
Spatial Keyword Query Processing: An Experimental
Evaluation

Lisi Chen§ Gao Cong§ Christian S. Jensen† Dingming Wu♯
§ Nanyang Technological University, Singapore

† Aarhus University, Denmark
♯ Hong Kong Baptist University

{lchen012@e.,gaocong@}ntu.edu.sg,csj@cs.au.dk,dmwu@comp.hkbu.edu.hk

ABSTRACT
Geo-textual indices play an important role in spatial keyword query-
ing. The existing geo-textual indices have not been compared sys-
tematically under the same experimental framework. This makes
it difficult to determine which indexing technique best supports
specific functionality. We provide an all-around survey of 12 state-
of-the-art geo-textual indices. We propose a benchmark that en-
ables the comparison of the spatial keyword query performance.
We also report on the findings obtained when applying the bench-
mark to the indices, thus uncovering new insights that may guide
index selection as well as further research.

1. INTRODUCTION
With the proliferation of online objects with both an associated

geo-location and a text description, the web is acquiring a spatial
dimension. Specifically, web users and content are increasingly
being geo-positioned and geo-coded. At the same time, textual de-
scriptions of points of interest, e.g., cafes and tourist attractions,
are increasingly becoming available on the web. This development
calls for techniques that enable the indexing of data that contains
both text descriptions and geo-locations in order to support the effi-
cient processing of spatial keyword queries that take a geo-location
and a set of keywords as arguments and return relevant content that
matches the arguments [2].

Spatial keyword queries are being supported in real-life appli-
cations, such as Google Maps where points of interest can be re-
trieved, Foursquare where geo-tagged documents can be retrieved,
and Twitter where tweets can be retrieved. Spatial keyword query-
ing is also receiving increasing interest in the research communi-
ty where a range of techniques have been proposed for efficiently
processing spatial keyword queries. Three types of spatial keyword
queries are receiving particular attention, namely the Boolean kNN
query, the top-k kNN query, and the Boolean range query. We pro-
ceed to illustrate them with examples.

• Boolean kNN Query: “Retrieve the k objects nearest to
the user’s current location (represented by a point) such that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th  30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 3
Copyright 2013 VLDB Endowment 21508097/13/01... $ 10.00.

each object’s text description contains the keywords tasty,
pizza, and cappuccino.”

• Top-k kNN Query: “Retrieve the k objects with the high-
est ranking scores, measured as a combination of their dis-
tance to the query location (a point) and the relevance of
their text description to the query keywords tasty, pizza,
and cappuccino.”

• Boolean Range Query: “Retrieve all objects whose text de-
scription contains the keywords tasty, pizza, and cappuc-
cino and whose location is within 10 km of the query loca-
tion.”

A number of geo-textual indices have been proposed. These in-
dices usually combine a spatial index and a text index structure.
The existing indices can be categorized according to the spatial in-
dex they utilize: (i) R-tree based indices [4, 7, 9, 12, 16, 18, 21, 26];
(ii) grid based indices [14, 19]; and (iii) space filling curve based
indices [5, 6]. Using the text index employed, these indices can al-
so be classified as inverted file based (e.g., [26]) and signature file
based (e.g., [9]) indices. In addition, some of the indices (e.g., [26])
loosely combine a spatial and a text index while other indices inte-
grate them tightly, resulting in hybrid index structures (e.g., [9]).

The papers that present the existing geo-textual indices often re-
port on experimental studies that suggest that the proposed indices
are competitive with baseline indices. This state of affairs makes it
difficult to decide which index is the most suitable in a particular
setting. Furthermore, each index often targets one particular type of
query and is evaluated for that type of query only. It is also difficult
to obtain an overview of the performance of the existing geo-textual
indices for common types of spatial keyword queries. As a conse-
quence, there is a clear need for a benchmark that offers in-depth
insight into the performance of the existing geo-textual indices.

To the best of our knowledge, this paper contributes the first all-
around evaluation of geo-textual indices. The evaluation features
several representative geo-textual datasets, three types of common
spatial-keyword queries, and a carefully designed evaluation pro-
cedure. Datasets with different scales, text sizes, and spatial distri-
butions are employed to measure index storage requirements and e-
valuate query performance. Workloads of different types of queries
are generated with a variety of settings for important parameters.
The evaluation procedure enables a systematic study of query run-
time and I/O performance in a broad variety of settings. By ap-
plying the evaluation procedure to existing geo-textual indices, the
paper also offers new insight into the properties and relative merits
of the geo-textual indices.

217



The rest of the paper is organized as follows: Section 2 describes
the problem setting. Section 3 presents a categorization of the in-
dices covered, and Section 4 surveys the indices. Section 5 details
the evaluation procedure and experimental settings. Section 6 re-
ports on the evaluation results. Finally, Section 7 concludes and
summarizes the key findings.

2. PROBLEM DEFINITION
As does much of previous work, we assume that each geo-textual

object has a point location with latitude, longitude, and a text de-
scription, and we consider three kinds of common spatial keyword
queries on such objects.

Dataset Setting LetD be a geo-textual dataset. Each spatial object
o ∈ D is defined as a pair (o.ρ, o.ψ), where o.ρ is a 2-dimensional
geographical point location and o.ψ is a text document.

