
On Scaling Up Sensitive Data Auditing

Yupeng Fu
UC San Diego

yupeng.fu@gmail.com

Raghav Kaushik
Microsoft Research

skaushi@microsoft.com

Ravishankar
Ramamurthy

Microsoft Research
ravirama@microsoft.com

ABSTRACT
This paper studies the following problem: given (1) a query and
(2) a set of sensitive records, find the subset of records “accessed”
by the query. The notion of a query accessing a single record is
adopted from prior work. There are several scenarios where the
number of sensitive records is large (in the millions.) The novel
challenge addressed in this work is to develop a general-purpose
solution for complex SQL that scales in the number of sensitive
records. We propose efficient techniques that improves upon
straightforward alternatives by orders of magnitude. Our empirical
evaluation over the TPC-H benchmark data illustrates the benefits
of our techniques.

1. INTRODUCTION
Databases are used to store sensitive information such as health

records, employee records and customer data motivating the need
for developing a security infrastructure as part of a DBMS. The
security infrastructure of database systems consists of mechanisms
such as access control and encryption whose goal is to prevent
security breaches. However, there is an increasing recognition
in the security community that since it is impossible to prevent
security breaches perfectly, we must also develop mechanisms that
cope with breaches retroactively [15, 27]. Despite the availability
of preventive mechanisms in modern DBMSs, data breaches are
common [4]. One well-known recent example is the Swiss bank
breach [25] of 2010 where an insider in a Swiss bank sold personal
information about German customers to the German government.
One of the most common reasons for data breaches is insider
attacks where the insider gets information about sensitive data by
running SQL queries and examining their results.

Therefore, an important part of the security infrastructure of a
database system is an auditing system that monitors various oper-
ations during production and can be used to aposteriori investigate
security breaches. All major database vendors provide the ability to
monitor various operations such as the query and update statements
issued in production and generate an audit log. Tools to analyze
the audit log offline are limited to answer questions about schema
objects, such as finding queries that accessed sensitive columns.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 5
Copyright 2013 VLDB Endowment 2150-8097/13/03... $ 10.00.

However, in order to investigate data breaches, we need sophisti-
cated tools that join the audit log with the data in the database in
order to identify parts of the data that were breached and the users
responsible for the breach. We refer to the above as data auditing.
Traditional mechanisms such as triggers can be used to trace up-
dates to sensitive data. However, data breaches happen primarily
through data reads for which triggers are inapplicable.

Our data auditing framework is based on the fundamental notion
of a query “accessing” (or “referencing”) sensitive data which we
define formally later in this section. We use the above notion to
perform the following operation: given as input (1) an audit log
containing a sequence of statements, (2) a set of sensitive records,
find for each statement, the subset of sensitive records accessed by
it. For example, Figure 1 shows a database with bank customers
and an audit log. The edges in the figure show the records accessed
by each statement. By modeling the audit log as a table, we can
think of the above operation as performing a join between two
tables — one containing statements and one containing records
in the database. We therefore model the above operation as an
operator that we call the References operator. By composing the
References operator with standard relational operations such as
filters, grouping, aggregation and sorting, we obtain a rich frame-
work for analyzing the audit log. We could for example, subset the
audit log and the database using various predicates before invoking
the operator and run queries on its result.

In the event of a data breach as in the Swiss bank breach, two
of the main goals of auditing are to identify (1) the user that ini-
tiated the breach, and (2) the subset of customers whose data got
breached. In this setting, we could use the References opera-
tor as follows. In order to identify the user that initiated the data
breach, we could run the following queries shown pictorially in Fig-
ure 1: (1) find users who accessed more than a minimum number of
sensitive records, (2) order users by the number of sensitive records
accessed, (3) if we know a time range during which the breach hap-
pened and a superset of customers whose data likely got breached,
say those with a minimum account balance, then we add predi-
cates to focus the analysis. Now, suppose that user JoeAdmin is
suspected of being the insider that initiated the data breach. We
can find the customers whose data likely got breached by finding
records accessed by the query issued by JoeAdmin (also shown
in Figure 1.) In our example, JoeAdmin has accessed the records
of Alice but not Chen or Bob.

The goal of this paper is to develop the above data auditing
framework. Offline audit log analysis involves going back in time
to older states of the database and is therefore expensive; like
security in general, retroactive security comes with a cost. How-
ever, it is possible to mitigate the cost of going back in time in a
variety of ways. One way is to initiate periodic audits pro-actively

313

Name Balance

Alice 150k

Bob 80k

Chen 130k

User Query Time

JoeAdmin Select *
From Customer
Where Balance > 140k

4/15/2012

JaneAdmin Select count(*)
From Customer
Where exists (Select *

From Customer
Where Name = ‘Chen’

and Balance > 100k)

4/15/2012

Customer Audit Log

References

Audit Log Customers

Groupby
User, Count(*)

Filter
(Count(*) > 100)

References

Audit Log Customers

Groupby
User, Count(*)

Sort Desc.
by Count(*)

Audit Log Customers

Filter
(time range)

Filter
(Balance > 100k)

References

Groupby
User, Count(*)

Sort Desc.
by Count(*)

References

Audit Log

CustomersFilter
(single query)

Figure 1: (a) Sample Customer Database And Audit Log. (b) Audit Log Analytics Using References Operator

to check for suspicious activity. In this way, we can limit the
extent to which we need to go back in time. Alternately, we could
maintain periodic backups, or use standard mechanisms such as
change tracking [18] and database flashback [21] to reduce the cost
of time-travel. On the other hand, in order for our data auditing
framework to be feasible, we need an efficient implementation
for the References operator; in particular given a single query
and a set of sensitive records, find the subset of sensitive records
accessed by it.

The above problem is the focus of this paper. There are two
parts to the problem. One is to design a semantics for data access
with meaningful privacy guarantees and the second is to design an
efficient implementation for full SQL.

1.1 Auditing Semantics
Simplistic definitions such as checking the query output for

the record are adequate only for restricted classes of queries.
Accordingly, prior work has studied various definitions. Two fun-
damentally different approaches have been adopted. One is data
instance-independent including the notion of perfect privacy [19,
16] and slightly weaker alternatives such as weak syntactic sus-
piciousness [20]. The other is instance-dependent [1, 14], where
a query is said to access a sensitive record if deleting the record
changes its result.

Among the various semantics proposed, there is a tradeoff be-
tween security and feasibility of implementation for full SQL. It is
known that instance-independent approaches yield stronger secu-
rity guarantees than instance-dependent ones. However, while ef-
ficient auditing techniques have been developed for select-project-
join (SPJ) queries [16], previous work [14] has shown that testing
the notion of a critical tuple [19] that underlies all previously pro-
posed instance independent definitions is undecidable for complex
SQL that includes subqueries.

On the other hand, it is possible to implement the above instance-
dependent definition for a complex query using two query execu-
tions — we run the original query and a modified version that is
rewritten to exclude the sensitive record, and check if their results
are equal.

In this paper, we present an auditing system for full SQL for
the above instance-dependent semantics; ours is among the first
pieces of work focusing on full SQL. While our semantics is not
perfect from a security point of view (for example, it leads to nega-
tive disclosures as we will discuss in Section 3), previous work [14]
has formally characterized the weaker guarantee that it does yield,
that we summarize in Section 3. Developing auditing semantics
with stronger guarantees (whether instance-dependent or instance-
independent) than ours and that can also be efficiently audited for
complex SQL is an interesting open problem.

