
Scaling Factorization Machines to Relational Data

Steffen Rendle
University of Konstanz

78457 Konstanz, Germany

steffen.rendle@unikonstanz.de

ABSTRACT

The most common approach in predictive modeling is to de-
scribe cases with feature vectors (aka design matrix). Many
machine learning methods such as linear regression or sup-
port vector machines rely on this representation. However,
when the underlying data has strong relational patterns, es-
pecially relations with high cardinality, the design matrix
can get very large which can make learning and prediction
slow or even infeasible.

This work solves this issue by making use of repeating pat-
terns in the design matrix which stem from the underlying
relational structure of the data. It is shown how coordinate
descent learning and Bayesian Markov Chain Monte Carlo
inference can be scaled for linear regression and factoriza-
tion machine models. Empirically, it is shown on two large
scale and very competitive datasets (Netflix prize, KDDCup
2012), that (1) standard learning algorithms based on the
design matrix representation cannot scale to relational pre-
dictor variables, (2) the proposed new algorithms scale and
(3) the predictive quality of the proposed generic feature-
based approach is as good as the best specialized models
that have been tailored to the respective tasks.

1. INTRODUCTION
Predictive analytics is an important technique with ap-

plications in many fields ranging from business to science.
Typically, a predictive model is defined as a function of pre-
dictor variables to some target. E.g. how much (target) does
a customer (first predictor variable) like a product (second
predictor variable). The most common approach is that a
data analyst selects some predictor variables (aka feature en-

gineering) and applies a machine learning (ML) method to
learn the target function from observations of the past. The
ML model is then a function of the predictor variables (aka
feature vector). Many important ML methods are based
on this principle incl. linear regression (LR), support vec-
tor machines (SVM), decision trees, etc. The runtime of
learning and prediction depends on the (sparse) size of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 5

Copyright 2013 VLDB Endowment 21508097/13/03... $ 10.00.

feature vector and is typically linear at best. Nowadays,
feature engineering based ML is the dominant technique in
predictive analytics. However, if it is applied to relational
data, especially involving relations of high cardinality, the
feature vectors can grow very large which can make learning
and prediction very slow or even infeasible. E.g. to follow
the example from above, the friends of a customer might be
predictive for his/her taste. Using the variable ”friends of a
customer” in the feature vector (e.g. for a SVM, LR, etc.)
can result in a very long feature vector because all friends
(i.e. their IDs) are included in the feature vector.

In this paper, it is shown how prediction and learning algo-
rithms for linear regression and factorization machines can
be scaled to predictor variables generated from relational
data involving relations of high cardinality. The idea is to
make use of repeating patterns over a set of feature vectors.
No change is made on the predictive modeling approach and
also not on the underlying statistical model. Thus the pro-
posed algorithms learn the same parameters and make the
same predictions but with a much lower runtime complex-
ity. The paper starts with linear regression as it is one of
the best-known ML models and still achieves high prediction
accuracy in competitive problems (e.g. KDDCup 2010 [23]).
Moreover the idea of scaling is easier to understand for this
basic model first. The main contribution is scaling factor-
ization machines [12] which is a generic factorization model
including among others matrix factorization [17], SVD++
[3], PITF [15], timeSVD++ [5], etc. Factorization models
have shown great predictive performance in very competitive
machine learning problems including the Netflix prize1, re-
cent KDDCups2 (2010,2011,2012) as well as other prediction
challenges (e.g. ‘What Do You Know?’ Challenge3, EMI
Music Hackathon4). For both models, scaling is shown for
coordinate descent (CD) learning and for a Markov Chain
Monte Carlo (MCMC) Gibbs sampler. CD is one of the most
effective point estimators [2] and MCMC a state-of-the-art
Bayesian inference method.

From a practical point of view, the proposed algorithms
allow to handle predictive modeling as usual: defining pre-
dictor variables (also variables from relations of high cardi-
nality) by feature engineering and applying a feature-vector-
based ML algorithm. Internally, the algorithms make use of
the repeating patterns stemming from the relational struc-
ture of the data to largely speed up computation.

1http://www.netflixprize.com/
2http://www.sigkdd.org/kddcup/
3http://www.kaggle.com/c/WhatDoYouKnow
4http://www.kaggle.com/c/MusicHackathon

337

������
�����

�����

�����

���

���

	
�����

	
�����

��	
���
��

��

��

��

��

��

��

�����
�

�

�

�

�

�

�

���
����������

����������

����������

����������

����������

����������

����������

��� �����
����� �����

����� ��	
�����

��� ��	
�����

��� �� ���

	
����� �������

	
����� �����

	
����� �� ���

! ��

�������

�	
�������
�

�� ������ ���
����� " ��

��� # ��

	
����� # �$

!

����

�� �����
�� ��%��&

�� '�(�&��

�� ����&���"��%��&

!

�����

Figure 1: Example database from a movie commu-
nity.

2. RELATIONALPREDICTIVEMODELING
In the following, first the standard feature based approach

of predictive modeling is shortly recapitulated. Then the
limitations of this approach for scaling to data with rela-
tional structure are described.

2.1 Predictive Modeling
The most common approach to predictive modeling is to

select a set of variables that are assumed to be predictive
for a task. Throughout this work, for illustration, the task
of predicting rating scores for users on movies is used. E.g.
for the data in Figure 1, a data analyst might assume that
the user ID, movie ID, date, gender, age, the set of movie
genres, the set of friends of a user and the set of all the
movies a user has ever watched are predictive for estimating
the rating score5. The task of machine learning is to learn
the functional dependency of the predictor variables on the
target (Figure 2(a)).

Learning is based on observed samples of the functional
dependency – called training data. Each sample can be writ-
ten as a vector of variable assignments for the predictor vari-
ables and the target. Each row in Figure 2(b) shows one of
the observed combinations of predictor variable values and
the observed target value. E.g. the first row represents that
Alice who is a 30 year old female has watched Titanic, Not-

ting Hill and Star Wars and has Eve and Charlie as friends
rated Titanic which is an Action and Romance movie with 5

stars. A variable assignment of predictor variables is called
a feature vector. The process of selecting and generating
predictor variables is called feature engineering.

The process sketched so far is a very generic one and is fol-
lowed by most of the standard machine learning approaches,
incl. linear regression, support vector machines (SVM), de-
cision trees, etc. The difference between the machine learn-
ing methods lies in the type of functional dependency that
is assumed (e.g. for a linear regression a linear dependency
is assumed and for SVMs a linear dependency in a projected
space is assumed), optimization aspects such as regulariza-
tion and the particular learning algorithms.

So far, there is no restriction on the domain (e.g. numeri-
cal, categorical, string, graph) of each variable in the feature
vector. For a generic formalization, many machine learning

5Note that the selected variables are not limited to explicitly
stated columns in the original data, but can also be derived.

methods rely on a numeric vector representation of the vari-
ables (either explicitly or implicitly). Also in the remainder
of this work, it is assumed that there are p numeric predic-
tor variables, i.e. each case can be represented as a vector
x ∈ R

p. E.g. for encoding a categorical/nominal variable
with m levels, the standard approach is to map the variable
to m numerical variables and use a binary encoding. Figure
2(c) shows one possibility of how to represent the training
data of 2(b) with numeric variables. In total, the n cases
each represented by a feature vector x ∈ R

p can be seen
as a matrix X ∈ R

n×p which is typically called design ma-

trix. The n prediction targets can be represented as an n
dimensional vector y ∈ R

n for regression (or y ∈ {−,+}n

for binary classification).
In general, a highly desirable property of a learning al-

gorithm is a linear runtime complexity in the size of the
design matrix X. Often the data is sparse, i.e. contains
many 0 values. Let NZ(X) denote the number of non-zeros
in a matrix X. Sparse learning algorithms can make use of
the non-zeros in the training data and a desirable property
is a runtime complexity linear in NZ(X). In the following,
it is discussed that in relational data even a linear runtime
complexity in NZ(X) can be infeasible.

