity score,
only the records with the highest score are matched. This means
that for SMaSh-S using lower analyzer, this algorithm links records
that share the same (lowercase) attribute value, and for SMaSh-X
using BM25 similarity, only records with attribute values having
the highest similarity score are matched. The number of records
that match using this algorithm are shown in column match# in Ta-
bles 8 and 9. The second algorithm uses the constraint that each
record can be linked with at most one record in the other data set

due to the fact that the two data sets are clean. The algorithm sim-
ply removes any one-to-many matches from the results of the first
algorithm. This means that we link two records only if the match-
ing algorithm is able to find a one-to-one relationship for the two
records. The results are shown in the link# column in Tables 8 and
9. We have manually verified a subset of the linked records and
estimate that the precision of this algorithm in linking records that
refer to the same real-world entity is above 90% when the linkage
point is accurate (those marked with ∗ in Table 8 and all the linkage
points in Table 9).

The results in Table 8 show that 7 out of the top 10 linkage points
returned by the baseline algorithm are accidental matches, mostly
as a result of numerical values. Note that simply removing the at-
tributes that have numerical values in advance is not possible in this
case since for example the key attribute in freebase contains both
numerical values that result in false matches, and string and numer-
ical values that result in correct links. Also the ticker symbol
and stockSymbol attributes returned by baseline result in many
inaccurate (one-to-many) links, which is a result of companies in
different countries sharing the same stock symbol, and many com-
panies having values such as None or N/A as their stock symbol.
Also note that the name attributes link only 271 out of the 1,981
records in SEC.

Table 9 shows that the wordsplit analyzer and BM25 similarity
are more effective in linking records in the two data sets, and all
the discovered linkage points by the SMaSh-X algorithm are ac-
curate (i.e., result in accurate links). It is worth mentioning that
even the first linkage algorithm results in a reasonable number of
links in this case, and that many one-to-many matches link com-
panies that are not the same, but are highly related (e.g., Pixar
and Walt Disney that are matched due to sharing board mem-
bers). Overall, the union of all the one-to-one (and highly accu-
rate) links established is 1,791 (out of maximum 1,981 possible
links) which is 233 links (15%) more than what could be found us-
ing the accurate linkage points returned by the baseline algorithm.
Note that in some other scenarios, the baseline approach returns no
accurate linkage points. For example, in the DBpedia-SEC Com-
pany scenario, DBpedia does not contain the key cik attribute or
a large number of stock symbols, whereas many numerical or date
attributes exist in both data sets. Also, it is important to note that
in all these real-world scenarios, there is no single magical linkage
point that can effectively link a large number of records. Therefore,
a combination of several linkage points must be used to derive the
largest number and highest quality of links between the data sets.

6. DISCUSSION
In light of the results presented in Section 5, here we review the

assumptions made in the design of our proposed framework, and
how it fits in the overall record linkage process. One of the key
assumptions we make in this work is that the input data sources
are sets of records that describe a set of entities of the same type
(e.g., each record in data set fbComp describes one entity of type
company), although the (nested) records can contain descriptions
of entities of other types (e.g., a company record can contain infor-
mation about its key people, location, subsidiary companies, etc.).
This requires the input data to either: 1) include a notion of en-
tity type so that we can query only for one type of entity; this is
the case for Freebase and DBpedia, and 2) describe only one en-
tity type that is known to the user; this is the case for data sets like
IMDb or DrugBank. In general, the input data sets may contain no
information about the entity types, or the correspondence between
the types between two data sets may not be clear. For example, if
we consider all Freebase and all DBpedia as input, we first need to
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Table 8: Top 10 linkage points returned by baseline algorithm in Freebase-SEC Company scenario
attr1 attr2 score match# link#

freebase -> company -> key sec -> company -> transactions -> shares 4208 29,520 2
freebase -> company -> key sec -> company -> holdings -> shares 3570 9,642 39

freebase -> company -> ticker symbol sec -> company -> stockSymbol 1421 6,392 1,370 ∗
freebase -> company -> key sec -> company -> cik 1,381 1,381 1,375 ∗

freebase -> company -> founded sec -> company -> transactions -> shares 317 1,116,105 0
· · · -> headquarters -> postal code sec -> company -> holdings -> shares 291 4,141 21
· · · -> number of employees -> number sec -> company -> transactions -> shares 290 45,324 2
· · · -> headquarters -> postal code sec -> company -> transactions -> shares 286 10,219 7

freebase -> company -> name sec -> company -> name 271 271 271 ∗
· · · -> number of employees -> number sec -> company -> holdings -> shares 262 12,194 1