1.2 Efficient Evaluation

Prior work has also developed efficient techniques for auditing
but only for the special case of a single sensitive record. The main
motivation for the above special case is the health-care domain
where the United States Health Insurance Portability and Account-
ability Act (HIPAA) requires every health care provider to find
every entity to whom a given individual’s information has been
revealed. In contrast, in the general auditing framework introduced
above we have as input a large number of sensitive records.

1.3 Challenge And Contributions
A general-purpose baseline algorithm for the problem we are

studying involves two executions per sensitive record. The number
of sensitive records could be linear in the data size — in the bank
scenario for example, every customer’s record is sensitive and the
number of customers could be in the millions. Hence, the baseline
algorithm is prohibitively expensive. The main contribution of this
paper is to develop efficient techniques to scale data auditing with
the number of sensitive records. While the data auditing problem
is reminiscent of data provenance, the state of the art techniques
in data provenance are not applicable for our definition [10] (see
Section 2 for a detailed discussion).

We now briefly discuss the main insight in our solution. The
baseline algorithm described above requires the original query to be
executed over different subsets of the database including the origi-
nal database and one per sensitive record that excludes the record.
We note that a significant part of the database is common across
these executions. We therefore formulate a multi-instance query
processing problem (Section 4) where we are required to compute
the result of a given query over a large number of input database
instances. We develop techniques to compute the results of the
query over different instances in a single pass by modifying every
relational operator to produce results over multiple instances (Sec-
tion 5). Our key innovations are to represent multiple instances
succinctly using compressed annotations and develop techniques to
perform relational operations directly over compressed annotations
without decompressing them — the idea of compression is the key
distinction between our work and prior work on annotation propa-
gation [3, 6, 12]. We show formally and empirically the importance
of compression in making our techniques efficient. We also report
the result of a detailed empirical evaluation (Section 6) using the
queries in the TPC-H benchmark. We find that over the 10GB ver-
sion of the TPC-H database, if we perform auditing treating each
of the 1.5 million customers as sensitive, using our techniques has
roughly the same cost as the straightforward algorithm run over 5
customers in the worst case.

2. RELATED WORK

314

Section 1 discusses the prior work in data auditing. In this sec-
tion, we discuss other related work. A body of work that is related
to ours is the work on data provenance and causality [5, 17, 11,
13]. The notion of an indispensable record that we use is simi-
lar to the notion of a counterfactual record studied in data prove-
nance [17]. Prior work on data provenance has studied various def-
initions of provenance which have been categorized in recent work
by Glavic et al. [9, 10]. One of the main points of classification
is whether the data provenance definition is sensitive to the execu-
tion plan used for the query. Since data auditing focuses on the
information that is revealed about a database by running a query
and examining its output, a plan-insensitive definition is more de-
sirable. Execution plans are influenced by factors extraneous to the
logical properties of the query such as the physical design of the
database and the available statistics. Hence, all data auditing defini-
tions proposed in prior work and analyzed from a privacy perspec-
tive are plan-insensitive, including ours. The state of the art prac-
tical technique for computing provenance at scale is recent work
by Glavic et al. [8] that proposes an implementation that works for
TPC-H queries. However, the above work is for a plan-sensitive
notion of provenance. As acknowledged by Glavic et al. [10], for
a plan-insensitive notion such as ours, there is no prior work that
has been demonstrated to work at scale for complex queries. Fur-
ther, the techniques for computing plan-sensitive provenance are
based on rewriting the input SQL query whereas ours is based on
modifying query execution.

Our approach of tuple annotations is similar to previous propos-
als for tuple annotations [3, 6, 12]; in particular our logic for prop-
agating annotations is similar to prior work [12, 2]. Our main in-
novation is to compress our annotations and perform all operations
directly on the compressed annotations. As we will show, compres-
sion is crucial in letting our techniques scale. Our multi-instance
query evaluation problem is similar to the problem of query eval-
uation over probabilistic databases [24]. As with data provenance,
no techniques for efficient evaluation are known for probabilistic
databases for complex queries. We note that our technique does
not solve the generic problem of query evaluation over probabilis-
tic databases — we are primarily concerned with the set of worlds
that are induced by an audit expression where the number of worlds
is linear in the data size and not exponential in the data size as is
the case with probabilistic databases.

Finally, we note that the problem of multi-instance query eval-
uation is a dual of multi-query optimization [7]. In multi-query
optimization, the database instance is fixed and the goal is to an-
swer multiple queries. In our problem, the query is fixed and the
goal is to find its result over multiple instances. Furthermore, the
scale involved is different — the state of the art in multi-query op-
timization [7] scales up to thousands of queries, whereas we have
to consider millions of database instances. On the other hand, our
database instances have a large overlap which is what we exploit to
improve the query evaluation efficiency.

3. AUDITING SEMANTICS
In this section, we introduce our auditing semantics. We begin

with preliminaries including the overall auditing infrastructure and
the notion of an audit expression used to specify sensitive records.
We then discuss the auditing semantics, its privacy guarantee and
introduce the References operator.

3.1 Preliminaries

3.1.1 Auditing Infrastructure

Audit

Log

DBMS

ApplicationAuditing Tool

Offline Online

Monitoring

Infrastructure

Figure 2: Auditing Infrastructure
Our auditing system consists of two components — an online

component and an offline component, shown in Figure 2. The
online component is used in production to log the query and
update statements issued to the database system. Along with each
query/update statement, we also log the corresponding user id.
The audit trail is logged in a separate, secure and tamper proof
log which is used to perform auditing in the offline component.
When we are analyzing a statement in the audit trail offline, we
need to reconstruct the state of the database to when the statement
was originally run. We accomplish the above using standard ways
such as change tracking [18] and database flashback [21]. Finally,
for ease of exposition, in the rest of the paper we focus only on
auditing queries (on a given database instance) while noting that it
is possible to extend our techniques to handle updates.

3.1.2 Audit Expression
We specify sensitive records in the form of a view that we refer

to as an audit expression. In this paper, we consider single-table
views of the form:

select <sensitive columns>
from T where <predicate>

We think of each record in the result of the audit expression as
being sensitive.

EXAMPLE 3.1. Consider the database in Figure 1. The follow-
ing expression specifies that the record of every customer with a
balance greater than 100k is sensitive.

select * from Customer where Balance > 100k

The above expression specifies that the records corresponding to
Alice and Chen are sensitive.

We note that our focus on single-table views is for ease of exposi-
tion. It is possible to extend our techniques to cover a larger class of
audit expressions where the sensitive data (1) is obtained by joining
more than one table, and (2) spans more than one record.

3.2 Data Access
The basis for all data auditing semantics is to define what

it means for a query to have accessed a particular record. As
discussed in Section 1, we adopt a previously proposed definition.

DEFINITION 3.2. [1] Given a database instance D and a
query Q, a record r in the database is said to be indispensable if
deleting r from D changes the result of Q. 2

EXAMPLE 3.3. In Figure 1, we can see that the records cor-
responding to Alice and Chen are indispensable to the queries
issued by JoeAdmin and JaneAdmin respectively. 2

We say that a query Q accesses a set of columns Ā in a relation
if there is no equivalent query that excludes Ā — the intuition is
that since every column in Ā is sensitive, Q is “safe” only if it uses
none of them. We combine the above definition with Definition 3.2
to obtain the following:

315

DEFINITION 3.4. Given a database instance D, a query Q, a
audit expression V , a record r in the output of V is said to be
accessed by Q if: (1) Q accesses the sensitive columns in the def-
inition of V and (2) the base record underlying r is indispensable
to Q. 2

As discussed in Section 1, it is possible to check indispensability
using two query executions (it is possible to do better for simple
queries such as select-project-join queries.)