2.2 Relational Predictive Modeling
The standard approach of predictive modeling to select

predictor variables and to learn the dependency on a tar-
get is also reasonable for predictive problems on relational
data. Actually, the example presented in Figure 2 involves
relational data. This means the concepts of feature engineer-
ing, feature vectors and design matrices are also applied here
and any standard machine learning method can be used.

However, relational data can lead to very large feature
vectors/ design matrices with redundant information. Fig-
ure 3(a) illustrates this on the running example. Investigat-
ing the first case (first row), one can see that parts of the
feature vector are repeated in other rows. E.g. the parts
highlighted in red reappear in the second and third case.
The parts highlighted in blue appear also in the 6th case.
It is clear that these repeating patterns stem from the re-
lational structure of the predictor variables: The red block
corresponds to the variables describing user Alice, the blue
block from variables describing movie Titanic. Whenever
a case uses predictor variables describing Alice, the feature
vector will include all of Alice’s descriptors including age,
gender, friends, etc. Regarding the predictive model, this
is correct as the case depends on all the predictor variables
(no matter from where they come from). However, the de-
sign matrix X can get very large and intractable. E.g. in
social networks each user often has hundreds of friends, us-
ing these friends as predictor variable for the taste of the
user is reasonable but will result in a long predictor vec-
tor with many non-zero entries (for each friend a non-zero
variable) for describing the case. In the evaluation, exam-
ples of the size NZ(X) for a selection of predictor variables
in real-world datasets are shown (Figure 5, Table 1). For
any machine learning method that relies on feature vectors/
design matrices – which are most ML methods – relational
datasets can result in very large design matrices that are
infeasible for standard algorithms, even if the algorithm has
a linear runtime complexity in NZ(X). The contribution
of this work are new learning algorithms that make use of
repeating patterns to speed up learning.

338

��������	
�	�����
�	��

������������	
�������	
���
���	���������������

������
����
����
����
���
���
������
������
���

��	
���
�	
 !
"�
"�
"�
�	
"�
���

�����
#
$
%
&
#
%
#
���

���
'(%')(*)(%
'(%')(*)%'
'(%')(*)%#
'(%')(*)('
'(%')%()(+
'(%')(*)(#
'(%')(*)(#
���

������
�
�
�
�
�
�
�
���

���
$(
$(
$(
'#
'#
',
',
���

������
-�./0
-�./0
-".�0
-".�0
-"0
-�./0
-".�0
���

��
����
-1.�0
-1.�0
-1.�0
-�.
0
-�.
0
-�.�.
0
-�.�.
0
���

�����������
-�	. !."�0
-�	. !."�0
-�	. !."�0
-"�."�0
-"�."�0
-�	."�0
-�	."�0
���

�������	�	���������������	
�	������
�	��

������
%���(���(
%���(���(
%���(���(
(���%���(
(���%���(
(���(���%
(���(���%

2

�������

��	
���
%���(���(���(
(���%���(���(
(���(���%���(
(���(���%���(
(���(���(���%
%���(���(���(
(���(���%���(

2

������������

�����
#
$
%
&
#
%
#
���

���
%
%'
%#
'
$+
#
#

2

������
%�(
%�(
%�(
(�%
(�%
(�%
(�%

2

���

���
$(
$(
$(
'#
'#
',
',

2

������
�#��#��(��(
�(��#��#��(
�#��(��(��#
�#��(��(��#
�(��(��(��%
�#��#��(��(
�#��(��(��#

2

�������

��
����
�(��(��#��(��#
�(��(��#��(��#
�(��(��#��(��#
�(��(��#��#��(
�(��(��#��#��(
�$��$��(��$��(
�$��$��(��$��(

2

�����������

�����������
�$���$���$���(
�$���$���$���(
�$���$���$���(
�(���(���#���#
�(���(���#���#
�#���(���#���(
�#���(���#���(

2

������������

�
�����	�	��������	�������	
�����������������	
����

������ ���
���!�	�!���"�
������
�!�	�
#!��

Figure 2: Standard approach in predictive modeling (illustrated for data of figure 1): (a) The predicted
target (here score) is a function over selected variables. (b) Training data for the function is generated from
the data base. (c) Many machine learning models work on a numeric/ real valued encoding of the variables.
This numeric representation of n cases with p variables is a design matrix X ∈ R

n×p, the associated targets
(here score variable) is a vector y ∈ R

n of length n (here n = 7, p = 24).

2.3 Block Structure
Repeating patterns in X can be formalized by a condensed

block structure representation B.

Definition 1 (Block Structure (BS)).
Let B = {B1, B2, . . .} be a set of blocks, where each block

B = (XB , φB) consists of a design matrix XB ∈ R
nB×pB

and a mapping φB : {1, . . . , n} → {1, . . . , nB} from rows

in the original design matrix X to rows within XB. B is a

block structure representation of X iff for all rows i:

xi ≡ (xB1

φB1(i),1
, x

B1

φB1 (i),2
, . . . , x

B2

φB2 (i),1
, x

B2

φB2 (i),2
, . . .) (1)

This means a block structure representation B of X repre-
sents exactly the same design matrix as X. From B, one can
reconstruct X by concatenating the corresponding rows of
the design matrices XB1 , XB2 , . . . using the mappings (i.e.
applying eq. (1) to each of the n rows).

2.3.1 Simplified Notation

To shorten notation, the index B is dropped from the
mapping φB whenever it is clear which block the mapping
belongs to: e.g. xB

φB(i),l is written as xB
φ(i),l. Secondly, the

column ordering of variables in the blocks is neglected and
an implicit mapping between column spaces X and XB is
assumed: e.g. when referring to the block variable that
corresponds to xi,l, the column index l is used as well xB

φ(i),l.

2.3.2 Example

Figure 3(b) shows an example how the design matrix can
be grouped in three blocks B1, B2, B3 where the first block
represents the user, the second the movie and the third the

time. Each block consists of a design matrix and a map-
ping. E.g. XB1 is the design matrix with all the predictor
variables of the user and φB1 the mapping from the case to
the row of the design matrix of the block. E.g. the fourth
case of the original design matrix X can be obtained by
concatenating the second row of XB1 , the third row of XB2

and the fourth row of XB3 , i.e. x4 = (xB1

φ(4),x
B2

φ(4),x
B3

φ(4)) =

(xB1

2 ,xB2

3 ,xB3

4).

2.3.3 Complexity of BS

The complexity of a block structure representation is the
sum of the complexity of all blocks plus the size of the map-
pings

NZ(B) := |B|n+
∑

B∈B

NZ(X
B) (2)

If the design matrix X has repeating patterns, Nz(B) ≪
Nz(X). Figure 5 and Table 1 show some examples for the
reduction of the complexity in two real-world datasets.

2.3.4 Contribution of this Work

The contribution of this work is to develop learning and
prediction algorithms that make use of the repeating pattern
and have a linear runtime complexity in NZ(B). The pre-
sented algorithms will be exact, i.e. they give analytically
the same solution as with the standard learning approaches
– but with a lower runtime complexity. Two state-of-the art
learning algorithms, Gibbs sampling and coordinate descent,
are scaled for linear regression and factorization machines.

