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ABSTRACT
Social content, such as Twitter updates, often have the
quickest first-hand reports of news events, as well as nu-
merous commentaries that are indicative of public view of
such events. As such, social updates provide a good comple-
ment to professionally written news articles. In this paper
we consider the problem of automatically annotating news
stories with social updates (tweets), at a news website serv-
ing high volume of pageviews. The high rate of both the
pageviews (millions to billions a day) and of the incoming
tweets (more than 100 millions a day) make real-time in-
dexing of tweets ineffective, as this requires an index that
is both queried and updated extremely frequently. The rate
of tweet updates makes caching techniques almost unusable
since the cache would become stale very quickly.

We propose a novel architecture where each story is treated
as a subscription for tweets relevant to the story’s content,
and new algorithms that efficiently match tweets to sto-
ries, proactively maintaining the top-k tweets for each story.
Such top-k pub-sub consumes only a small fraction of the re-
source cost of alternative solutions, and can be applicable to
other large scale content-based publish-subscribe problems.
We demonstrate the effectiveness of our approach on real-
world data: a corpus of news stories from Yahoo! News and
a log of Twitter updates.

1. INTRODUCTION
Micro-blogging services as twitter.com are becoming an

integral part of the news consumption experience on the
web. With over 100 million users, Twitter often has the
quickest first-hand reports of news events, as well as numer-
ous commentaries that are indicative of the public view of
the events. As such, micro-blogging services provide a good
complement to professionally written stories published by
news services. Recent events in North Africa illustrate the
effectiveness of Twitter and other microblogging services in
providing news coverage of events not covered by the tradi-
tional media [17].
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A popular emerging approach to combining traditional
and social news content is annotating news stories with re-
lated micro-blogs such as Twitter updates. There are sev-
eral technical difficulties in building an efficient system for
such social news annotation. One of the key challenges is
that tweets arrive in real time and in very high volume of
more than 100 millions a day. As recency is one of the key
indicators of relevance for tweets, news stories need to be
annotated in real time. Second, large news websites have
high number of news pageviews that need to be served with
low latency (fractions of a second). In this context we con-
sider a system that sustains hundreds of millions to billions
of serving requests per day. Finally, there is a non-trivial
number of unique stories that need to be annotated ranging
in hundreds of thousands.

In this paper we propose a top-k publish-subscribe ap-
proach for efficiently annotating news stories with social
content in real-time. To be able to cope with the high scale
of updates (tweets) and story requests, we use news stories
as subscriptions, and tweets as published items in a pub-
sub system. In traditional pub-sub systems published items
trigger subscriptions when they match a subscription’s pred-
icate. In a top-k pub-sub each subscription (story) scores
published items (tweets), in our case based on the content
overlap between the story and a tweet. A subscription is
triggered by a new published item only if the item scores
higher than the k-th top scored item previously published
for this specific subscription.

For each story, we maintain the current result set of top-k
items, reducing the story serving cost to an in-memory ta-
ble lookup made to fetch this set. In the background, on
an arrival of a new tweet, we identify the stories that this
tweet is related to, and adjust their result sets accordingly.
We show how top-k pub-sub makes news annotation feasible
from efficiency standpoint for a range of scoring functions.
In this paper we do not address the issue of ranking qual-
ity, however the presented system can accommodate most
of the popular ranking functions, including cosine similar-
ity, BM25, and language model scoring [3]. Moreover, our
system can be used as a first phase of selecting annotation
candidates, from which the final annotation set can be de-
termined using other methods, which may, for example, take
context and user preferences into account (e.g., using Ma-
chine Learning).

The pub-sub approach is more suitable for high volume
updates and requests than the traditional “pull” approach,
where tweets are indexed using real-time indexing and news
pageview requests are issued as queries at serving time, for
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the following two reasons: first, due to the real-time index-
ing component, cached results would be invalidated very fre-
quently; and second, due to the order-of-magnitude higher
number of serving requests than tweet updates, the cost of
query evaluation would be very high. The combination of
these two issues would dramatically increase the cost of serv-
ing. Our evaluation shows that on average, only a very small
fraction of tweets related to a story end up annotating the
story, and that cache invalidation rate in a real-time index-
ing approach would be 3 to 5 orders of magnitude higher
than actually required in this setting.

Our approach is applicable to other pub-sub scenarios,
where the subscriptions are triggered not only based on a
predicate match, but also on their relationship with previ-
ously seen items. Examples include content-based RSS feed
subscriptions, systems for combining editorial and user gen-
erated content under high query volume, or updating cached
results of “head” queries in a search engine. Even in cases
when the stream of published items is not as high as in the
case of Twitter, the pub-sub approach offers lower serving
cost since the processing is done on arrival of the published
items, while at query time the precomputed result is simply
fetched from memory. Another advantage of this approach
is that it allows the matching to be done off-line using more
complex matching logic than in the standard caching ap-
proaches where the cache is filled by results produced by
online evaluation. Top-k pub-sub has been considered pre-
viously in a similar context [16], for personalized filtering
of event streams. The work presented in this paper allows
for order of magnitude larger subscription sizes with orders
of magnitude better processing times (Section 5 provides a
detailed discussion of previous work).

Even in a pub-sub setting, there are still scalability issues
with processing incoming tweets and updating annotation
lists associated with news stories. Classical document re-
trieval achieves scale and low latency by using two families
of top-k algorithms: document-at-a-time (DAAT) and term-
at-a-time (TAAT). In this work we show how to adapt these
algorithms to the pub-sub setting. We furthermore examine
optimizations of top-k pub-sub algorithms achieving in some
cases reduction of the processing time by up to 89%. The
key insight that allows for this improvement is maintain-
ing “threshold” scores the new tweets would need to meet
in order to enter the current result sets of stories. Intu-
itively, if the upper bound on a tweet’s score is below the
threshold, the tweet will not enter the result set and thus
we can skip the full computation of story-tweet score. Score
computation is the key part of processing cost and thus by
skipping a significant fraction of score computations we re-
duce the CPU usage and the processing time of incoming
tweets accordingly. Efficiently maintaining these thresholds
for ranges of stories allows applying DAAT and TAAT skip-
ping optimizations, saving up to 95% of score computations,
which results in significant reduction of processing latency.

In summary, our main contributions are as follows:

• We show how the top-k pub-sub paradigm can be used
for annotating news stories with social updates in real
time by indexing the news stories as subscriptions and
processing tweets as published items. This approach
removes the task of matching tweets with news articles
from the critical path of serving the articles, allowing
for efficient serving, and at the same time guarantees
maximal freshness of the served annotations.