We study the performance of processing three kinds of popular
spatial keyword queries, namely the Boolean range query (BRQ),
the Boolean kNN query (BkQ), and the top-k kNN query (TkQ).

Boolean range Query (BRQ) Given a BRQ q = ⟨ψ, r⟩, where q.ψ
is a set of keywords and q.r is a spatial region, the result of q, q(D),
is a subset of D containing objects such that ∀o ∈ q(D)(o.ρ ∈
q.r ∧ q.ψ ⊆ o.ψ). In other words, the BRQ retrieves objects con-
taining all the query keywords and belonging to the query region.
The result objects are not ranked. However, the BRQ can be easi-
ly modified to rank the result objects based on their text relevance,
and it is easy to extend query processing algorithms to achieve this.

Boolean kNN Query (BkQ) A BkQ q = ⟨ψ, ρ, k⟩ takes three
arguments, where q.ψ is a set of keywords, q.ρ is a spatial query
point, and q.k is the number of objects to retrieve. The result of
a BkQ, q(D), is a set of k objects, each of which covers all the
keywords in q.ψ. Objects are ranked according to their distances
to q.ρ. Formally, ∀o ∈ q(D)((@o′ ∈ D \ q(D))(dist(o′.ρ, q.ρ) ≤
dist(o.ρ, q.ρ)) ∧ q.ψ ⊆ o′.ψ).

Top-k kNN Query (TkQ) A TkQ q = ⟨ψ, ρ, k⟩ takes the same ar-
guments as BkQ. It retrieves k objects ranked according to a score
that takes into consideration spatial proximity and text relevance.
Specifically, the ranking score of object o for a TkQ q is defined in
the following equation:

ST (o, q) = α · SDist(o.ρ, q.ρ) + (1− α) · TRel(o.ψ, q.ψ),

where SDist(o.ρ, q.ρ) is the spatial proximity between o.ρ and
q.ρ, TRel(o.ψ, q.ψ) is the text relevance between o.ψ and q.ψ,
and α ∈ [0, 1] is a query preference parameter that makes it pos-
sible to balance the spatial proximity and text relevance. The s-
patial proximity is defined as the normalized Euclidian distance:
SDist(o.ρ, q.ρ) = dist(o.ρ,q.ρ)

distmax
,where dist(o.ρ, q.ρ) is the Euclid-

ian distance between o and q, and distmax is the maximum distance
between any two objects in D. The text relevance TRel(o.ψ, q.ψ)
can be computed using an information retrieval model, such as the
language model [7], cosine similarity [18], or BM25 [6], and is
normalized to a scale similar to the proximity. We use the language
model in this evaluation.

Other Query Types Zhang et al. [24, 25] consider a so-called m-
closest keywords query and introduce an R-tree based structure
called the bR*-tree. This query retrieves a set of objects, each of
which contains m query keywords. The query minimizes the max-
imum distance between any two objects in the set.

Cao et al. [3] propose the spatial group keyword query with
two instantiations: (1) find a group of objects that covers all the
query keywords such that the sum of their distances to the query
point is minimized; (2) find a group of objects that covers all the

query keywords such that the sum of the maximum distance from
an object in the group to the query point and the maximum distance
between two objects in the group is minimized.

Lu et al. [17] propose the reverse spatial and textual k nearest
neighbor query, which takes an object with a spatial point and a
set of keywords as arguments. The query retrieves the objects that
have the query object as one of their k most similar objects with
regards to both spatial proximity and text relevancy.

Wu et al. [22] and Huang et al. [13] consider processing the
moving top-k spatial keyword query, which takes as arguments
a moving spatial point and a set of keywords. The query continu-
ously finds k objects that best match a query with respect to spatial
proximity and text relevancy.

Li et al. [15] propose the direction-aware spatial keyword
query, which takes as arguments a spatial point, a direction, and a
set of keywords. It finds k spatially nearest neighbors of the query
such that they are in the query direction and contain all the query
keywords.

SKIF [14] is also developed for a new type of query. Like the
TkQ, the query in SKIF aims to find k objects with the highest
weighted scores in terms of both spatial relevancy and text relevan-
cy. SKIF assumes the location of each object to be a region rather
than a point, and the spatial relevancy is expressed as the overlap
between the query region and region of an object. The concept of
text relevancy is the same as that of the TkQ.

3. INDEXING CLASSIFICATION
We classify the geo-textual indices according to three different

aspects: the spatial indexing scheme used, the text index employed,
and hybrid manner of the spatial index and the text index. The clas-
sification is summarized in Figure 2. The symbol “

√
” denotes that

an index is originally designed for the corresponding type of query;
the symbol “△” means that the index can be employed to efficiently
process a type of query with an extended query processing algorith-
m, which makes the index suitable for the type of query.

3.1 Spatial Indexing Scheme
Considering the spatial indexing scheme used, we classify the in-

dices into three categories, namely R-tree based indices, grid based
indices, and space filling curve based indices.

R-tree based This category of indices use the R-tree [11] or a vari-
ation (e.g., the R*-tree [1]). Most geo-textual indices belong to
this category and use the inverted file for text indexing. In ear-
ly work [26], the R-tree based indices loosely combine the R-tree
and inverted files to organize the spatial and text data separately. In
contrast, recent indices tightly combine the R-tree with a text index.

