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ABSTRACT

Tabular data is an abundant source of information on the
Web, but remains mostly isolated from the latter’s inter-
connections since tables lack links and computer-accessible
descriptions of their structure. In other words, the schemas
of these tables — attribute names, values, data types, etc. —
are not explicitly stored as table metadata. Consequently,
the structure that these tables contain is not accessible to
the crawlers that power search engines and thus not accessi-
ble to user search queries. We address this lack of structure
with a new method for leveraging the principles of table
construction in order to extract table schemas. Discover-
ing the schema by which a table is constructed is achieved
by harnessing the similarities and differences of nearby ta-
ble rows through the use of a novel set of features and a
feature processing scheme. The schemas of these data ta-
bles are determined using a classification technique based on
conditional random fields in combination with a novel fea-
ture encoding method called logarithmic binning, which is
specifically designed for the data table extraction task. Our
method provides considerable improvement over the well-
known WebTables schema extraction method. In contrast
with previous work that focuses on extracting individual re-
lations, our method excels at correctly interpreting full ta-
bles, thereby being capable of handling general tables such
as those found in spreadsheets, instead of being restricted to
HTML tables as is the case with the WebTables method. We
also extract additional schema characteristics, such as row
groupings, which are important for supporting information
retrieval tasks on tabular data.

1. INTRODUCTION
For structured data that is never stored in a database sys-

tem, a document containing a data table (e.g., a spreadsheet)
may be the closest it comes to being in a machine-readable
format. Consisting of textual values in a two-dimensional
grid format, data tables owe their appeal primarily to their
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high information density. In other words, due to the se-
mantic meaning communicated in their layout and struc-
ture, the need for descriptive words is minimized, allowing
tables to communicate more information than prose in the
same amount of space. The power of data tables is evi-
dent in their abundance in published documents of all types
on the Web, including spreadsheets, HTML tables in web
pages, tables embedded in PDF documents, and many oth-
ers. In essence, these files can collectively be viewed as an
enormous distributed database (an informal web search at
the time of this writing returns over 50 million spreadsheet
results and prior work has found over 14.1 billion HTML
tables [2]). However, the implicit or visual structures em-
ployed in data tables are not easily machine-recognizable,
and consequently this database lacks most of the features
that enable the efficient exploration and querying abilities
of a standard DBMS.

Numerous research efforts have attempted to extract struc-
ture and information from data tables, such as the well-
known technique of Google’s WebTables, and we examine
those efforts in more detail in Section 2. In general, these
approaches rely on the high quantity of data tables that
have simple structure, in order to avoid dealing with those
data tables with more complex structure. We say a table
has simple structure if it consists of one row of header val-
ues, followed by one or more rows containing data values.
The values in the header row describe the domain of val-
ues in the data rows beneath it, while the data rows con-
tain tuples that roughly correspond to rows in a relational
database. Many tables exhibit simple structure, which may
justify the focus placed on them by WebTables and others.
However, many tables are more complex. As one example
of a more complex structure, tables that contain geographic
data about cities are commonly organized into groups by
state/province. These groups may be designated in several
ways, but one popular technique is to insert a group header
row containing the name of the state/province as a single
value, directly above the data rows that it includes. This row
is not a data row like the others in the table. Our approach
involves classifying each row based on its function to guide
our extraction process. The row functions that we consider
are given in Section 3. In addition to achieving high accu-
racy rates when classifying the function of individual rows,
our focus on handling complex structure results in very high
accuracy rates for correctly interpreting full tables.

To guide the structured data extraction process, it is help-
ful to understand why explicit structural information is not
present in these documents. The table extraction task is
challenging because explicit structural information is not
present in the table formats that hold them, due to an es-
sential difference between data intended for computers and
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that intended for humans. While tabular data intended for
computers (e.g., XML, RDF) is published in formats that
communicate the structure explicitly, in well-specified ways
that allow the data’s schema to be easily accessed by al-
gorithms [14], data intended for humans (e.g., spreadsheets,
PDF, DOC files) contains structural information that is typ-
ically communicated visually (i.e., implicitly), such as the
positioning, styling, and content of titles, column headers,
and data. Consequently, there is no straightforward method
for directly retrieving the structured data that human-oriented
documents store. Although many data publishers recognize
this and provide their data in multiple formats to allow for
computer or human consumption, a large number of datasets
still exist only in human-oriented formats, and thus lack the
necessary metadata for querying.
In order to address these shortcomings, we developed a

fully automated method for extracting implicit metadata
from tabular data on the Web. Our technique utilizes vi-
sual attributes of table cells as input for a trained classifier
based on conditional random fields [13], a powerful frame-
work for sequence labeling tasks. The classification proce-
dure involves extracting attributes of individual cells, com-
bining them using a novel logarithmic binning method that
we introduce, and processing them with the classifier. The
classifier’s output allows us to discern between relational and
non-relational tables, and furthermore to identify schemas
for the relational ones — that is, to classify the constituent
rows of each relational table as either header rows, data
rows, non-relational metadata rows, or rows of a few other
types that we have identified. As our experimental evalua-
tion reveals, we improve on the commonly-used WebTables
extraction method by accounting for more complex table
structure so that any row can be recognized as a header row.
We perform tests on a new corpus of spreadsheet tables and
HTML tables that we crawled from the Web, along with an
existing corpus collected by other researchers [16]. In tests
on both our new corpus and the existing corpus, the ability
of our method to correctly interpret full tables without error
is particularly apparent when compared to alternatives.
Our work includes the following contributions. First, we

define a set of row classes that encompasses a broader range
of row functions than previous work, enabling more com-
plete post-processing techniques for using the data in other
applications. Second, we apply a novel logarithmic binning
scheme to encode collections of individual cell attributes as
row features and show that this performs better than tech-
niques presented in previous work [2, 19]. Third, in addition
to HTML tables, we apply table extraction techniques to
spreadsheets, which we believe are a more challenging, but
potentially more rewarding, source of tabular data. Finally,
our evaluation shows substantial improvements over alter-
native methods, especially when measuring our method’s
ability to correctly interpret full tables (that is, correctly
classifying every row in a table with no errors). We believe
that these aspects of our approach, in combination, provide
the best available technique for extracting structured data
from the enormous collection of available data tables.
The rest of this paper is organized as follows. Section 2

surveys prior work and describes our chosen classification
method, conditional random fields. Section 3 presents our
schema extraction method while Section 4 discusses com-
mon table patterns and their relevance for table extraction
accuracy. Section 5 provides an evaluation of our method’s
application to spreadsheets and HTML tables. Section 6
highlights the benefits of our approach and adds concluding
remarks.

2. RELATEDWORK

2.1 Table Extraction
Many techniques for processing data tables have been pre-

sented (e.g., [5, 9, 12, 15, 17, 19, 23, 24]. See [8] for a sur-
vey). The initial challenge of processing tables is to deter-
mine whether a given table contains usable data that is in
a suitable format for extraction. In database terms, we call
such tables relational and other tables non-relational. Rela-
tional tables are defined by the relational model introduced
by Codd [6], wherein a relational table consists of a set of
attributes (typically found in a header row, such as “Name,
Gender, Age”) and a collection of one or more “tuples” (rep-
resented as data rows where each cell value is a member of its
column’s attribute domain, such as “John, Male, 30”). Ta-
bles containing relational data can also include values that
do not fit into the relational model (i.e., non-relational val-
ues), such as a title, blank rows, aggregations (e.g., subto-
tals), and more. In this paper, we regard these tables as
relational, whereas most prior work has treated these tables
as non-relational. In our view, non-relational values that
serve to supplement a relational table should not disqual-
ify the table from being relational. As an example, we do
not want to discard tables in which the first row contains a
table title as non-relational. However, there are also many
tabular grids that are created for purposes other than dis-
playing relational data, such as HTML tables used for page
layout and spreadsheets used as forms. These table types
do not contain relational data that can be processed using
relational operators such as projection or selection, so they
should be discarded.