Total number of records accurately linked using the above linkage points (those marked with ∗): 1,558

Table 9: Top 10 linkage points returned by SMaSh-X algorithm in Freebase-SEC Company scenario
attr1 attr2 score match# link#

freebase -> company -> id sec -> company -> name 20.21 667 649
freebase -> company -> name sec -> company -> name 19.88 1,570 990
freebase -> company -> key sec -> company -> name 18.77 1,575 986

freebase -> company -> major shareholders -> name sec -> company -> officers -> name 18.45 151 113
freebase -> company -> major shareholders -> id sec -> company -> officers -> name 17.66 124 100

freebase -> company -> key sec -> company -> cik 15.21 1,381 1,375
freebase -> company -> major shareholders -> name sec -> company -> directors -> name 14.62 295 150
freebase -> company -> major shareholders -> id sec -> company -> directors -> name 13.86 229 139

· · · -> /business/employer/employees -> person -> name sec -> company -> officers -> name 13.63 1,766 679
· · · -> /business/employer/employees -> person -> id sec -> company -> officers -> name 13.52 1,055 917

Total number of records linked using the above linkage points: 1,791

identify that entities of type organization in Freebase are related to
entities of type company in DBpedia ontology. For our framework
to work in such cases, an extra step of identification of entity types
and their relationship is required. For the case of RDF data sets, this
problem is a specific type of ontology matching problem where the
goal is matching (RDF) classes. In our recent work [7] we study
this problem and propose an efficient type matching method based
on locality sensitive hashing. Combining the two steps and provid-
ing a large-scale end-to-end matching of data sets of mixed types is
an interesting direction for future work.

Once the linkage points are identified, there are several ways
to perform or improve the record linkage using the output of our
framework. In Section 5.6, we showed the results of two linkage
methods that both follow the basic approach of using the top-k link-
age points returned, take each individual linkage point to perform
the linkage, and then find the union of the linkage sets. However,
one of the main motivations of this work is to provide a framework
for the semi-automatic construction of ER rules that start from the
linkage points returned by the algorithms developed in this paper.
Declarative systems such as Dedupalog [1] or HIL [11] can use our
linkage points, which already have good linkage properties on an
individual basis, as building blocks that are combined in various
logical expressions and multiple rules to achieve even higher pre-
cision and recall. For example, a rule could match two entities by
using “name” AND “phone” OR by using “name” AND “address”,
where “name”, “phone”, and “address” would be linkage points
pre-discovered using our framework. In effect, our linkage points
form the basis for the subsequent development of the various rules
for entity resolution. We are currently investigating the applicabil-
ity of our framework in the context of such declarative languages
for entity resolution. Note that not only better linkage rules can be
developed using a ranked list of linkage points, it is also possible to
improve the efficiency of the linkage process. For example, if a set-
ting of the SMaSh-X algorithm that uses the exact analyzer results
in one linkage point with a high coverage and strength, and several
settings that use q-gram analyzer result in multiple good-quality
linkage points, it is more efficient to execute the exact matching of
the values first, and then perform the more expensive q-gram based
matching on the remaining records.

