
Question Selection for Crowd Entity Resolution

Steven Euijong Whang
⇤

Stanford University

swhang@cs.stanford.edu

Peter Lofgren
Stanford University

plofgren@stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

ABSTRACT
We study the problem of enhancing Entity Resolution (ER)
with the help of crowdsourcing. ER is the problem of cluster-
ing records that refer to the same real-world entity and can
be an extremely di�cult process for computer algorithms
alone. For example, figuring out which images refer to the
same person can be a hard task for computers, but an easy
one for humans. We study the problem of resolving records
with crowdsourcing where we ask questions to humans in
order to guide ER into producing accurate results. Since
human work is costly, our goal is to ask as few questions as
possible. We propose a probabilistic framework for ER that
can be used to estimate how much ER accuracy we obtain
by asking each question and select the best question with
the highest expected accuracy. Computing the expected ac-
curacy is #P-hard, so we propose approximation techniques
for e�cient computation. We evaluate our best question
algorithms on real and synthetic datasets and demonstrate
how we can obtain high ER accuracy while significantly re-
ducing the number of questions asked to humans.

1. INTRODUCTION
Entity Resolution (ER) is the process of identifying and

merging records judged to represent the same real-world en-
tity. Often, humans are better than a computer at determin-
ing if records represent the same entity. For instance, it may
be hard for a computer to determine that the “Canon EOS
Kiss X6i” camera is equivalent to the “Canon EOS Rebel
T4i” camera (one is the Japanese-market name, the other
the North American name). Similarly, to check if two items
are the same, one may have to examine their photographs or
user evaluations, something that is easier for humans to do.
With the advent of platforms for human computation [1, 5],
it is now much easier to use humans in the ER process.

In this paper we focus on a hybrid ER approach, where
humans are not asked to compare all pairs of records, but
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Figure 1: Resolving Photos

only the pairs that are the “most challenging” for the com-
puter or the “most fruitful”. Asking humans to compare all
records pairs is generally not feasible. For instance, if we
have 1,000 records, there are 1 million pairs, and even if we
pay humans 1 cent, the cost would be 10,000 dollars. Thus,
we only want to pay humans where the “payo↵” is signif-
icant. In this paper we will define our intuitive goal more
precisely, and will present algorithms that determine what
pairs of records should be compared by the crowd. Note that
we use humans during the ER process itself, to improve the
accuracy of the resolved set of records. One could also use
humans in an earlier training phase (where for instance, the
parameters used during ER are determined), or in a later
verification phase, where the output is checked. However,
these are not the main focus of this paper.

One of the key challenges we face in finding what ques-
tions to ask is determining the relationship between the hu-
man answers and the “correct” resolution of the records. To
illustrate, say we are resolving the three records shown in
Figure 1. For simplicity, assume each record only contains
the photograph shown. All three photos show the same per-
son, but photo a shows him at an earlier age, photo b at
an intermediate age, and photo c at a later age. If a crowd
worker sees all three photos (global information), he may
be able to determine they all match. However, if we only
present a pair, say the young-old pair a � c (local informa-
tion), he is unlikely to know it is the same person. For our
work, we assume workers only see two records at a time (lo-
cal information). Hence, answers may need to be further
processed to obtain the correct resolution. For instance, if
workers say that a � b and b � c are the same person (but
a� c does not match), then we can apply transitive closure
to discover that all three photos match.

As we will see, some of the question-selection algorithms
we present are computationally expensive. This fact is not
surprising since, if there are n records, there are n2 ques-
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tions to select from. However, since asking humans is time
consuming, it may be worthwhile spending a few tens of sec-
onds finding the right question(s) to ask. Furthermore, we
will also discuss various techniques to improve the runtime
of our algorithms.

In summary, our contributions are as follows.

• We define a Crowd ER framework and explain how hu-
mans can interact with the ER process (Section 2).

• We propose a probabilistic framework for reasoning about
questions to ask humans. With this framework, we can
model how humans respond to questions, and the ex-
pected accuracy (i.e., expected gain) from asking a par-
ticular question. We show that computing the expected
accuracy is a #P-hard problem (Section 3).

• We propose three algorithms for finding the question that
maximizes the expected accuracy (Section 4):

� An exhaustive algorithm that returns the best ques-
tion in exponential time.

� The GCER (Generic Crowd Entity Resolution) al-
gorithm that approximates the exhaustive algorithm
and runs in polynomial time.

� A simple heuristic (Half) that still gives significant
improvements over a baseline method.

• We discuss how to ask multiple best questions at a time
(Section 5).

• We evaluate our best question algorithms using real and
synthetic datasets (Section 6).

2. PRELIMINARIES

2.1 ER Model
We start by describing a “traditional” entity resolution

process, where no humans are involved. There are many
variations of ER, and our short description will not cover
all of them. Nevertheless, we believe we will capture a large
number of the ER processes used in practice.

An ER algorithm ER receives an input set of records R
and a pairwise similarity function F , and returns a set of
matching pairs of records ER(R,F ). Internally, we view
the ER process as having two steps, as illustrated in Fig-
ure 2. (For now, please ignore the “Question Generation”
and “Human” boxes on the right.) The input to the pairwise
analysis phase (PWA) is a set of records R = {a, b, c, d, . . .},
where each record provides some attributes of a real-world
entity. PWA computes similarity values for some pairs of
records, using a similarity function F (a, c) provided by a
domain expert. Typically, similarity values are between 0
and 1. (We assume that the function is symmetric, i.e.,
F (a, c) = F (c, a).) Note that similarities may not be com-
puted for all possible pairs of records. For instance, with
blocking techniques, only pairs in the same “category” (e.g.,
books or DVDs) are compared. When similarities are not
explicitly computed, they are assumed to be zero.

Definition 2.1. The global analysis phase (GBA) takes
as input a set of record pairs, each with a similarity value,
and clusters the records that are deemed to represent the
same entity.

For example, one strategy for GBA is (a) to ignore pairs
whose similarity is below some given threshold value (again
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Figure 2: ER Process with Human Input

Record Name Address Phone Passport Credit Card

a Robert 123 Main 1234
b Bob 123 Main 1234 abcd 777
c Rob abcd 777
d Sally 5678 efgh 999

Table 1: A Set of Person Records

provided by a domain expert), and then (b) to perform a
transitive closure on the remaining pairs. In general, the
GBA process can use any algorithm (not just transitive clo-
sure) to produce the final partition of records that represent
the same entity. For example, Correlation Clustering [3]
clusters records so that the number of candidate pairs within
the same cluster plus the number of non-candidate pairs
across clusters is maximized.

To illustrate the ER process, consider the four person
records in Table 1. Let us assume that for records a and
b, F (a, b) is close to 1 because in this application having the
same address and phone number is su�cient evidence that
the records represent the same person. Similarly, say that
F (b, c) is close to 1 because sharing a passport and credit
card are also strong evidence. We can assume that for all
other pairs the similarity value is very small because there
are no attribute values in common.

PWA computes the similarity values, and after GBA ap-
plies its threshold, only pairs a � b and b � c remain, and
say that with transitive closure we add pair a � c. The
output can be viewed as a partition of the input records,
{{a, b, c}, {d}} (where r � t is in the output if and only if
r and t are in the same partition). However, not all GBA
processes will generate a partition. Thus, we use the pairs-
of-records format for the final ER output (as opposed to a
partition of the input records).