Scaling algorithms to a runtime complexity of O(NZ(B))
is not trivial. It means that the algorithm is not allowed

339

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
��
��
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
�
��
��
�
��
��

��
��
�
�
�
��
�

�
��
�
�
�
�
�

�
�
��
��
�
�
��

�
�
�
�
�
��
��

�
�
�
�
�
��
��

��
��
��
��
��
�
�

�
�
�
��
��
��
��

��
��
��
�
�
�
�

��
��
��
�
�
��
��

��
��
��
�
�
�
�

��
��
��
��
��
��
��

�
�
�
��
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

�
�
��

�
�
��

��
��
�

�
��
��

��
�
�

��
�
��

��
�
�

��
��
��

�
��
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
��
�

��
��
�
�

�
��
�
�

�
�
��
�

�
��
��
�
��
�

	
�

�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�

	
�

�
�
�
�
�
�
�

�

�����������	�
������������������������������	
����

������������������������������������
���	��������

 ��� �

�
�

�
�

�

�

�
�

�

���

�
�

���

�

���

�
����

�
�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�

Figure 3: (a) In relational domains, design matrices X have large blocks of repeating patterns (example from
Figure 2). (b) Repeating patterns in X can be formalized by a block notation (see section 2.3) which stems
directly from the relational structure of the original data. Machine learning methods have to make use of
repeating patterns in X to scale to large relational datasets.

to process feature vectors in the original space, i.e. by con-
catenating the vectors (eq. 1) – not even on-the-fly. On-the-
fly concatenating would reduce the memory complexity to
O(NZ(B)) but not the runtime complexity. In analogy to
compression: if B is regarded as a compression of X, then
a linear runtime complexity in B means that the algorithms
have to do all calculations without decompressing the data
at all (not even on-the-fly or partially).

3. SCALING LINEAR REGRESSION
To highlight the basic ideas of scaling learning algorithms,

the well-known linear regression model is discussed first.

3.1 Standard Linear Regression
The linear regression (LR) model for the i-th row/ feature

vector xi of an n× p design matrix X is

ŷ(xi) = w0 +

p
∑

j=1

wj xi,j

where Θ = {w0, w1, . . . , wp} are the model parameters. Pre-
dicting all n cases can be implemented in O(NZ(X)) by re-
garding only the non-zero elements in the design matrix.

There are several ways to learn a LR model. The tradi-
tional one for least-squares regression is based on solving a
p × p system of linear equations (typically in O(p3) time).
Iterative approaches scale better to a large number of pre-
dictor variables p and coordinate descent (CD) [2] is one of
the most efficient iterative algorithms. The CD algorithm
starts with an initial (random) guess of Θ, then iterates over
each model parameter wl ∈ Θ and performs an update

wl ←
wl

∑n

i=1 x
2
i,l +

∑n

i=1 xi,l ei
∑n

i=1 x
2
i,l + λl

(3)

where λl ∈ R+ is a predefined regularization constant for the
l-th model parameter and ei = yi− ŷ(xi) is the i-th residual
(i ∈ {1, . . . , n}) which should be precomputed and has to be
updated during learning. After a parameter changes from
wl to w∗

l (let ∆l = wl −w∗
l be the difference), each residual

changes and can be updated in constant time ei ← ei+∆l xl.
This process of updating each model parameter wl (and

updating precomputed residuals) is iterated over all model
parameters until convergence. The runtime of CD is domi-
nated (see eq. (3)) by computing the two quantities:

n
∑

i=1

x
2
i,l,

n
∑

i=1

xi,l ei. (4)

By caching residuals e, each full iteration (i.e. over all Θ)
of CD can be implemented efficiently in O(NZ(X)).

Whereas CD is a point estimator, i.e. the result is a sin-
gle value for each parameter wl, Bayesian inference can in-
clude uncertainty into the model. Bayesian inference typi-
cally improves the prediction quality and also allows to infer
regularization values automatically. Bayesian inference with
Markov chain Monte Carlo (MCMC), here Gibbs sampling
with block size of one, is related to CD. In this case, the
Gibbs sampler updates the model parameters by drawing
wl from its conditional posterior distribution:

wl ∼ N

(

αwl

∑n

i=1 x
2
i,l + α

∑n

i=1 xi,l ei + µl λl

α
∑n

i=1 x
2
i,l + λl

,

1

α
∑n

i=1 x
2
i,l + λl

)

(5)

where α is the precision of the likelihood and µl is the mean
and λl the precision of the normal prior distribution over
wl. These three hyperparameters are found automatically
by Gibbs sampling – see [13] for details. As it can be seen, for

340

Gibbs sampling of a model parameter wl (eq. 5), the same
quantities (eq. 4) have to be computed as for CD (eq. 3), so
this work can focus on efficient computation of eq. (4). Both
CD and Gibbs sampling can be extended for classification
using a link function (also called generalized linear model).
Even with a link function, the main computational parts
(i.e. eq. (4)) remain the same – (see e.g. [13] for details).
Thus all results presented in this paper can be used as well
for classification with CD and Gibbs.

3.2 Scaling Linear Regression to Block Struc
tures

For scaling LR, both learning and prediction has to make
use of the block structure representation. For achieving a
linear runtime in NZ(B), it is has to be shown how the
algorithms can work on the BS representation without (not
even on-the-fly) concatenating the block vectors (i.e. eq. 1).

With respect to notation, remind that in block notation
(eq. 1), the feature vector xi is split into xB1

φ(i)
,xB2

φ(i)
,

The same notation will be used for LR model parameters
(here w) as well, i.e. w is split into wB1 ,wB2 , Both
formulations are mathematically equivalent – however when
using a block specific feature vector xB, it is easier to think
of block specific model parameters wB as well.

3.2.1 Prediction

Let B be the block structure representation of design ma-
trix X. With eq. (1), the LR model equation for the i-th
case xi can be rewritten as

ŷ(xi) = w0 +
∑

B∈B

pB
∑

j=1

w
B
j x

B
φ(i),j = w0 +

∑

B∈B

q
B
φ(i)

where

q
B
i =

pB
∑

j=1

w
B
j x

B
i,j , ∀i ∈ {1, . . . , nB} (6)

This directly shows how n cases can be efficiently predicted:
(i) compute qB in O(NZ(X

B)) for each block B, (ii) predict
for each of the n cases ŷ using q in O(n |B|). To summarize,
predicting n cases from the design matrix X can be scaled
to O(NZ(B)) time (see definition of NZ(B) in eq. (2)).

3.2.2 Learning

Exploiting the block structure for learning is more com-
plicated. Remind that learning (CD or Gibbs) requires to
compute eq. (4) for each model parameter wl. The goal is
to rearrange the sums in eq. (4) to iterate over the nB ele-
ments of the block instead of the n elements in the original
design matrix. The basic idea is that for any function f the
sum can be rewritten6:

n
∑

i=1

f(i) =

nB
∑

i=1

n
∑

j=1

δ(φB(j) = i)f(j). (7)

Now a decomposition of f has to be found that allows to
replace the inner sum (over n) by a term depending only
on i with constant computation time. This is shown in the
following for eq. (4) of LR and later for factorization ma-
chines.

6δ is the indicator function, i.e. δ(true) = 1, δ(false) = 0.