In Section 5.5, we showed how our framework can be used to
find the right settings without having a ground truth. The result we
showed was based on running the algorithms with several different
analyzers, similarity functions, and parameters, and ranking the set-
tings based on the average score of the top linkage points returned.
It is important to note that such extensive running of the algorithms
using different settings is not required in practice. First, the quality
of the linkage points returned by one setting can often be used to es-
timate the performance of another setting. For example, if a 3-gram
analyzer works very well (or very poorly), we can expect that a 4-
gram analyzer cannot perform significantly better and so there is
no need to run the algorithm with this analyzer. Moreover, the task
scheduler along with the system’s API and Web interface play an
important role in determining the right settings. The user can ver-
ify the partial results returned by each setting while the algorithms
are still running, and stop running tasks or start new ones based on
the previous results. Even if the user decides to run tens of settings
(as done for the experiments in Section 5.5) the task scheduler will
handle running of the algorithms using a simple configuration file
and only a few calls to the API (or clicks on the Web interface). Our
experience in finding optimal settings in the scenarios described in
this paper and other real-world scenarios has been very promising.
Nonetheless, an interesting direction for future work is adopting
state-of-the-art automatic algorithm configuration techniques such
as ParamILS [12] in our framework.

7. RELATED WORK
As mentioned earlier, our work is closely related to the very

active research areas of ontology matching, (database) schema
matching, and duplicate detection. Here, we only provide a brief
overview of some recent existing work related to ours, and refer the
readers to recent survey articles and books for a complete overview
of the work in these areas [5, 8, 16, 18].

In comparison to schema matching, our work can be seen as an
all-to-all instance-based matching that has been recognized as ex-
tremely useful but prohibitively expensive operation in the litera-
ture [18, page 343]. Based on the classification of the ontology
matching techniques by Euzenat and Shvaiko [8, page 105], our
work can be seen as fast, approximate matching-based extension
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comparison techniques, although our final goal in this paper is data
interlinking and not providing a full alignment. Two closely re-
lated instance-based matching approaches are the work of Warren
and Tompa [21] and iMAP [6]. They also use a search strategy
to find schema correspondences, and take advantage of the infor-
mation gained from the overlapping instances. However, we use
a novel and highly efficient search strategy that treats the match-
ing function as a black-box and uses specific measures to reduce
search space and improve search results. This allows the careful
study and evaluation of the search algorithms we have performed
in this work, and application on very large heterogeneous schema-
free (Web) data sources as opposed to relational data with a limited
number of attributes.

Our work can also be seen as a first step towards automatic dis-
covery of linkage rules (or linkage specifications). To the best of
our knowledge, this problem has only recently been studied for
Web data, and as a part of SILK [13] and LIMES [17] RDF link
discovery frameworks. These approaches use learning algorithms
and rely on a number of manually-labeled link candidates. The
SILK framework [13] uses a genetic programming paradigm to
learn linkage rules from a set of reference links. LIMES’s RAVEN
algorithm [17] has the advantage of performing matching of classes
and therefore does not require matching of entities of the same type.
On the other hand, it also requires a number of manually-labeled
link candidates to perform linking, and a user-specified threshold
factor. Our approach is complimentary to such learning approaches
as it can provide a number of candidate linkage points (as opposed
to a single best-performing rule that uses a fixed set of attributes),
and can make use of a larger set of instance values. This is also
the reason we have not used the same data sets and linkage rules
from previous work as ground truth to evaluate our framework. An
important issue here is that even if source and target data describe
the same entity types, different portions of instances may require
different linkage rules. For example, a small portion of data may
contain identifiers that can be used to effectively discover links (i.e.,
are strong linkage points). Our experiments over real data confirm
that our framework is capable of finding such linkage points.

8. CONCLUSION
In this paper, we presented a framework for discovering linkage

points over large semistructured Web data. Our framework includes
a library of lexical analyzers, a library of similarity functions, a set
of novel search algorithms along with effective filtering strategies.
We experimentally evaluated our framework in nine scenarios in-
volving real Web data sources in three domains. The data sets used
in our experiments along with the results are available [30]. We are
currently exploring a number of interesting directions for future
work. We are planning to further extend our similarity function li-
brary to include functions that take into account semantic similarity
of the values in addition to syntactic and lexical matching. Our goal
is to extend our system to publish the linkage points we discover us-
ing existing standards such as the recently proposed R2R mapping
language [2]. In addition, we are planning to use the SMaSh algo-
rithms to facilitate online analytics of enterprise data using external
Web repositories as a part of the Helix project [9].
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