Since we will be using similarities in conjunction with hu-
man judgments (next section) it is important to make a few
additional comments about the similarity function. In gen-
eral, a F (a, c) value close to 1 indicates it is more likely that
a and c represent the same real-world entity. How close to
1 a similarity needs to be for it to be “significant” depends
on the application. The threshold of GBA is used to deter-
mine what similarities are high enough. However, note that
a F (a, c) value close to 0 does not necessarily imply that a
and c are not the same real-world entity. In the example
of Table 1, records a and c have few attributes in common
and hence have a low similarity. Yet they refer to the same
person. In other words, the similarity function only looks
at local evidence that a and c are the same person. In our
example, the evidence that a and c are the same person can
only be found via a global analysis, in this case transitive
closure.

To distinguish between what can be discovered locally
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versus globally, let us define two relationships between two
records a and c:

• C(a, c): Record a and c are connected if based on purely
their contents it can be determined that they refer to the
same real-world entity. In the example of Table 1, C(a, b)
and C(b, c) hold, but C(a, c) and C(a, d) do not. In other
words, we say that C = {a� b, b� c}.

• S(a, c): Records a and c refer to the same real-world
entity. In our example, S(a, b), S(b, c), S(a, c) hold, but
S(a, d), S(b, d), S(c, d) do not. Hence, S = {a � b, b �
c, a� c}.

The F (a, c) value is a proxy for C(a, c) only (not for S(a, c)).
The larger the value the more confident we are that C(a, c)
holds. The smaller the value, the more confident we are that
C(a, c) does not hold. In the following section we will discuss
a more precise, probabilistic interpretation for F (a, c).

2.2 Human Interaction
We now discuss how to interact with humans in the PWA

phase, as shown in Figure 2. (In Section 3, we explain how
the Question Generation component chooses which ques-
tions to ask.) In particular, we may ask humans certain
questions of the form “Does Record a represent the same
real-world entity as Record c?” The human examines the
contents of the records before answering YES or NO. We
represent this question as Q(a, c).

Since a human only looks at local evidence in answering
Q(a, c), we assume they are telling us if C(a, c) holds, not if
S(a, c) holds. For instance, if we ask a human to compare
records a and c of Table 1, we expect the answer to be NO. If
we ask a human to compare the very young and old photos
of person H in Figure 1 (i.e., records a and c), we expect the
answer to be again NO: Knowing that the two photos rep-
resent the same person requires global knowledge, i.e., some
prior knowledge of what H looked like through the years. A
human who does not know anything about H is unlikely to
say the two photos represent the same person. In conclu-
sion, transitive closure among answers is not necessary. For
instance, we can get YES answers to Q(a, b) and Q(b, c) and
a NO answer to Q(a, c).

Given that we can ask questions, there are two issues to
address: (a) how do we select the questions to ask? and (b)
what do we do with the answers?

Issue (a) is the main topic of this paper and will be ad-
dressed shortly. For issue (b), we proceed in the most natu-
ral way: If the answer to Q(a, c) was YES, we replace what-
ever value F (a, c) had computed by 1, to indicate we are now
certain that C(a, c) holds. If the answer was NO, we replace
F (a, c) by 0 to reflect the opposite. Once we modify the
similarity values, we proceed to GBA, as before. The out-
put of GBA will be our ER answer, in light of the questions
we asked.
In this paper we assume humans do not make mistakes

in answering questions. (We formalize this statement in the
next subsection.) In practice, of course, humans may make
mistakes, but there are well known techniques for dealing
with errors. For example, we can ask the same question to
multiple people and take the majority answer. We can also
test humans before giving them actually work, to ensure
they are reliable and knowledgeable. There are numerous
papers that deal with worker quality (e.g., [12, 17]), and
hence we do not believe it is necessary to discuss those issues

again here.

2.3 Evaluating ER
Traditionally, to evaluate the result of an ER algorithm,

one uses a gold standard data set. For this data set, the
correct answer is known in advance. Thus, one can run the
ER algorithm on the data set, and compare the output to
the correct answer.

In our setting, there are actually two interpretations for
the term “correct answer” above:

• The correct answer we are given (for the gold standard
data set) is the correct S() set. We refer to this set as
S⇤(). That is, the final ER output, after global analysis,
should include all the record pairs in S⇤().

• The correct answer we are given is the correct C() set,
referred to as C⇤(). That is, if we ask a human to compare
two records (using local information only), the correct
answer should be “yes” if the pair is in C⇤().

Note that if we are given C⇤(), we can easily compute
S⇤(): That is, to generate S⇤(), we input to GBA all pairs
where C⇤() holds. (We give these pairs a similarity of 1.)
The result is S⇤(). If we define S⇤() independently without
deriving it from C⇤(), we may end up defining an S⇤() that
is not achievable with our given GBA (see our technical
report [19] for details).

In practice, one can have either type of gold standard.
As we will see in our experiments, for one gold standard
data set (Hotels), we have the correct C⇤(). (An expert
compared pairs of records at a time.) For the second data
set (Publications), we have a S⇤() correct answer (i.e., we
know after global analysis what records belong to the same
entity).

To compare the final output O of an algorithm to S⇤(),
one can compute a variety of metrics. For instance, preci-
sion P is the fraction of the pairs in O for which S() holds.
Recall R is the fraction of all pairs for which S() holds and
also appear in O. The F1 metric is the harmonic mean of
these two values, i.e., 2⇥P⇥R

P+R . We use the F1 metric in our
experiments. We also use the same metric to guide our se-
lection of what question to ask a human.

3. QUESTION GENERATION
The Question Generation (QG) component in Figure 2

determines which questions that, if answered by the human,
would lead to an ER result with the maximum accuracy.
(Depending on the ER algorithm, QG may return di↵er-
ent questions that are best for improving the ER accuracy.)
Since we do not know the gold standard, however, we can
only estimate the accuracies of ER results. We first explain
how QG uses a probabilistic model based on pairwise sim-
ilarities to predict how humans will answer questions. We
then define the problem of choosing the best question that
maximizes the expected ER accuracy against possible hu-
man answers. Finally, we show that computing the expected
accuracy is a #P-hard problem.

3.1 Match Probability
In order to reason about what questions to ask humans,

it is essential to estimate the probability that a worker’s
answer to Q(a, c) will be YES or NO. For instance, if the
answer to some questions is very likely to be NO, then there
may not be much benefit in asking that particular question.
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The similarity values F (a, c) appear to be related to prob-
abilities. For instance, if F (a, c) is close to 1, the domain ex-
pert has determined that C(a, c) is likely to hold, and hence
it seems reasonable to assume that a human is likely to an-
swer YES to Q(a, c). However, in most cases F () is not
strictly a probability. To illustrate, consider Figure 3 that
shows the results of a simple experiment. We took 2,000
records from a Hotel dataset (see Section 6 for details) and
computed the similarity values for all pairs of records, using
a similarity function that compares the names and street
addresses of hotels. Among all possible pairs, we only used
2,141 pairs that had similarities at least 0.8 for asking ques-
tions. For this dataset, we also have a gold standard C⇤()
set, so we can check what fraction of pairs in a given simi-
larity range are actually in the gold standard. For instance,
in Figure 3, we have 113 record pairs in the similarity range
0.9–0.95. Among these pairs, 84 are answered YES by a
human. Thus, it seems reasonable to say that if F (a, c) is
in the range above, then the probability that a � c is in C⇤

is 84
113 ⇡ 0.74.
We argue that in general one can transform the output of

a good similarity function into a probability function, based
on training data, as illustrated. That is, we can draw a graph
like the one in Figure 3 and then convert each similarity to
its corresponding probability in the graph. We assume that
the actual data that needs to be resolved has the same char-
acteristics as the training data, and hence the probabilities
we use (mapped similarities) will be adequate for our needs.
Keep in mind that the probability values will only be used
to guide our question selection. The worst that can happen
if our probability mapping is incorrect is that we may not
choose the most e↵ective questions to ask humans.