3.3 Privacy Guarantees
Prior work [14] has analyzed the guarantees yielded by our def-

inition above which we briefly describe below. We introduce the
privacy guarantee by beginning with an example that illustrates the
limitation of our definition.

EXAMPLE 3.5. [14] Suppose the customer table in the TPC-H
database has a credit rating attribute. Suppose that in the current
instance of the database, customer John Doe has a credit rating
of 700. Consider the following queries, Q1:

select sum(CreditRating - 700) from customer

and Q2:

select sum(CreditRating - 700)
from customer where c_custname <> John Doe

By checking if the results of the two queries are equal, an adversary
can learn that John Does credit rating is 700. However, the tuple
corresponding to John Doe is not accessed by either Q1 or Q2.
Thus our auditing semantics would fail to detect the above attack.
2

The attack in Example 3.5 essentially requires knowing the credit
rating value apriori — if we change the credit rating of John Doe to
say 600, query Q1 accesses the corresponding tuple and is therefore
flagged as unsafe. Thus, if the adversary does not know the value
of John Does credit rating upfront, then by issuing queries Q1 and
Q2, he is taking a risk of being detected by the audit system.

Similarly, it is known that the definition above leads to nega-
tive disclosures — for example, if we find all customers whose
credit rating is equal to 600 and John Doe is not a part of the result,
then the adversary learns that John Doe’s credit rating is not 600,
whereas by the above definition the query is safe. However, in
the above attack, the adversary presumably does not know apriori
whether John Doe’s credit rating is 600 and is therefore taking a
risk, for if John Doe’s credit rating is 600, then the query would no
longer be safe. The above intuition is used to develop the notion
of risk-free attacks [14] where it is shown that under our auditing
semantics, no attack is risk-free.

3.4 References Operator
We now introduce the main problem studied in this paper. We

call the operation that performs data auditing the References
operator which we now define.

DEFINITION 3.6. Given a query Q and a audit expression V ,
the References operator returns all records r such that (1) r is
in the output of V , and (2) r is accessed by Q. 2

EXAMPLE 3.7. The edges in Figure 1 show the result of apply-
ing the References operator over each query in the audit log.
2

We note that Section 1 introduces a more general version of the
above operator where the input is a set of statements. As a first step,

in this paper, we focus on the case of a single query. Henceforth in
this paper, we refer to the single query case as the References
operator.

It is possible to implement the References operator effi-
ciently for a restricted class of queries. For example, for select-
project-join queries (without duplicate elimination), we can modify
the query to return the primary keys of the underlying relations and
use the output of the modified query to determine all indispensable
records. The records accessed are those that are indispensable and
present in the audit expression. Our goal however is to develop
efficient techniques for complex queries such as the ones in the
TPC-H benchmark. The straightforward algorithm that follows
from Definition 3.6 is to iterate over all records in the view V
and check for each record whether it is accessed using the query
rewriting method discussed in Section 3.2. Since the number of
records in V can be very large, the above algorithm is prohibitively
expensive.

One straightforward way of optimizing the above algorithm is to
avoid iterating over all records in the audit expression by using the
predicates in the query as the following example illustrates.

EXAMPLE 3.8. Consider the audit expression discussed in Ex-
ample 3.1. Suppose that we have a modified schema where the
Customer table has a Nationality column. Consider any
complex query issued over German customers. Then, it is sufficient
to iterate over all records in the following modified view.
select * from Customer where
Balance > 100k and Nationality = ’German’

We call the modified expression the filtered expression. The
details of filtering are straightforward and we omit them from
the paper. Algorithm 3.1 illustrates the baseline algorithm for
the References operator. It filters the audit expression us-
ing the query predicates and then iterates over all records in the
filtered expression. Note that the algorithm performs only one
execution of the original query since that part is common across
all sensitive records. While filtering can significantly reduce the

Algorithm 3.1 BASELINE ALGORITHM

Input: Query Q, Database D, audit expression V
Output: Set of records in V that are accessed by Q
1: Compute the result of Q(D)
2: Accessed = null
3: Compute the filtered expression
4: For each record r in the filtered expression
5: If the results of Q(D) and Q(D − r) differ
6: Accessed = Accessed ∪ {r}
7: End For
8: Return Accessed

number of records over which we need to iterate, Algorithm 3.1
can still be prohibitively expensive when the query predicates
are not selective as we will show in our empirical evaluation in
Section 6. Therefore, we seek a more efficient implementation of
the References operator. This is the focus of the rest of the
paper.

4. QUERY EVALUATION OVER MULTI-
PLE INSTANCES

Our goal is to develop techniques that significantly improve upon
the baseline approach for complex queries. The baseline approach
requires the same query to be run over different database instances
obtained by deleting sensitive records from the original database.
Our goal is to compute the result of the query over all instances
in a single pass. This section formalizes the multi-instance query
evaluation problem.

316

C_Custkey C_FirstName C_LastName C_Acctbal

1 Joe Frank 150k

2 Steve Hanks 110k

3 Joe Baker 110k

4 Tom Hill 70k

D1 = D -r1

D2 = D -r2

D3 = D -r3

D0 = D

Figure 3: Illustrating Worlds

4.1 Overview Of References Operator Algo-
rithm

Let the records in the audit expression be r1, . . . , rn−1. Given
a query Q, we can break down the overall implementation of the
References operator into two parts:

1. Query Evaluation on n Databases: We compute the re-
sults of Q on each of the instances D0 = D, D1 =
D − r1, . . . , Dn−1 = D − rn−1. We observe that the n
databases have most records in common. Our goal is to
perform this part efficiently by sharing computation among
the n instances.

2. Result Computation: Use the above results to find the records
that were accessed by Q.

Most of the paper focuses on the first part above. In the rest of
this section, we first develop terminology to formulate the first part
above. We then briefly discuss the algorithm for the second part.
Section 5 presents an evaluation algorithm for the first part.

4.2 Multiple Worlds
We use R to denote a relation and Cols(R) to denote its

columns. A relational schema R̄ is a set of relation names
{R1, . . . , Rm}. We let D denote a database instance. A world set
for schema R̄ is a set of database instances D = {D0, . . . , Dn−1}
each with schema R̄. Each database Di is called a world iden-
tified by subscript i. The instance of relation Rj in world i is
denoted Rij . We drop the reference to the schema when it is
clear from the context. Given a database D, the world-set induced
by an audit expression V over D, denoted DV , is the world-set
{D−t : t ∈ V }∪{D}. We refer to such a world-set as an induced
world-set.

EXAMPLE 4.1. Consider a customer database and an audit ex-
pression defined as follows.

Select * From Customer Where C_Acctbal > 100k

Figure 3 shows an instance of the Customer table. We note that
rows r1, r2, r3 belong to the view. Thus, the world-set induced by
the above view has four worlds {D0 = D,D1 = D − r1, D2 =
D − r2, D3 = D − r3}. We note that instances corresponding to
relations other than Customer are the same in all worlds.

The output of a query Q on a world-set D = {D0, . . . , Dn−1} is
the world-set Q(D) = {Q(D0), . . . , Q(Dn−1)}. Our overall goal
is to compute the result of a query over a world-set induced by an
audit expression V over a database instance D.