Several techniques focus on the relational/non-relational
decision problem. Chen, Tsai, and Tsai [5] count the number
of cells that are similar to their neighbors in terms of text
length and datatypes, and use thresholds on these values to
perform relational/non-relational classification on a set of
tables from airline web sites. Instead of using a rule-based
approach, Wang and Hu [24] treat the task of identifying
relational data tables as a machine learning classification
problem. They develop several features based on the layout
of an HTML table and the distributions of cell lengths and
content types, which serve as inputs to decision tree and
support vector machine classifiers. In other work, relational
tables are alternatively called “genuine tables” [24] or tables
containing “true relations” [3].

Other methods go further and attempt to categorize the
data found within data tables based on its function. The
well-known approach of WebTables [2, 3, 4] builds upon
prior work by using a machine learning classifier to distin-
guish between relational and non-relational HTML tables
on the Web. The classifier is tuned for recall over preci-
sion, counting on subsequent processing to filter out non-
relational table values. For relational tables, it attempts
to extract any embedded metadata such as the labels and
types of the columns, thereby learning the schema for the
table. However, in WebTables, only the first row of a table
is considered a candidate for the table header. In essence,
this is due to the simple table structure assumed by WebTa-
bles and derived methods, including the work of Limaye et
al. [16], which extracts relations from HTML tables, but
depends on HTML formatting methods to indicate header
cells. As we show in our evaluation, such an assumption
discards a significant number of tables that have more com-
plex structures. Our approach is designed to handle such
complexities, thereby increasing the number of tables avail-
able for systems that process them. Some work on table
extraction also relies on external knowledge sources, such
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as YAGO [16] or custom fact databases extracted from text
on the Web [23]. Our approach does not include such data,
thereby allowing it to run accurately even on tables with
contents that are not so globally relevant that they appear
in knowledge bases.
Systems that rely on techniques like these are proliferat-

ing. Such systems use data extracted from data tables for
different purposes, from search engines over structured data
documents [18], to database augmentation using “facts” gar-
nered from web tables [25], to automated ontology construc-
tion [12]. These systems handle tables with simple structure
only, and consequently exclude large quantities of valuable
table data. The approach presented in this paper is more
comprehensive, and would provide larger and cleaner sets of
data tables for applications such as these, or more general
attempts at schema matching across a heterogeneous collec-
tion of data tables from the web, such as those introduced
by Bernstein et al. [1].

2.2 Conditional Random Fields
Conditional random fields (CRFs) [13] are undirected graph-

ical models introduced by Lafferty et al. that can serve
as classifiers for sequence labeling tasks. Frequently used
for natural language processing, such as part-of-speech tag-
ging, CRFs have become a popular technique showing ac-
curacy improvements over Hidden Markov Models (HMMs)
and Maximum Entropy Models (MEMs) in many scenarios
[13, 19].
CRFs are designed to maximize the probability of a se-

quence of labels Y , given an observation sequence X. The
estimated joint probability P (Y |X) is defined to be

1

Z(X)
exp

(

∑

j

λjfj(Y i−1,Y i,X, i) +
∑

k

µkgk(Y i,X, i)

)

.

Here i is an index for the sequences X and Y . F =
⋃

j fj
and G =

⋃

k gk are families of binary feature functions. Al-
though arbitrary functions may be used, we employ the in-
dependence assumptions of linear chain CRFs, where each
fj is active for a distinct bigram of labels (i.e., a distinct
pair of consecutive labels) and each gk is active for a spe-
cific combination of a label and observation. Values λj and
µk are estimated model parameters that are computed from
training data. Normalization factor Z(X) ensures that the
probabilities of all label sequences sum to 1 for a given ob-
servation sequence X. As Lafferty et al. showed, computing
Z(X) is tractable without considering every possible obser-
vation sequence [13].
In the data table scenario, X represents the list of rows in

the table, and Y represents the corresponding row classes.
As an example, a transition function fj may correspond to
the transition from a header row to a data row, while a state
function gk could be active for header rows that contain no
numeric values (the row features used by our method are
described in Section 3.3).
Training a CRF model involves estimating the λj and µk

parameters using one of several training methods. In this
paper, we use the limited-memory BFGS algorithm [22], an
iterative procedure that scales well for large datasets.
After a CRF is trained, classifying a new sequence is

straightforward and fast, using a dynamic programming ap-
proach. In previous work, Pinto et al. [19] applied CRFs
to the task of labeling rows in data tables, but limited their
focus to ASCII tables from plain text documents. ASCII ta-
bles are useful, but we believe the quantity of other sources
of data tables and the ease of identifying and extracting data

from HTML tables and spreadsheets makes them more in-
triguing targets. Their study includes many row types that
are specific to ASCII documents, while other generic row
types, such as aggregate rows (e.g., containing a subtotal)
are not treated separately from data rows. In addition, the
variety of structures that are possible in other formats in-
troduces different extraction challenges that we discuss later
in this paper. In Section 3, we detail our method for using
CRFs in the table extraction task.

3. SCHEMA EXTRACTION METHOD
The crux of our technique involves extracting relevant row

features to represent each row of a data table, and then clas-
sifying each row using one of several row classes that we have
defined. As with natural language sentences, data tables are
constructed in accordance with general principles that make
it easy for viewers to interpret the data without explicit in-
structions for how to do so. These widely-understood prin-
ciples allow the communication of schema information based
on implicit rules for formatting and positioning of data cells.
We introduce a collection of features that preserves the for-
matting information present in data tables and a collection
of row classes that more formally encapsulates these prin-
ciples. A system built on these components can extract
schema information that describes the structure of a data
table in a fully automated manner.

To find data blocks and extract their schemas, we em-
ploy techniques similar to, though more general than, those
used by WebTables [3]. WebTables determines whether a
given table is relational by using machine learning tech-
niques to train a classifier that labels tables as relational
or non-relational, based on several holistic features of the
table. In WebTables, tables classified as non-relational are
discarded. Then, tables classified as relational are subjected
to additional machine learning-based classification to detect
whether the first row of the table serves as a header for
the table. As we show in Section 5, assuming that column
headers appear in the first row of a table disregards ap-
proximately 32% of tables, which are more complicated, in
a collection of annotated HTML tables. Furthermore, this
assumption is invalid for an alarming 75% of spreadsheets.
In other words, the WebTables approach only applies to a
fraction of all data tables (68% and 25% of HTML tables
and spreadsheets, respectively), due to its assumptions of
simplicity for the structure of the data being processed.

From our analysis of a large number of downloaded spread-
sheets and HTML tables, we observed that headers, data,
and other row types are frequently intermixed throughout a
single data table. As a result, our approach is based on a
collection of row classes that we have created to describe the
function of rows in nearly all true relational data tables that
we have encountered. For instance, one row class represents
data rows with the label “D”, while the label “H” represents
a header row. Based on a large collection of hand-annotated
data tables that we use as a training set, we use supervised
classification in the form of a CRF to estimate the correla-
tion between row features and row labels, and also to deter-
mine the relative likelihoods of transitioning from one row
class to another. These estimates are used by the CRF to
assign labels to rows outside of our training set.