Grid based This category of indices combine a grid index with a
text index (e.g., the inverted file). The grid indices divide space into
a predefined number of equal-sized square or rectangular cells. The
grid index and the text index can be organized [19] either separately
or combined tightly [14].

Space filling curve based These indices combine inverted files
with a space filing curve, and they include a Hilbert curve based
index [5] and a Z-curve based index [6]. These indices are based
on the property that points close to each other in the native space
are also close to each other on the space filling curve.

3.2 Text Indexing Scheme
Inverted file Most geo-textual indices [6,7,10,12,14,16,18,19,26]
use the inverted file for text indexing. An inverted file has a vocab-
ulary of terms, and each term is associated with an inverted list.

218



(a) Objects and their bound-
ing rectangles

Object Terms and term frequencies
o1 (Italian, 5)(restaurant, 5)(expensive, 2)
o2 (coffee, 5)(restaurant, 5)(expensive, 1)
o3 (Italian, 7)(pizza, 1)(expensive, 1)
o4 (restaurant, 7)(pizza, 1)(expensive, 1)
o5 (Italian, 4)(restaurant, 4)
o6 (coffee, 4)(restaurant, 3)
o7 (Italian, 1)(coffee, 1)(restaurant, 4)(pizza, 1)
o8 (coffee, 3)(restaurant, 3)(expensive, 1)

(b) Text information of objects in (a) (c) R-tree for objects in Fig. 1(a)

Figure 1: Example

Index Abbr Spatial part Textual part Combination
scheme BkQ TkQ BRQ

ST [19] ST Grid inverted file spatial-first
√

TS [19] TS Grid inverted file text-first
√

IF-R*-Tree [26] IF-R* R*-Tree inverted file text-first △
√

R*-Tree-IF [26] R*-IF R*-Tree inverted file spatial-first △
√

SF2I [5] SF2I SFC inverted file spatial-first
√

KR*-Tree [12] KR* R*-Tree inverted file tightly combined △
√

IR2-Tree [9] IR2 R-Tree bitmaps tightly combined
√

△
IR-Tree [7, 20] IR R-Tree inverted file tightly combined △

√
△

IR-Tree [16] IRLi R-Tree inverted file tightly combined
√

SKIF [14] SKIF Grid inverted file tightly combined
√

SKI [4] SKI R-Tree bitmaps spatial-first
√

S2I [18] S2I R-Tree inverted file text-first △
√

△
WIBR-Tree [21] WIBR R-Tree inverted bitmaps tightly combined

√
△

SFC-QUAD [6] SFC-Quad SFC inverted file tightly combined
√

Figure 2: Comparison of existing geo-textual indices

Figure 3: Inverted file under leaf node
R1 and R2

Each inverted list comprises a sequence of postings, each of which
normally contains the identifier of an object o whose description
o.ψ contains the term and the frequency of the term in o.ψ. The
frequency information is not included in the indices that are devel-
oped to handle Boolean queries. In general, the postings in each
inverted list are sorted by object ID. However, some geo-textual in-
dices order the postings differently, such as ordering them by their
orders in grid cells [14] or according to a space filling curve [6].

Bitmap Some R-tree based indices [4, 9, 21] use bitmaps [8] to
index the text information in subtrees. Simply put, each bit in a
bitmap represents the presence or absence of a term in a document.
The IR2-tree [9] augments each node of the R-tree with a signature
file (bitmap) to capture the text information of the objects in the n-
ode’s subtree. Another study [24] augments the nodes of the R-tree
with bitmaps directly. Some geo-textual indices [21] use inverted
bitmaps, in which each term corresponds to a bitmap and each bit
in a bitmap captures whether a document contains the term.

3.3 Combination Scheme
The geo-textual indices combine spatial and text indexing. We

categorize the indices according to how they combine the two, name-
ly text-first loose combination, spatial-first loose combination, and
tight combination.

A text-first loose combination index usually employs the inverted
file as the top-level index and then arrange the postings in each
inverted list in a spatial structure, which can be an R-tree, a grid
or a spatial filling curve. In contrast, the top level of a spatial-first
index is a spatial structure, and its leaf nodes (resp. grid cells)
contain inverted files or bitmaps for the text information of objects
contained in the nodes (resp. grid cells).

On the other hand, the tight combination index combines a spa-
tial and a text index tightly such that both types of information can

be used to prune the search space simultaneously during query pro-
cessing. Two types of tight combinations have been used: One inte-
grates a text summary into every node of a spatial index (e.g., [7]),
and one integrates the spatial information into each inverted list
(e.g., [6]).

4. GEOTEXTUAL INDICES
We review 12 geo-textual indices that we will later evaluate em-

pirically. Figure 1(a) and Figure 1(b) show the spatial and keyword
distribution, respectively, for a set of spatial web objects, which
is used as a running example. Figure 1(c) illustrates an R-tree on
these objects.

4.1 RTree Based Indices
IF-R* and R*-IF The R-tree is arguably the dominant index for
spatial queries, and the inverted file is the most efficient index for
text information retrieval. Inverted file-R*-tree (IF-R*) and R*-
tree-inverted file (R*-IF) [26] are two geo-textual indices that loose-
ly combine the R*-tree and inverted file.