• We introduce novel algorithms for top-k pub-sub that
allow for orders of magnitude larger subscriptions with
significant reduction in query processing times com-
pared to previous approaches.

• We adapt the prevalent top-k document retrieval algo-
rithms to the pub-sub setting and demonstrate varia-
tions that reduce the processing time by up to 89%.

• Our experimental evaluation validates the feasibility
of the approach over real-world size corpora of news
and tweets.

The paper proceeds as follows. In the next section we for-
mulate news annotation as a top-k publish-subscribe prob-
lem and overview the proposed system architecture. In
Section 3 we describe our algorithms. Section 4 presents
an experimental evaluation demonstrating the feasibility of
the proposed approach and the benefit of the algorithmic
improvements. Section 5 gives an overview of related ap-
proaches and discusses alternative solutions. We conclude
in Section 6.

2. NEWS ANNOTATION AS PUB-SUB

2.1 Annotating news stories with tweets
We consider a news website serving a collection S of news

stories. A story served at time t is annotated with the set of
k most relevant social updates (tweets) received up to time
t. Formally, given the set U t of updates at serving time t,
story s is annotated with a set of top-k updates Rt

s (we omit
superscripts t when clear from the context) according to the
following scoring function:

score(s, u, t) � cs(s, u) · rs(t, tu),
where cs is a content-based score function, rs is a recency
score function, and tu is the creation time of update u. In
general, we assume cs to be from a family of state of the
art IR scoring functions such as cosine similarity or BM25,
and rs to monotonically decrease with t − tu, at the same
rate for all tweets. We say that tweet u is related to story s
if cs(s, u) > 0.

Content-based score. In this work we consider two pop-
ular IR relevance functions: cosine similarity and BM25. We
adopt a variant of cosine similarity similar to the one used
in the open-source Lucene1 search engine:

cs(s, u) =
∑
i

ui · idf2(i) ·
√

si
|s| ,

where si (resp. ui) is the frequency of term i in the con-
tent of s (resp. u), |s| is the length of s, and idf(i) =

1+ log( |S|
1+|{s∈S|si>0}| ) is the inverse document frequency of

i in S. With slight abuse of notation we refer to the score
contribution of an individual term ui by cs(s, ui), e.g., in

the above function cs(s, ui) = ui · idf2(i) ·
√

si
|s| .

The BM25 score function is defined as follows:

cs(s, u) =
∑
i

ui · idf(i) · si · (k1 + 1)

si + k1 · (1− b+ b · |s|
avgs∈S |s| )

,

where k1 and b are parameters of the function (typical values
are k1 = 2, b = 0.75).
1lucene.apache.org
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While these are simplistic scoring functions, they are based
on query-document overlap and can be implemented as dot
products similarly to other popular scoring functions, and
incurring a similar runtime cost. Designing a high-quality
scoring function for matching tweets to stories is beyond the
scope of this paper. We note that these scoring functions
can be used in first phase retrieval, producing a large set of
annotation candidates, after which a second phase may em-
ploy an arbitrary scoring function (based, for example, on
Machine Learning) to produce the final ordering of results
and determine the annotations to be displayed.

Recency score. Social updates like tweets are often tied
(explicitly or implicitly) to some specific event, and their
relevance to current events declines as time passes. In our
experiments we thus discount scores of older tweets by a
factor of 2 every time-interval τ (a parameter), i.e., use ex-
ponential decay recency score:

rs(tu, t) = 2
tu−t

τ .

Although we consider the above exponential decay func-
tion, our algorithms can support other monotonically de-
creasing functions. Note, however, that the efficient score
computation method described in Section 2.4 may not be
applicable to some functions.

2.2 A top-k pub-sub approach
We focus on high-volume websites serving millions to bil-

lions daily pageviews. The typical arrival rate of tweets is
100 millions a day, while new stories are added at the rate of
thousands to tens of thousands a day. We focus on annotat-
ing the “head” stories that get the majority of pageviews;
these are typically new stories describing recent events, pub-
lished during the current day or the few preceding days. It is
these stories whose annotation has to be updated frequently
as new related tweets arrive.

Pageviews are by far the most frequent events in the sys-
tem. We are thus looking for a scalable solution that would
do as little work as possible on each pageview. It therefore
makes sense to maintain the current, up-to-date, annota-
tions (sets of tweets) for each story. Let Rs be the set of
up-to-date top-k tweets for a story s ∈ S (i.e., at time t the
top-k tweets from U t). For each arriving tweet we identify
the stories it should annotate, and add the tweet to these
stories’ result sets. On pageviews, the precomputed annota-
tions Rs are fetched with no additional processing overhead.

The architecture we propose is described in Figure 1. The
Story Index is the main component we develop in this paper.
It indexes stories in S, is “queried by” the incoming tweets,
and updates the current top-k tweets Rs for each story. We
describe the Story Index in detail in the following sections.
A complementary Tweet Index can be maintained and used
to initialize annotations of new stories that are being added
to the system. Such initialization (and hence the Tweet in-
dex) is optional and one may prefer to consider only newly
arriving tweets for annotations. We note, however, that ini-
tializing the list of annotations sets a “higher bar” for newly
incoming tweets, which is beneficial to the user as well as
allows for faster queries of S (optimizations presented later
in this section allow skipping the evaluation of an incoming
tweet against stories for which the tweet cannot improve the
annotation set).

We note that our approach implements a content-based
publish-subscribe system where stories are standing sub-
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Tweet
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Figure 1: A pub-sub based solution.

scriptions on tweets. It is referred to as push pub-sub sys-
tem, where updates are proactively computed and pushed to
the subscribers (precomputed annotations in our case). For
a more detailed discussion of previously proposed content-
based pub-sub systems, see Section 5.2.

This design has three main scenarios: (1) every new tweet
is used as a query for the Story Index and, for every story
s, if it is part of the top-k results for s, we add it to Rs. We
also add the new tweet to the Tweet Index; (2) for every
new story we query the Tweet Index and retrieve the top-k
tweets, which are used to initialize Rs. We also add the new
story to the Story Index; (3) for every page view we simply
fetch the top-k set of tweets Rs.
The major advantages of this solution are the following:

(1) the Story Index is queried frequently, but it is updated
infrequently; (2) for the Tweet Index, the opposite happens
- it is updated frequently but queried only for new stories
which are orders of magnitude less frequent than the number
of tweet updates; (3) the page views, which are the most
frequent event, are served very efficiently since we only need
to return the precomputed set of tweets Rs.