Setting the right ranges of similarities (for the mapping
function) depends on two factors. On one hand, we would
like each range of similarities to be large enough to have
enough record pairs with similarities values within that range.
On the other hand, we would like to have smaller ranges in
order to accurately estimate the match probability for each
similarity. Hence, a solution is to adjust the ranges of sim-
ilarities to ensure that each range contains at least a mini-
mum number of samples. In Figure 3, we evenly divided the
record pairs with similarities at least 0.8 into 20 buckets.

To summarize, QG computes probability values for each
pair of records (using the similarity function as discussed):
P (a, c) gives us the probability that a human will answer
Q(a, c) in the positive. The pairwise probabilities can be
captured as a match probability graph P = (V,E) where
V is the set of records and each a � c 2 E has a weight of
P (a, c). And since humans make no mistakes, P (a, c) also
gives us the probability that C⇤(a, c) holds.
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Figure 4: Similarities to Probabilities
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3.2 Possible Worlds
Using these probabilities along with the ER algorithm ER,

we can actually compute how likely an ER result is to match
the gold standard. To illustrate, consider a scenario with
three records, a, b and c, where F (a, b) = 0.9, F (b, c) = 0.5,
and F (a, c) = 0.2. Suppose that these similarities convert
into the probabilities P (a, b) = 1, P (b, c) = 0.6 and P (a, c) =
0.2 (see Figure 4). We assume that the GBA of ER performs
a transitive closure on matching records.

Consider a possible output of pairwise matching records,
say W1 = {a � b, b � c, a � c}. How likely is it that W1 is
the C⇤ gold standard? The answer, Pr[W1 = C⇤] is simply
the probability that a�b is in C⇤ (that is, P (a, b)) times the
probability that b�c is in C⇤ times the probability that a�c
is in C⇤. Hence, Pr[W1 = C⇤] =1⇥0.6⇥0.2=0.12. In general,
the probability of a possible world W can be computed as

p(P,W ) = (
Y

a�b2W

P (a, b))(
Y

a�b 62W

1� P (a, b))

In a similar fashion we can compute the probability of the
remaining C⇤ outputs, as shown in the top half of Figure 5.
For the given scenario, there are three more outputs with
non-zero probability: W2 = {a � b, b � c} with probability
0.48, W3 = {a � b, a � c} with probability 0.08, and W4 =
{a� b} with probability 0.32. We call W1, W2, W3, and W4

the C⇤ possible worlds.
Using each C⇤ possible world W , we can compute a S⇤

possible world ER(R,FW ) where FW is the similarity func-
tion corresponding toW where FW (a, b) = 1 if a�b 2 W and
FW (a, b) = 0 otherwise. The probability of each S⇤ possible
world W 0 is the probability sum of each C⇤ possible world
W where W 0 = ER(R,FW ). Continuing our example above,
the bottom half of Figure 5 shows the S⇤ possible worlds for
P . The probability of the first, W 0

1 = {a� b, b� c, a� c}, is
the sum of the probabilities of the first three C⇤ worlds that
lead to W 0

1 when transitive closure is applied. The probabil-
ity of the second S⇤ world, W 0

2 = {a� b} is the probability
of the fourth C⇤ world, which leads to W 0

2. In a sense, the
S⇤ possible worlds are our predictions of the gold standard.

From the possible worlds we can now compute how good
an ER output is expected to be. First, we define the function
F1(O1, O2) to compute the F1 accuracy of the set of edges
O1 against the set of edges O2. We also define the accuracy
function Acc(O,W ) as a shorthand for F1(O,ER(R,FW )).
Given a set of C⇤ possible worlds L of the probability graph
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P and an ER algorithm ER, we define the expected accuracy
of an ER result O against a random possible world W 2 L
as follows:

E[Acc(O,W )] =
X

W 02L

p(P,W 0)⇥Acc(O,W 0)

For example, suppose that the ER result O = {a � b}, and
we are computing the expected accuracy of O against the
probability graph in Figure 4. Using the four possible worlds
W1, . . . ,W4 in Figure 5, we can compute E[Acc(O,W )] as
0.12⇥Acc(O,W1) + 0.48⇥Acc(O,W2) + 0.08⇥Acc(O,W3)
+ 0.32⇥Acc(O,W4) = 0.68⇥ F1(O,W 0

1) + 0.32⇥ F1(O,W 0
2)

= 0.68 ⇥ 2⇥1⇥1/3
1+1/3 + 0.32 ⇥ 2⇥1⇥1

1+1 = 0.66.

3.3 Choosing the Best Question
Using the information in the S⇤ possible worlds, we would

like to derive an ER result that maximizes the expected
accuracy against these possible gold standards. We define
the best question problem as choosing the question Q(a, b)
that, when answered, can maximize E[Acc(O,W )] when the
human answers YES with probability P (a, b) and NO with
probability 1�P (a, b). (In Section 5, we discuss the problem
of asking more than one question at a time.)

How do we compute the expected accuracy when a hu-
man answers a question? Suppose that the human answered
YES to the question Q(a, b). According to Section 2.2, we
then set F (a, b) to 1. Hence, we need to re-compute the
ER result O using the new similarity function. We denote
F [a, b, 1] to be identical to F except that F (a, b) is set to 1.
We then compute the new ER result O1 = ER(R,F [a, b, 1]).
We also update P to P [a, b, 1] where P [a, b, 1] is identical to
P except that P [a, b, 1](a, b) is set to 1. Suppose we define
W1 to be a random possible world from P [a, b, 1]. We then
compute the expected accuracy E[Acc(O1,W1)]. Similarly,
if the human answers NO, we can compute the ER result
O2 = ER(R,F [a, b, 0]). We also update P to P [a, b, 0] and
define W2 to be a random possible world from P [a, b, 0]. We
then compute the expected accuracy E[Acc(O2,W2)]. Fi-
nally, we define the random variable A(a, b) where A(a, b) =
1 if the human answered the question Q(a, b) and A(a, b) =
0 otherwise. Since the human answers YES with probabil-
ity P (a, b) and NO with probability 1 � P (a, b), the final
expected accuracy given that Q(a, b) is answered is

E[Acc(O,W )|A(a, b)] =P (a, b)⇥ E[Acc(O1,W1)]+

(1� P (a, b))⇥ E[Acc(O2,W2)]

We thus ask the question Q(a, b) that has the maximum
E[Acc(O,W )|A(a, b)] value.