4.3 Representing Multiple Worlds
Suppose that we have an induced world-set with n worlds. If

we represent the world-set by explicitly enumerating the worlds,
the space consumed is Ω(n2). Therefore, we seek to represent a
world-set more succinctly. We note that the body of work on prob-
abilistic databases [24] has studied various models of representing
a world-set. While previous work on probabilistic databases is able

C_Custkey C_FirstName C_LastName C_Acctbal

1 Joe Frank 150k

2 Steve Hanks 110k

3 Joe Baker 110k

4 Tom Hill 70k

Worlds

<0,2,3>

<0,1,3>

<0,1,2>

<0,1,2,3>

Figure 4: Record Annotations

to model a larger class of world-sets where the number of worlds
can be exponential in the size of any single world, query evalua-
tion techniques have only been developed for restricted classes of
queries.

In contrast, our world-set is more restricted — the number of
worlds is the number of records in the audit expression. On the
other hand, our goal is to support evaluation of arbitrary queries.
We exploit the fact that we only have to represent a smaller number
of worlds by representing the world-set by annotating every record
explicitly with the set of worlds in which the record is present.
Since the set of worlds containing a record can be large, we rep-
resent the set succinctly by compressing it as we will discuss in
Section 4.4.

Formally, we represent a world-setD as follows: to each relation
Rj in R̄, we add a distinguished set-valued column that we call an
annotation column, denoted Worlds to yield relation Rwj called
the annotated relation corresponding to Rj . We refer to the above
schema as the annotated schema. We populate an instance of the
above annotated schema as follows. For each relation Rwj , the in-
stance has all records in ∪iRij . The annotation of record r ∈ Rwj ,
denoted r.Worlds , has the set of (identifiers of) worlds containing
the record, that is the set {i : r ∈ Rij}. Formally, the instance
has the set of records {< r, r.Worlds >: r ∈ ∪iRij , r.Worlds =
{i : r ∈ Rij}}. The above database instance is called an annotated
instance denoted Dw. We illustrate through an example.

EXAMPLE 4.2. Figure 4 shows the representation of the world-
set discussed in Example 4.1. The annotations are shown in the
Worlds column. We only show annotations for the Customer
relation since all other relations are the same in all worlds.

We note that the annotation representation presented above is com-
plete [22] in that any world-set can be represented using annota-
tions. Therefore, the above representation is closed under query
evaluation for any arbitrary query. The world-set represented by an
annotated database instance Dw is called WorldSet(Dw).

4.4 Annotation Compression
Consider the world-set induced by an audit expression V with

n− 1 records. The number of worlds is n and each record in V is
present in n− 1 of them. If we represent the annotation of a record
by explicitly listing its elements, the total space consumed by all
annotations together is O(n2). We therefore seek a more succinct
set representation. For each record in V , we could consider storing
the complement of the set of worlds containing it. The complement
is succinct since it has only one world. However, we will see in
Section 5 that for queries involving aggregation, the complement
based representation can get large for the intermediate records.

We represent small and large sets in a uniformly succinct manner
by using run-length encoding. For any annotation, we consider its
equivalent n-dimensional boolean vector. For a boolean vector v,
we refer to its ith dimension as vi; dimensions range from 0 to
n − 1. We use standard run-length encoding to compress boolean

317

vectors by processing them in dimension order. The run-length
encoding of vector v, denoted RLE(v) is a sequence of runs of the
form < b, start , end > where b is a boolean value, start is the
starting dimension of the run and end , the ending dimension.

The vector equivalent to the annotation of a record in the audit
expression has the form v =<1 . . . 1(n1 times) 01 . . . 1(n2 times)>
where n1 + n2 = n − 1. RLE(v) is the following sequence of
runs: {< 1, 0, n1− 1 >,< 0, n1, n1 >,< 1, n1 + 1, n− 1 >}—
the total number of runs is 3 even though the original set has n− 1
elements. Therefore, the total number of runs over all annotations
together is O(n). Similarly, if an intermediate record generated
via query evaluation is present only in a small number of worlds,
the run-length encoding would again have a correspondingly small
number of runs. Furthermore, we will show in Section 5 that by
using run-length encoding, we can operate on the compressed
annotations directly without decompressing them.

In the rest of the paper, we use the number of runs as a measure of
the space consumed by an annotation. When clear from the context,
we use v to also denote RLE(v). For a run run , the correspond-
ing boolean run value is denoted run.b (we use similar notation for
start and end .) Henceforth in the paper, when we discuss an an-
notation, we refer to its compressed encoding. In the examples and
figures, for ease of exposition, we show an annotation by explicitly
listing its elements while noting that the underlying representation
uses compression. We are now ready to define the query evaluation
problem.

4.5 Problem Statement
As stated above, our overall goal is to compute the result of a

query over a world-set induced by an audit expression V over a
database instance D. We address the above goal by formulating a
more general problem.
Problem Statement: We are given as input a world-set D =
{D0, . . . , Dn−1} in the form of an annotated database instance
Dw where the annotations are compressed using run-length encod-
ing. Given query Q, our goal is to compute the annotated relation
that represents the world-set Q(D) = {Q(D0), . . . , Q(Dn−1)}.

We recall that the straightforward algorithm for query evaluation
namely runningQ over each world is prohibitively expensive when
V has a large number of rows. Our goal is to compute the result
efficiently by sharing computation among the worlds. Section 5
addresses the above problem.

4.6 Computing The Final Output
Let the audit expression be V and the database instance be D.

We recall that the formal problem we have described above com-
putes the result ofQ(DV) as an annotated relation. We now briefly
discuss the second step of the References operator (Section 4.1)
that consumes the above result and finds all records in the audit ex-
pression referenced. Consider a record r ∈ V . Suppose that the
world associated with r, D − r, is i and the full database is 0.
Record r is referenced if the annotation of some output record con-
tains i but not 0 or vice versa. The above step can be implemented
in a straightforward manner using algorithms for operating over
compressed annotations described in the next section and we omit
the details.

5. QUERY EVALUATION ALGORITHM
We now describe the query evaluation algorithm. We can break

down an SQL query into a tree of operators — select, project (du-
plicate preserving and duplicate eliminating), cross product (cross
product and filter together cover joins), groupby-aggregation, anti-
joins (covering NOT EXISTS subqueries) and top-k. The above

C_Custkey C_FirstName C_LastName C_Acctbal

1 Joe Frank 150k

2 Steve Hanks 110k

3 Joe Baker 110k

4 Tom Hill 70k

Worlds

<0,2,3>

<0,1,3>

<0,1,2>

<0,1,2,3>

Self-Equi-Join on
First Name

C1_Key C1_Key Worlds

1 3 <0,2>

3 1 <0,2>

σ (First Name = ‘Joe’)

C_Custkey C_FirstName C_LastName C_Acctbal Worlds

1 Joe Frank 150k <0,2,3>

3 Joe Baker 110k <0,1,2>

C_FirstName Worlds

Joe <0,1,2,3>

Steve <0,1,3>

Tom <0,1,2,3>

Duplicate-Eliminating
Projection of
First Name

Figure 5: Annotation Propagation for Select-Project-Join

operators suffice to represent a rich class of queries including
constructs like subqueries; in particular the above operators can
represent all queries in the TPC-H benchmark [26]. We modify
each operator to consume annotated inputs representing the input
world-sets and produce an annotated output representing the result
world-set. This section describes the modifications to each oper-
ator. There are two parts to our description. We first describe the
logic for determining the output annotations and then discuss how
we operate on compressed annotations. Since our evaluation algo-
rithm operates in a single pass over the database, it is significantly
more efficient than the baseline algorithm discussed earlier.

5.1 Select-Project-Join
We first discuss the relational algebra operators select (σ),

duplicate-eliminating project (π) and cross-product (×) since join
can be reduced to a selection over a cross-product. We denote the
modified operators σ′, π′ and ×′ respectively. We modify each
operator by letting it operate exactly as the original operator and
adding the following logic to populate the annotation field of each
intermediate record.