2.3 The Story Index
The main idea behind the Story Index is to index stories

instead of tweets, and to run tweets as queries on that index.
Inverted indices is one of the most popular data structures
for information retrieval. The content of the documents (sto-
ries in our case) is indexed in an inverted index structure,
which is a collection of posting lists L1, L2, . . . , Lm, typi-
cally corresponding to terms (or, more generally, features)
in the story corpus. A list Li contains postings of the form
〈s, ps(s, i)〉 for each story that contains term i, where s is a

story identifier and ps(s, i) � cs(s,ui)
ui

is the partial score —

the score contribution of term i to the full score cs(s, ·). For
example, for cosine similarity, ps(s, i) = idf2(i) ·

√
si
|s| . The

factor ui multiplies the partial score at the evaluation time
giving cs(s, ui). Postings in each list are sorted by ascending
story identifier. Given a query (in our case a social update)
u, a scoring function cs, and k, a typical IR retrieval algo-
rithm, shown in Algorithm 1, traverses the inverted index
of the corpus S and returns the top-k stories for u, that is,
the stories in S with the highest value of cs(s, u).

Note that the above described semantics is different from
what we want to achieve. We do not want to find the top-k
stories for a given tweet, but rather all stories for which the
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Algorithm 1 Generic top-k retrieval algorithm

1: Input: Index of S
2: Input: Query u
3: Input: Number of results k
4: Output: R – min-heap of size k
5: Let L1, L2, . . . L|u| be the posting lists of terms in u
6: R ← ∅
7: for every story s ∈ ⋃

Li do
8: Attempt inserting (s, cs(s, u)) into R
9: return R

tweet is among their top-k tweets. This difference precludes
using off-the-shelf retrieval algorithms.

Algorithm 2 shows the top-k pub-sub semantics. Given a
tweet u and the current top-k sets for all storiesRs1 , . . . ,Rsn ,
the tweet u must be inserted into all sets for which u ranks
among the top-k matching tweets. (Here we ignore the re-
cency score rs and handle it in Section 2.4).

Algorithm 2 Generic pub-sub based algorithm

1: Input: Index of S
2: Input: Query u
3: Input: Rs1 ,Rs2 , . . . ,Rsn – min-heaps of size k for all

stories in S
4: Output: Updated min-heaps Rs1 ,Rs2 , . . . ,Rsn

5: Let L1, L2, . . . L|u| be the posting lists of terms in u
6: for every story s ∈ ⋃

Li do
7: Attempt inserting (u, cs(s, u)) into Rs

8: return Rs1 ,Rs2 , . . . ,Rsn

2.4 The recency function
Until now we focused on content-based scoring only and

ignored the recency score. Recall that our recency score

function rs(tu, t) = 2
tu−t

τ , decays exponentially with the
time gap between the creation time of tweet tu and the
pageview time t. It is easy to see that this function sat-
isfies the following invariant:

Observation 2.1. As t grows, the relative ranking be-
tween the scores of past tweets does not change.

The above invariant means that we do not need to recom-
pute scores and rerank tweets in Rs between updates caused
by new tweets.

However, it might seem that whenever we attempt to in-
sert a new tweet into Rs, we have to recompute scores of
tweets that are already in Rs in order to be able to compare
these scores to the score of the new tweet. Fortunately, this
recomputation can also be avoided by writing the recency
score as

rs(tu, t) =
2tu/τ

2t/τ
,

and noting that the denominator 2t/τ depends only on the
current time t, and at any given time is equal for all tweets
and all stories. Thus, and since we do not use absolute score
values beyond relative ranking of tweets, we can replace 2t/τ

with constant 1, giving the following recency function:

rs(tu) = 2tu/τ .

The above function depends only on the creation time of the
tweet and thus does not have to be recomputed later when
we attempt to insert new tweets.2

To detach accounting for the recency score from the re-
trieval algorithm, when a new tweet arrives we compute
its rs(tu) and use it as a multiplier of term weights in the

tweet’s query vector u, i.e., we use 2tu/τ · u to query the in-
verted index. Clearly, when computing the tweet’s content-
based score cs with such a query vector, we get the desired
final score:

cs(s, 2tu/τ · u) =
∑
i

2tu/τ · cs(s, ui) =

2tu/τ · cs(s, u) = score(s, u, t).

3. RETRIEVAL ALGORITHMS FOR TOP-
K PUB-SUB

In this section we show an adaptation of several popu-
lar top-k retrieval strategies to the pub-sub setting, and
then evaluate their performance empirically in Section 4.
Although top-k retrieval algorithms were evaluated exten-
sively, [8, 23, 18, 7, 22] to name a few, the different setting
we consider necessitates a separate evaluation.

We first describe an implementation of the pub-sub re-
trieval algorithm (Algorithm 2) using the term-at-a-time
strategy (TAAT).

3.1 TAAT for pub-sub
In term-at-a-time algorithms, posting lists corresponding

to query terms are processed sequentially, while accumulat-
ing the partial scores of all documents encountered in the
lists. After traversing all the lists, the accumulated scores
are equal to the full query-document scores (cs(s, u)); doc-
uments that did not appear in any of the posting lists have
zero score.

A top-k retrieval algorithm then picks the k documents
with highest accumulated scores and returns them as query
result. In our setting, where query is a tweet and documents
are stories, the new tweet u may end up being added to Rs

of any story s for which score(s, u, t) > 0. Thus, instead
of picking the top-k stories with highest scores, we attempt
to add u into Rs of all stories having positive accumulated
score, as shown in Algorithm 3, where μs denotes the mini-
mal score of a tweet in Rs (recall that ui denotes the term
weight of term i in tweet u).

3.2 TAAT for pub-sub with skipping
An optimization often implemented in retrieval algorithms

is skipping some postings or the entire posting lists when
the scores computed so far indicate that no documents in
the skipped postings can make it into the result set. One
such optimization was proposed by Buckley and Lewit [8].
Let ms(Li) = maxs ps(s, i) be the maximal partial score in
list Li. The algorithm of Buckley&Lewit sorts posting lists
in the descending order of their maximal score, and pro-
cesses them sequentially until either exhausting all lists or
satisfying an early-termination condition, in which case the

2Since the scores would grow exponentially as new tweets ar-
rive, scores may grow beyond available numerical precision,
in which case a pass over all tweets in all Rs is required,
subtracting a constant from all values of tu and recomput-
ing the scores.
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Algorithm 3 TAAT for pub-sub

1: Input: Index of S
2: Input: Query u
3: Input: Rs1 ,Rs2 , . . . ,Rsn – min-heaps of size k for all

stories in S
4: Output: Updated min-heaps Rs1 ,Rs2 , . . . ,Rsn

5: Let L1, L2, . . . L|u| be the posting lists of terms in u, in
the descending order of their maximal score