Algorithm 1 LinearRegressionBS(y, B)

1: Θ ∼ N (0, σ2)
2: for i ∈ {1, . . . ,#Iter} do
3: ŷ ← predict all cases ✄ O(Nz(B))
4: e← y − ŷ ✄ O(n)
5: update hyperparameter α ✄ O(n), see [13]
6: for B ∈ B do
7: update hyperparameter µB

w , λB
w ✄ O(pB), see [13]

8: cache: init eB and unsync e ✄ O(n)
9: for l ∈ {1, . . . , pB} do
10: update wB

l from eq. (5) using eqs. (8,10)
11: cache: update eB, qB

12: end for
13: cache: sync e ✄ O(n)
14: end for
15: end for

For the first quantity of eq. (4), f(i) = x2
i,l

n
∑

i=1

x
2
i,l =

nB
∑

i=1

n
∑

j=1

δ(φB(j) = i)x2
j,l =

nB
∑

i=1

(xB
i,l)

2#B
i (8)

with the constant

#B
i =

n
∑

j=1

δ(φB(j) = i) (9)

which counts how many mappings go to row i of block B.
For the second quantity of eq. (4), f(i) = xi,l ei

n
∑

i=1

xi,l ei =

nB
∑

i=1

x
B
i,le

B
i , e

B
i :=

n
∑

j=1

δ(φB(j) = i) ej . (10)

Here eBi is not a constant but a block depending sum of
those residuals that are mapped by φB from X to the i-th
row of the block. eBi has to be kept in sync with the model
parameters. After the value of a model parameter changes
from wl to w∗

l (∆l is the difference), the sum of residuals
can be updated by eBi ← eBi +∆l x

B
i,l #

B
i .

In total, for each model parameter wB
l , eq. (4) can be

computed in O(
∑nB

i=1 δ(x
B
i,l 6= 0)) time and updating eBi has

the same complexity. Thus, for all pB model parameters in
block B, the computational complexity is O(NZ(X

B)). Ad-
ditionally, when starting to update model parameters from a
block B, eB has to be initialized which is in O(n) time if the
global residuals e are present. The global residuals e cannot
be kept in sync after each model parameter update without
sacrificing the runtime complexity, because there are n resid-
uals. However, global residuals e are not of interest while

updating parameters within a block but only before and af-

ter all parameters in a block have been updated. Thus, the
residuals e can be unsynchronized from all parameters of the
block before model parameters are updated (ei ← ei+qBφ(i))

and resynchronized afterward (ei ← ei−qBφ(i)). This has per
block a complexity of O(n).

A fast learning algorithm is sketched in algorithm 1. Here,
Gibbs sampling is presented7. As discussed above, the al-
gorithm has a linear complexity in O(NZ(B)) per iteration

7For CD, updates on model paramaters (line 10) should be
performed by eq. (3) instead of eq. (5) and the updates on
the hyperparameters α, λ, µ should be removed (lines 5,7).

341

� � � � � � � � � � �� �� �� � � ���

� � � � � �� ���

� � � � �� �� � �

�

���

����������	
�������	���
��� ����������	
�������	���
����
����������	����	

�

���

���

Figure 4: (a) A factorization machine estimates interactions between all variable pairs in the feature vector
x (here only interactions between non-zero elements are shown). (b) In the BS representation of the feature
vector x, interactions cross different blocks.

and thus makes perfect use of the repeating pattern in X
while being analytically exact.

For the data structures involved, XB should be stored
in a sparse representation of its transpose (XB)t – i.e. for
each column l of XB an array/ static vector of the non-zero
entries (row index) with the corresponding value. This is
important in computing eq. (4) because given the column l
of a predictor variable, the sum has to iterate over all non-
zero entries – which is the l-th row of the sparse transpose.
In general, storing only the transpose of XB is sufficient.

For the caches e ∈ R
n, eB ∈ R

nB

, qB ∈ R
nB

, #B ∈ R
nB

as
well as for the mappings φB ∈ N

n standard arrays/ static
vectors can be used.

4. SCALINGFACTORIZATIONMACHINES
For LR, computation could be divided into blocks because

the model does not contain interactions between variables of
different blocks. FMs learn variable interactions (e.g. the
interaction between age and item category, see Figure 4)
which makes efficient computation more challenging.

4.1 Standard Factorization Machines
Like polynomial regression, non-linear SVMs or decision

trees, factorization machines (FM) include interactions be-
tween predictor variables. This allows to learn more complex
functions (esp. non-linear ones) than with linear regression.
For example FMs can learn that young customers like action
movies and dislike documentaries, whereas the preferences
of old customers are the opposite. LR can only model single
effects, i.e. young people rate higher in general or action
movies are rated low, but not the interaction between two
variables.

A second-order FM for the i-th feature vector xi of the
n× p design matrix X is defined [13] as

ŷ(xi) := w0 +

p
∑

j=1

wj xi,j +

p
∑

j=1

p
∑

j′=j+1

xi,j xi,j′〈vj ,vj′〉

(11)

where 〈vj ,vj′〉 models the effect of the variable interaction
xi,j xi,j′ with the dot product of two k-dimensional latent
vectors:

〈vj ,vj′〉 =
k
∑

f=1

vj,f vj′,f . (12)

The model parameters of an FM are Θ = {w0, w1, . . . , wp,

v1,1, . . . vp,k}. According to [12], eq. (11) can be computed

efficiently in O(kNZ(x)) as it is equivalent to

ŷ(xi) = w0 +

p
∑

j=1

wj xi,j

+
1

2

k
∑

f=1

[(

p
∑

j=1

vj,f xi,j

)2

−

p
∑

j=1

v
2
j,f x

2
i,j

]

. (13)

This makes computing all n cases of a design matrix possible
in O(kNZ(X)).

An appealing property of an FM is multilinearity in each
model parameter θ ∈ Θ:

ŷ(x) = gθ(x) + θ hθ(x) ∀θ ∈ Θ (14)

where g and h are independent of the value of θ and

hθ(x) =
∂ŷ(x)

∂θ
=

1, if θ is w0

xl, if θ is wl

xl

∑

j 6=l
vj,f xj , if θ is vl,f

(15)

The definition of gθ is skipped as it is never used directly.

4.1.1 FM Learning

Coordinate descent and Gibbs sampling can also be ap-
plied for inference with FMs. For CD, a model parameter
θ ∈ Θ is updated by the equation:

θ ←
θ
∑n

i=1 hθ(xi)
2 +

∑n

i=1 hθ(xi) ei
∑n

i=1 hθ(xi)2 + λθ

. (16)

Again λθ ∈ R+ is a regularization constant and ei the i-th
residual.

Similarly, Bayesian inference can be performed by sam-
pling values for θ from its conditional posterior distribution

θ ∼ N

(

α θ
∑n

i=1 hθ(xi)
2 + α

∑n

i=1 hθ(xi) ei + µθ λθ

α
∑n

i=1 hθ(xi)2 + λθ

,

1

α
∑n

i=1 hθ(xi)2 + λθ

)

.

(17)

Again α is the precision of the likelihood, µθ the prior mean
and λθ the prior precision of θ.

Comparing these update rules for CD learning and Gibbs
sampling, one can see that they are dominated by the com-
putation of the two quantities

n
∑

i=1

hθ(xi)
2
,

n
∑

i=1

hθ(xi) ei. (18)

342

For the wl parameters, these quantities are the same as in
linear regression. For second order parameters in FMs, i.e.
for model parameters vl,f , efficient computation of these
quantities requires additional precomputation of the terms
qi,f :=

∑p

j=1 vj,f xi,j [13]. This allows to compute hvl,f in

constant time O(1). Like residual caches ei, also qi,f have
to be kept in sync after the value of a model parameter vl,f
changes by ∆l,f : qi,f ← qi,f −∆l,f xi,l.

In [13] it is shown that a full iteration on all model pa-
rameters Θ can be done in O(kNZ(X)) for CD learning and
Gibbs sampling of FMs.

4.2 Scaling Factorization Machines to Block
Structures

In the following, it is shown how an FM can make use
of repeating patterns in the feature vectors, such that the
learning and prediction runtime of the proposed algorithm
is linear in the complexity of the BS representation of X:
O(kNz(B)). As noted before, this is more complicated than
for LR because FMs contain all pairwise interactions be-
tween all predictor variables. Nevertheless due to factoriza-
tion V V t (eq. 12) of the interaction matrix, a fast compu-
tation is possible.