Processing individual tables with our CRF-based classifier
allows us to determine which tables contain truly relational
data and to extract schema information by utilizing assigned
row classifications. The first distinction is necessary because
people use spreadsheets and HTML tables for many creative
purposes that do not communicate structured data. For
example, spreadsheets can be used as forms or instruction
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manuals, while HTML tables are used far more often for
controlling page layout than for actual data representation.
We consider these tables to be non-relational, since they do
not contain records of consistent types, and they are not
useful to our schema extraction endeavor. As a result, given
an input document, our technique can be applied to all data
tables, but low scoring tables are treated as non-relational
and discarded.
After determining that a table is relational, the row classes

assigned by our classifier can be used to augment the original
table with a more strictly relational structure, which can
then be processed in a variety of ways. The most obvious
approach is to concentrate on the data by simply discarding
specific types of rows that are not relevant. In this way, our
procedure can be used as a pre-processing phase to maximize
the pool of usable tables that are accessible to downstream
applications. This is the primary motivation for our method,
as it allows the handling of tables that are outside the scope
of the WebTables method. Of course, the results of our
method are useful beyond serving as a simple filter for data
rows. For example, when a table of city-level statistics is
partitioned by state and this is indicated by a “group header
row” before each partition, the state names will be lost if
data rows are treated individually. This is analogous to
database normalization, in a sense, because the state name
appears only once, yet it applies to many data rows. Thus,
to output a more complete table, one can “denormalize”
this data by appending a column to the resulting table that
contains the state name. The conversion of tables to a fully
relational structure is not the primary focus of this work,
but should be an interesting area to explore in the future.
The schema extraction process is visualized in Figure 1. In

the rest of this section, we introduce data table terminology
and concepts, define row classes that we attempt to identify
within each table, describe the row features that we use as
input for our classifier along with the details of the classifier
itself, and finally outline how the output of the classifier can
be used to interpret the data tables.

3.1 Preliminaries
Before we describe our method for identifying and extract-

ing the layout of the tabular data, referred to as its schema,
we briefly describe some concepts used in our schema extrac-
tion methods. Documents (i.e., spreadsheets, HTML pages)
containing tabular data are divided into data tables, which
are grids of table cells whose schemas are yet to be deter-
mined. These typically correspond to individual worksheets
of a spreadsheet or individual HTML tables in an HTML
page. Each relational data table has a schema, which, in
our context, consists of attribute names, values, and types,
where attribute names are column titles, attribute types are
the types of values in the column, and attribute values cor-
respond to data values in the column’s cells. Column names
are stored in a special row or rows, usually near the head
of the table, called header rows, while the data is stored
in rows referred to as data rows. The data table may also
contain descriptions of data, which we refer to as metadata.
Metadata appears for several reasons, such as table titles,
notes about the original source of the data, and aggrega-
tions such as column subtotals. Some metadata rows are
valuable in interpreting the table’s data, such as when ta-
ble data is grouped and a row with a single value serves
as a group header, describing a category for the following
rows. The goal of our schema extraction process is to iden-
tify valid data tables along with their associated schemas
and data values, which can be subsequently stored in a re-
lational database or processed for a custom application.

Figure 1: The row labeling process for a sample data table.
The list of values on the right are the resulting row labels.
In this case, the classifier correctly identified the first row as
a title row, followed by two non-relational rows, followed by
a header row, etc.

Both spreadsheets and HTML pages can contain tabu-
lar data. While spreadsheets consist entirely of data tables,
HTML pages can contain additional content, as well as data
tables in the form of HTML tables. HTML tables are de-
fined by the <table> tag, and consist of a collection of rows
and cells, denoted by <tr> and <th>/<td> tags, respec-
tively. HTML tables have similar layout options to spread-
sheets, including merged cells (through the use of rowspan
and colspan attributes), header positioning, and metadata
row inclusion. In addition, unlike spreadsheets, HTML ta-
bles support the inclusion of some additional structure rele-
vant to our task, namely the <thead> and <th> tags, which
serve to mark header regions and cells in tables. However,
while the presence of these tags is a useful feature in deter-
mining the type of rows they occur in, they are often used
for controlling layout and style, rather than for defining re-
lational header rows in HTML tables. We also found that
many HTML tables do not make use of these tags, as was
also observed in prior work [18, 26]. An added complexity
when processing HTML tables is the determination of which
visual styles apply to the text in each cell. Our system for
importing HTML documents incorporates Cascading Style
Sheets to address this, including inline, embedded, and ex-
ternal style sheets, when evaluating the visual attributes of
table cells. However, we observed that the external style
sheets only yield modest improvements in accuracy, at the
cost of slower processing speeds due to the increased number
of resources that must be downloaded for each document.

Another consideration that must be made is how to handle
tables that are not a simple n x m grid of table cells. Merged
table cells (via the colspan and rowspan HTML attributes
or a spreadsheet’s “merge cells” feature) and nested HTML
tables are two ways that this situation arises. Tables with
either of these structures are accepted by our implementa-
tion. Our classifier includes features indicating the presence
of merged cells, and after classification takes place, multiple
copies of merged cell values are substituted for the original
cell in header and data rows, so that each cell contains an
appropriate string. Finally, unlike some previous work [24],
we attempt to extract schemas from all HTML tables, in-
cluding nested tables (i.e., not just leaf tables).

3.2 Row Classes
The vast majority of table rows serve functions that can

be divided into a small set of row classes (each identified
by a single-letter row label), which we describe here. Each
represents the classification for individual rows of a data
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table, as defined in Table 1. A minimal fraction of rows
we observed (less than .01%) did not fit cleanly into one of
these classes, such as rows containing notes beside cells that
otherwise contain data values. In these cases, we assign the
row label of the dominant class of the row.

Table 1: Row class definitions.

Label Description

H Header rows contain cell values that describe the
values contained in the subsequent data rows of
that column.

D Data rows contain data records (or tuples in re-
lational parlance).

T Title rows describe the entire data collection
found in the data table.

G Group header rows provide categories for subse-
quent rows, for example a table containing de-
mographic data about cities may be grouped by
country.

A Aggregate rows contain (typically numeric)
summaries of preceding rows, such as to-
tals/subtotals.

N Non-relational metadata, such as a note, clar-
ification, or any text that does not contribute
data or structure to the data table.

B Blank rows contain only empty cells.

3.3 Row Features
As with many machine learning tasks, a large factor in

our classifier’s accuracy is the quality of the input features.
A difficulty with the current formulation of our extraction
problem is that we desire a label for each row, yet each
row consists of constituent cells, which can exhibit differing
sets of attributes. Our approach to feature selection involves
extracting a collection of attributes for individual cells, then
combining attributes from all cells in the row using a novel
binning scheme, in order to construct a set of row features.
We first describe the cell attributes, followed by our method
for combining them into row features.

3.3.1 Cell Attributes
We use a large battery of individual cell attributes as the

basis for our features. These cell attributes fall into the fol-
lowing three broad categories, with specifics of each feature
given at the end of this subsection.

• Layout attributes.

Header rows often contain merged table cells with cen-
tered text, whereas data rows rarely contain merged
cells and are typically right- or left-justified, so we
make sure to include these properties as cell attributes.
Additionally, for HTML tables, we incorporate the ef-
fects of tags like <thead> and <th> tag on the align-
ment of text within their cells (centered by default).

• Style attributes.

Various font styles are more common in header rows
or title rows than data rows, such as bold, italic, or
underlined text. Differences in text and background
colors and variations in date and number formats can
also be used to differentiate between rows of distinct
classes, so such attributes are extracted in our method.