6: A[s] ← 0 for all s – Accumulators vector
7: for i ∈ [1, 2, . . . , |u|] do
8: for 〈s, ps(s, i)〉 ∈ Li do
9: A[s] ← A[s] + ui · ps(s, i)
10: for every s such that A[s] > 0 do
11: μs ← min. score of a tweet in Rs if |Rs| = k, 0

otherwise
12: if μs < A[s] then
13: if |Rs| = k then
14: Remove the least scored tweet from Rs

15: Add (u,A[s]) to Rs

16: return Rs1 ,Rs2 , . . . ,Rsn

remaining lists are skipped and the current top-k results are
returned. The early-termination condition ensures that no
documents other than the current top-k can make it into the
true top-k results of the query. This condition is satisfied
when the k-th highest accumulated score is greater than the
upper bound on the scores of other documents that are cur-
rently not among the top-k ones, calculated as the (k+1)-th
highest accumulated score plus the sum of maximal scores
of the remaining lists. More formally, let the next list to be
evaluated be Li, and denote by Ak the k-th highest accu-
mulated score. Then, lists Li, Li+1, . . . , L|u| can be safely
skipped if

Ak > Ak+1 +
∑
j≥i

uj · ms(Lj).

In our setting, since we are not interested in top-k stories
but in top-k tweets for each story, we cannot use the above
condition and develop a different condition suitable to our
problem. In order to skip list Li, we have to make sure that
tweet u will not make it into Rs of any story s in Li. In
other words, the upper bound on the score of u has to be
below μs for every s ∈ Li:

A1 +
∑
j≥i

uj · ms(Lj) ≤ min
s∈Li

μs. (1)

When this condition does not hold, we process Li as shown
in Algorithm 3, lines 8-9. When it holds, we can skip list Li

and proceed to list Li+1, check the condition again and so
on. Note that such skipping makes some accumulated scores
inaccurate (lower than they should be). Observe however,
that these are scores of exactly the stories in Li that we
skipped because tweet u would not make it into their Rs

sets even with the full score. Thus, making the accumulated
score of these stories lower does not change the outcome of
the algorithm.

3.2.1 Efficient fine-grained skipping
Although Condition 1 allows us to skip the whole list Li, it

is less likely to hold for longer lists, while skipping such lists
is what could make the bigger difference for the evaluation
time. Even a single story with μs = 0 at the middle of a list

would prevent skipping that list. We thus resort to a more
fine-grained skipping strategy: we skip a segment of a list
until the first story that violates Condition 1, i.e., first s in
Li for which A1 +

∑
j≥i uj · ms(Lj) > μs. We then process

that story by updating its score in the accumulators (line 9
in Algorithm 3), and then again look for the next story in
the list that violates the condition. We thus need a primitive
next(Li, pos, UB) that given a list Li, a starting position pos
in that list, and the value of UB = A1 +

∑
j≥i uj · ms(Lj),

returns the next story s in Li such that A1 +
∑

j≥i uj ·
ms(Lj) > μs.
Note that next(Li, pos, UB) has to be more efficient than

just traversing the stories in Li and comparing their μs to
UB, as this would take the same number of steps as the orig-
inal algorithm would perform traversing Li. We thus use a
tree-based data structure for each list Li that supports two
operations: next(pos, UB) corresponding to the next primi-
tive defined above, and update(s, μs) that updates the data
structure when μs of a story s in Li changes. Specifically,
for every posting list Li we build a balanced binary tree Ii

where leafs represent the postings s1, s2, . . . , s|Li| in Li and
store their corresponding μs values. Each internal node n
in Ii stores n.μs, the minimum μ value of its sub-tree. The
subtree rooted at n contains postings with indices in the
range n.range start to n.range end, and we say that n is re-
sponsible for these indices. Figure 2 shows a possible tree Ii

for Li with five postings.

min��s
s� {�1,..,5}

range_start =�1
range_end =�5

min��s
s� {�1,2,3}

min��s
s� {�4,5}

range_start =�1
range_end =�3

min��s
s� {�1,2}

�3 �4 �5
range_start =�1
range_end =�2

�1 �2

range_start =�range_end =�1

Figure 2: Example of a tree Ii representing a list Li

with 5 postings.

Algorithm 4 presents the pseudo-code for next(pos, UB)
on a tree Ii. It uses a recursive subroutine findMaxInterval,
which gets a node as a parameter (and pos and UB as im-
plicit parameters) and returns endIndex — the maximal in-
dex of a story s in Li which appears at least in position
pos in Li and for which μs ≥ UB (this is the last story
we can safely skip). If node.μ > UB (line 9), all stories in
the sub-tree rooted at node can be skipped. Otherwise, we
check whether pos is smaller than the last index for which
node’s left child is responsible (line 12). If so, we proceed
by finding the maximal index in the left subtree that can
be skipped, by invoking findMaxInterval recursively with
node’s left child as the parameter. If the maximal index to
be skipped is not the last in node’s left subtree (line 14)
we surely cannot skip any postings in the right subtree. If
all postings in the left subtree can be skipped, or in case
pos is bigger than all indices in node’s left subtree, the last
posting to be skipped may be in node’s right subtree. We
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Algorithm 4 Pseudo-code for operation next of tree Ii

1: Input: pos ∈ [1, |Li|]
2: Input: UB
3: Output: next(Li, pos, UB)
4: endIndex ← findMaxInterval(Ii.root)
5: if (endIndex = |Li|) return ∞ //skip remainder of Li

6: if (endIndex = ⊥) return pos //no skipping is possible

7: return endIndex+ 1

8: procedure findMaxInterval(node)
9: if (node.μ > UB) return node.range end
10: if (isLeaf(node)) return ⊥
11: p ← ⊥
12: if (pos ≤ node.left.range end) then
13: p ← findMaxInterval(node.left)
14: if (p < node.left.range end) return p
15: q ← findMaxInterval(node.right)
16: if (q �= ⊥) return q
17: return p

therefore proceed by invoking findMaxInterval with node’s
right child as the parameter.

In case no skipping is possible, the top-level call to findMax-
Interval returns⊥, and next in turn returns pos. If findMax-
Interval returns the last index in Li, next returns ∞, indi-
cating that we can skip over all postings in Li. Otherwise,
any position endIndex returned by findMaxInterval is the
last position that can be skipped, and thus next returns
endIndex+ 1.