As an illustration, suppose we are choosing the best ques-
tion for the probability graph in Figure 4. We use an ER
algorithm that matches two records if they have a similar-
ity at least t = 0.7, and then performs a transitive closure
on the matching records. Suppose we choose the ques-
tion Q(b, c). We first compute Acc(O1,W1) where O1 =
ER(R,F [b, c, 1]) and W1 is a random possible world from
P [b, c, 1]. Since we assume the human says YES to Q(b, c),
the ER result O1 = {a � b, b � c, a � c}. In addition, since
P (b, c) = 1, there is only one S⇤ possible world: {a� b, b�
c, a � c}. Hence, E[Acc(O1,W1)] = 1. We now compute
E[Acc(O2,W2)] where O2 = ER(R,F [b, c, 0]) and W2 is a
random possible world from P [b, c, 0]. This time, the ER
result is O2 = {a� b}, and there are two S⇤ possible worlds:
{a � b, b � c, a � c} with probability 0.2 and {a � b} with

Algorithm 1: Exhaustive Algorithm

input : A set of records R, an ER algorithm ER, a
similarity function F , and a match probability
function P

output: The question Q(a, b) with the highest expected
accuracy

1 Z  null;
2 M  0;
3 for a� b 2 {r � s|r � s 2 R⇥R ^ r 6= s} do
4 p P (a, b);
5 t F (a, b);
6 F (a, b) P (a, b) 1;
7 Y  ComputeAccuracy(R,ER, F, P );
8 F (a, b) P (a, b) 0;
9 N  ComputeAccuracy(R,ER, F, P );

10 P (a, b) p;
11 F (a, b) t;
12 A p⇥ Y + (1� p)⇥N ;
13 if A > M then
14 Z  Q(a, b);
15 M  A;

16 return Z;

probability (1 � 0.2) = 0.8. Hence, E[Acc(O2,W2)] = 0.2

⇥ 2⇥1⇥1/3
1+1/3 + 0.8⇥ 1 = 0.9. We can now compute E[Acc(O,W )

|A(b, c)] = 0.6 ⇥ 1 + 0.4 ⇥ 0.9 = 0.96. In a similar fashion,
we can compute the expected accuracy for Q(a, b) as 0.66
and Q(a, c) as 0.76. Hence, the question Q(b, c) results in
the highest expected accuracy. Intuitively, by asking Q(b, c)
where the human has a high chance of answering YES, we
are likely to have the gold standard {a� b, b� c, a� c}. At
the same time, the ER algorithm is also likely to produce
{a� b, b� c, a� c}, resulting in high accuracy.

Proposition 3.1. Suppose that ER performs a transi-
tive closure on matching records. Given a match probability
graph P and an ER result O, computing the expected accu-
racy E[Acc(O,W )] is #P-hard (and thus NP-hard).

The proof is through a reduction from the #P-hard prob-
lem of computing the probability that a random graph is
connected (see our technical report [19] for details). Con-
sequently, computing E[Acc(O,W )] is #P-hard in general.
The proposition also suggests that it is NP-hard to compute
the optimal next question, since even evaluating how useful
it is to choose a particular question is #P-hard.

4. CROWD ER ALGORITHMS
We first propose an exhaustive “brute-force” algorithm for

deriving the best question that has the highest expected ac-
curacy. Since this algorithm has an exponential runtime, we
propose a polynomial-time approximation algorithm called
GCER. Finally, we describe a simple heuristic for choosing
questions without any information about the ER algorithm.

4.1 Exhaustive Algorithm
The exhaustive algorithm (Algorithm 1) iterates all the

edges in P and computes the expected F1 for asking that
question. The example in Section 3.3 roughly demonstrates
how Algorithm 1 would run on the similarity to probability
mapping in Figure 4. In our technical report [19], we provide
a step-by-step explanation on how Algorithm 1 runs on the
mapping above.

We now show the time complexity of Algorithm 1. The
proof can be found in our technical report [19].
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Algorithm 2: ComputeAccuracy

input : a set of records R, an ER algorithm ER, a similarity
function F , and a match probability function P

output: The expected accuracy
1 O  ER(R,F );
2 A 0;

//Compute E[Acc(O,W )]
3 L C⇤ possible worlds of P ;
4 for W 0 2 L do
5 A A+ p(P,W 0)⇥ F1(O,ER(R,FW 0 ));

6 return A;

Proposition 4.1. The complexity of Algorithm 1 is O(|R|2
⇥|L|⇥(C(ER)+ |R|2)) where ER is the ER algorithm, L the
C⇤ possible worlds of P , and C(ER) the complexity of ER.

4.2 GCER Algorithm
While the exhaustive algorithm correctly returns the ques-

tion with the highest expected accuracy, there is a great deal
of redundant computation that makes the entire process in-
e�cient. In this section, we propose the GCER algorithm,
which improves Algorithm 1 with a number of optimizations
to produce an approximate result within polynomial time.

4.2.1 Pruning Questions
We can reduce the number of questions to compare by

avoiding record pairs with very high or low probabilities.
For questions with probabilities less than a threshold l (more
than h), we can skip its entire loop (Steps 3–15) in Algo-
rithm 1 assuming the human will say NO (YES). If most
record pairs will not match with each other, we can signif-
icantly reduce the number of questions to consider without
missing obviously good questions. The pruning optimization
does not reduce the complexity of Algorithm 1, but can sig-
nificantly reduce the actual runtime of GCER. On the other
hand, we may now miss the opportunity to choose the ques-
tion with the highest expected accuracy. In Section 6.2.4,
we study the tradeo↵s of pruning questions.

4.2.2 Monte-Carlo Approximation for Accuracy
Since computing the expected accuracy of a question is

#P-hard, we now show an approximation technique for com-
puting E[Acc(P,O)] for each question and answer pair us-
ing Monte-Carlo methods. Instead of generating all possi-
ble worlds from P , we select a random set of possible worlds
where the probability for choosing each world W is the prod-
uct of the probabilities of W ’s edges in P . We then com-
pute the ER result S = ER(R,FW ). Finally, we compute
the accuracy F1(O,S). By repeating the sampling and ER
evaluation steps, we can eventually produce an average F1

accuracy that is very close to E[Acc(P,O)]. In our technical
report [19], we discuss the right number of samples needed
to estimate E[Acc(P,O)] using Hoe↵ding’s inequality.

By using the Monte-Carlo method, we can reduce the
complexity of Algorithm 1 to be polynomial. The proof
can be found in our technical report [19].

Proposition 4.2. Using the Monte-Carlo method for es-
timating the ER accuracy, the complexity of Algorithm 1 is
O(|R|2 ⇥ (C(ER) + |R|2)).

4.2.3 Sharing ER Results
Even with the Monte-Carlo methods in Section 4.2.2, the

number of questions to ask still increases in proportion to the

number of edges in P . We can further reduce the expected
number of samples to a constant by sharing ER samples
among di↵erent question and answer pairs. We only com-
pute the expected accuracy for questions with probabilities
strictly between 0 and 1 (i.e., l > 0 and h < 1).