1. For select and duplicate preserving project, the annotation of
an output record is the same as its input annotation. The intu-
ition is that the selection or the projection is only a function
of the attributes and not the annotations.

2. For cross-product, the annotation of an output record
< r1, r2 > is the intersection of the annotations of the input
records, that is r1.Worlds ∩ r2.Worlds . The intuition is
that a record-pair (r1, r2) is present in exactly the worlds
that contain both r1 and r2.

3. For duplicate-eliminating project, the annotation of an
output record is the union of the annotations of all input
duplicates. More precisely, suppose that the projection
is on columns C̄, then the annotation of output record r

318

0 1 2 3

Cust Key = 1

Cust Key = 3

1 0 1

1 0

Intersection 1 0 1 0

Figure 6: Merging Runs For Computing Intersection

is ∪r′:πC̄(r′)=rr
′.Worlds . The intuition is that an out-

put record is present in a world if it contains any of the
underlying duplicates.

A join is equivalent to a cross-product followed by a filter. Suppose
we have a θ-join with the filter predicate θ. It follows from the
cross-product and filter evaluations described above that we can
evaluate the join by running the original join over R and S and
compute the annotation for every pair of joining records as the in-
tersection of the base records’ annotations. Figure 5 illustrates ex-
amples of the above technique.

We now discuss how the above operator modifications can be
extended to handle annotation compression. The straightforward
method is to decompress the annotation and invoke the above
technique. However, the size of a decompressed annotation can be
large. We therefore design methods that operate on the compressed
annotations directly. Since a selection and duplicate-preserving
projection do not modify the input annotations, they can propa-
gated as is without decompression. A cross-product (and join)
requires computing the pairwise intersection of annotations. We
note that set intersection corresponds to computing the bitwise and
of the corresponding boolean vectors. The bitwise and of two
vectors compressed using run-length encoding can be computed
by merging their runs without decompressing either of them. The
output of the merge returns the output in the desired compressed
form. Figure 6 illustrates the merging of runs to compute their
bitwise and.

A duplicate-eliminating projection requires us to take the union
of a collection of annotations. Since union corresponds to the bit-
wise or of the equivalent boolean vectors, we can reduce the over-
all union to a series of pairwise operations on the compressed an-
notations. (Section 5.2 introduces multi-way merge algorithms for
computing aggregations including multi-way union.)

One of the biggest challenges in prior work on record annota-
tions is the size of the annotations which can be linear in the size
of the database even for select-project-join queries [24]. We now
formally show that by using run-length compression, the number of
runs in output annotations is linear in the number of cross-product
operators in the query which is typically much smaller than the
database size.

THEOREM 5.1. Let D be a world-set induced by an audit ex-
pression V over database D. Let D be represented by annotated
database Dw. Consider a query Q represented as a tree of select-
project-cross-product operators. As before, let Q′ denote the tree
obtained by modifying each operator. The number of runs in each
record in the output of Q′(Dw) is linear in the number of cross-
products in Q.

5.2 Groupby-Aggregation
The input to the groupby operator is an annotated relation Rw.

The goal is to compute the result of the groupby for each world. In
order to illustrate the groupby output, we state an adaptation of the
straightforward evaluation that iterates over all worlds:

C_Custkey C_FirstName C_LastName C_Acctbal

1 Joe Frank 150k

2 Steve Hanks 110k

3 Joe Baker 110k

4 Tom Hill 70k

Worlds

<0,2,3>

<0,1,3>

<0,1,2>

<0,1,2,3>

Normalize Worlds

C_FirstName World Id

Joe 0

Joe 2

Joe 3

Steve 0

Steve 1

Steve 3

Joe 0

Joe 1

Joe 2

Tom 0

Tom 1

Tom 2

Tom 3

C_FirstName World Id Count

Joe 0 2

Joe 2 2

Joe 3 1

Steve 0 1

Steve 1 1

Steve 3 1

Joe 1 1

Tom 0 1

Tom 1 1

Tom 2 1

Tom 3 1

C_FirstName Count Worlds

Joe 2 <0,2>

Joe 1 <1,3>

Steve 1 <0,1,3>

Tom 1 <0,1,2,3>

Group by
First Name,

World Id

Fold back
worlds

Figure 7: Basic Evaluation of Groupby

1. Convert the annotated relation to first normal form to obtain
a relation of (record,world-id) pairs.

2. Modify the original groupby operation to add the world-id
column to the grouping columns and run the groupby.

3. Fold the results back into the form of an annotated table rep-
resenting the result.

We illustrate through an example.

EXAMPLE 5.2. Consider the annotated relation in Figure 4.
Suppose we wish to group by the customer first name and compute
the number of rows per group:

Select C_FirstName, Count(*)
From Customer
Group by C_FirstName

Figure 7 illustrates the above method for computing the result of
groupby.

The main issue with the above method is that the size of the first
normal form table can be really large as we illustrate below.

EXAMPLE 5.3. Consider a world-set induced by an audit ex-
pression over a database where the number of worlds is n. The
size of the first normal form relation computed over the relation
underlying the view is O(n2).

We now develop our evaluation algorithm for groupby. We first
note that when there is no aggregation to be performed, groupby

319

is a duplicate-eliminating projection. Therefore, the technique pro-
posed in Section 5.1 is applicable. Based on our discussion in Sec-
tion 5.1, we also observe that the set of groups in Rw is the set
of groups we need to consider in the output. The main challenge
we face is to compute the aggregates. As illustrated in Figure 7,
the aggregates can be different for different worlds. Our goal is to
compute all the different aggregates efficiently by working on the
compressed annotations.

We describe our approach for a single Sum aggregation (the tech-
niques extend for more complex aggregates). Suppose that the col-
umn being summed is A. The basic evaluation of groupby outlined
above keeps track of the aggregation in different worlds by explic-
itly materializing the values that contribute to each world. Our idea
is to extend compression to represent the above information. For a
record r ∈ Rw, we modify the boolean vector corresponding to its
annotation to replace the bit 0 with the value 0 and the bit 1 with
the value r.A. We note that the above step can be performed on the
compressed vector directly to yield a compressed numeric vector.
We denote the value in a run run as run.value .

EXAMPLE 5.4. Suppose we wish to compute the sum of
all account balances for the annotated relation in Figure 4.
Consider the first record, corresponding to the customer with
c custkey 1. The boolean vector corresponding to its anno-
tation is < 1, 0, 1, 1 >. This is converted to the numeric vector
< 150k, 0, 150k, 150k >. The above operation can be performed
on the compressed vector directly.

Vectors

<440k, 290k, 330k, 330k>

Vector Aggregation

Sum(C_Acctbal) Worlds

440k <0>

290k <1>

330k <2,3>

Vector to Worlds

<70k, 70k, 70k, 70k>

C_Custkey Vectors

1 <150k, 0, 150k,150k>

2 <120k, 120k, 0, 120k>

3 <110k, 110k, 110k, 0>

4

Figure 8: Illustrating Sum

It is straightforward to run a binary numeric operation over com-
pressed numeric vectors. Therefore, we have a possible approach
to compute the sum of a set of compressed vectors.

EXAMPLE 5.5. Continuing with Example 5.4, the four vectors
to be added and the sum vector are shown in Figure 8. Once the
sum vector is computed, we produce the output in the expected form
of an annotated relation, also shown in the Figure. We note here
that the annotation of the summation 440k has only one world. This
illustrates that even though the base table records are present in
most worlds, the intermediate records produced in query evaluation
could be present only in a small number of worlds (as we had noted
in Section 4.4). The above example illustrates why we use run-
length compression instead of storing the complement.