Although findMaxInterval may proceed by recursively
traversing both the left and the right child of node (in lines 13
and 15, respectively), observe that the right sub-tree is tra-
versed only in two cases: 1) if the left sub-tree is not tra-
versed, i.e., the condition in line 12 evaluates to false, or 2)
if the left child is examined but the condition in line 9 eval-
uates to true, indicating that the whole left sub-tree can be
safely skipped. In both cases, the traversal may examine the
left child of a node, but may not go any deeper into the left
sub-tree. Thus, it is easy to see that next(pos, UB) takes
O(log |Li|) steps. update(s, μs) is performed by finding the
leaf corresponding to s and updating the μ values stored at
each node in the path from this leaf to the root of Ii.

In order to minimize memory footprint, we use a standard
technique to embed such a tree into an array of size 2|Li|.
We optimize further by making each leaf in Ii responsible
for a range of l consecutive postings in Li (instead of a sin-
gle posting) and use the lowest μs of a story in this range as
the value stored in the leaf. While this modification slightly
reduces the number of postings the algorithm skips, it re-
duces the memory footprint of trees by a factor of l and the
lookup complexity by O(log l), thus being overall beneficial.
We did not investigate methods for choosing the optimum
value of l but found experimentally that setting l between 32
and 1024 (depending on the index size) results in an accept-
able memory-performance tradeoff. Algorithm 5 maintains
a set I of such trees, consults it to allow skipping over in-
tervals of posting list as described above, and updates the
affected trees once μs for some s changes. Note that when
such change occurs, we must update all trees which contain
s (Algorithm 6 lines 9 and 10). Enumerating these trees is
equivalent to maintaining a forward index whose size is of
the same order as the size of the inverted index of S.

Algorithm 5 Skipping TAAT for pub-sub

1: Input: Index of S
2: Input: Query u
3: Input: Rs1 ,Rs2 , . . . ,Rsn – min-heaps of size k for all

stories in S
4: Output: Updated min-heaps Rs1 ,Rs2 , . . . ,Rsn

5: Let L1, L2, . . . L|u| be the posting lists of terms in u, in
the descending order of their maximal score

6: Let I1, I2, . . . I|u| be the trees for the posting lists
7: A[s] ← 0 for all s – Accumulators vector
8: for i ∈ [1, 2, . . . , |u|] do
9: UB ← A1 +

∑
j≥i uj · ms(Lj)

10: pos ← Ii. next(1, UB)
11: while pos ≤ |Li| do
12: 〈s, ps(s, i)〉 ← posting at position pos in Li

13: A[s] ← A[s] + ui · ps(s, i)
14: pos ← Ii. next(pos, UB)
15: for every s such that A[s] > 0 do
16: processScoredResult(s, u,A[s],Rs, I)
17: return Rs1 ,Rs2 , . . . ,Rsn

Algorithm 6 A procedure that attempts to insert a tweet
u into Rs and updates trees

1: Procedure processScoredResult(s, u, score,Rs, I)
2: μs ←min. score of a tweet in Rs if |Rs| = k, 0 otherwise
3: if μs < score then
4: if |Rs| = k then
5: Remove the least scored tweet from Rs

6: Add (u, score) to Rs

7: μ′
s ← min. score of a tweet in Rs if |Rs| = k, 0

otherwise
8: if μ′

s �= μs then
9: for j ∈ terms of s do
10: Ij .update(s, μ

′
s)

To increase skipping we use an optimization of ordering
story ids in the ascending order of their μs. This reduces
the chance of encountering a “stray” story with low μs in a
range of stories with high μs in a posting list, thus allowing
longer skips. Such a (re)ordering can be performed periodi-
cally, as μs of stories change. We do not further explore this
optimization and in our evaluation we ordered stories only
once at the beginning of the evaluation.

3.3 DAAT for pub-sub
Document-at-a-time (DAAT) is an alternative strategy

where the current top-k documents are maintained as min-
heap, and each document encountered in one of the lists
is fully scored and considered for insertion to the current
top-k. Algorithm 7 traverses the posting lists in parallel,
while each list maintains a “current” position. We denote
the current position in list L by L.curPosition, the current
story by L.cur, and the partial score of the current story
by L.curPs. The current story with the lowest id is picked,
scored and the lists where it was the current story are ad-
vanced to the next posting. The advantage compared to
TAAT is that there is no need to maintain a potentially
large set of partially accumulated scores.
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Algorithm 7 DAAT for pub-sub

1: Input: Index of S
2: Input: Query u
3: Input: Rs1 ,Rs2 , . . . ,Rsn – min-heaps of size k for all

stories in S
4: Output: Updated min-heaps Rs1 ,Rs2 , . . . ,Rsn

5: Let L1, L2, . . . L|u| be the posting lists of terms in u
6: for i ∈ [1, 2, . . . , |u|] do
7: Reset the current position in Li to the first posting
8: while not all lists exhausted do
9: s ← min1≤i≤|u| Li.cur
10: score ← 0
11: for i ∈ [1, 2, . . . , |u|] do
12: if Li.cur = s then
13: score ← score+ ui · Li.curPs
14: Advance by 1 the current position in Li

15: μs ← min. score of a tweet in Rs if |Rs| = k, 0
otherwise

16: if μs < score then
17: if |Rs| = k then
18: Remove the least scored tweet from Rs

19: Add (u, score) to Rs

20: return Rs1 ,Rs2 , . . . ,Rsn

3.4 DAAT for pub-sub with skipping
Similarly to TAAT algorithms, it is possible to skip post-

ings in DAAT as well. One of the popular algorithms is
WAND [7]. In each iteration it orders posting lists in the
ascending order of the current document id and looks for the
pivot list – the first list Li such that the sum of the maximal
scores in lists L1, . . . , Li−1 is below the lowest score θ in the
current top-k: ∑

j<i

uj · ms(Lj) ≤ θ.

Then, if the current document in the pivot list – the pivot
document – equals to the current document in list L1, the
pivot document is scored and considered for insertion into
the current top-k. Otherwise, the current positions in lists
L1, . . . , Li−1 are skipped to a document id greater than or
equal to the pivot document. This skipping is possible since
by the ordering of the lists, and by definition of the pivot
list, the maximal score of the documents with ids lower than
that of the pivot document is below θ.

Similarly to our adaptation of Buckley&Lewit’s algorithm
for the pub-sub setting (Section 3.2), we modify WAND’s
skipping condition and skip only stories s in list Li for which:∑

j≤i

uj · ms(Lj) ≤ μs. (2)

In Algorithm 8 we again make use of the tree-based tech-
nique described in Section 3.2.1 to efficiently find for every
list Li the first story from the current position in Li onward
that violates Condition 2. From the set of these stories we
choose the pivot story to be the minimal according to story
id. The list containing the pivot story is said to be the pivot
list. Then, as in the regular WAND, the pivot story is either
scored and the processed tweet u is considered for insertion
to Rs, or the lists are skipped to a story greater than or
equal to the pivot story. Algorithm 6 is used to update Rs

and the affected trees.