The R*-IF is a spatial-first index. An R*-tree is first built for in-
dexing all objects in D without considering their text components.
Next, for each leaf node of the R*-tree, an inverted file is creat-
ed for indexing the text components of the objects contained in the
leaf node. Note that the inverted file is not stored inside a leaf node.
Figure 3 illustrates the inverted files for leaf nodes R1 and R2.

The IF-R*, a text-first geo-textual index, is the counterpart of
R*-IF. For each distinct term t in D, a separate R*-tree is built for
the objects inD containing term t. Figure 4 illustrates the structure
of IF-R* (R*-tree for the term expensive).

Both of them are proposed for tackling the problem of retrieving
web documents relevant to a keyword query within a pre-specified

219



spatial region, i.e., the BRQ. At query time, for the R*-IF, a set
of leaf nodes that intersect with the query region is retrieved first.
Then, objects whose documents contain query keywords are re-
turned as the result. For the IF-R*, all the R*-trees corresponding
to the query keywords need to be accessed.

It is shown [26] that the IF-R* outperforms the R*-IF for the
BRQ. Hence we only evaluate the performance of the IF-R*. Ad-
ditionally, we also employ the IF-R* for processing the BkQ using
the extended algorithm [21]. However, there exists no sensible way
to use the two indices for the TkQ.

KR*-Tree Hariharan et al. [12] proposed the KR*-tree (Keyword
R*-tree). Each node of the KR*-tree is virtually augmented with
the set of keywords that appear in the subtree rooted at the node.
The nodes of the KR*-tree are organized into inverted lists as are
the objects. This may help prune the tree nodes under which objects
do not contain query keywords in query processing stage. Figure 5
shows the content of the KR*-tree list generated from the example
dataset.

The KR*-tree is proposed for processing the BRQ. The KR*-
tree based query processing algorithm first finds the set of nodes
that contain the query keywords. The resulting set then serves as
the candidate pool for subsequent search. We also use the KR*-
tree to process the BkQ. However, we do not see a sensible way to
apply this index structure for processing the TkQ.

IR2-Tree Felipe et al. [9] proposed an index structure called IR2-
tree, which integrates signature file into each node of the R-tree.
The signature file, in the form of bitmap, is stored for each node
of the IR2-tree, and thus the fanout of the tree is dependent on the
length of signature file. The signature file of a node is the union of
all signatures of its entries, each representing a child node, and it
summarizes the presence of terms in the objects rooted at the node.
Figure 7 shows the bitmap structure on the node R6.

The IR2-tree can be used for processing the BkQ and BRQ.
However, since the signature files do not have the frequency in-
formation, it cannot be used to process the TkQ

Hybrid Spatial-Keyword Indexing (SKI) Cary et al. [4] proposed
SKI, which uses the R-tree and bitmaps to store spatial and text in-
formation respectively. An extended R-tree is used to organize the
spatial information. The parent node of a leaf node is called a su-
per node in the extended R-tree. Each non-leaf node is augmented
with a range of the ids of the super nodes under the non-leaf node.
Each super node is associated with a bitmap version of inverted
file. Specifically, each term has a bitmap whose bit corresponds to
an object under the super node and is set to 1 if the object contains
the term. The SKI shares certain similarity to the R*-IF. However,
the SKI uses bitmap version of inverted file rather than a normal
inverted file. To illustrate the structure of SKI, we give the term
bitmaps on super node R5 in Figure 6. SKI can be used for the
BkQ and BRQ.

IR-tree index and its variants The IR-tree [7, 20] augments each
node of the R-tree with a summary of the text content of the object-
s in the corresponding subtree. Specifically, each node contains a
pointer to an inverted file that describes the objects in the subtree
rooted at the node. The inverted file for a node X contains: 1) A
vocabulary of all distinct terms in the text descriptions of the ob-
jects in the subtree rooted at X . 2) A set of posting lists, each of
which relates to a term t. Each posting list is a sequence of pairs
⟨cp, wtcp,t⟩, where cp is a child ofX andwtcp,t is the upper bound
text relevance score of objects in the subtree rooted at cp for term
t. The IR-tree supports all the three types of queries, namely, BRQ,
BkQ and TkQ.

Li et al. [16] presents an index structure, which is also called IR-
tree. To distinguish it from the IR-tree in references [7,20], we refer
to it as the IRLi-tree. The difference between the IR-tree and the
IRLi-tree is that the IR-tree stores the inverted files for each node
separately while the IRLi-tree stores one integrated inverted file for
all the nodes. More specifically, the posting list for each term in the
IRLi-tree corresponds to the concatenation of the posting lists of all
the nodes of the IR-tree. The fashion that the IRLi-tree organizes
the inverted file is similar to that of the KR*-tree, and the difference
lies in that the KR*-tree does not store the weight of terms. Thus,
the IRLi-tree will reduce to the KR*-tree if it is used to process
BkQ and BRQ.