In the above example, we note that there are three distinct aggre-
gates for the 4 dimensions. In general, the overall aggregate can
have different values in each dimension leading to an increase in
space consumed by the aggregate vector. However, the final re-
sult size is still linear in n. For example, consider two extreme
cases: (1) there is a small number of groups with a large number of
distinct aggregates - even though each aggregate vector could con-
sume significant memory, there would only be a small number of
groups with such aggregates. (2) there are a large number of groups
but with a small number of distinct aggregates - once again the to-
tal memory consumed will not sharply increase. This intuition is
formalized in the following result.

LEMMA 5.6. If there are n worlds, the total number of runs
over all annotations in the final annotated relation returned by the
aggregation is at most 2× n.

We now discuss the running time of computing the aggregates. We
first show that performing a multi-way sum of compressed vectors
as a series of binary summations can be expensive.

EXAMPLE 5.7. Let us consider a generalized version of Exam-
ples 5.4 and 5.5. Consider an audit expression V with n−1 records
in its output, leading to n worlds. So every record in the input an-
notated relation has an annotation with 3 runs. Suppose that we
wish to perform a summation on one of the attributes. Consider
the aggregate vector when n/2 records have been processed. As
noted above, in general the aggregate is different in dimensions.
When aggregating the remaining n/2 vectors, every binary opera-
tion over the vectors has to examine the aggregate vector. There-
fore, the overall time taken is O(n2) in the worst case.

We address the above problem by performing a multi-way merge.
We store all vectors to be aggregated in memory. We make a sweep
concurrently over all the vectors being aggregated from the small-
est to the largest dimension. Whenever we encounter a run bound-
ary, the result of the Sum computation potentially changes and so
is recomputed. Our main observation is that the new value of the
summation can be computed from the current sum as follows: sup-
pose that the run boundary corresponds to a transition from a run
with value x to a run with value y. Then, the new summation can
be obtained from the current sum by subtracting x and adding y.
Further, instead of considering all dimensions explicitly, it suffices
to iterate over all run boundaries in order. Algorithm 5.1 shows the
pseudo-code for the multi-way merge — given a collection V̄ of
vectors, we let Sum(V̄) denote the dimension-wise sum of all vec-
tors; we denote the lth vector in the collection as V̄ [l]. We note that
even though in Step 6 of Algorithm 5.1, more than one run is poten-
tially considered, every run boundary is processed precisely once.
This observation leads to the following result which formalizes the
efficiency of our algorithm. We note that the above algorithm can
be generalized to other SQL aggregate functions (namely count,
min, max) and multiple aggregations in a straightforward manner.

Figure 9 illustrates the summation discussed in Example 5.5.

THEOREM 5.8. Suppose that we wish to compute any of the fol-
lowing aggregates — sum, count, min, max over an input
annotated relation where the total number of runs over all annota-
tions is N . The above groupby evaluation algorithm runs in time
O(N lg(N)).

It is not hard to see that our query evaluation algorithm above
yields significant benefits over the basic implementation of the
groupby operator.

EXAMPLE 5.9. In Example 5.7, the result of the groupby query
is computed using the above technique in time O(n lg(n)).

320

Algorithm 5.1 MULTI-WAY MERGE OF COMPRESSED VECTORS

Input: Collection of vectors V̄
Output: RLE encoding of vector Sum(V̄)
1: Let runl be the first run of V̄ [l].
2: Set currentSum to 0
3: While (there are unprocessed runs in every vector)
4: Let maxStart = max l(runl.start
5: Let minEnd = minl(runl.end
6: For each (runl with runl.start = maxStart)
7: Let prevValue be the value in the run preceding runl
8: currentSum = currentSum − prevValue + runl.value
9: Let run denote the following run:

10: run.value = currentSum
11: run.start = maxStart
12: run.end = minEnd .
13: Append run to the output run sequence by either growing the last

sequence or creating a new run.
14: For each (runl with runl.end = minEnd)
15: Move runl to the next run of V̄ [l].
16: End While
17: Return the output run sequence

0 1 2 3

150k 0 150k

110k 0

Sum

110k 0 110k

70k

440k 290k 330k

Figure 9: Merging Runs For Computing Sum

5.2.1 Space Consumption
The multi-way merge algorithm requires the vectors being ag-

gregated to be cached in memory. We note that the space required
is not a function of the number of worlds but the number of records
participating in the aggregation. We illustrate with an example.

EXAMPLE 5.10. Consider the following query.

Select Sum(O_TotalPrice)
From Customer, Orders
Where C_Custkey = O_Custkey

and C_MktSegment = ’AUTOMOBILE’

The number of records being aggregated is proportional to the
number of orders in the automobile market segment. This could be
much larger than the number of customers.

We reduce the space consumption in the above example by observ-
ing that orders made by the same customer share the same anno-
tation. Thus, we can first compute a standard summation of all
orders per customer before invoking our groupby evaluator. Then,
the number of records input to our groupby evaluator is at most the
number of customers in the automobile market segment. In gen-
eral, we first compute the aggregation over all records sharing the
same annotation using the standard aggregation supported by the
database system. Our groupby evaluator consumes the resulting
relation. The above technique is applicable to all standard SQL ag-
gregates namely sum, count, average, min and max. Our ex-
periments (that include the 100GB version of TPC-H) demonstrate
our ability to work with large data. In order to scale our evaluation
to an even larger number of individuals, we can leverage standard

techniques such as partitioning (e.g., as used in a hybrid hash join).
We defer the details of a partitioning based strategy to future work.

5.3 Top-k
We recall that the algorithm for computing the min aggregate

is similar to the sum aggregate discussed in Section 5.2. We note
that min is a special case of Top-k where k = 1. Not surprisingly,
our algorithm for computing the Top-k on an annotated relation is
similar to the algorithm for computing min. We store the records
in memory, make a sweep concurrently over all annotations main-
taining the Top-k for the worlds seen so far. We omit the details of
the algorithm.

THEOREM 5.11. Suppose that the number of worlds is n and
that we wish to compute the Top-k over an annotated relation where
the total number of runs over all annotations isN . The above eval-
uation algorithm runs in time O(k ×N lg(N)). The total number
of runs in the output is at most k × n.

We note that we can address the memory consumption of our mod-
ified Top-k operator using techniques similar to the groupby oper-
ator as discussed in Section 5.2.1.

5.4 Anti-Join
We consider a generalized version of set difference namely anti-

join - such an operator is used to evaluate NOT EXISTS subqueries.
Given two relations R and S and a set of columns Ā, the anti-join
operator R 6./Ā S returns every record in R that (equi-)joins with
no record in S on the columns Ā. Our goal is to design a modified
anti-join operator that has as input annotated relations Rw and Sw

and a set of columns Ā (Worlds /∈ Ā), denoted Rw 6./′Ā Sw. It is
not hard to see that we can break the result of Rw 6./′Ā S

w into two
parts:

1. Rw 6./Ā Sw. The above expression accounts for records in
Rw that do not join with any record in Sw.

2. The second part handles record in Rw that do join with
records in Sw. In order to account for duplicates in Sw, we
first project Ā from Sw, that is compute π′Ā(Sw). For each
record < r, s > in the output of Rw ./ π′Ā(Sw), we return
the record < r, r.Worlds − s.Worlds > if r.Worlds −
s.Worlds 6= φ. The annotation r.Worlds − s.Worlds
finds worlds where r occurs but s does not by computing
their set difference. We can compute the set difference
between annotations directly in their compressed form using
a pairwise merge.