• Value attributes.

Header rows often contain relatively short textual val-
ues, rather than numbers or dates. While data rows

may contain many empty cells, header rows typically
contain few to zero blank cells across the full width
of the table. Aggregate rows often indicate that the
row contains a total or subtotal, so we include an at-
tribute to match the case insensitive string total. All
of these traits are extracted from data tables and used
as cell attributes.

• Similarity attributes.

Similarity attributes are formed as conjunctions of at-
tributes of neighboring cells. For each cell c, neighbor-
ing cell c′ (within the same column), and attribute α,
we compute two similarity attributes for c, cα,A and
cα,B . We define cα,A = cα ∧ c′α and cα,B = cα ∧ ¬c′α.
These similarity attributes express similarities and dif-
ferences between cells in neighboring rows, which are
good indicators for row classes. (Note that for non-
Boolean attribute α, cα,A = 1 iff cα = c′α and cα,B is
not defined).

The full list of individual cell attributes is given below.
Boolean attributes are prefixed with “Is” and end with “?”.
Other attributes take discrete textual values. The short text
and long text attributes are given to text cells that con-
tain text shorter or longer than one standard deviation from
mean cell text length in a sample of data tables. Similar-
ity attributes are conjunctions of individual cell attributes
across multiple rows and are not listed below.

Table 2: Cell Attributes by Type

Layout Style Value

IsMerged? IsBold? IsEmpty?

Alignment IsItalic? IsText?

IsUnderlined? IsNumeric?

IsColored? IsDate?

Font IsShortText?

Format IsLongText?

IsTotal?

3.3.2 Feature Binning
As with any machine learning based approach, the goal

of the training process is to generalize the training data so
that new, previously unseen data can be correctly classified.
In the case of classifying rows in data tables, we encounter
additional challenges to achieve high generalization of our
classifier. As an example, upon encountering a 10-column
spreadsheet where one of the rows contains 7 columns with
centered text, a classifier should make an informed decision
on how to label this row based on rows from a training set
that share similar characteristics. In this case, it is impor-
tant that other 10-column rows with 7 centered columns
share a feature with this row, but we may also want an 11-
column row with 8 centered columns to help inform the clas-
sifier’s decision. Classifiers achieve highest accuracy when
fed discriminative features, so we must decide on a feature
encoding that properly respects these similarities.

One way to encode cell attributes into row features is with
a linear encoding. That is, the percentage of cells in a row
that share a cell attribute is used as a real-valued (i.e., non-
Boolean) feature, with a value between 0 and 1. Linear
feature encodings are used in several previous approaches
to data table extraction, including the “CRF Continuous”
method described by Pinto et al. [19]. However, using per-
centages for feature values can have some drawbacks. For in-
stance, this approach treats a row with one numeric column
as being more similar to a row with zero numeric columns,
in terms of the distribution of row classes, than a row with
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Table 3: Example feature encodings for raw feature value
“3 of 11 row cells are numeric”. The linear encoding
method uses real-valued features, while the other methods
use Boolean features.

Encoding Feature Name Value

Linear “Percent numeric” .27
Threshold “< 50% of cells are numeric” 1
Direct “3 of 11 cells are numeric” 1
Logarithmic
Binning

“2 to 3 cells are numeric in a row of 8
to 15 cells”

1

three numeric columns, which we observe to be incorrect.
Indeed, the distribution of row classes is unlikely to change
linearly in step with the fraction of row cells that exhibit a
specific attribute.
An alternative is to use a threshold encoding, which con-

verts these fractional values into Boolean features. This en-
coding is used in the “CRF Binary” method presented by
Pinto et al. [19]. Specifically, their system sets thresholds
for various percentage features, such as an “Alphabet Char-
acters” feature which is considered true if more than 60%
of characters in a line are letters from the alphabet. The
choice of threshold values for their system appears to be
ad hoc for each feature, not systematic. More importantly,
a single percentage-based threshold ignores differences be-
tween uniform and non-uniform rows.
Both the linear and threshold encodings can be problem-

atic when used universally across tables with varying widths.
“Narrow” tables with few columns exhibit different charac-
teristics from “wide” tables with many columns, and should
be treated differently when encoding features. That is, the
cardinality of the columns exhibiting a specific attribute and
the total number of columns in a row both matter, not just
their ratio. For example, when 33% of a row’s cells share an
attribute in a 3-column table, the distribution of row labels
can differ greatly from rows where 33% of a row’s cells share
the same attribute within a 15-column table.
To account for the drawbacks of linear and threshold en-

codings, we could use a direct encoding, which assigns a
unique feature to each unique combination of (c, r), where
c is the number of cells exhibiting an attribute and r is the
number of cells in the row. However, this encoding greatly
increases the number of possible row features and thus re-
duces the chances of each feature occurring in the tables of
the training set, which will significantly reduce row classifi-
cation accuracy, especially on wide tables.
We address the drawbacks of linear, threshold, and di-

rect encodings by introducing a new “binning” scheme. A
binning scheme partitions the space of possible raw feature
values into bins, where each bin is assigned a representa-
tive feature value. The objectives of our binning scheme are
given here.

• Differentiate Between Table Widths. Since ta-
bles with different widths generate different distribu-
tions of row labels, their features should be divided
into separate bins.

• Aggregate Wide Tables. Tables with 2-6 columns
are much more prevalent than wider tables. To ac-
count for the sparsity of some features on wider tables,
bins for wider tables should also be larger.

• Highlight Uniform Rows. Rows where all cells ei-
ther lack or share an attribute α should be in sepa-
rate bins from non-uniform rows. Also, nearly-uniform

Figure 2: Graphical representation of the bin boundaries
of the logarithmic binning encoding. For a given attribute
α, two rows share a bin (and thus, have a common feature)
if the base-2 logarithms of their r values are equal and the
logarithms of their c values are equal (or r − c values, if
c > r/2).

rows should be in separate bins from more heteroge-
neous rows.

These goals led to the encoding we present here, which
we call logarithmic binning. The objective of logarithmic
binning is to find an appropriate definition of “similar” in
the table classification context. In the end, we say that two
rows Rx and Ry are similar with respect to a certain cell
attribute α if the logarithms of their widths are equal and
the logarithms of the number of cells exhibiting or lacking
attribute α are equal (all logarithms are base 2). This is
implemented by assigning each row a representative feature
for each attribute, based on these two log values. Formally,
for row Ri of length r in which c cells exhibit a specific cell
attribute α, we assign feature “Rα = (a, b)” to Ri ((a, b) is
denoted as its bin), where a and b are computed as follows.

a =















0, if c = 0

⌊log2(c) + 1⌋, if 0 < c ≤ r/2

⌊log2(r − c) + 1⌋−, if r/2 < c < r

0−, if c = r

b = ⌊log2(r)⌋

The superscript minus sign in some values of a represents
that it is computed based on r − c rather than c.

Figure 2 provides a visual representation of the bin lay-
out induced by logarithmic binning. In particular, it gives
a visualization of the region of combinations of c and r val-
ues that are represented by each bin. The horizontal axis
represents r and the vertical axis represents c/r. Horizontal
partitions are made based on the logarithm of the number of
columns in a row, while vertical partitions are made based
on the number of cells within a row that exhibit (or lack) an
attribute, given by the definition of a above. So R1 from the
previous example would fall into the bin for rows containing
4 to 7 cells (b = 2), of which 2 to 3 cells exhibit a specific
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Table 4: Common table patterns.