Several variants of the IR-tree exist, which optimize the IR-tree,
including the DIR-tree, the CIR-tree, and the CDIR-tree. The DIR-
tree [7, 20] takes both spatial and textual information into accoun-
t during the tree construction by optimizing for a combination of
minimizing the areas of MBRs and maximizing the text similari-
ties between the objects of the enclosing rectangles. A parameter β
is introduced to balance the weights on the two parts. The CIR-tree
optimizes the IR-tree by grouping objects into a number of clus-
ters based on their text descriptions. Compared with the IR-tree,
the CIR-tree includes a summary of text content for each cluster
in its posting lists. The CDIR-tree [7, 20] is a combination of the
DIR-tree and the CIR-tree.

WIR-Tree WIR-tree [21] is also a variant of IR-tree. It aims at par-
titioning objects into multiple groups such that each group shares
as few keywords as possible. To achieve this goal, the objects in
D is first partitioned into two groups using the most frequent word
w1: one group whose objects containw1 and the other group whose
objects do not. We then partition each of these two groups by the
next frequent word w2. The process is repeated iteratively until
each partition contains a certain number of objects. After partition-
ing, each group of objects becomes the leaf node of the WIR-tree.
Then the tree is constructed following the structure of the IR-tree.
When used for processing Boolean queries, the WIR-tree [21] uses
the inverted bitmap to replace the inverted file, which is denoted as
the WIBR-tree, where a bitmap position corresponds to the relative
position of an entry in its WIR-tree node. The length of a bitmap
is equal to the fanout of a node. Like the IR-tree, the WIR-tree can
handle all the three types of query.

Spatial Inverted Index (S2I) Based on the inverted file and R-tree,
Rocha-Junior et al. [18] proposed an index called S2I that employs
two different strategies for indexing frequent items and infrequent
terms. Specifically, the S2I maps objects containing each frequent
term to an aggregate R-tree (aR-tree). In the aR-tree, each node
stores an aggregated value that captures the maximum impact (in
terms of the text relevance score) of the term on the objects in the
subtree rooted at the node. The aR-tree can be regarded as the IR-
tree [7,20] for a single term. The S2I organizes the infrequent terms
and the objects containing them by inverted file, and each posting
list of a term is organized by blocks of a fixed size. The threshold
to distinguish frequent terms from infrequent terms needs to be set
empirically.

S2I is originally designed for TkQ, but it can be employed to
support BkQ and BRQ.

4.2 Grid Based SpatialTextual Indices
ST and TS Vail et al. [19] proposed two grid based spatial-textual
indexing schemes, Spatial Primary Index (ST) and Text Primary In-
dex (TS). They are the earliest grid based geo-textual indices. ST
and TS can be classified as spatial-first and text-first loose combi-
nation, respectively, in terms of the combination scheme.

220



Figure 4: R-tree under the word
expensive

Keywords Tree nodes
Italian R1, R2, R3, R4, R5, R6

coffee R1, R2, R4, R5, R6

restaurant R1, R2, R3, R4, R5, R6

pizza R2, R4, R5, R6

expensive R1, R2, R5

Figure 5: KR*-tree list

Figure 6: Term bitmaps for super node R5

Figure 7: IR2-tree with bitmaps
Figure 8: IR-tree and its inverted files

Figure 9: Grid structure
under keyword Italian

Since TS outperforms ST consistently as shown in the work [19],
we only evaluate TS in this paper. The structure of TS, which is
illustrated in Figure 9, is a modified inverted index of which each
posting list is associated with a grid cell based on its location.

TS is designed for the BRQ, and its query processing method is
similar to that of the IF-R*. There exists no method to extend TS
to efficiently handle BkQ and TkQ. A straightforward extension
would not work better than using inverted file alone.

Spatial-Keyword Inverted File (SKIF) SKIF [14] employs an
inverted-file-like structure to store both spatial and text information
for objects so that spatial and textual parts of data can be handled
simultaneously. SKIF assumes the location of each object as a re-
gion, rather than a single point, in the setting of this evaluation.

The text part of SKIF employs the inverted file, i.e., each term
is associated with an inverted list. For spatial part, each distinct
grid cell is also represented by an inverted list. Each inverted list
comprises a list of postings, each consisting of an object ID and its
spatial idf value, where the object overlaps with the grid cell and
the idf is measured by the overlapping degree.

SKIF is developed for a type of query that is different from the
three types of queries we evaluate. Since the query considered by
SKIF bears resemblance to the BRQ, we modify its query process-
ing algorithm to handle the BRQ. However, we do not see a sensible
way to process the other two types of queries based on SKIF.

4.3 SFCQUAD
Christoforaki et al. [6] proposed several hybrid indices that com-

bine the space filling curve and inverted file. Among them, SFC-
QUAD index is shown to perform the best according to the exper-
imental results [6]. The SFC-QUAD index is essential an inverted
file in which the docIDs and frequencies of objects are compressed
using the OPT-PFD algorithm [23]. The docIDs in each inverted
list are assigned and ordered based on their spatial positions on the
Z-curve. SFC-QUAD also maintains a Quad-tree in memory so
that the Z-curve order could be easily acquired simply by travers-
ing the Quad-tree in a depth-first manner. When processing a query
with a given spatial region, a set of object ID ranges that fall in the
query region are acquired through traversing the Quad-tree. Then,

these ranges are merged into a smaller number of ranges for reduc-
ing random disk I/O costs. Subsequently, the corresponding parts
of inverted lists of query keywords within the s ranges of IDs are
retrieved from disk through s disk sweeps. Finally, objects contain-
ing all the query keywords are found through document-at-a-time
query processing technique along with forward skip optimization.