Suppose that we want at least n = 2 samples for each
question and answer pair in Figure 4. If we set l = 0.1 and
h = 0.9, the possible question and answer pairs are: [Q(b, c),
YES], [Q(b, c), NO], [Q(a, c), YES], and [Q(a, c), NO]. Sup-
pose that we choose a random possible worldW1 = {a�b, b�
c} from P . Notice that W1 could also be a possible random
world from P when Q(b, c) is answered YES and Q(a, c) is
answered NO. Hence, the ER result S1 = ER(R,FW1) is a
possible ER sample for the two question-answer pairs above.

Using this idea, we can pre-generate random C⇤ possible
worlds W1, . . . ,Wm of P and using a subset of them for com-
puting E[Acc(P,O)] for each question. For each question
and answer pair [Q(a, b), ans], we can choose any subset of
possible worlds W 0

1, . . . ,W
0
n where each world W 0

i contains
(does not contain) the edge a� b if ans is YES (NO). Since
we need at least n ER samples per question and answer pair,
we generate the possible worlds from P until each question
and answer pair has enough samples. Continuing our ex-
ample above, suppose that we now generate the possible
worlds W2 = {a � b, b � c, a � c} and W3 = {a � b, a � c}.
We then generate the ER results S2 = ER(R,FW2) and
S3 = ER(R,FW3). This time, S2 is a possible sample for
the question-answer pairs [Q(b, c), YES] and [Q(a, c), YES]
while S3 is a possible sample for the pairs [Q(b, c), NO] and
[Q(a, c), YES]. As a result, every question-answer pair now
has at least n = 2 samples. Since we only consider question-
answer pairs with probabilities strictly between 0 and 1,
generating the ER samples is guaranteed to terminate.

Proposition 4.3. Given a low threshold l and a high
threshold h for probabilities (0 < l < h < 1), the expected
number of ER samples to create to have at least n sam-
ples for each question-answer pair with probabilities between
l and h is n

min{l,1�h} .

The proofs for this and the following propositions are in
our technical report [19].

For example, if we need n = 20 samples for each question
and answer pair and set l = 0.1 and h = 0.95, then the ex-
pected number of ER samples to create is 20

min{0.1,1�0.95} =

400. The smaller (larger) the value of l (h), the more sam-
ples need to be collected to guarantee enough samples per
question and answer pair.

Proposition 4.4. Using the pre-computation technique
does not alter the approximation quality of the Monte-Carlo
method in Section 4.2.2.

By sharing ER results, we can significantly reduce the con-
stant factor of the complexity O(|R|2⇥(C(ER)+ |R|2)). We
first compute a constant number n

min{l,1�h} of ER samples,

which requires a runtime complexity of O(C(ER)). Next,
we iterate through each of the D edges in P with probabil-
ities between l and h, and compute ER once (Step 1, Algo-
rithm 2) and then compute F1 against the n ER samples.
This operation has a complexity of O(|R|2⇥(C(ER)+|R|2)).
Hence, the total complexity is O(|R|2 ⇥ (C(ER) + |R|2)).
While this complexity is the same as when we do not share
ER samples, the number of ER samples we have to create
reduces from 2⇥D ⇥ n to n

min{l,1�h} .
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4.2.4 Incremental ER
There is still a great deal of redundant computation when

running ER multiple times in Step 1 of Algorithm 2 because
the similarity functions used by di↵erent ER runs are not
that di↵erent. We can remove some redundant ER compu-
tation by only resolving records that may be “influenced”
by the current question. For example, suppose the ER al-
gorithm performs a transitive closure on matching records
in R = {a, b, c, d, e, f}. If ER(R,F ) = {a � b, c � d, e � f}
and the current question is Q(a, c), then we only need to re-
run ER on the set {a, b, c, d} instead of the entire R. Only
resolving a small subset of R can significantly improve the
subsequent runtimes of ER. We note that not all ER al-
gorithms can be computed incrementally. In this case, we
must run ER from scratch on the entire R. While the incre-
mental ER optimization does not reduce the complexity of
Algorithm 1, it significantly reduces the actual ER runtime.

4.3 Half Algorithm
We propose a simple heuristic (called the Half algorithm)

that chooses the best question by picking the edge in P with
a probability closest to 0.5. Intuitively, we are choosing the
most “uncertain” edge for the next question, which provides
the most information when answered. However, the Half
method may not return the best question that results in
the highest ER accuracy. For example, suppose there is
an edge a � b where P (a, b) = 0.5 and an edge c � d where
P (c, d) = 0.1. Say that a and b do not match with any other
records while c and d match with 10 records each. Then
even if P (c, d) is further away from 0.5 than P (a, b), there is
a 10% chance that the human will say YES to Q(c, d) and
cluster the 20 records together, which may result in a higher
expected ER accuracy (assuming the 20 records do refer to
the same entity). Nevertheless, in Section 6 we show that
the Half algorithm can perform quite well in many scenarios.

5. ASKING MULTIPLE QUESTIONS
Until now, we have been asking a human one question at

a time. However, we may want to ask multiple questions
at a time in order to reduce latency. A straightforward ex-
tension to the GCER algorithm for asking k questions is to
consider all possible k combinations of questions and com-
pare their expected accuracies. However, this process may
become very expensive for large k values. A faster heuris-
tic is to choosing the top-k questions that have the highest
expected accuracies according to the GCER algorithm. Al-
though we are no longer choosing the best k combination of
questions, we are still choosing questions that can increase
the accuracy the most when asked individually. We study in
Section 6.2.6 how increasing k influences the ER accuracy.

6. EXPERIMENTAL RESULTS
We compare the Half and GCER algorithms with a base-

line method called Rand where questions are chosen ran-
domly from all the record pairs. We first evaluate the three
algorithms on two real datasets (Cora and Hotel) and then
on synthetic datasets. Our algorithms were implemented in
Java, and our experiments were run in memory on a 2.4GHz
Intel(R) Core 2 processor with 4 GB of RAM.

6.1 Real Data Experiments

We first evaluate our algorithms on a subset of the Cora
dataset, which is a publicly available list of publications.
Each record contains attributes including the title and au-
thors of a paper. The gold standard for the Cora dataset
contains clusters with varying sizes. Next, we experiment
on a hotel dataset provided by Yahoo! Travel where tens
of thousands of records arrive from di↵erent travel sources
(e.g., Orbitz.com), and must be resolved before they are
shown to the users. Each record contains attributes includ-
ing the name and street address of a hotel. We experimented
on a subset of hotel records located in the United States. In
comparison to the Cora dataset, the Hotel dataset mostly
comes from two data sources that do not have duplicates
within themselves. As a result, there are rarely more than
two records that refer to the same hotel.

Human Gold Standard. For the Hotel dataset, we have a
C⇤ gold standard where a human expert (at Yahoo!) pro-
vided YES/NO answers to each possible hotel record pair.
For the Cora dataset, however, we only have the S⇤ gold
standard, which after a global analysis tells us which publi-
cation records refer to the same entity. We cannot directly
use this global information as our C⇤ gold standard. For
example, suppose that the records r1, r2, and r3 all refer to
the same entity according to S⇤ and the pairwise similarities
are F (r1, r2) = 0.5, F (r1, r3) = 0.7, and F (r2, r3) = 0.9. Al-
though all three records should be eventually resolved to the
same entity, it could be the case that a human says NO to
the question Q(r1, r2) and YES to Q(r2, r3) and Q(r1, r3).