HTML Spreadsheet

HD THD
THD HD
HDA TBHD
THDA THDN
H(GD)* HDN
H(BD)* TBHD(BN)*

attribute (a = 2). R2 would also fall into this bin, and thus
the two rows share a feature under this binning scheme.
In the table extraction setting, the goal of logarithmic

binning is to generalize the feature distributions better than
the other encodings, and our experimental evaluation in Sec-
tion 5 confirms that the schema extraction process benefits
from its use.

3.4 Classifying with CRFs
After collecting the feature set for each row in a table,

we can assign a row label to each row using a CRF-based
classifier. As discussed in Section 2.2, CRFs are popular
for sequence labeling in various domains such as natural
language processing and computational biology.
We use CRFs in our system to assign row labels to each

row in a new table. First, we collect a large collection of ta-
bles with human-annotated row labels to serve as a training
set. The CRF is trained on this data using the limited-
memory BFGS method [22] to determine optimal values for
the model parameters. The logarithmic binning scheme re-
sults in a large number of possible features, however, the
training time remains relatively low. One attribute of CRF
classifiers that is beneficial given our choice of cell attributes
is that CRFs can perform well even when multiple features
are statistically correlated [22], as ours likely are. Using
the CRF model parameters, dynamic programming is used
to compute an optimal sequence of labels to assign to new
data tables. This results in row label sequences, such as
“TNNHGDDDAGDDDABN” for Figure 1, which we pro-
cess in the following schema construction phase.

3.5 Schema Construction
The output of the CRF is a sequence of row labels which

represents the row class assignments that are most likely ac-
cording to the CRF model. Using the output of the CRF
thus allows us to construct a relational schema for each data
table. The header row(s) of the data table determine the
column names, the type frequencies within the data rows
of each column determine the data types, the group header
rows determine additional attributes for each row that can
be appended as a “Category” column, and the data rows
themselves represent the data records that will populate the
relational table. Depending on the application, titles and
aggregations can also be saved as additional metadata de-
scribing the table, or as an indication that certain operations
may be useful on certain columns.

4. COMMON TABLE PATTERNS
In this section, we present common table patterns. Using

a large corpus of data tables with human-judged row labels,
we analyzed the sequences of row labels for patterns (the
corpus is described in detail in Section 5). We are inter-
ested in common table structures in the form of row label
sequences.
Table 4 shows a listing of the six most common row label

sequences for both HTML and spreadsheet tables. Consec-
utive instances of the same label are omitted to make the

Table 5: Dataset characteristics.

Spreadsheets HTML

Document count 14669 7883
Table count 46408 63009
Row count 5113070 215735
Unique domains 3636 4957

Domain suffix counts

Spreadsheets HTML

.gov 3476 .com 4835
.us 2829 .org 795
.uk 2710 .edu 576

.com 1592 .net 438
.org 1363 .gov 412
.edu 546 .uk 241

patterns more obvious. Patterns that involve repeated sub-
sequences denote this with an asterisk. As expected, tables
with one or more header rows followed by one or more data
rows are very common in both table formats. Additionally,
tables with a title row preceding the header and data are
also common. Spreadsheets are more likely to contain blank
or non-relational rows, so the other patterns are not com-
mon to both lists. These patterns are generalized and serve
as the basis for an alternative method given and evaluated
in Section 5.

5. SCHEMA EXTRACTION EVALUATION
In this section, we present details of our evaluation of the

schema extraction method as applied to datasets of spread-
sheets and HTML tables from the Web.

5.1 Datasets
Since previous work has concentrated on extracting data

from tables with simple structure, we found no previously
created dataset that was adequate to test the accuracy of
our method on complex tables. Instead, we created a new
dataset of spreadsheets and HTML tables downloaded from
the Web. In collecting our datasets, we sought a sample of
tabular data from many different web sites and data sources
so that we could test our methods’ applicability across dif-
ferent data domains. To find relevant web sites containing
tabular data, we performed several keyword searches, such
as “spreadsheet” and “data table”. For spreadsheets, we
also explicitly searched for spreadsheet files with a .xls exten-
sion. These searches resulted in a list of Web sites, which we
then crawled for spreadsheets as well as for pages containing
HTML tables. Because spreadsheets and HTML pages often
contain multiple tables, we consider them separately. Also,
note that our current implementation accepts spreadsheets
in .xls format, the default file format through Microsoft Ex-
cel 2003. The newer .xlsx file format is an ISO standard
based on XML and serves as the default for newer versions
of Microsoft Excel. However, based on several simple search
engine queries at the time of writing, Web-accessible spread-
sheets in the older .xls format appear to outnumber those in
the newer .xlsx format by a ratio of roughly 50 to 1, mean-
ing that we draw our corpus from a pool containing the vast
majority of spreadsheets on the Web.

Table 5 lists some characteristics of our collected datasets.
Both are of comparable size in terms of number of docu-
ments and number of tables. However, several differences
are apparent. The HTML collection contains many more
tables per document than the spreadsheet collection, due to
HTML tables’ frequent use for page layout, rather than for
data presentation. Also, the total number of rows in the
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spreadsheet collection far outnumbers the number of rows
in the HTML collection, since spreadsheets tend to be used
for data manipulation and aggregation, while HTML tables
tended to be used for data presentation. Furthermore, anal-
ysis of the domain suffixes of data sources in each collec-
tion reveals that most spreadsheets were collected from gov-
ernment sources, while HTML tables were more frequently
collected from commercial and organization domains. How-
ever, both collections have good source and content vari-
ety. Spreadsheets were sampled from 3636 distinct sources,
and HTML tables from 4957 distinct sources. The data
in these collections come from a broad range of websites,
and span many different topics, including election results,
product lists, radio stations, parking lot lat/long values, de-
mographic data, and many others.
After creating our collections of spreadsheets and HTML

tables, we randomly sampled a subset of these tables for
manual annotation. An additional goal in the creation of
our testing dataset was to exceed the size of hand-annotated
table datasets used in previous work. The largest datasets
found in work that we surveyed came from the WebTables
paper and the work of Limaye et al. The former was tested
on “a large sample of 1000 relations” judged by humans [2],
while the latter was evaluated on collections of 437 hand-
annotated tables, along with 6,085 machine-annotated ta-
bles [16]. Our experimental dataset size is far larger, as
we hand-annotated 16,048 tables (2,259 from spreadsheets
and 13,789 from HTML documents), of which 1,976 were
relational (1,048 and 928, respectively) and required man-
ual annotation of each row. We annotated each row of each
table with the label corresponding to its row class: “H” for
header, “D” for data, etc. Furthermore, we annotated the
entire table as relational if it contained at least one header
and one data row, and non-relational otherwise. Statistics
from our annotations are listed in Table 6.
While the number of annotated documents is similar in

both sets, there are considerable differences as well. Spread-
sheet tables are much more frequently relational than HTML
tables, consisting of 46% and 7% relational tables, respec-
tively. This large difference is not overly surprising, since
most HTML tables were used for page layout or other pur-
poses. Furthermore, 7% relational HTML tables seems at a
first glance quite small, but is comparable to the 1% rela-
tional HTML tables of WebTables [2]. The larger percentage
is likely due to the targeted manner in which our datasets
were created. Examining the number and types of anno-
tated rows shows that spreadsheet tables tended to be far
larger than HTML tables in the collection. We also studied
the schema complexity of relational tables in our collections,
in terms of several factors. First, we searched for tables
with simple schemas—tables with a single header row fol-
lowed by one or more data rows—and found that there was
a much larger fraction of simple HTML tables than simple
spreadsheet tables. We also found that more spreadsheet ta-
bles contained multiple header rows than HTML tables, and
that more spreadsheet tables contained other (i.e., non-data,
non-header) row classes than HTML tables. These three
observations indicate that spreadsheet tables tend to have
more complex structure than their HTML counterparts.
Note that the schema classifications as relational or non-

relational are somewhat of a simplification, as in reality,
examined tables were often not completely relational or non-
relational. For example, we found a multitude of nearly-
empty spreadsheet tables that were intended to be printed
out and used as fill-in forms, which we classified as non-
relational. Web-based calendars likewise use HTML tables
for formatting, and have a quasi-relational structure but do

Table 6: Tables annotated by human judges.