SFC-QUAD is designed for the BRQ. If it is extended for han-
dling BkQ and TkQ, it will be reduced to normal inverted list since
its unique indexing structure and query processing method cannot
be used for processing BkQ and TkQ.

The earlier work [5] combines inverted file with the Hilbert curve
in a similar way as the method [6] though the method [6] uses more
optimization. The inverted lists are laid out along a Hilbert curve on
disk. In the work [5], an object has a large region of spatial footprint
or multiple locations. Similar to SFC-QUAD, the index [5] is not
for BkQ and TkQ.

5. EVALUATION PLAN
The goal of the experimental study is to make an all-around e-

valuation on important aspects of the geo-textual indices covered
in Section 4 and compare their performance. All indices and algo-
rithms1 were implemented in Java running the Windows 7 Ultimate
OS. Two servers were used for evaluation, one is equipped with In-
tel(R) Xeon(TM) CPU X5650 @2.66GHz, 24GB RAM, and a 1TB
SATA disk, and the other one is equipped with Intel(R) Xeon(TM)
CPU E5620 @2.4GHz, 48GB RAM, and a 1.5TB SATA disk. For
ensuring a comparable evaluation results, the same server is used
for conducting experiments on the same dataset. The Java Virtual
Machine Heap is set to 8GB.

5.1 Datasets
Our experiments were conducted on three datasets: a small re-

al dataset EURO, a larger synthetic dataset WEBSPAM, and the

1The code of S2I is from its inventors. We extended it to process
all the three types of queries. All code developed by us will be
publicly available.

221



Table 1: Dataset properties
Property EURO WEBSPAM TWITTER
Total number of objects 179,506 2,248,135 20,000,000
Total number of unique words 68,052 2,898,463 8,977,384
Average number of unique words 7 429 15
Total number of words 1,155,045 965,127,684 308,584,627

largest dataset TWITTER. The properties of the three datasets are
listed in Table 1. Details of each dataset are stated as follows.

EURO: EURO2 is a real dataset that contains points of interest
(e.g., park, hospital, supermarket) in Europe. Each point of interest,
which can be regarded as a spatial web object, contains a geograph-
ical location and a short description (name, categories, etc.).

WEBSPAM: WEBSPAM is a synthetic dataset generated from
two real datasets, namely a spatial dataset modeling the roads in
California3 and web documents on WEBSPAM-UK20074 (which
are generally longer than the descriptions of EURO objects). We
assign each document to a geographical location from the Califor-
nia road network. To evaluate the effect of text length, 4 additional
datasets are generated by ramdomly selecting part of the text for
each object to guarantee the average number of words per object to
be 100, 200, 300, and 400.

TWITTER: TWITTER is a dataset generated from 20 million
real tweets in USA. A total of 0.5% of the tweets are geo-tagged.
We combine the tweets without locations with a real spatial dataset
that models the road network of USA.5 To evaluate scalability, four
additional datasets are generated by enlarging TWITTER from 40
to 100 million tweets while keeping the spatial and term distribu-
tion of the objects the same.

5.2 Performance Evaluation Procedure
Our benchmark evaluates both the time and space efficiency of

each index. Three metrics are used: (i) elapsed time, (ii) the number
of simulated I/Os, and (iii) the size of an index on disk. We use
(i) and (ii) to evaluate the time efficiency of an index and (iii) to
evaluate its space efficiency.

Note that multiple layers of cache (e.g., disk driver cache, oper-
ating system cache, application cache) exist between a Java appli-
cation and the physical disk. Rather than measuring physical I/Os
from the disk using Java, we report simulated I/O costs. If a node
for the R-tree or B+-tree is visited, the number of simulated I/Os is
increased by 1, and if an inverted list or signature file is loaded into
memory, the number of simulated I/Os is increased by the number
of blocks (4K per block) used for storing the list or signature file.

For each index, we evaluate the following aspects.

A1 The number of objects. The number of objects in the dataset
varies from 20M to 100M by enlarging the dataset TWITTER.
A2 The number of query keywords. We use AND semantic-
s to connect the query keywords in BkQ and BRQ. The number
of query keywords varies from 1 to 6.
A3 Query region size. All range queries are circle-shaped with
their radius ranging from 1km to 20km.
A4 Value of k. For BkQ and TkQ, the value k in the top-k objects
varies from 1 to 50.
A5 Value of query preference parameter α. For TkQ, parameter
α allows users to set their preferences between location proximity
and text relevance. We vary α from 0.1 to 0.9.
A6 Buffer size. When the data layout on disk with caching, we use
2http://www.pocketgpsworld.com
3http://barcelona.research.yahoo.net/webspam/datasets/uk2007
4http://www.rtreeportal.org
5http://www.dis.uniroma1.it/challenge9/download.shtml

Table 2: Parameters and their settings
Parameter Setting
Number of query keywords 1 2 3 4 5 6
Number of top-k results 1 5 10 20 50
Query preference ratio α 0.1 0.3 0.5 0.7 0.9
R-tree page size6 2K 4K 8K 16K 32K
Buffer size (MB) 0(0) 4(512) 8(1024) 12(1536) 16(2048)
Query region radius (km) 1 2 5 10 20

an LRU buffer, and we vary the buffer size from 4MB to 16MB for
EURO and from 0.5GB to 2GB for WEBSPAM.
A7 R-tree page size. For R-tree based indices, the page size is var-
ied from 2K to 32K.
A8 Space requirement. For each index, we report its space re-
quirement for storing the index file.
A9 Text length. We evaluate the performance with regard to the
average number of words per object ranging from 100 to 400 on
WEBSPAM.