Algorithm 8 Skipping DAAT for pub-sub

1: Input: Index of S
2: Input: Query u
3: Input: Rs1 ,Rs2 , . . . ,Rsn – min-heaps of size k for all

stories in S
4: Output: Updated min-heaps Rs1 ,Rs2 , . . . ,Rsn

5: Let L1, L2, . . . L|u| be the posting lists of terms in u
6: Let I1, I2, . . . I|u| be the trees for the posting lists
7: for i ∈ [1, 2, . . . , |u|] do
8: Reset the current position in Li to the first posting
9: while true do
10: Sort posting lists in the ascending order of their cur-

rent story ids
11: p ← ⊥ – index of the pivot list
12: UB ← 0
13: s ← L|u|.cur
14: for i ∈ [1, 2, . . . , |u|] do
15: if Li.cur ≥ s then
16: break
17: UB ← UB + ui · ms(Li)
18: pos ← Ii. next(Li.curPosition, UB)
19: if pos ≤ |Li| then
20: s′ ← story at position pos in Li

21: if s′ < s then
22: p ← i
23: s ← s′

24: if p = ⊥ then
25: break
26: if L0.cur �= Lp.cur then
27: for i ∈ [1, 2, . . . , p− 1] do
28: Skip the current position in Li to a story ≥ s
29: else
30: score ← 0
31: i ← 0
32: while Li.cur = Lp.cur do
33: score ← score+ ui · Li.curPs
34: Advance by 1 the current position in Li

35: i ← i+ 1
36: processScoredResult(s, u, score,Rs, I)
37: return Rs1 ,Rs2 , . . . ,Rsn

4. EXPERIMENTAL RESULTS
This section describes the evaluation of our algorithms.

We used an 8-core Linux machine equipped with Intel Xeon
1.86GHz processors and 16GB of memory. We report in-
memory performance of a single-threaded code after loading
all the data (including indices) into the main memory.

4.1 Test collections
We used a corpus of 100K news stories in English, ran-

domly selected from the set of stories available during a
single day on Yahoo! News. We extracted the main textual
content (the body) of each story, as well as keywords from
its title and abstract (16 terms on average). The body of
a story contained 310 terms on average from which we re-
tained 190 after filtering out 800 common stopwords. We
thus experimented with two Story indices – (1) Keywords,
indexing only the title and the abstract of each story, and
(2) FullText, indexing the main body of each story. The
total number of unique terms in Keywords and FullText

is 83K and 305K respectively. These indices reflect differ-
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ent tradeoffs between the precision and the recall of relevant
tweets. The FullText index maximizes recall while Key-

words improves precision.
We obtained a log of more than 100M tweets posted dur-

ing the day the stories in our corpus were displayed. From
these, 35M were retained, filtering out (mostly non-English)
tweets containing non-ASCII characters. This number trans-
lates to about 24K incoming tweets per minute. To approx-
imate the behavior of a real system we used the first 90% of
tweets (ordered by creation time) to initialize the annotation
sets (Rs) of the stories, and performed our measurements
on a random sample from the last 10%.

We experimented with both cosine similarity (denoted
CS) and BM25 content-based score functions (their defini-
tions appear in Section 2.1).

4.2 News annotation statistics
In this section we analyze some basic statistics of the news

annotation problem. We first examine the average rate of
incoming tweets that are related to a story s, i.e., such that
cs(s, u) > 0. Such tweets can potentially be used for anno-
tating s. Note that the rate is the same for both CS and
BM25, since we’re simply looking for any textual overlap.

Index Tweets per minute

Keywords 3.06
FullText 37.92

Table 1: Rate of tweets related to an average story.

The table above shows that out of 24K tweets that arrive
each minute, 3 are related to an average story inKeywords,
while as many as 38 are related to an average story in Full-

Text. This would be the average cache invalidation rate per
story have we decided to cache story annotations and refresh
them using real-time tweet indexing. In a corpus of 100K
stories we consider, this would translate to as many as 300
thousands and 3.8 million invalidation events per minute for
Keywords and FullText indices respectively.

We next evaluate the fraction of related tweets that actu-
ally get to annotate s, i.e., inserted into the set of annota-
tions Rs. Clearly, this fraction depends on the size k of Rs

as well as on τ , the decay parameter of the recency score.
Figure 3 shows that the chances of an incoming related tweet
to get into Rs increase linearly with k: as k grows, it is eas-
ier for the new tweet to score higher than the k-th best tweet
for the story. Similarly, as τ grows, the scores of older tweets
in Rs decay slower, and it is more difficult for a new tweet
to get added to Rs replacing an older tweet.

Figure 3 shows that while the rate of related tweets is
high, the actual set of annotations of a story is updated
3 to 5 orders of magnitude slower. We conclude that to
minimize processing cost it is not enough to find the set of
stories related to an incoming tweet, but it is also crucial to
efficiently identify the subset of these related stories whose
annotation sets the tweet will eventually be added to.

4.3 Pub-sub algorithms for news annotation
This section evaluates our new algorithms and compares

their effectiveness at processing incoming tweets. We first
consider the two basic algorithms: TAAT (Algorithm 3) and
DAAT (Algorithm 7).
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Figure 3: Fraction of related tweets that are inserted

into Rs of an average story as a function of k (for τ = 1

day) and as a function of τ (for k = 25).

Figure 4 shows the average processing time of an incoming
tweet, for theKeywords index. As the figure demonstrates,
our experiments showed that the performance and the effect
of different algorithm parameters is quite similar regardless
of whether CS or BM25 is used as the scoring function. Con-
sequently, in the following experiments we show measure-
ments with BM25 and point out the differences between CS
and BM25 only when they are noteworthy.

As Figure 4 shows, the higher k is, the more likely a new
tweet is to score higher than the worst tweet in an annota-
tion set of a story, and, consequently, our algorithms have
to update the annotation sets of a larger number of stories.
However, as the non-skipping TAAT and DAAT process
posting lists corresponding to tweet terms in whole, the de-
pendence is not strong, e.g., for k increasing from 10 to 100,
the processing latency increases by less than a factor of 2.
The dependence on τ is even lower.

4.4 The effect of skipping
We next focus on TAAT+skipping (Algorithm 5) and

DAAT+skipping (Algorithm 8). We analyze the relative
fraction of postings that are skipped using our tree-based
technique, and its effect on tweet processing latency.