Spreadsheets HTML

Annotated documents 1117 1204

Annotated tables 2259 13789
Relational tables 1048 (46%) 928 (7%)
Non-relational tables 1211 (54%) 12861 (93%)

Annotated rows 435160 20537
Header rows 1479 (<1%) 978 (5%)
Data rows 425195 (98%) 18906 (92%)
Other row classes 8486 (2%) 653 (3%)

Relational tables:
“Simple” schema 257/1048 (25%) 632/928 (68%)
Multiple header rows 157/1048 (15%) 63/928 (7%)
Other row classes 784/1048 (75%) 263/928 (28%)

not contain usable data. Additionally, some tables could
be formatted as relations, but are not, such as tables that
present street addresses using multiple table rows instead
of multiple columns, and again we classified these as non-
relational for our purposes.

5.2 Experimental Setup
We performed 10-fold cross validation on our collection of

relational HTML and spreadsheet tables to obtain our clas-
sification results. The dataset was divided into 10 equally-
sized groups, then 10 classifiers were trained on each subset
of 9 groups, before running experiments on the remaining
group. The reported results are averages from the 10 test-
ing runs. The HTML and spreadsheet tests were performed
separately in order to expose differences between the two
table formats. Results were recorded for the following four
separate classification methods.

• WT
WebTables results were obtained using the “Header
Detection” features and rule-based classifier from the
Weka toolkit as described in the original WebTables
paper [2]. Although the WebTables features for header
detection are only defined for the first row, the exten-
sion to cover other rows in a table or spreadsheet can
be performed by recomputing the WebTables features
for rows after the first. An additional contribution of
our work is the adaptation of the WebTables classi-
fier to work with spreadsheets along with the HTML
tables that they were originally designed to process.

• B+A
The “Bayes + Automaton” method serves as a base-
line method that incorporates global table structure.
As in WebTables, a Bayesian classifier computes the
estimated likelihood of each row being assigned each
row label. But rather than choosing the most likely
row label in isolation, a custom automaton is used to
find the sequence of row labels with the highest aggre-
gate likelihood that also adheres to the common table
patterns discussed in Section 4, such as H(GD)*. For
details on the automaton, see Appendix A. The full
algorithm is given in Appendix B.

• CRF-C
The CRF method with continuous features uses a lin-
ear feature encoding to form the input to a CRF. This
is a similar encoding to the one used by the “CRF
Continuous” method tested by Pinto et al. [19], but
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uses the cell attributes and row classes we developed
for spreadsheets and HTML tables.

• CRF-B
The CRF method with binned features uses the full
schema extraction method given in Section 3, including
the use of the logarithmic binning from Section 3.3.2
before performing row classification with the trained
CRF.

The cross-validation sets are partitioned by document (not
by table) to prevent from using one table in a training par-
tition when another similar table in the same document is
in the testing partition. The reported accuracy, precision,
and recall rates are averages over the 10 training and testing
runs using each method.

5.3 Row Classification Evaluation
For our first evaluation, we tested the accuracy of the clas-

sifiers at the row classification task described in Section 3.
This process yields the assignment of a row class to each row
that represents our best guess of the row’s purpose within
the table (selected from our set of row classes in Section 3.2).
The correct classification of table rows is a difficult task be-
cause a large number of tables in our corpus are not in a
simple tabular format, such as those with one header row
followed by a sequence of data rows. Instead, we found that
many blocks are bordered by non-relational metadata, con-
tain multi-row headers, or include subtotals or other noisy
sections within a single schema block. However, the purpose
of our row labeling procedure is to handle these cases, and
our experiments show that it performs well.

Table 7: Test set rows classified correctly.

WT B+A CRF-C CRF-B

Spreadsheets 97.6% 96.7% 99.3% 99.3%

HTML Tables 92.3% 92.7% 98.2% 98.1%

As shown in Table 7, the CRF-based methods obtain
the best classification accuracy for both spreadsheets and
HTML tables, ahead of WT and B+A. The higher scores
on spreadsheet rows is a result of the higher proportion of
data rows found in spreadsheets, as listed in Table 6. The
row-level accuracy is an important metric for schema extrac-
tion. However, the gains are not fully illustrated when all
methods have such high scores. If a hypothetical classifier
were to label all rows as data rows (D), it would achieve
a 97.7% accuracy rate on spreadsheets and 92.1% accuracy
rate on HTML tables, since those are the fractions of rows in
our test corpus that are data rows. Yet this classifier would
be useless in the sense that all tables will contain misclassifi-
cations for non-data rows. We conclude that high row-level
accuracy may hide the true power of these methods so we
now look at full-table accuracy rates.

5.4 Full Table Accuracy
We evaluated the accuracy of the four classification meth-

ods on full data tables, because while individual row accu-
racy is important, errors anywhere within a document may
will affect the usability of the data table in downstream ap-
plications. Correctly classifying individual rows is impor-
tant. However, even a small number of incorrect row clas-
sifications can potentially lead to significant errors during
schema extraction. Thus, we focused this experiment on
the performance of our classifier on entire data tables. The
goal, of course, is perfect classification of each row. How-
ever, the schema extraction applications we envision require
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Figure 3: Accuracy of classifiers on full spreadsheet tables
and full HTML tables. The accuracy is measured as the
percentage of tables in which correct labels are assigned to
(i) all data and header rows, and (ii) all rows in the table.

highest accuracy for data rows, followed by header rows.
If all of those are correctly classified, we can interpret the
table relationally, even without correctly classifying the re-
maining rows (alternatively, we can treat them all as “non-
relational”).

The full table accuracy test measures the number of ta-
bles in which all rows are correctly classified and the num-
ber of tables in which all data and header rows are cor-
rectly classified (i.e., no false positives or false negatives for
those classes). We make a distinction between these two
cases because errors in header and data are critical to clas-
sify correctly for many purposes, while other row types may
be “nice-to-have” for some applications, but are not always
crucial. The results are shown in Figure 3. For both spread-
sheets and HTML tables, the CRF-B method achieves the
best accuracy for parsing full tables correctly. Even when
only header and data rows are considered, which are what
the WebTables features are designed to distinguish between,
the WT method is significantly outperformed by the others.

It is also noteworthy that the document-level accuracy is
higher for HTML tables, for all methods, despite the lower
row-level accuracy in Table 7. This is likely due to the higher
proportion of “simple tables” that exist in the HTML cor-
pus, in combination with the lower overall proportion of rows
that are data rows.