Table 2 summarizes the parameters, where the values in bold
represent the default values used. For each query type, we evaluate
these aspects where applicable. For A7 and A9, we only report
results for BkQ and BRQ, respectively, since the results on the TkQ
are qualitatively similar.

5.3 Query Generation
To make the queries resemble what users would likely use, we

generate the query sets by the following steps. For BkQ and TkQ,
we first randomly pick an object in the dataset and regard the loca-
tion of the object as the query location. Then, we randomly choose
a specified number of words from the object as the query keywords.
Thus, each query will return at least one result. For BRQ, an ob-
ject is picked randomly and then a bounding circular region with a
specified radius is generated subsequently with the location of this
object being the center of the region. The generation procedure for
query keywords is the same as that for BkQ and TkQ.

For each round of experiment, we generate 6 query sets on each
dataset, in which the number of query keywords is from 1 to 6.
Each set consists of 300 queries.

For evaluating the query performance with different buffer sizes,
we generate 500 and 20,000 queries for experiments on EURO and
WEBSPAM, respectively, to warm up the LRU buffer.

Table 3: Distance from query point to kth result object
top-k BkQ (kilometer) TkQ (kilometer)

EURO WEBSPAM TWITTER EURO WEBSPAM TWITTER
1 0 0 0 0 0 0
5 56 17 241 34 11 227
10 85 23 374 53 20 342
20 133 35 482 96 29 417
50 251 76 1070 179 63 934

Table 4: Number of result objects returned by BRQ
Query Region Radius EURO WEBSPAM TWITTER

1km 1 2 1
2km 2 5 2
5km 4 20 4
10km 7 45 10
20km 15 98 32

We summarize the average distance from the query point to the
kth object for BkQ and TkQ in Table 3 and the average number
6Based on the result in Figure 26, we use 4K for IR2 and SKI, and
32K for the other R-tree based indices.

222



of result objects for TkQ in Table 4 (using the default values for
other parameters). The object density for the three datasets could
be implied by the two tables.

5.4 Index Settings
As a precursor to applying the benchmark to the geo-textual in-

dexing techniques described in Section 4, we proceed to cover per-
tinent details of our implementations and settings of the indices.
Note that the construction of each index may involve some specific
parameters. We conducted experiments to find the best settings for
such parameters.

R-tree Based Indices For the R-tree based geo-textual indices that
use the inverted file as the text indexing scheme, we apply the B+-
tree for indexing the inverted lists.

The construction of the CDIR-tree involves two parameters. One
parameter β (0 ≤ β ≤ 1) balances the weight between spatial
proximity and text similarity when building a CDIR-tree. We vary
β from 0 to 1 and find that the CDIR-tree performs the best on
both datasets at β = 0.9. The other parameter for the CDIR-tree
is the number of clusters c. According to the experimental results,
we set c at 10, 30, and 40 on EURO, WEBSPAM, and TWITTER,
respectively.

For the IR2-tree, the signature length ls affects performance.
Longer signatures provide more accurate text information so that
we can avoid more unnecessary traversal of tree nodes. On the oth-
er hand, the space overhead increases as we increase ls, which in-
curs more I/O during query processing. We empirically find that the
IR2-tree performs the best at ls = 7000 on EURO, at ls = 12000
on WEBSPAM, and at ls = 20000 on TWITTER.

For the S2I, we need to set a threshold to distinguish frequent
words and infrequent terms. Based on the results of additional ex-
periments, we set 100 for EURO and 1000 for WEBSPAM, which
yield the best overall query performance. Note that S2I is so space-
consuming that we are not able to conduct evaluation for S2I on
TWITTER due to the space limitation of our hard disk.

Before constructing the WIBR-tree, we need to iteratively par-
tition all objects in a dataset into two groups using top w frequent
words. According to our experimental result, it is of little help in
query performance when w exceeds 200, 600, and 1500 on EURO,
WEBSPAM, and TWITTER, respectively.

Grid Based Indices For SKIF, the inverted file is not organized in
a B+-tree. Instead, we store the inverted lists and spatial inverted
lists in blocks. The size of each block is 4KB, which is the same as
that of a B+-tree node. The offset for each inverted list is loaded
into memory before query processing. As for the TS index, we
construct a distinct grid based index for each keyword.

The grid resolution affects the performance. We find that for
SKIF, 150× 150 cells for EURO, 500× 500 cells for WEBSPAM,
and 1500× 1500 cells for TWITTER render the best performance.
As for the TS, the number of grid cells is determined by the number
of objects that contain the corresponding keyword. We find that 50
objects in each cell gives the best performance.