We simulate the human answers for the Cora records to be
as “conservative” as possible. For each cluster c = {r1, r2, . . . ,
rk} in the gold standard, the human only says YES to the
minimum record pairs such that running ER on c still results
in all the records in c matching with each other. Continu-
ing our example from above, suppose that the ER algorithm
performs a transitive closure on pairs of records with simi-
larity at least t. In this case, we set t = 0.7 where the human
says NO to the question Q(r1, r2) and YES to Q(r2, r3) and
Q(r1, r3). Notice that t cannot be any smaller than 0.7 be-
cause otherwise the human will say NO to Q(r1, r3), and
only r2 and r3 match with each other. The threshold t may
di↵er for other clusters in the gold standard. We believe this
technique models humans who do not have full knowledge
of the S⇤ gold standard.

Similarity Functions. Our similarity functions use the Jaro
measure [20], which computes a string similarity ranging
from 0 to 1. The Cora dataset similarity function measures
the title and author similarities between two records and
returns the average similarity. The Hotel dataset similarity
function measures the name and street address similarities
between two records and returns the average similarity.

ER Algorithm. We use the Sorted Neighborhood (SN) al-
gorithm [11] for resolving records. The SN algorithm ini-
tially sorts the records in R using a certain key assuming
that closer records in the sorted list are more likely to match.
For example, suppose that we have the input set of records
R = {r1, r2, r3} and sort the records by their names (which
are not visible in this example) in alphabetical order to ob-
tain the list [r1, r2, r3]. The SN algorithm then slides a
fixed-sized window on the sorted list of records and compares
all the pairs of records that are inside the same window at
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any point. For each pair of records, the SN algorithm con-
siders them to match if their similarity is above a threshold
t. If the window size is 2 in our example, then we compare
r1 with r2 and then r2 with r3, but not r1 with r3 because
they are never in the same window. We thus produce pairs
of records that match with each other. We can repeat this
process using di↵erent keys (e.g., we could also sort the per-
son records by their address values). After collecting all the
pairs of records that match, we perform a transitive closure
on all the matching pairs of records. For example, if r1
matches with r2 and r2 matches with r3, then we merge r1,
r2, r3 together into the ER result {r1 � r2, r2 � r3, r1 � r3}.

In our experiments, we sorted the Cora records according
to their titles and then used a sliding window of size W to
compare the records using the Cora similarity function and
a threshold t. For the Hotel records, we sorted them by their
names and used the Hotel similarity function for matching
records. We used a window size ofW = 20 for both datasets.
In order to optimize our code, we stored an ER result as a
partition of records instead of a set of record pairs.

Parameter Setting. Table 2 shows the experimental set-
tings used for the GCER algorithm on the Cora and Hotel
datasets. The first parameter shows how many questions
were asked to create the similarity-probability mappings.
When choosing which questions to ask for the training, we
selected record pairs that had a similarity of at least 0.8
because most pairs with similarities less than 0.8 were obvi-
ously non-matching records. For the Cora dataset, we thus
extracted the pairs of records within 300 random records
that had a similarity at least 0.8, resulting in 1,339 pairs
used for training. Figure 6 shows the similarity to probabil-
ity statistics based on simulated human answers to the se-
lected Cora record pairs. For the Hotel dataset, most of the
record pairs were non-matches, so we first sorted 5,000 U.S.
Hotel records according to their names in order to group the
likely-matching records together. We then selected training
pairs from the first 2,000 records in the sorted list that had
similarities at least 0.8. As a result, we trained on 2,141
record pairs. Figure 3 in Section 3.1 shows the similarity
to probability mappings for the selected Hotel record pairs
based on real human answers.

The next parameters are used for running GCER. We re-
solved 500 Cora records and 1,000 Hotel records. For both
datasets, we used n = 20 samples for computing the ex-
pected accuracy of an ER result using Monte-Carlo meth-
ods. When pruning questions, we set l = 0.1 and h = 0.9.
Finally, when running GCER, we stopped asking questions
once the ER accuracy exceeded a threshold of 0.9 for the
Cora dataset and 0.85 for the Hotel dataset. Since we used
low/high thresholds on probabilities for restricting the ques-
tions to consider, we sometimes ran out of questions to ask.
The accuracy thresholds were set in order to prevent our
experiments from running out of questions.

Finally when running SN , we used a default similarity
threshold of 0.95 for comparing the Cora records while using
a threshold of 0.88 for comparing the Hotel records.

6.1.1 Cora Results
We compare the ER accuracy results for the GCER, Half,

and Rand algorithms on 500 random publication records in
the Cora dataset. For each question asked, we reflect the
answer into the probability graph P and similarity function

Parameter Value
Cora Hotel

Number of pairs trained 1,339 2,141
Number of records resolved 500 1,000

Number of samples 20 20
Thresholds (Low/High) 0.1/0.9 0.1/0.9
Accuracy threshold 0.9 0.85
Similarity threshold 0.95 0.88

Table 2: GCER Setting for Real Datasets
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Figure 6: Cora Training Statistics

F and then re-compute the expected accuracies of all ques-
tions to choose the next best question. Figure 7 shows how
the ER accuracy increases as more questions are asked. For
example, after asking the 10th question using GCER, we ob-
tain an ER accuracy of 0.66. When no questions are asked
yet, the ER result has a precision of 0.83, a recall of 0.2, and
an F1 accuracy of 0.33 for all three plots. Hence, questions
that are answered are more likely to cluster records together
than splitting them from each other. In order to arrive at an
ER accuracy of c = 0.9, GCER asks 1,127 questions while
Half asks 3,686 questions to arrive at the same accuracy. In
comparison, Rand asks 50,457 questions. The results shows
that both GCER and Half significantly outperform Rand
asking 14–45x fewer questions. In addition, GCER outper-
forms Half using 3.3x fewer questions by carefully choosing
the questions that can merge many records together.

We now change the SN comparison threshold from its
default value (t = 0.95) to t = 0.86. Compared to the previ-
ous experiment, SN incorrectly clusters more Cora records.
Hence, not only does GCER have to find questions to clus-
ter records, but it also needs to find questions that split the
incorrect clusters. Figure 8 compares the three algorithms
in this scenario. When no questions are asked, the ER result
has a precision of 0.82, a recall of 0.78, and an F1 accuracy
of 0.8. To arrive at our accuracy threshold of 0.9, GCER
needs to ask 4,178 questions while Half asks 4,207 ques-
tions. In comparison, Rand asks 51,271 questions. Hence,
both the GCER and Half algorithms outperform the Rand
algorithm asking 12x fewer questions. The improvements
against the Rand algorithms is thus much less than when
t = 0.95 because splitting clusters is an expensive operation
for both GCER and Half. Unlike finding records to cluster
together, splitting a cluster involves finding the right set of
critical questions that will be answered NO by the humans
and clearly show that records in one set will not match with
any records in another set. Since both GCER and Half are
local search algorithms that find one best question at a time,
it is hard to find the best multiple questions, which requires
a global search.