4.2.1 Efficient Prediction
For predicting n cases using the BS representation B of

the design matrix X, the FM eq. (13) can be rewritten:

ŷ(xi) = w0 +
∑

B∈B

qBφ(i) +
1

2

k
∑

f=1

∑

B∈B

qBφ(i),f

2

−

∑

B∈B

q
B,S

φ(i),f

(19)

with the caches

q
B
i,f :=

pB
∑

j=1

v
B
j,f x

B
i,j , q

B,S

i,f :=

pB
∑

j=1

(vBj,f x
B
i,j)

2
. (20)

Computing the caches qB ∈ R
nB×k and qB,S ∈ R

nB×k is in
O(kNZ(X

B)). Computing the n predictions with eq. (19)
is in O(k n |B|). The total runtime for predicting n cases is
O(kNZ(B)).

As it can be seen, even though an FM contains inter-
actions between variables of different blocks, block specific
parts qB and qB,S can be isolated and precomputed which
results in an efficient computation.

With a trivial implementation, the space requirements for
the caches are in O(n+ k

∑

B∈B nB). However, by comput-
ing the prediction and caches layer by layer (i.e. firstw· then
v·,1, then v·,2, etc.) only the caches for one layer have to be
stored and the space requirement drops to O(n+

∑

B∈B nB).

4.2.2 Efficient Learning

For CD learning and Gibbs sampling (eq. 17), the com-
putational bottlenecks are the computation of the sums in
eq. (18). To make use of the repeating patterns in X, these
sums have to be rewritten such that computing the whole
sum is in O(nB) instead of O(n). This is shown in the
following for a model parameter vBl,f of the second order in-

teractions – see LR (section 3.2) for first order effects (wB
l).

Again, the basic idea is to apply eq. (7) and to reformulate
the function f(i) such that it depends only on the block.
This will require several caches for which efficient updates
have to be derived.

For the first quantity in eq. (18), f(i) = hvl,f (xi)
2. Ap-

plying the definition of hθ (eq. 15), this allows to rewrite
the sum in block specific parts

n
∑

i=1

hvl,f (xi)
2 =

nB
∑

i=1

[

#B
i (hB

vl,f
(xB

i))
2

+2cBi,fx
B
i,lh

B
vl,f

(xB
i) + (xB

i,l)
2
c
B,S

i,f

]

(21)

where

h
B
vl,f

(xB
i) := x

B
i,l

(

q
B
i,f − v

B
l,fx

B
i,l

)

,

and the new caches

c
B
i,f :=

n
∑

j=1

δ(φB(j) = i)
∑

B′∈(B\{B})

q
B′

φ(j),f

c
B,S

i,f :=

n
∑

j=1

δ(φB(j) = i)

∑

B′∈(B\{B})

q
B′

φ(j),f

2

.

It is clear that eq. (21) can be computed efficiently in O(nB)
provided that the caches cB and cB,S are present. Both
caches depend only on variables of other blocks B 6= B′,
so they can be precomputed before model parameters of a
block B should be computed. The third cache that has to be
present is qB. This cache depends on the model parameters
of the block (see eq. (20)) but can be updated in constant
time by qBi,f ← qBi,f −∆B

l,f xB
i,l.

Efficient computation of the second quantity in eq. (18),
f(i) = hvl,f (xi) ei, is based on the decomposition:

n
∑

i=1

hvl,f (x
B
i)ei =

nB
∑

i=1

(

h
B
vl,f

(xB
i)e

B
i + x

B
i,le

B,q
i,f

)

(22)

where eBi is the same as for LR and

e
B,q

i,f =

n
∑

j=1

δ(φB(j) = i)ej
∑

B′∈(B\{B})

q
B′

φ(j),f .

Both caches have to be kept in sync while model parameters
are learned. The corresponding constant time update rules
after the value of a model parameter changes (let ∆B

l,f be
the difference) are:

e
B
i ← e

B
i +∆B

l,f

(

h
B
vl,f

(xB
i)#

B
i + x

B
i,l c

B
i,f

)

e
B,q

i,f ← e
B,q

i,f +∆B
l,f

(

h
B
vl,f

(xB
i) cBi,f + x

B
i,l c

B,S

i,f

)

This shows that also the second quantity of FM learning, can
be computed in O(nB) instead of O(n) by precomputing and
updating caches.

Like for LR, the last problem is to keep the global resid-
uals e in sync. Again, these residuals cannot be updated
efficiently while learning each single model parameter in a
block, because there are n global residuals. However as for
LR, the global residuals are only necessary to initialize block
specific caches (i.e. eB and eB,q). This means global residu-
als e can be unsynchronized once in O(n) before entering a

block: ei ← ei+((qBφ(i),f)
2− q

B,S

φ(i),f). And can be resynchro-

nized after leaving the block: ei ← ei− ((qBφ(i),f)
2− q

B,S

φ(i),f).

To summarize, each model parameter can be learned by
CD or Gibbs (eqs. 16,17) in O(nB) – and by summing only

343

over non-zero predictor variables xB
i,l 6= 0, the update is

even in O(
∑nB

i=1 δ(x
B
i,l 6= 0)). This is done by using the

efficient formulation eq. (21) and eq. (22) instead of the
standard formulation eq. (18). The efficient formulation
requires several caches which can be precomputed once in
O(n) time and (if necessary) updated per model parameter

in O(
∑nB

i=1 δ(x
B
i,l 6= 0)). Thus, updating all pB model pa-

rameters in a block is in O(NZ(X
B)) plus for precomputing/

postcomputing O(n). For all |B| blocks, the computational
effort is O(NZ(B)) and for all k factorization dimensions the
total learning runtime is O(kNZ(B)) for a full iteration.

Algorithm 2 summarizes the efficient algorithm that makes
use of the repeating patterns in the feature vectors of the
design matrix. Like for prediction, the storage complexity
for the caches is O(n+

∑

B∈B nB). Note that also standard
CD and standard Gibbs sampling, have a caching complex-
ity of O(n). In terms of computational complexity, using
the proposed BS algorithms, the runtime complexity drops
from O(kNZ(X)) to O(kNZ(B)) with the cost of an in-
creasing storage complexity for caches of O(n+

∑

B∈B nB)
instead of O(n). However, with relational data typically
NZ(X)≫ NZ(B) and

∑

B∈B nB ≤ n. Moreover, one should
remember, that the BS algorithm also uses the more com-
pact BS representation B of X which means that the storage
for the data is only NZ(B) instead of NZ(X).

4.3 Discussion
The key point in both LR and FM scaling is that the

models allow to isolate each predictor variable xi and model
parameter vl,f , conditioned on the remaining ones. In LR,
the reason is the linearity of the model and for FMs the
multilinearity8. Scaling non-decomposable models might be
much harder and is a direction of future work.

5. EVALUATION
The evaluation first substantiates the need for new al-

gorithms when feature engineering is applied to relational
datasets. This will show the limitation of current feature-
based machine learning methods on large scale relational
datasets.

Secondly, the prediction quality of FMs using relational
predictor variables is investigated. This should underpin
that (1) relational predictor variables improve the quality
and (2) the scaled FM model can achieve a high prediction
quality in very competitive tasks.

5.1 Datasets
All experiments are conducted on two very competitive

and large scale datasets:
Netflix Prize: The task of the Netflix prize is to predict

how many stars a user assigns to a movie (regression task).
The dataset contains about n = 100, 000, 000 ratings from
480, 000 users on 17, 770 movies. The basic predictor vari-
ables for a case are user ID, movie ID and day. As derived
predictor variables: the number of ratings of a user on a
certain day (‘freq.’), the day as a numeric value for a linear
time effect (‘lin. day ’) and as relational predictor variable,
the set (‘impl ’) of all movies ever rated by a user.