We now remark on the space and time consumed by our modified
set difference operator. We show the following result.

LEMMA 5.12. If every record inRw and Sw has an annotation
with at mostB 0s, then every output record has at most 4×B runs.
Suppose that the total number of records inRw and Sw isN . Then,
the running time is O(B ×N).

5.5 Additional Optimization for Subqueries
We first note that the above operators suffice to address a large

class of complex SQL queries including the queries in the TPC-H
benchmark. We use standard decorrelation techniques [23] to pro-
duce a plan only involving the above operators. However, there
is an additional optimization that we can perform for subqueries
which we now illustrate through an example. Consider the follow-
ing subquery.

321

Select *
From Customer
Where C_AcctBal > (Select Avg(C_AcctBal)

From Customer)

The above query is executed as follows: the inner query is executed
once to produce the single aggregate which is used as part of the
outer as a selection predicate.

Now let us consider an “annotated” evaluation of the above plan.
Executing the inner query yields multiple values of the aggregate
corresponding to different worlds. Therefore when we use the re-
sult of the inner as part of the outer query, the selection becomes an
inequality join. While our techniques described for joins are appli-
cable, the performance of the join is poor since it is an inequality
join.

We address the above issue as follows. The selection connecting
the inner and outer subqueries gets converted to a join since we
return the result of the inner query as an annotated relation. Instead,
consider returning the intermediate aggregate vector we compute
as illustrated in Figure 8 — we model the above join as a selection
over the aggregate vector of the form column op vector .

For the example data in Figure 8, the aggregate vector pertaining
to the above query is < 110k, 290k/3, 110k, 110k >. The selec-
tion predicate is C AcctBal> < 110k, 290k/3, 110k, 110k >.
For a given value of column , the predicate is true on a subset of di-
mensions that we refer to as the satisfying dimensions. For each
record, we compute the satisfying dimensions and (1) return the
record only if there is at least one satisfying dimension, (2) modify
the annotation to be the set of satisfying annotations. The above
operation can be evaluated on the compressed annotations.

5.6 Analysis
We now discuss the correctness and efficiency of the overall

query evaluation. For a query Q represented as a tree of operators,
letQ′ denote the modified operator tree obtained by replacing each
operator with its modification. We show the following result that
proves the correctness of the above operator modifications.

THEOREM 5.13. Let D be a world-set represented by anno-
tated database Dw. Consider a query Q represented as a tree of
operators. Then, WorldSet(Q′(Dw)) = Q(D).

While we have described analyses of the efficiency of various op-
erator modifications above, we defer a formal analysis of the effi-
ciency and space consumption of an arbitrary operator tree com-
posed of the above operators to future work. We conduct an em-
pirical evaluation over benchmark queries and data to evaluate the
performance of our query evaluation in practice. The next section
describes our evaluation.

6. EXPERIMENTS
We now describe our empirical evaluation of the techniques pre-

sented in the paper. The goals of our study are: (1) to study the
benefits yielded by our annotation based approach compared to the
baseline approach, (2) to study if the proposed algorithms can work
well “at scale” - both in the data size as well as the number of sen-
sitive records (3) to study the utility of compressing annotations.

6.1 Implementation
We implement our References operator as a client-side tool.

We receive a SQL query as input. The query is first parsed using the
query optimizer to obtain a physical plan. Although we described
our query evaluation in terms of operators, our implementation is

1

10

100

1000

10000

100000

1000000

10000000

Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q13 Q18 Q22

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
 in

 lo
g

sc
al

e

TPC-H Query

Baseline Annotation Hybrid

Figure 10: Comparison With Baseline

based on blocks that span multiple operators. For example, we col-
lapse a sequence of select, project and join operations into a single
select-project-join block. In order to detect the blocks from the
physical plan, we convert the plan into a logical form that is then
converted into a tree of blocks. The query optimizer decorrelates
subqueries in a cost-based manner. However, if the final physical
plan returned does contain a subquery, we explicitly decorrelate
the subquery. We use the audit expression to induce a world-set
which is used along with the block tree to run the multi-world query
evaluation algorithm. The final result of the References opera-
tion is then computed using the result of the query over all worlds.
We encapsulate set and vector operations as user-defined functions.
Thus, most of the references operator logic executes in the database
server. The client logic mostly issues queries to the server. This en-
ables us to scale our implementation with data size.

6.2 Experimental Setup
We begin by describing our empirical set up. In order to study

complex queries, our experiments are conducted over the TPC-H
benchmark data and queries [26]. Our audit expression contains
all customers. Since only queries over the customer table can
access customer rows, we focus on queries from the benchmark
over the customer table. The queries involve complex constructs
of SQL such as grouping, nested queries and top-k. Most results
are reported on the 10GB version of the database. We use Mi-
crosoft SQL Server 2008 for all experiments. Experiments are con-
ducted on a dual-processor machine with 12GB of RAM. The phys-
ical design used represents a basic tuned database that has indexes
on primary keys and foreign keys. All execution times reported are
cold buffer times. The running time of the baseline algorithm is an
estimate. Recall that the baseline algorithm evaluates Q(D − t)
for a (potentially) large number of t. Our estimate multiplies the
total number of iterations with the expected running time for a ran-
domly chosen t. We approximate the expected value in the standard
way by computing the average running time over a small number
of randomly chosen t to obtain a high-confidence estimate.

We name the algorithms as follows in the plots below: (1) we
name the baseline algorithm that filters the audit expression using
the query predicates as Baseline, (2) we refer to the query
evaluation algorithm that leverages annotation propagation as
Annotation, (3) we note that the algorithm that uses the query
predicates as a filtering on the rows in the audit expression is
complementary to the the annotated query evaluation approach and
thus can be combined with it. We denote the algorithm that uses
both approaches as Hybrid.

6.3 Comparison With Baseline Algorithm

322

0

50

100

150

200

250

300

1 10 100 1k 10k 100k 1M

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

No. of Sensitive Records

Annotation on Q18

1

10

100

1000

10000

100MB 1GB 10GB 100GB

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
 in

 lo
g

sc
al

e

Data Size

Original Hybrid

Figure 11: Varying (a)the number of sensitive records (b)data size

Fig. 10 shows the results of the comparison between our algo-
rithm for the References operator and the baseline algorithm.
The X-axis shows the benchmark queries and the Y-axis reports the
execution time in seconds. The Y-axis is plotted in log scale. As
noted above, the data size is 10GB. We observe from Fig. 10 that on
the whole, our annotated query evaluation algorithm yields orders
of magnitude improvement in performance over the Baseline
algorithm. The number of customers in the 10GB data set is 1.5
million. The Baseline algorithm does succeed in pruning the
customers significantly by using the filtering step; for example, for
query 18, the number of customers is pruned using the query pred-
icate to 597. While the filtering drops the number of query ex-
ecutions from 1.5M to 597, the time taken for 597 executions is
still significant. On the other hand, our algorithm computes the
accessed rows in one annotated query execution. Further, we also
observe that combining the filtering offered by Baseline with
the Annotation algorithm improves the overall performance of
the References operator substantially in several cases. For ex-
ample, for query 3 and query 18, Hybrid is more than twice as
fast as Annotation (the comparison between Annotation and
Hybrid can also be seen in Fig. 12). For some queries such as 5, 8
and 13, Hybrid is slightly worse than Annotation. The reason
is that while filtering the audit expression using the query predicates
is beneficial, we also incur the cost of running the filter. Sometimes,
the combined execution time exceeds the time for Annotation.