6.1.2 Hotel Results
We now evaluate the GCER, Half, and Rand algorithms
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Figure 7: Cora Results using High Threshold
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Figure 8: Cora Results using Low Threshold

on 1,000 records in the Hotel dataset. Recall that we used
the first 2,000 records in the sorted list of 5,000 Hotel records
for training the similarity to probability mapping. Our res-
olution was done on the next 1,000 records in the sorted list.
Figure 9 compares the three algorithms. Initially, the ER
result has a precision of 0.78, a recall of 0.5, and an F1 accu-
racy of 0.61. From the starting point, the GCER and Half
algorithms ask 133 and 111 questions to arrive at an ER
accuracy of 0.85. In comparison, Rand needs to ask 253,642
questions to arrive at the same accuracy. Hence, GCER and
Half significantly outperform Rand by asking 1,907–2,285x
fewer questions. Unlike the Cora results, however, GCER
and Half have near-identical performance. The reason is
that most questions answered by humans end up clustering
only two Hotel records, so GCER cannot find questions that
are better than what Half finds. While the curves look steep,
notice that the scale of the x-axis is logarithmic. The plots
are actually growing linearly or tapering o↵.

6.2 Synthetic Data Experiments
We now evaluate our Crowd ER techniques using syn-

thetic data. The main advantage of synthetic data is that
they are much easier to generate for di↵erent scenarios and
provide more insights into the operation of GCER.

Table 3 shows the parameters used for generating the syn-
thetic dataset R and the default values for the parameters.
There are s entities in the dataset that are distributed on a
d-dimensional Euclidean space. The entities form the gold
standard we would like to produce by running ER on R. For
each dimension, we randomly assign to s one of the values
in the list [0, i, 2 ⇥ i, . . . , (s � 1) ⇥ i] without replacement.
As a result, any two entities have a distance of at least i
from each other for any dimension. For each entity e, the
data set contains an average of u records that represent that
entity, where this number of duplicates forms a Zipfian dis-
tribution with an exponent of f . Each record r generated
for the entity e contains d attributes. For each attribute a,
r contains a value selected from a Zipfian distribution with
an exponent of g within the range of [x � v, x + v] where
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Figure 9: Hotel Results

Par. Description Val.

Data Generation
s Number of entities 200
u Avg. number of duplicate records per entity 5
f Zipfian exponent number of # duplicates 0.1
d Number of attributes (dimensions) per record 2
i Minimum value di↵erence between entities 40
v Maximum deviation of value per entity 50
g Zipfian exponent number of deviation 1

Similarity Function
t Record comparison threshold 0.05

GCER
r Number of record pairs for training 1,080
b Number of buckets 30
l Low threshold 0.1
h High threshold 0.9
n Number of samples 20
c Accuracy threshold 0.9
q Number of questions at a time 1

Table 3: Parameters for Generating Synthetic Data

x is the a value of e and v is the maximum deviation of a
duplicate record’s value from its entity value.

We use a similarity function F (a, b) that returns a sim-
ilarity of min{1, 1

dist(a,b)} where dist(a, b) is the Euclidean
distance between a and b. For example, if a contains the two
values [1, 2] and b contains the values [2, 3], then the Eu-
clidean distance is

p
(2� 1)2 + (3� 1)2 =

p
5, and the simi-

larity is min{1, 1p
5
} = 1p

5
. We used an ER algorithm (called

TC) that performs a transitive closure on record pairs with
similarities over the threshold t.

When simulating the human answers, we again assume (as
in Section 6.1) that the human says YES to the minimum
number of questions possible. For each cluster c in the gold
standard, we found the maximum similarity threshold t such
that performing the TC algorithm on the records in c using
t would result in all the records in c clustering together.

When generating the similarity to probability mapping,
we first generated a training dataset of 500 records with the
default parameters in Table 3 (except for s, which was set
to 100). We then selected the r = 1,080 pairs that had simi-
larities at least 0.016 and divided them into b = 30 buckets.
Figure 10 shows the similarity to probability mapping for
the synthetic records. The training dataset was generated
separately from the datasets that were resolved to evaluate
our algorithms.

6.2.1 Number of Questions versus Accuracy
As before, we compare the GCER, Half, and Rand al-

gorithms on how they improve the ER accuracy for each
question asked. We resolve 1,000 synthetic records gener-
ated with the default setting in Table 3. GCER, Half, and
Rand ask 280, 771, and 257,312 questions, respectively, to
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Figure 10: Similarity Mapping for Default Setting
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Figure 11: ER Accuracy Improvement

generate an ER result with an accuracy of c = 0.9. Hence,
both GCER and Half outperform Rand by 333–919x, and
GCER outperforms Half by 2.8x. Initially, the ER result
had a precision of 0.99 and a recall of 0.48, so GCER was
good at choosing the right questions that help cluster many
records together.

6.2.2 Number of Samples Impact
We show how the number of Monte Carlo samples n in-

fluences the ER accuracy of GCER. We again resolve 1,000
synthetic records generated with the default setting in Ta-
ble 3. Figure 12 shows the numbers of GCER questions to
arrive at an ER accuracy of c = 0.9 when n is set to 5,
20, and 100. Intuitively, a larger n size enables GCER to
correctly predict the expected accuracies of questions using
Monte-Carlo methods. Consequently, GCER successfully
finds better questions and asks fewer questions to arrive at a
high ER accuracy. However, the number of questions asked
when n = 20 (280) is not that di↵erent from when n =
100 (270). This result suggests that using a relatively small
number of samples is su�cient for GCER to perform well.

While we are mainly interested in finding the next best
question, it is also interesting to see how well GCER pre-
dicts the absolute value of the ER accuracy. That is, we
would like to see how close the estimate E[Acc(O,W )] is to
the actual F1 accuracy of O against the S⇤ gold standard.
The predictions can potentially be used to measure the ER
progress of GCER. For example, when n = 20 and we ask
the 50th question, GCER predicts an ER accuracy of 0.729
while the actual ER accuracy is 0.703. In this case, GCER
has over-estimated the ER accuracy by 3.7%. Throughout
all the experiments above, GCER over-estimates the ER ac-
curacy within the range of 1.4–4.2%.

6.2.3 Quality of Mapping Impact
The similarity to probability statistics is an important

piece of information that guides GCER to choose the best
question. We study how the number of questions asked to
construct the similarity-probability mapping influences the
accuracy of GCER. We first generate three random train-
ing sets R1, R2, and R3 with 100, 500, and 2,500 records,
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respectively, using the default parameters in Table 3. We
then choose the record pairs from R1, R2, and R3 with sim-
ilarities at least 0.016, 0.016, and 0.008, respectively. As
a result, we train on 234, 1,080, and 5,743 pairs of records,
respectively. Finally, we resolve 1,000 synthetic records gen-
erated with the default setting in Table 3. Figure 13 shows
the number of questions asked by GCER for each scenario.
As the mapping becomes more precise, GCER does a bet-
ter job in choosing the best question and thus asks fewer
questions to arrive at a high ER accuracy.