8Note that multilinearity does not mean that FMs are linear
models. In fact, FMs allow nonlinear effects – comparable
to polynomial regression or SVMs with a polynomial kernel.

Algorithm 2 FM-BS(y, B)

1: Θ ∼ N (0, σ2)
2: for i ∈ {1, . . . ,#Iter} do
3: ŷ ← predict all cases ✄ O(kNz(B))
4: e← y − ŷ ✄ O(n)
5: update hyperparameter α ✄ O(n), see [13]
6: for B ∈ B do
7: update hyperparameter µB

w , λB
w ✄ O(pB), see [13]

8: cache: init eB and unsync e ✄ O(n)
9: for l ∈ {1, . . . , pB} do
10: update wB

l from eq. (5) using eqs. (8,10)
11: cache: update eB, qB

12: end for
13: cache: sync e ✄ O(n)
14: end for
15: for f ∈ {1, . . . , k} do

16: cache: init q·,f ,q
B1

·,f ,q
B2

·,f , . . . ✄ O(Nz(B))
17: for B ∈ B do
18: update hyperparameter µB

f , λ
B
f ✄ O(pB), see [13]

19: cache: init eB, eB,q, cB , cB,S , unsync e ✄ O(n)
20: for l ∈ {1, . . . , pB} do
21: update vBl,f from eq. (17) using eqs. (21,22)

22: cache: update eB, eB,q ,qB,qB,S

23: end for
24: cache: sync e ✄ O(n)
25: end for
26: end for
27: end for

KDDCup 2012: The task of the KDDCup 2012 (Track 1)
is to predict which tweets a user will follow (classification/
ranking task). There are n = 73, 209, 277 statements about
accepted/ rejected tweets from 231, 569 users on 4, 992 dif-
ferent tweeters. There is plenty of relational information
available: a table describing the user in terms of gender,
age, keywords and tags; a table describing the items in de-
tail; a social network (50, 655, 143 entries) about follower/
followee relationships between users.

5.2 Experimental Reproducibility
The official test set and error/ quality measures provided

by the challenge organizers are used. For easy reproducibil-
ity of all experiments, FM-BS is implemented in libFM9. All
FM and FM-BS experiments are run on a single core of an
Intel i5-2500 CPU with 32GB RAM.

5.3 Complexity of Feature Engineering with
Relational Data

As noted before, standard ML algorithms have typically
at best a linear complexity in the number of non-zeros of
the design matrix NZ(X). The proposed new learning al-
gorithms for LR and FM have a linear complexity in the
(semantically) equivalent BS representation, i.e. in NZ(B).
First, empirical sizes of NZ(X) and NZ(B) for different se-
lections of predictor variables are investigated. Figure 5
and Table 1 show three selections of predictor variables for
the KDDCup 2012 and two choices for the Netflix competi-
tion. The first selection of predictor variables for KDDCup
2012 includes attributes of the user: age, gender, number

9http://www.libfm.org/

344

Predictor var.: user, item,
age, gender, tags, #tweets

Predictor var.: user, item,
user keywords

Predictor var.: user, item,
user friends

KDDCup 2012 Track 1: Size of Design Matrix

S
iz

e
 i
n
 %

0
2
0

4
0

6
0

8
0

1
0
0

725M

N
Z
(X

)
23%

N
Z
(B

)

909M

N
Z
(X

)

18%

N
Z
(B

)

2730M

N
Z
(X

)

7%

N
Z
(B

)

Predictor var.: user, movie,
movies rated by the user (impl)

Predictor var.: user, movie,
users who rated the movie

Netflix: Size of Design Matrix

S
iz

e
 i
n
 %

0
2
0

4
0

6
0

8
0

1
0
0

65 bil.

N
Z
(X

)

0.5%

N
Z
(B

)

5800 bil.

N
Z
(X

)

0.005%

N
Z
(B

)

Figure 5: Feature engineering in relational data can result in very large design matrices with repeating
patterns (NZ(X)≫ NZ(B)). See Table 1 for details.

Table 1: Characteristics of feature engineering/ design matrices for three datasets. Computational runtime of
standard learning algorithms is linear in NZ(X). The proposed BS algorithms make use of repeating patterns
in X and have a runtime complexity linear in NZ(B). For k (number of latent dimensions/ model complexity)
the same values as in the qualitative study (section 5.4) are used.

Dataset Predictor Variables Repr. Complexity Nz libFM Runtime in sec

KDDCup 2012

user, item, age, gender, tags, #tweets
X 724,866,951 967 (k = 22)
B 164,358,302 129 (k = 22)

user, item, keywords
X 908,501,618 1417 (k = 22)
B 164,895,145 139 (k = 22)

user, item, friends
X 2,730,323,386 3778 (k = 22)
B 199,399,584 207 (k = 22)

Netflix
user, movie, all movies rated by the user (‘impl.’)

X 65,721,617,393 infeasible (k = 128)
B 304,756,611 1954 (k = 128)

user, movie, all users who rated the movie
X 5,800,969,095,025 infeasible (k = 128)
B 304,756,611 1399 (k = 128)

Movielens 1M
user, movie, all movies rated by the user (‘impl.’)

X 313,708,262 48 (k = 10)
B 2,610,407 0.5 (k = 10)

user, movie, all users who rated the movie
X 654,716,983 248 (k = 10)
B 2,610,407 0.5 (k = 10)

of tweets and the user’s tags. The amount of repeating in-
formation is here less than adding all the friends of a user
(third selection). This is because there are more friends per
user than the number of attributes of a user. The predictor
variables chosen for the Netflix dataset are highly relational
and result in large repeating blocks in X because in the first
Netflix selection, each case is described with all the movies
this user has seen. The second selection of predictor vari-
ables for Netflix, where for each case all the users that have
rated this movie are part of the predictor variables, has even
much more repeating patterns because there are much less
users than movies in the Netflix dataset and thus for the
first selection less movies are added per case than users are
added per case for the second selection.

The number of non-zeros entries in the design matrix
range from 725 million to 5800 billion entries – whereas the
size of the BS representation is at max. 305 million and
4 to 19, 035 times smaller. This shows that any learning
and prediction algorithm that is based on standard feature
engineering is slow or even infeasible if it does not handle re-
peating patterns. It is important to note again that the issue
for standard algorithms is not (only) the storage complexity
of the design matrices X, rather the problem is the (at least)
linear runtime complexity in X because the algorithms re-
quire to see each case/ row xi of X for learning/prediction.
The proposed BS algorithms solve this issue by making use
of repeating patterns.

Table 1 shows also empirical runtimes for an FM, either
using the standard learning algorithm or the proposed BS

algorithm10 . The empirical runtime reduction from FM to
FM-BS shows the same behavior as the improvement from
NZ(X) to NZ(B).

This experiment substantiates that standard learning al-
gorithms for feature engineering based models cannot scale
to large datasets if the predictor variables have strong rela-
tional patterns.

5.4 Quality of Feature Engineering with Rela
tional Data

Next, it will be substantiated that scaling FMs to rela-
tional dataset makes also sense from a prediction quality
perspective. Two questions will be addressed: (i) Do the

relational predictors improve prediction quality? (ii) How

good is the prediction quality of FM?

The first question is investigated by comparing different
choices of variable selections. Figure 6 shows the predic-
tion quality (mean average precision for KDDCup 2012 and
root mean squared error for Netflix). All five KDDCup 2012
variable selections include the basic variables: user ID, item
ID as well as sequential variables [14]. In Figure 6, the first
measurement ‘none’ shows only these basic variables, the
second one adds user attributes: gender, age, #tweets, tags
(as in Figure 5, left), the third the keywords (Figure 5, mid-
dle), the fourth the friends (Figure 5, right) and the last one
adds all of these variables, i.e. user attributes, keywords

10The average runtime for a full iteration using libFM is
reported.