Figure 5 demonstrates the fraction of skipped postings
as a function of k and τ . DAAT+skipping skips up to
95% of the postings, whereas TAAT+skipping skips up to
85%. Increasing k and decreasing τ directly reduces μs of
stories, making incoming tweets more likely to enter Rs, and
consequently reducing the opportunities to skip postings.
For any given k and τ , the fraction of the postings skipped
by TAAT+skipping and DAAT+skipping is significantly
higher for the FullText index than for Keywords. This
indicates that our skipping techniques scale well with the
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Figure 4: Average tweet processing latency with Key-

words index (top: τ = 1 day, bottom: k = 25).

index size – the number of postings our algorithms examine
depends sub-linearly on the size of the index.

We next show that skipping directly improves process-
ing latency. Figure 6 shows average processing latency as
a function of k for τ = 1 day with the Keywords in-
dex. We see that, compared to its non-skipping counterpart,
DAAT+skipping reduces processing time by 62% to 69%
(for k = 100 and 10 respectively), while TAAT+skipping

reduces processing time by 8% to 30%, compared to TAAT.
Figure 7 presents similar measurements with FullText and
shows that DAAT is slightly faster than TAAT, while their
skipping variants now save 73% to 89% (for DAAT) and
43% to 77% (for TAAT). We see that both skipping algo-
rithms process arriving tweets significantly faster than their
non-skipping variants. The graphs additionally show that
DAAT+skipping significantly outperforms TAAT + skip-

ping for high values of k.
While the effect of τ on latency of TAAT and DAAT

is negligible (see Figure 4), Figure 8 shows a much more
significant effect with their skipping counterparts. Intu-
itively, a low τ (high decay rate) reduces scores of previ-
ously seen tweets, which in turn reduces the number of sto-
ries that can be skipped when processing a new tweet. Here
too, DAAT+skipping outperforms TAAT+skipping. Fig-
ure 9 shows that DAAT+skipping with BM25 performs
slightly better than with CS (we observed similar results
for TAAT+skipping). It also shows the weak dependence
of DAAT and DAAT+skipping on the annotation size k,
suggesting that both algorithms are scalable with k.

5. RELATED APPROACHES
DAAT and TAAT algorithms for IR have been thoroughly

studied and compared in the past [8, 23, 18, 7, 22, 9]. In
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Figure 5: Fraction of postings skipped (top: τ = 1 day,

bottom: k = 25).

[9], the authors of the Juru search system performed experi-
ments comparing DAAT and TAAT algorithms for the large
TREC GOV2 document collection. They found that DAAT
was clearly superior for short queries, showing over 55% per-
formance improvement. Unlike our work, which focuses on
memory-resident indices, this work used the disk-based Juru
index. To the best of our knowledge our work is the first to
consider DAAT/TAAT algorithms in the context of content-
based pub-sub. Our results indicate that similarly to their
IR counterparts, DAAT algorithms for pub-sub significantly
outperform TAAT.

5.1 Real-time tweet indexing
The problem we consider in this paper can be viewed as a

typical IR problem, where given a pageview request of story
s at time t we have to retrieve the top-k updates from a
corpus U t according to a score function score. A possible
solution would then be maintaining a real-time incremental
index of tweets, and for each pageview of a story s querying
the index with an appropriate query qs built from the con-
tent of the story. While a real-time indexing solution would
work well for settings with low-to-medium traffic volume, it
would be inefficient for high-volume sites, due to high over-
head of querying the index of tweets for each pageview.

A partial remedy would be to cache query results for each
story. Caching documents for popular web queries is widely
employed in practice. Blanco et al. [5] propose a scheme to
invalidate cached results when new documents arrive. In-
validation causes re-execution of the query when it is in-
voked by a user. In order to reduce the amount of invalida-
tions, a synopsis of newly arriving documents is generated,
which is a compact representation of a document’s score at-
tributes, albeit to unknown queries. The synopsis is used
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to identify cached results that might change, and are thus
invalidated. This mechanism creates both false positives
(query results are unnecessarily invalidated) and false neg-
atives (stale query results are presented to users) and the
authors study the tradeoffs between them. In our setting,
only a very small fraction of incoming tweets that are related
to a story eventually end up annotating it. Our approach is
different in that it proactively maintains result sets of sto-
ries, instead of reactively caching and invalidating them.

Serving costs comparison to the pub-sub architec-
ture. We continue by further comparing our approach with
a caching scheme, along the lines proposed by Blanco et
al. [5], which caches the top-k updates that annotate each
story, and invalidates the cached list on arrival of a tweet
that could potentially annotate the story. We consider the
cost of annotating the 1K most-popular stories shown on
a news website in a single day, where each story is rep-
resented using its main body of text. For simplicity, we
assume that pageviews, as well as related incoming tweets
(i.e., tweets with positive textual overlap), are distributed
uniformly across the 1K popular stories.

We define the cost of each approach to be the number
of queries submitted to the underlying inverted index per
minute, multiplied by the cost of each query. The cost of
a query depends, among other, on the index size and on
the specific implementation. The Tweet index is orders of
magnitude larger than the Story index: 35M new tweets
(after filtering) are added to the Tweet index every day (see
Section 4). The Story index, on the other hand, contains a
fixed number of stories, the most-popular 1K stories in our

case. For the comparison, we use a simplified cost model:
we conservatively assume that although the Story index is at
least 35K times smaller than the Tweet index (if we consider
just tweets from a single day), a query to the Story index is
merely 10 times cheaper than a query to the Tweet index3

In our approach each incoming tweet triggers a query to
the story index, and therefore the number of queries to the
Story index is simply the number of incoming tweets, i.e.,
24K per minute (see Section 4.2). With the caching ap-
proach, the number of queries to the Tweet index depends
on the cache miss rate. Observe that the tweet index is
queried on the first pageview event of story s which follows
an invalidation event of the cached list of annotations for s.
From here, it is easy to see that the query rate is roughly
min(pageview rate, invalidation rate).

Substituting the rate of incoming related tweets from Ta-
ble 1, we get almost 38K expected invalidations per minute
for the cached annotations of our 1K popular stories. Fig-
ure 10 shows the invalidation and Tweet index query rates
as a function of the overall pageview rate for the 1K popu-
lar stories. Observe that as long as the pagevew rate is less
than the invalidation rate, caching doesn’t really help since
cached results are invalidated before they can be used for
another pageview, in other words, every pageview results in
a query. Caching starts to be beneficial as pageview rate
approaches and passes the invalidation rate.