6.2.4 Pruning Impact
Recall that pruning questions with the l and h thresholds

reduces the number of questions to compare. In addition,
setting the thresholds also reduces the expected number of
ER samples to generate (see Section 4.2.1). While prun-
ing questions may improve the runtime of GCER (see Sec-
tion 6.2.7), we may also miss the opportunity to choose the
question with the highest expected accuracy. For our exper-
iments, we resolve 1,000 synthetic records generated with
the default setting in Table 3. Figure 14 evaluates GCER
with the following l and h threshold pairs: [0.1, 0.9], [0.2,
0.8], [0.3, 0.7], and [0.4, 0.6]. Pruning is most e↵ective for
questions with probabilities that are close to 1 (0) where we
can safely assume that the human will say YES (NO). As we
prune more probabilities that are closer to 0.5, then we have
a performance similar to the Half algorithm. If we prune too
many questions, then we may run out of questions to con-
sider. For example, unlike the first three scenarios, using the
thresholds [0.4, 0.6] only results in an ER accuracy of 0.8 be-
cause we run out of questions with probabilities between 0.4
and 0.6.

6.2.5 Entity Distance Impact
Our synthetic datasets let us study scenarios where enti-

ties are closer to or further away from each other. We resolve
1,000 synthetic records generated with the default setting in
Table 3 except for the i parameter. Figure 15 shows the
GCER results when the i parameter is set to the values 20,
30, 40, and 50. Recall that each entity is surrounded by a
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Figure 14: Pruning Impact, GCER
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Figure 15: Interval Impact, GCER

cluster of records with a diameter of 2 ⇥ v = 100. In addi-
tion, most of the records are concentrated at the entity in
the middle because of the Zipfian exponent g = 1 used for
distributing records within the cluster. When i = 50, only a
few clusters that have close entities overlap with each other.
As i decreases, then the clusters start moving closer to each
other and overlap more. As a result, there is a higher chance
that records incorrectly cluster together by TC, and GCER
spends more time splitting clusters.

6.2.6 Multiple Questions
Until now, we have only considered the problem of asking

one question at a time. In practice, however, we may want to
ask multiple questions to humans at a time. Instead of find-
ing the best k questions, we simply ask the top-k questions
that have the highest expected accuracy values according to
GCER (see Section 5). We study how the number of ques-
tions asked influences the ER accuracy increase per ques-
tion. Figure 16 shows the GCER performance when we ask
1, 10, and 100 questions at a time. The more questions we
ask at a time, the less accuracy we obtain because we lose
the opportunity to reflect the human answers when finding
the next set of best questions. Nevertheless, we can signifi-
cantly reduce the number of invocations of finding the next
best question with only a relatively small increase in the to-
tal number of questions to ask. For example, by asking 100
questions at a time instead of 1, we only increase the total
number of questions from 280 to 400, performing 100

400/280 =
70x fewer invocations to arrive at the same ER accuracy.

6.2.7 Scalability
The GCER algorithm is inherently expensive. First, we

need to consider potentially all possible pairs of questions,
which is a quadratic operation. Next, we need to estimate
the accuracy benefits of all the questions, which is also ex-
pensive. With this knowledge, we now show the scalability
of GCER by increasing the number of entities e from 200 to
800 for generating the synthetic data. The other parameters
are set to their default values in Table 3. Since we gener-
ate on average d = 5 duplicates per entity, we are resolving
1,000 to 4,000 records. For each e, we test on four di↵erent

 0

 100

 200

 300

 400

 500

1 10 100

#
 Q

u
e
s
ti
o
n
s
 f
o
r 

0
.9

 A
c
c
u
ra

c
y

# Questions asked at a Time (q)

Figure 16: Asking Multiple Questions, GCER
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l and h threshold pairs: [0.1, 0.9], [0.2, 0.8], [0.3, 0.7], and
[0.4, 0.6]. As we can see in the Figure 17, the average time
for finding the one best question increases quadratically to
the number of records resolved. The increased runtime is
due to the increased number of records to resolve and the
quadratic complexity of TC. At the same time, the runtime
decreases as the thresholds become stricter.

While GCER is indeed expensive, taking a few minutes to
select the best question may be acceptable since the process
of asking humans will often take even longer. In the case
where GCER is still taking too long, we can reduce the exe-
cution time by using the following techniques (in addition to
pruning more questions). First, by selecting multiple ques-
tions at once, we can amortize the cost of generating the best
question. We have already seen in Section 6.2.6 that asking
more questions at a time significantly reduces the number of
invocations of finding the next best question. Next, we can
use blocking techniques [11] where R is split into (possibly
overlapping) blocks R1, . . ., Rk. Each Ri should be small
enough to search for the best questions. Only the records
with the same block are compared assuming that records
in di↵erent blocks are unlikely to match. For example, we
might partition a set of people records according to the zip
codes in address fields and only compare the records with
the same zip code. The blocking techniques allow us to scale
GCER on large datasets where the total number of questions
increases in a linear fashion.

7. RELATED WORK
Entity Resolution has been studied under various names

including record linkage, merge/purge, deduplication, refer-
ence reconciliation, object identification, and others (see [7,
20] for recent surveys). Many ER algorithms fit into our
two-phase framework of first identifying candidate match-
ing pairs of records, and then returning the final pairs of
matching records [10].

Recently, many platforms have been developed for human
computation [13, 1], and several systems have been pro-
posed for incorporating human work into a database system.
CrowdDB [8] is a relational query processing system that
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uses microtask-based crowdsourcing to answer queries that
cannot otherwise be answered. CrowdDB assumes an open-
world model for collecting data. In comparison, Deco [16] is
a declarative crowdsourcing framework that opts for more
flexibility and generality. Qurk [14] provides an interactive
environment for humans to build queries and monitor their
progress. Human computation has also been used in other
operations such as joins [15] as well. In comparison, our
work focuses on using human computation for the specific
problem of ER.

Human learning techniques have recently been proposed
for ER. Reference [9] performs unsupervised learning based
on humans clustering a subset of records and then applies
the trained clustering algorithm to the entire dataset. Refer-
ence [2] has recently used active learning techniques for ER
where the idea is to only learn the necessary information for
training the ER algorithm. In comparison, our work focuses
on using humans for the resolution stage of ER.

Recently, human resolution techniques for ER have been
proposed as well. Reference [21] proposes a human reso-
lution system where authors can claim their own publica-
tions. ZenCrowd [6] uses the crowd to figure out which en-
tities in web pages refer to the same URI. A hybrid human-
machine workflow [18] has been proposed to combine algo-
rithms and human operations for ER. After automatically
matching records, the likely-matching pairs of records are
verified by humans using either record pairs or clusters of
records as the interface. In comparison, our techniques are
not constrained by a specific domain and incrementally ask
the best question(s) until we arrive at a high ER accuracy
instead of asking a fixed set of candidates pairs.

Active learning can be used to train similarity functions [2,
4] by selecting the best set of examples to be labeled. While
selecting examples is in the same spirit as selecting ques-
tions, our work complements active learning by utilizing the
crowd on top of the trained similarity functions.

8. CONCLUSION
We have proposed an ER framework that incorporates

the wisdom of the crowd for resolving records. By asking
humans, we are able to identify matching record pairs and
thus perform better ER. We have used a probabilistic frame-
work for predicting the human answers and estimating the
expected accuracy we obtain by asking each question. Our
framework is general and can compute the best question for
a wide range of ER algorithms. We proved that computing
the expected accuracy of a question is #P-hard and pro-
posed an approximation algorithm that runs in polynomial
time. We have evaluated our best question algorithms on
real and synthetic datasets and showed how we can obtain
an ER result with high accuracy while significantly reducing
the number of questions asked to humans.
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