345

Public Leaderboard Private Leaderboard

KDDCup 2012 Track 1: Prediction Quality
M

e
a

n
 A

ve
ra

g
e

 P
re

c
is

io
n

 @
3

0
.3

2
0

.3
4

0
.3

6
0

.3
8

0
.4

0
0

.4
2

n
o

n
e

g
e

n
d

e
r,

 a
g

e
,

..
.

ke
y
w

o
rd

s

fr
ie

n
d

s

a
ll

n
o

n
e

g
e

n
d

e
r,

 a
g

e
,

..
.

ke
y
w

o
rd

s

fr
ie

n
d

s

a
ll

Top 1

Top 5

Top 10

Top 100

Public Leaderboard

Netflix Prize: Prediction Error

R
M

S
 E

rr
o

r

0
.8

6
0

.8
7

0
.8

8
0

.8
9

0
.9

0

u
s
e

r,
 m

o
v
ie

u
s
e

r,
 m

o
v
ie

,
d

a
y

u
s
e

r,
 m

o
v
ie

,
im

p
l.

u
s
e

r,
 m

o
v
ie

,
d

a
y,

 i
m

p
l.

u
s
e

r,
 m

o
v
ie

,
d

a
y,

 i
m

p
l.
,

fr
e

q
,

lin
.

d
a
y

$1M Prize

SGD Matrix
Factorization

Figure 6: Prediction quality / error of FMs for selections of predictor variables. Relational predictor variables
improve the prediction quality / error.

and friends. For the Netflix dataset, the leftmost method
is an FM using just the user ID and movie ID as predictor
variable. By selecting more predictor variables, the error
decreases. Here, the (relational) set variable, impl., that
contains all movie IDs a user has ever rated, drops the error
largely. These experiments show that additional predictor
variables that involve relational patterns improve the pre-
diction quality considerably. In conjunction with the com-
plexity experiments (section 5.3) this confirms the need for
BS algorithms for feature-based ML models in general.

The second question is addressed by comparing the FM
results to the best approaches in the highly competitive Net-
flix prize and KDDCup 2012. In each of these competitions,
hundreds of teams have developed and evaluated ML meth-
ods. In the following, the FM approach is compared to the
most successful ones. In Figure 6, the horizontal (red) lines
show the quality of the top1 (winning entry), top5 (5th en-
try), top10 and top100 for the KDDCup 2012. As it can
be seen, generic feature engineering with FM as model and
FM-BS for scalable learning is highly competitive. Please
note that most of the entries (also the horizontal (red) lines
in the chart) in KDDCup 2012 are not just single methods
(as the FM in the chart), but ensembles of several models.
For the Netflix prize, Table 2 shows a detailed comparison
of the FMs of Figure 6 to the best non-ensemble approaches
developed for the Netflix problem. As it can be seen, fea-
ture engineering with FMs is as good as the best specialized
models proposed for the Netflix problem. This shows that
FMs are a very competitive model that is worth scaling.

It should also be highlighted that the best competing ap-
proaches for Netflix (Table 2) and KDDCup 2012 are not
generic feature/ design matrix based models but highly spe-
cialized models tailored for the specific tasks. In contrast
to this, FMs are generic and can be applied to any fea-
ture vectors/ design matrices. This is also an interesting
research result, as feature engineering does not play a major
role in the application area of recommender system (yet).
Finally, it should be noted that most of the competing ap-
proaches are not only tailored for the tasks (high effort for
developing the model and deriving learning algorithms) but
also require extensive hyperparameter search for adjusting
learning rates ((S)GD based approaches) and regularization
values ((S)GD and ALS/CD approaches). The qualitative
results for FM-BS in Figure 6 are obtained with much less
effort as no important hyperparameters have to be specified
due to MCMC inference.

5.5 Discussion
The evaluation has shown that feature engineering from

large scale datasets can result in design matrices with very
large repeating blocks due to relational structure in the pre-
dictor variables. Algorithms with linear runtime in the BS
representation of the design matrix can scale to such data.
It has been shown on two very competitive datasets, that
generic feature engineering based ML methods can create
very good results on par with the best specialized and tai-
lored approaches that are known so far. As some of the im-
portant predictor variables lead to large repeating patterns,
a prerequisite for any feature engineering based algorithm is
to handle BS data efficiently.

Scaling feature engineering methods to relational data is
highly important for practice as it allows to use the well-
established predictive modeling workflow based on feature
engineering.

6. RELATED WORK

6.1 Algorithms for Generic ML Models
In [22], linear models are scaled to large design matrices

that do not fit in memory by breaking the problem into
subproblems and using disk access. This work makes no use
of repeating patterns and still has a runtime complexity in
NZ(X). Thus, in terms of our experiments, the algorithm
in [22] could be applied but would still be 4 to 19, 000 times
slower (plus the additional time for disk-reading) than the
proposed BS algorithm.

Another well-studied approach for scaling algorithms is
parallelization (e.g. [1]). With perfectly parallelized stan-
dard algorithms this would mean that the problems of our
evaluation need at least 4 to 19, 000 machines to come up to
the same solution as the BS algorithms on a single machine.
In contrast to this, the contribution of our work is to make
use of structural properties of the design matrix to speed up
learning.

6.2 Algorithms for Specialized Models
Restricting the models to a specific setting of predictor

variables simplifies developing fast learning algorithms. For
rating prediction on the Netflix Prize dataset, Koren and
Bell [6] propose fast learning algorithms for the SVD++
and factorized KNN model. From a predictor variable point
of view, these models are restricted to two categorical vari-
ables and one set variable. The algorithm in [6] makes use

346

Table 2: Prediction error on the Netflix prize dataset. A star * indicates that this is the best value reported
in the corresponding paper for this method. The methods are grouped by the information that they take
into account. The RMSE results are measured on the Quiz dataset (leaderboard scores).
Method (Name) Reference Learning Method k Quiz RMSE

Models using user ID and item ID

Probabilistic Matrix Factorization [17, 16] Batch GD 40 *0.9170
Probabilistic Matrix Factorization [17, 16] Batch GD 150 0.9211
Matrix Factorization [7] Variational Bayes 30 *0.9141
Matchbox [18] Variational Bayes 50 *0.9100
ALS-MF [10] ALS 100 0.9079
ALS-MF [10] ALS 1000 *0.9018
SVD/ MF [3] SGD 100 0.9025
SVD/ MF [3] SGD 200 *0.9009
Bayesian Probablistic Matrix Factorization (BPMF) [16] MCMC 150 0.8965
Bayesian Probablistic Matrix Factorization (BPMF) [16] MCMC 300 *0.8954
FM-BS, pred. var: user ID, movie ID - MCMC 128 0.8937

Models using implicit feedback

Probabilistic Matrix Factorization with Constraints [17] Batch GD 30 *0.9016
SVD++ [3] SGD 100 0.8924
SVD++ [3] SGD 200 *0.8911
BSRM/F [24] MCMC 100 0.8926
BSRM/F [24] MCMC 400 *0.8874
FM-BS, pred. var: user ID, movie ID, impl. - MCMC 128 0.8865

Models using time information

Bayesian Probabilistic Tensor Factorization (BPTF) [21] MCMC 30 *0.9044
FM-BS, pred. var: user ID, movie ID, day - MCMC 128 0.8873

Models using time and implicit feedback

timeSVD++ [5] SGD 100 0.8805
timeSVD++ [5] SGD 200 *0.8799
FM-BS, pred. var: user ID, movie ID, day, impl. - MCMC 128 0.8809
FM-BS, pred. var: user ID, movie ID, day, impl. - MCMC 256 0.8794

Assorted models

BRISMF/UM NB corrected [19] SGD 1000 *0.8904
BMFSI plus side information [11] MCMC 100 *0.8875
timeSVD++ plus frequencies [4] SGD 200 0.8777
timeSVD++ plus frequencies [4] SGD 2000 *0.8762
FM-BS, pred. var: user ID, movie ID, day, impl., freq., lin. day - MCMC 128 0.8779
FM-BS, pred. var: user ID, movie ID, day, impl., freq., lin. day - MCMC 256 0.8771

of this setting by sorting the data by the set variable and
performing batch GD on the set variable and SGD on the
remaining two variables. The FM-BS algorithm proposed
in our work (1) is more general as it can be applied to any
feature vector/ design matrix, (2) results in the analytically
same solution as the standard FM algorithm and (3) sup-
ports full Bayesian inference incl. hyperparameter selection
(with MCMC).