5.5 Effects of Feature Binning
The accuracy benefits of the CRF-based methods over

WebTables and our automaton method are clear from the
previous subsection. Now we examine the differences be-
tween the CRF methods, CRF-C and CRF-B in order to
measure the effects of logarithmic binning. Since the only
difference between the two methods is the feature encod-
ing scheme, we can conclude that it is the sole cause of any
changes in accuracy. The results of this test are displayed
in Table 8. We use the standard precision and recall defini-
tions, where precision is the proportion of all classifications
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Row CRF-C CRF-B Change in

Class Count Precision Recall Precision Recall F-Measure

Spreadsheets

D 425376 .999 .999 .998 .998 −.001

H 1486 .937 .915 .945 .915 +.007

B 3792 .874 .862 .908 .974 +.071

T 702 .739 .756 .766 .822 +.046

G 1312 .669 .480 .758 .385 −.048

N 1877 .576 .709 .446 .639 −.111

A 615 .965 .703 .991 .890 +.123

HTML Tables

D 18920 .988 .995 .991 .995 +.001

H 979 .921 .908 .911 .939 +.011

B 214 .852 .719 .984 .953 +.188

T 154 .702 .717 .875 .913 +.184

G 112 .667 .353 .545 .176 −.195

N 69 .667 .095 .120 .143 −.037

A 89 .059 .074 .706 .444 +.479

Table 8: The precision and recall for the CRF-C and CRF-
B classification methods on spreadsheets and HTML tables.
The change in F1-measure that results from using the loga-
rithmic binning scheme of the CRF-B method is also shown.
Row classes are ordered by average frequency across table
types.

of a specific row class that are true members of that row class
(based on the human annotations), and recall is the fraction
of all true members of a row class that were classified as
such. The F1-measure is computed as (2 · P · R)/(P + R)
for precision P and recall R, and the change in F1-measure
between CRF-C and CRF-B is displayed.
The results show some increases and some decreases in

the F1-measures for individual row classes. The high pre-
cision and recall of data rows is a result of their frequency
in both spreadsheets and HTML tables. Both classification
methods produce similar F1-measures on these rows. At the
opposite end, we note that the low precision and recall rates
for group header rows, aggregate rows and non-relational
rows in HTML tables is mainly due to the small number
of tables containing rows of these types—which is the case
because HTML table authors have the ability to place notes
or explanations or other metadata within the document, but
outside of the table. In contrast, all visible text in a spread-
sheet is placed in spreadsheet cells, so there is no other place
for notes to appear.
Although the use of logarithmic binning does not uni-

versally increase the F1-measure across all row classes, we
emphasize that it does achieve our main objective of in-
creased full table accuracy. The primary value of these pre-
cision/recall results is to examine how row-level accuracy
is affected by the use different feature encoding methods.
To that end, we see that for both table types, CRF-B im-
proves on CRF-C for blank rows, header rows, title rows,
and aggregate rows, while the F1-measure is reduced in the
cases of group header rows and non-relational rows. The
logarithmic binning scheme was not designed for the recog-
nition of specific row classes, so the fact that the same row
classes show improvements and reductions in accuracy for
both spreadsheets and HTML tables is somewhat surpris-
ing. A common trait of both non-relational rows and group
header rows is that they often contain a single non-blank
cell in the leftmost column of a table, while the other cells
are blank. Consequently, the divisions of cell features based
on the number of total cells in a row may impede feature
generalization and reduce the accuracy for these row classes.
Examination of more complex binning schemes that address
this is left as future work.

5.6 Row Class Ambiguity
One way to identify aspects of our approach that may

need improvement is to examine the number of rows of each
class that are confused for rows of each other class. We do
this using the confusion matrix shown in Tables 10 and 9.
Each cell of the matrix shows the percentage of all classified
rows that were actually of the class with the label shown in
the leftmost column, but were assigned the row label shown
in the top row by the CRF-B classifier. The shaded cells
along the diagonal show correct row classifications, while the
surrounding cells show incorrect classifications. Row classes
are ordered by average frequency across table types. Totals
for each row and column are also displayed.

Table 9: Confusion matrix for CRF-B on spreadsheets.

Row label (assigned) Row
SumD H B T G N A

R
o
w

la
b
el

(t
ru

e)

D 97.54% 0.00% 0.04% 0.00% 0.01% 0.16% 0.00% 97.75%

H 0.02% 0.31% 0.00% 0.00% 0.01% 0.00% 0.00% 0.34%

B 0.01% 0.00% 0.84% 0.00% 0.00% 0.01% 0.00% 0.87%

T 0.00% 0.00% 0.00% 0.13% 0.00% 0.03% 0.00% 0.16%

G 0.04% 0.00% 0.00% 0.00% 0.12% 0.14% 0.00% 0.30%

N 0.05% 0.01% 0.04% 0.04% 0.02% 0.28% 0.00% 0.43%

A 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.14%

Col
Sum

97.66% 0.33% 0.93% 0.18% 0.15% 0.62% 0.13%

Table 10: Confusion matrix for CRF-B on HTML tables.

Row label (assigned) Row
SumD H B T G N A

R
o
w

la
b
el

(t
ru

e)

D 91.64% 0.34% 0.02% 0.00% 0.02% 0.03% 0.08% 92.12%

H 0.24% 4.47% 0.00% 0.03% 0.02% 0.00% 0.00% 4.76%

B 0.05% 0.00% 0.99% 0.00% 0.00% 0.00% 0.00% 1.04%

T 0.00% 0.05% 0.00% 0.68% 0.02% 0.00% 0.00% 0.75%

G 0.08% 0.02% 0.00% 0.03% 0.10% 0.32% 0.00% 0.55%

N 0.19% 0.03% 0.00% 0.03% 0.03% 0.05% 0.00% 0.34%

A 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.44%

Col
Sum

92.45% 4.91% 1.00% 0.78% 0.18% 0.41% 0.28%

An error-free classifier would result in zeroes for all of the
non-shaded values (i.e., off of the diagonal). However, since
our method does result in some misclassified rows, we can see
where the errors lie. From the confusion matrix for spread-
sheets, we can see that two of the non-diagonal cells have
relatively high values. These are the cases of (D,N) (where
the true row class isD, but the row class assigned by CRF-B

is N) and (G,N). The fact that misclassified rows are often
interpreted to be non-relational (N) is not surprising, since
non-relational rows are fairly heterogeneous (especially in
spreadsheets), and come in a variety of forms. That they
are mistaken for data (D) and group header (G) rows is also
not surprising, given the overall prevalence of data rows, and
the frequent similarity between non-relational rows (such as
notes) and group header rows, which both appear commonly
with a single value in the first column of a row. True non-
relational rows are also frequently misclassified.

The confusion matrix for classifying rows in HTML ta-
bles shows that the largest errors arise for (D,H), (G,N),
(H,D), (A,D), and (N,D). These HTML row misclassifi-
cation rates are all higher than their counterparts in spread-
sheet rows. This has multiple causes, but is primarily due to
the size differences between average HTML tables and aver-
age tables found in spreadsheets. Second, HTML tables are
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generally narrower, which results in less contrast between
the row types and higher levels of confusion. Finally, al-
though the relative proportion of some row classes (i.e., G,
A, and N) is higher in the HTML tables of our corpus than in
the spreadsheet tables, the absolute number of rows of these
classes is less, so there are fewer training examples. Many of
the pairs of confused row labels for HTML tables are similar
to those for spreadsheets. Additionally, both data rows and
header rows are confused for each other, which can be at-
tributed to the higher proportion of header rows in HTML
tables. The errors on aggregate rows could potentially be
reduced by incorporating more text indicators into our fea-
ture set, including words like “Average” and “Sum”, which
we observed in aggregate rows in our corpus of data tables.