6.4 Varying The Number Of Sensitive Records
We next study the performance of our algorithm as the size of the

audit expression varies. We vary the size of the audit expression by
restricting the range of customer keys. Fig. 11(a) shows the results
of our experiment. The X-axis shows the number of customers in
the audit expression and the Y-axis, the execution time in seconds.
We pick query 18 from the benchmark since it is among the most
expensive in Fig. 10 and since it is one of the most complex queries
in our study and involves grouping, subqueries and top-k. We re-
port the time taken by the Annotation technique since we wish
to study the effect of the audit expression size on the annotated
query execution in the absence of any filtering. As expected, the
query execution time increases as the number of sensitive records
increases. However, the increase in execution time is less than
the corresponding increase in the number of sensitive records —
this is because our representation of worlds is compressed and the
size of the compressed representation and the cost of processing
compressed information increases sub-linearly with the number of
worlds.

6.5 Effect of Data Size

We next study the scalability of our annotated query evaluation
algorithm as the data size increases. We again pick query 18 since
it is the most complex in our query set. We vary the size of the
TPC-H data set from 100MB to 100GB. Fig. 11(b) shows the result
of our experiment. The X-axis plots the data size and the Y-axis,
the execution time in log scale (we also plot the execution time of
the original query). The main trend we observe from the figure is
that the performance of our annotated query evaluation algorithm
scales similar to the original query. The above result is noteworthy
because the number of customers increases linearly with data size
therefore the number of query executions in the Baseline algo-
rithm also increases linearly; therefore the Baseline algorithm
is expected to scale quadratically with data size. However, our the
Annotation algorithm scales linearly as the original query does.

6.6 Utility of Operating on Compressed An-
notations

Finally, we study the utility of leveraging annotation com-
pression. We use the 100MB database for this experiment.
We pick query 13 and show the results of two executions: (1) the
Annotation algorithm, (2) a modified version of the Annotation
algorithm in which all operators operate by first decompressing
the annotation and then compressing the result. We find that while
the Annotation algorithm runs in 5.32 seconds, the modified
version runs in 49.27 seconds. Therefore we obtain an order of
magnitude improvement in performance by operating directly on
compressed annotations. The benefits of operating directly on
compressed annotations is even more significant for larger data.

6.7 Summary
We now summarize the results of our empirical evaluation. The

results indicate that the annotations based approach is essential for
enabling auditing at large scale. The baseline approach (even with
filtering) could still involve hundreds of query executions and is
not practical. Interestingly, the filtering approach is complementary
and can be run in conjunction with the annotation based execution
scheme. In order to place the experimental results in context, it is
interesting to compare the running time of the References op-
erator with that of the original query. Fig. 12 shows the results of
the comparison. The X-axis shows the queries and the Y-axis, the
execution time in seconds (we note that Fig. 12 is not in log scale).
For queries 3, 5, 7 and 8, our technique is at most 1.5 times as ex-
pensive as the original query. We also note that although Hybrid
is substantially faster than Annotation, the Annotation tech-
nique is on average 4 times slower than the original query and in the
worst case (query 13), 11 times slower; this holds out the promise

323

0

100

200

300

400

500

600

700

800

Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q13 Q18 Q22

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

TPC-H Query

Original Annotation Hybrid

Figure 12: Comparison With Original Query

that even for cases when the filtering implied by Baseline does
not yield any benefit, the Annotation technique still has an ac-
ceptable running time. While a factor of 11 when compared to the
original query execution may seem like a high overhead, recall that
checking if a query accessed an individual’s record requires two ex-
ecutions for complex queries (Section 3.4). The above result shows
that we can effectively check if a query accessed 1.5M users at the
overhead of running the query 10 times — which is roughly the
cost of checking 5 users using the straightforward algorithm. This
points to the effectiveness of our framework.

We note that the key to the scalability of our framework is the
ability of the operators to work directly on the compressed annota-
tions. In our experiments thus far, this optimization has worked out
well. We defer an evaluation of the scalablility of our algorithms
over other query workloads to future work.

7. CONCLUSIONS
In this paper, we studied the problem of efficiently finding all

sensitive records referenced by a given query. The main challenge
we addressed was to develop a technique that scales with the num-
ber of sensitive records. We formulated a multi-instance query eval-
uation problem where we want to find the result of a query on mul-
tiple subsets of the database. We proposed techniques that effi-
ciently perform such multi-instance query evaluation in a single
pass by sharing computation and demonstrated the scalability of
our techniques over the queries in the TPC-H benchmark. A few
interesting directions for future work are: (1) developing more tools
that build upon our References operator to mine the audit log,
(2) choosing the plan and physical design that minimizes the cost
of multi-instance execution.

8. REFERENCES
[1] R. Agrawal, R. J. Bayardo, C. Faloutsos, J. Kiernan,

R. Rantzau, and R. Srikant. Auditing compliance with a
hippocratic database. In VLDB, pages 516–527, 2004.

[2] Yael Amsterdamer, Daniel Deutch, and Val Tannen.
Provenance for aggregate queries. In PODS, 2011.

[3] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya. An
annotation management system for relational databases. In
VLDB, 2004.

[4] Privacy Rights Clearinghouse. Chronology of data breaches.
http:
//www.privacyrights.org/data-breach.

[5] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4), 2009.

[6] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN:
Annotating and querying databases through colors and
blocks. In ICDE, 2006.

[7] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB:
Killing one thousand queries with one stone. PVLDB, 5(6),
2012.

[8] B. Glavic. Perm: Efficient Provenance Support for Relational
Databases. PhD thesis, University of Zurich, 2010.

[9] B. Glavic and K. R. Dittrich. Data provenance: A
categorization of existing approaches. In BTW, 2007.

[10] B. Glavic and R. J. Miller. Reexamining some holy grails of
data provenance. In TaPP ’11: 3rd USENIX Workshop on the
Theory and Practice of Provenance, 2011.

[11] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Provenance in ORCHESTRA. IEEE Data Eng. Bull., 33(3),
2010.

[12] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings. In PODS, 2007.

[13] R. Ikeda and J. Widom. Panda: A system for provenance and
data. IEEE Data Eng. Bull., 33(3), 2010.

[14] R. Kaushik and R. Ramamurthy. Efficient auditing for
complex sql queries. In SIGMOD, 2011.

[15] Butler Lampson. Privacy and security: Usable security: how
to get it. Commun. ACM, 52(11):25–27, November 2009.

[16] A. Machanavajjhala and J. Gehrke. On the efficiency of
checking perfect privacy. In PODS, 2006.

[17] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F.
Moore, and D. Suciu. Causality in databases. IEEE Data
Eng. Bull., 33(3), 2010.

[18] Microsoft Corporation. SQL Server 2008 Change Data
Capture.
http://msdn.microsoft.com/en-us/library/bb522489.aspx.

[19] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, 2004.

[20] R. Motwani, S. U. Nabar, and D. Thomas. Auditing sql
queries. In ICDE, 2008.

[21] Oracle Corporation. Oracle Flashback Query.
http://download.oracle.com/docs/cd/B28359 01/appdev.111/
b28424/adfns flashback.htm.

[22] A. Das Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[23] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query
decorrelation. In ICDE, 1996.

[24] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

[25] Germany Tackles Tax Evasion. Wall Street Journal, Feb 7
2010.

[26] The TPC-H Benchmark. http://www.tpc.org.
[27] D. J. Weitzner, H. Abelson, T. Berners-Lee, et al. Information

accountability. Commun. ACM, 51(6):82–87, June 2008.

324