6.3 Dimensionality Reduction
Another generic approach to deal with large design matri-

ces is dimensionality reduction. Many reduction techniques
have been proposed from linear transformation (e.g. PCA),
non-linear manifold techniques to hashing (e.g. [20]). Even
though learning in the transformed space can be fast and ap-
proximately exact, the original data X has to be processed
at least one time which means at some step the computa-
tional complexity is still in O(NZ(X)). Studying dimension-
ality reduction techniques that make use of the repeating
patterns to scale to O(NZ(B)) is a promising direction of
future work.

6.4 Statistical Relational Learning
Neville et al. [8] and Perlich and Provost [9] use feature-

based classifiers for relational predictive modeling. How-
ever, their approaches restrict the modeling flexibility by

aggregating predictor variables from relations. Especially, a
predictor variable such as ‘friends’ or ‘movies watched by a

user ’ is not possible but would have to be processed into a
single (numeric or categorical) variable in the feature engi-
neering step. In our work, we focus on using the traditional
statistical model (without any adaption) and show that it
works well on relational data if one can solve the runtime
issue (as proposed in our work).

7. CONCLUSION AND FUTURE WORK
In this work, it was shown that design matrices from rela-

tional data can get very large which makes learning and pre-
diction slow or even infeasible for standard machine learning
algorithms. As the concept of design matrices is common to
most ML methods, this is an inherent problem for all of
them.

In this work, based on the observation that feature vec-
tors/ design matrices share block structure, efficient predic-
tion and learning algorithms have been developed for lin-
ear regression and factorization machines. The proposed
learning algorithms are analytically exact improvements of
CD and MCMC. In a study on two very competitive ML
tasks, it was shown that the proposed algorithms have a
large speedup compared to standard feature-based learning
algorithms and a prediction quality as good as the best spe-
cialized models develop for the respective tasks.

347

There are several directions for future work. First of all,
other machine learning methods could also be scaled to re-
lational data by exploiting repeating patterns in the feature
vectors/ design matrix. Secondly, the proposed BS algo-
rithms could further benefit from parallelization, e.g. by
parallelizing posterior draws. A third interesting direction
is to compare the predictive accuracy and computational
effort to specialized relational learners that do not rely on
feature engineering.

8. REFERENCES
[1] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,

A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Information

Processing Systems 19, pages 281–288. MIT Press,
Cambridge, MA, 2007.

[2] J. H. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,
33(1):1–22, 2 2010.

[3] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD ’08:

Proceeding of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining,
pages 426–434, New York, NY, USA, 2008. ACM.

[4] Y. Koren. The bellkor solution to the netflix grand
prize. 2009.

[5] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge

discovery and data mining, pages 447–456, New York,
NY, USA, 2009. ACM.

[6] Y. Koren and R. M. Bell. Advances in collaborative
filtering. In F. Ricci, L. Rokach, B. Shapira, and P. B.
Kantor, editors, Recommender Systems Handbook,
pages 145–186. Springer, 2011.

[7] Y. J. Lim and Y. W. Teh. Variational Bayesian
approach to movie rating prediction. In Proceedings of

KDD Cup and Workshop, 2007.

[8] J. Neville, D. Jensen, and B. Gallagher. Simple
estimators for relational bayesian classifiers. In
Proceedings of the Third IEEE International

Conference on Data Mining, ICDM ’03, pages
609–612, Washington, DC, USA, 2003. IEEE
Computer Society.

[9] C. Perlich and F. Provost. Distribution-based
aggregation for relational learning with identifier
attributes. Mach. Learn., 62(1-2):65–105, Feb. 2006.

[10] I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based
matrix factorization for explicit and implicit feedback
datasets. In RecSys ’10: Proceedings of the fourth

ACM conference on Recommender systems, pages
71–78, New York, NY, USA, 2010. ACM.

[11] I. Porteous, A. Asuncion, and M. Welling. Bayesian
matrix factorization with side information and
dirichlet process mixtures. In Proceedings of the

Twenty-Fourth AAAI Conference on Artificial

Intelligence, AAAI 2010, pages 563–568, 2010.

[12] S. Rendle. Factorization machines. In Proceedings of

the 2010 IEEE International Conference on Data

Mining, ICDM ’10, pages 995–1000, Washington, DC,
USA, 2010. IEEE Computer Society.

[13] S. Rendle. Factorization machines with libFM. ACM
Trans. Intell. Syst. Technol., 3(3):57:1–57:22, May
2012.

[14] S. Rendle. Social network and click-through prediction
with factorization machines. In KDD-Cup Workshop,
2012.

[15] S. Rendle and L. Schmidt-Thieme. Pairwise
interaction tensor factorization for personalized tag
recommendation. In WSDM ’10: Proceedings of the

third ACM international conference on Web search

and data mining, pages 81–90, New York, NY, USA,
2010. ACM.

[16] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using Markov chain Monte Carlo.
In Proceedings of the 25th international conference on

Machine learning, ICML ’08, pages 880–887, New
York, NY, USA, 2008. ACM.

[17] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information

Processing Systems 20, pages 1257–1264, Cambridge,
MA, 2008. MIT Press.

[18] D. H. Stern, R. Herbrich, and T. Graepel. Matchbox:
large scale online bayesian recommendations. In
Proceedings of the 18th international conference on

World wide web, WWW ’09, pages 111–120, New
York, NY, USA, 2009. ACM.

[19] G. Takács, I. Pilászy, B. Németh, and D. Tikk.
Scalable collaborative filtering approaches for large
recommender systems. J. Mach. Learn. Res.,
10:623–656, June 2009.

[20] K. Weinberger, A. Dasgupta, J. Langford, A. Smola,
and J. Attenberg. Feature hashing for large scale
multitask learning. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages
1113–1120. ACM, 2009.

[21] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and
J. G. Carbonell. Temporal collaborative filtering with
bayesian probabilistic tensor factorization. In
Proceedings of the SIAM International Conference on

Data Mining, pages 211–222. SIAM, 2010.

[22] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin.
Large linear classification when data cannot fit in
memory. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and

data mining, KDD ’10, pages 833–842, New York, NY,
USA, 2010. ACM.

[23] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G.
McKenzie, J.-W. Chou, P.-H. Chung, C.-H. Ho, C.-F.
Chang, Y.-H. Wei, J.-Y. Weng, E.-S. Yan, C.-W.
Chang, T.-T. Kuo, Y.-C. Lo, P. T. Chang, C. Po,
C.-Y. Wang, Y.-H. Huang, C.-W. Hung, Y.-X. Ruan,
Y.-S. Lin, S. de Lin, H.-T. Lin, and C.-J. Lin. Feature
engineering and classifier ensemble for kdd cup 2010.
In Proceedings of KDD Cup and Workshop, 2010.

[24] S. Zhu, K. Yu, and Y. Gong. Stochastic relational
models for large-scale dyadic data using MCMC. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing

Systems 21, pages 1993–2000, 2009.

348