5.7 Application to Existing Table Dataset
Our final experiment illustrates the accuracy of the CRF-

B method on one of the largest pre-existing published table
datasets, from the work of Limaye et al. [16] (we found no
such dataset for spreadsheets). The Limaye dataset contains
four types of relations, three of which are full HTML tables
containing headers (the “Wiki Manual”, “Web Relations”,
and “Wiki Link” collections). The vast majority of these
exhibit simple table structure and contain only header and
data rows. Since the original classification goals of this
dataset were different from ours, the existing annotations
were not sufficient for our purposes, so we annotated each
table in the dataset by hand for our row classification task.
The statistics for each table collection are shown in Ta-
ble 11. While Wiki Manual and Web Relations are small,
Wiki Link is very large, comprising nearly 6,000 relational
tables. Tables with simple schemas make up a large per-
centage of each collection, which is expected since a method
similar to WebTables was used to select them.

Table 11: Limaye dataset - table information.

Collection # Relational # Rows % Simple Schemas

Wiki Manual 38 1423 86.8%

Web Relations 28 1837 78.6%

Wiki Link 5753 120765 98.0%

We trained the CRF-B classifier on the dataset that was
described in Section 5.1, and then tested that classifier on
the three collections of HTML tables. The results, listed in
Table 12, display the percentage of all rows that were cor-
rectly classified, along with the percentage of tables in which
all H and D rows were correct and the percentage of ta-
bles that were entirely correct. Two important observations
are worth highlighting. First, each collection in the Limaye
dataset contains a larger percentage of simple schemas than
is found in our own corpus of HTML tables. This means that
using our method to detect and process tables could poten-
tially increase the pool of accessible tables for applications
such as the one described by Limaye et al. Second, even
for the tables that were included in this dataset, and are
assumed to have simple structure, our method is valuable,
since the full table accuracy numbers in Table 12 exceed the
percentages of tables with simple schemas. This is because a
non-trivial number of tables with aggregates, row groupings,
and non-relational data rows are present in this dataset and
are accurately detected by our CRF-B classifier, but are not
dealt with by simpler methods.
As one example of the benefit of our approach, we ex-

amined a table in the Wiki Link collection that contains
data about population density in regions of Italy. There
are columns for Region, Population, Area, and Density, and
data rows for every Italian region, followed by an aggregate

Table 12: Limaye dataset - results using CRF-B classifier.

Collection Rows Tables - H&D Tables - Full

Wiki Manual 99.9% 100% 97.4%

Web Relations 99.1% 89.3% 89.3%

Wiki Link 99.9% 99.1% 99.1%

row for the same statistics for all of Italy, with the string
“Italy” in the Region column. The final row is correctly de-
tected as an aggregate row by our CRF-B method, due to
its bold font formatting, which allows it to be treated differ-
ently from the other rows in the table. However, if the row
is not segregated from the others, methods such as the Least
common ancestor (LCA) method evaluated by Limaye et al.
would be adversely affected when determining the column
type and cell entity assignments. Even algorithms that are
flexible enough to handle multiple types in a single column
could benefit from having less noise from aggregates such
as this example, or group headers and non-relational row
text. Thus, the use of our method as a preprocessor could
improve accuracy of table extraction methods like this by
filtering rows that do not fit with the data rows in the table.

6. CONCLUSIONS AND FUTUREWORK
Computers are not adept at creating structure from un-

structured information, so they should preserve structure
wherever it can be found. We first developed a set of row
classes that represent the most common functions of individ-
ual rows in a data table. We then identified cell attributes
that we combined using the novel logarithmic feature bin-
ning technique to serve as input to a classifier based on con-
ditional random fields. The classifier outputs the sequence of
row labels with maximum likelihood based on these inputs,
thus determining the row classifications that are used for ex-
tracting data and structure from the table. This method was
shown to lead to a significant improvement over the existing
WebTables approach, and our logarithmic binning scheme
shows improvements over alternative feature selection meth-
ods. Specifically, our CRF method with logarithmic binning
showed substantial improvement over all alternatives in the
full table extraction test, which demonstrates our method’s
ability to process arbitrary tables. Based on the increasing
prevalence of schema matching techniques, and applications
based on utilizing tabular data from the Web, it should be
clear that improving table extraction accuracy and recog-
nizing additional table structures is crucial to their future
success. Furthermore, answering queries using a repository
of spreadsheets and HTML tables is an exciting venue for
future work, as it involves query processing over noisy tab-
ular data. We intend to explore the application of our tech-
nique to systems for joining Web tables, focusing on the
common case where geographic tables contain spatial at-
tributes [10, 20, 21] using both textual [7] and spatial [11]
join techniques.
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APPENDIX

A. AUTOMATON CONSTRUCTION
Here we describe the nondeterministic finite automaton

(NFA) used in the B+A row classification method in Sec-
tion 5. Figure 4 shows a portion of the automaton that
recognizes tables that have one or more title rows (T), fol-
lowed by one or more header rows (H), followed by one or
more “data blocks”. A “data block” consists of group header
rows (G), data rows (D), and aggregate rows (A), and since
we expect data blocks within the same table to observe the
same structure, each valid combination of these provides a
separate path in the NFA. The remainder of the graph is
similar, but allows header rows (H) to be repeated instead
of appearing prior to all data.
In the given portion of the automaton, we see that the la-

bel sequence “THDDDA” would be accepted, because there
exists a path with consecutive edges marked with those la-
bels which starts in the Start state and ends in an Accept

state. The path includes self edges (not shown), with label
D, and finishes in the second Accept state from the right.

Figure 4: A portion of the automaton used for the B+A
classification method. Accept states are marked with a
double border. Three self-edges exist for each node, but are
hidden to reduce clutter. These have edge labels for blank
rows (B), non-relational rows (N), and rows with the same
label as the other incoming edge(s) to the node.

B. B+A ALGORITHM
Algorithm 1 shows the row classification procedure for the

B+A method of Section 5. Before this algorithm is run, a
Bayesian classifier is conditioned on a training set of data
tables with human-judged row labels. To classify a new data
table, the ClassifyRowsB+A function is invoked with pa-
rameters consisting of the row features of each row (R), and
the total number of rows (n). Estimated probabilities of
each row i being assigned each label l are obtained in lines
4-5, using the results of the Bayesian classifier (returned by
GetBayesRowProbs) on the row features of each row in-
dividually (R[i]). In lines 8-18, the probability of the most
likely sequence to end in each state s after each row i is
determined. The intermediate results are stored in two ar-
rays, BEST [i, s] to store the best (maximum) probability of
any sequence to reach state s after row i, and LABELS[i, s]
to store the sequence of states that obtains that probabil-
ity. Finally, in lines 19-24, the most likely sequence that
ends in one of the Accept states (SAccept) is identified and
returned.

Algorithm 1 B+A row classification algorithm

1: S ← { states of automaton }
2: L← { set of row labels/automaton edge labels }
3: function ClassifyRowsB+A(R,n)
4: for i← 1 to n do
5: Pi ← GetBayesRowProbs(R[i])

6: Initialize 2D array BEST to 0.0.
7: Initialize 2D array LABELS to [] (empty sequence).
8: BEST [0, 0]← 1.0 (initialize start state)
9: for i← 1 to n do
10: for s ∈ S do
11: if BEST [i− 1, s] > 0 then
12: for l ∈ L do
13: S′ ← {states reachable from s by label l}
14: for s′ ∈ S′ do
15: B ← BEST [i− 1, s] · Pi[l]
16: if BEST [i, s′] < B then
17: BEST [i, s′]← B
18: LABELS[i, s′]← LABELS[i, s] + l

19: maxprob← 0
20: for s ∈ SAccept do
21: if BEST [n, s] > maxprob then
22: maxprob← BEST [n, s]
23: labelseq ← LABELS[n, s]

24: return labelseq
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