3We note that in our experiments, a difference of only 3.7
times in the size of FullText compared to Keywords re-
sulted in an order of magnitude higher query latency (see,
e.g., Figure 8).
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Figure 10: The effect of pageview and invalidation rates.

Figure 11 compares the overall cost of the caching ap-
proach and our solution. Here the cost is a product of the
query rate to the Tweet and Story index respectively, and
the cost factor of 1 for the Story index and 10 for the Tweet
index. Expectedly, the cost of our solution does not de-
pend on the pageview rate but only on the incoming tweet
rate (24K per minute). The cost of caching is lower for low
pageview rates, and higher for rates above 2, 400 (for all the
1K popular stories combined). Recall that major news web-
sites receive orders of 100-s of millions of pageviews daily,
hence 100-s of thousands pageviews per minute.
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Figure 11: Comparison of query costs.

A cost analysis like the one shown in Figure 11 can guide
the choice between our approach and caching, or, in a hybrid
approach, can help select the number of most-popular sto-
ries whose annotations are maintained using pub-sub, while
the annotations of tail stories are maintained using caching.
Finally, we note an additional important factor that one
must take into account: the cost of querying the Tweet in-
dex using the caching approach is incurred “online”, during
a pageview, whereas querying the Story index occurs when
a new tweet arrives and has no effect on pageview latency.

5.2 Content based publish-subscribe
In most previous algorithms and systems for content based

publish-subscribe (e.g., [1, 4, 10, 11, 12, 21]), published
items trigger subscriptions when they match a subscription’s
predicate. In contrast, top-k pub-sub scores published items
for each subscription, in our case based on the content over-
lap between a story and a tweet, and triggers a subscription
only if it ranks among the top-k published items.

The notion of top-k publish-subscribe (more specifically,
top-k/w publish-subscribe) was introduced in [20]. In top-
k/w publish-subscribe a subscriber receives only those pub-
lications that are among the k most relevant ones published
in a time window w, where k and w are constants defined
per each subscription [20, 15]. In this model, the relevance
of an event remains constant during the time window and
once its lifetime exceeds w the event simply expires (i.e., the

relevance becomes zero). The place of the expired object is
then populated with the most relevant unexpired object by
a re-evaluation algorithm. The sliding-window model was
previously extensively studied in the context of continuous
top-k queries in data streams (see [2] for a survey). Solutions
in this model face the challenge of identifying and keeping
track of all objects that may become sufficiently relevant at
some point in the future due to expiration of older object
(see, e.g., [6]), or alternatively use constrained memory and
provide probabilistic guarantees [20, 15]. A recent work [16]
proposed a solution for the top-k/w publish-subscribe prob-
lem based on the Threshold Algorithm (TA) [13], which is
similar in spirit to our solution, but relies on keeping posting
lists sorted according to the current minimum score in the
top-k sets of subscriptions, which changes frequently.

We propose a different model, which is more natural for
tweets (and perhaps for other published content) and does
not require re-evaluation, where the published events (e.g.,
tweets) do not have a fixed expiration time. Instead, time
is a part of the relevance score, which gradually decays with
time. The decay rate is the same for all published events
(objects) for a given subscription, and therefore older events
retire from the top-k only when new events that score higher
arrive and take their place. This makes re-evaluation unnec-
essary, and does not require storing previously seen events
unless they are currently in the top-k. This, together with
DAAT and TAAT algorithms that do not require re-sorting
posting lists and thus are more efficient in our setting, makes
our solution more than an order of magnitude faster in sim-
ilar setting on a comparable hardware and somewhat larger
dataset than [16]. Specifically, the algorithms in [16] were
evaluated on shorter subscriptions of 3 to 5 random terms
selected from the relatively small set of 657 unique terms,
whereas the average subscription in our smallest index Key-

words had 16 terms from a set of 83,109 unique terms.
Query indexing is a popular approach, especially in the

context of continuous queries over event streams, where it
is simply impossible to store all events. Previous works,
however, focused on low-dimensional data. Earlier works
employed indexing techniques that performed well with up
to 10 dimensions but performed worse than a linear scan
of the queries for higher number of dimensions [24], and
later works, such as VA-files [24] (used e.g., in [20, 6]) were
shown to perform well with up to 50 dimensions. It was
also shown that latency of matching events to subscriptions
in the top-k/w model increases linearly with the number of
dimensions [20]. Finally, the number of supported subscrip-
tions was mostly relatively low (up to a few thousands in
[20, 6]). Our work considers highly-dimensional data, and
we evaluate our approach on news articles and tweets in En-
glish (therefore the number of dimensions is in hundreds of
thousands), with 100K subscriptions (news articles).

A different notion of ranked content-based pub-sub sys-
tems was introduced in [19]. This system produces a ranked
list of subscriptions for a given item, whereas we produce a
ranked set of published items for each subscription. In [19]
subscriptions were defined using a more general query lan-
guage, allowing specifying ranges over numeric attributes.
To support such complex queries, custom index and algo-
rithms were designed, unlike our approach of adapting stan-
dard inverted indexing and top-k retrieval algorithms.

An interesting related problem is providing search results
retroactively for standing user interests or queries, e.g., as
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in Google Alerts [14]. Yang et al.[25] identify such queries
automatically from user search-logs. Such systems typically
periodically re-execute standing queries with the search en-
gine to find new relevant results [25]. Although the problem
we consider in this paper is substantially different, we be-
lieve that our approach can provide an alternative that does
not require re-execution: each standing query can be in-
dexed similarly to the way we index news articles, and new
documents can be matched to standing queries similarly to
the matching of relevant tweets to stories in our system.
Then, if the new document scores among the top-k docu-
ments maintained for this query, the user issuing the query
can be notified. Comparing these approaches in practice is
an interesting direction for future work.

6. CONCLUSION
In this paper we dealt with the problem of real-time an-

notation of online news stories with tweets and introduced a
solution using the top-k pub-sub paradigm. Annotations are
related to stories by building an index of the news stories as
subscriptions and evaluating incoming tweets as published
content. This approach is more efficient for high-volume
websites than the classical solution based on real-time in-
cremental indexing of tweets: we match tweets with news
articles when new tweets arrive, and not during the serving
of pageviews. Our solution proactively maintains annota-
tion sets of stories under high volume of Twitter updates,
allowing for efficient serving of pageviews while guarantee-
ing maximal freshness of annotations. We presented varia-
tions of four prevalent top-k document retrieval algorithms
adapted to the publish-subscribe setting and shown how this
adaptation leads to very significant reduction in processing
time. Evaluation on a real-world corpus of news stories and
on a log of tweets validated the effectiveness of our approach.
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