SFC Based Indices For SFC-Quad, the inverted lists are also stored
in blocks. Each block contains 128 postings and is compressed
using the OPT-PFD algorithm [6]. Hence, we set the inverted file
just as suggested in [6]. In addition, the number of disk sweeps for
fetching relevant blocks in inverted lists is set to 1 since 1-sweep
performs the best in our datasets.

6. EVALUATION RESULTS
We report on the results of applying the benchmark on the in-

dices covered in Section 4. First, we present the space requirement

for each index on the three datasets. Then, we present the results
for query processing performance on the BkQ, TkQ, and BRQ, re-
spectively. For each group of experiment, we report the results on
EURO, followed by the results on WEBSPAM and TWITTER.

6.1 Space Requirements
Table 5 presents the space requirement for each index. Note that

the posting lists for the inverted file of the R*-IF, IR, IRLi, CDIR,
and S2I contain both object ID and weight, which is a prerequisite
for supporting TkQ, while the posting lists of the other indices only
contain object ID. R+IF represents an index scheme using the R-
tree and the inverted file, which is introduced in [7] as a baseline
method for processing the TkQ query.

As we can see, the space cost of SFC-Quad is significantly lower
than those of the others. This is achieved by the OPT-PFD com-
pression algorithm. In addition, the R-tree based text-first indices,
namely the IF-R* and S2I, require much more space than the other
indices designed for the same type of query (TkQ). This is because
the objects may be repeatedly indexed in the IF-R*-tree and S2I.
Moreover, the space cost of an index is closely related with the
querying performance when a buffer is used, which will be dis-
cussed in Section 6.5.

Table 5: Index size
Index EURO WEBSPAM TWITTER
IF-R* 586MB 38GB 173GB
R+IF 25MB 13GB 5.2GB
IR2 246MB 2.1GB 51GB
IR 150MB 75GB 119GB
IRLi 148MB 75GB 118GB
CDIR 158MB 81GB 132GB
WIBR 54MB 13GB 42GB
KR* 187MB 23GB 71GB
S2I 623MB 207GB N/A
TS 191MB 15GB 12GB
SKIF 38MB 3.2GB 1.4GB
SKI 134MB 4.9GB 35GB
SFC-Quad 19MB 1.4GB 0.8GB

6.2 Varying Query Parameters for BkQ
In this round of experiments, we evaluate the performance of

each geo-textual index for processing the BkQ query.

A2 Effect of the number of query keywords: Figures 10, 11,
and 12 show the effect of the number of query keywords on datasets
EURO, WEBSPAM, and TWITTER.
- S2I performs the best on both EURO and WEBSPAM when the

number of query keywords is smaller than 5. Note that S2I can-
not run on Twitter since the storage requirement is beyond the
available disk space. When the number of query keywords is
larger than 5, CDIR performs the best on EURO, and WIBR
performs the best on WEBSPAM and TWITTER.

- Among the indices that tightly combine the R-tree with the in-
verted file, the performance of CDIR is close to that of WIBR,
which is the best in most situations, and KR* is the worst.

- The spatial-first index IF-R* that loosely combines the R-tree
and the inverted file performs well when the number of keywords
is 1, and its performance deteriorates as the number of keywords
increases.

- The indices that combine the R-tree and the bitmap (or signa-
ture) perform worse than those that combine the R-tree and the
inverted file.

223



0

10

20

30

40

50

60

70

1 2 3 4 5 6

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
s
)

number of query keywords

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(a) Runtime

0

10

100

1000

1 2 3 4 5 6

p
a
g
e
 a

c
c
e
ss

e
d

number of query keywords

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(b) I/O

Figure 10: Varying # query keywords on EURO for BkQ

0

100

200

300

400

500

600

1 2 3 4 5 6

ru
n
ti

m
e
 (

m
il

li
se

c
o
n
d
s)

number of query keywords

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(a) Runtime

0

10

100

1000

1 2 3 4 5 6

p
a
g
e
 a

c
c
e
ss

e
d

number of query keywords

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(b) I/O
Figure 11: Varying # query keywords on WEBSPAM for BkQ

10

100

1000

10000

1 2 3 4 5 6

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
s
)

number of query keywords

CDIR
WIBR

IR2

IF-R*
KR*
SKI

(a) Runtime

10

100

1000

1 2 3 4 5 6

p
a
g
e
 a

c
c
e
ss

e
d

number of query keywords

CDIR
WIBR

IR2

IF-R*
KR*
SKI

(b) I/O

Figure 12: Varying # query keywords on TWITTER in BkQ

 0

 20

 40

 60

 80

 100

1 5 10 20 50

ru
n
ti

m
e
 (

m
il

li
se

c
o
n
d
)

top-k

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(a) Runtime

 1

 10

 100

 1000

 10000

1 5 10 20 50

p
a
g
e
 a

c
c
e
ss

e
s

top-k

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(b) I/O
Figure 13: Varying top-k on EURO for BkQ

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 5 10 20 50

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
)

top-k

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(a) Runtime

 1

 10

 100

 1000

 10000

 100000

1 5 10 20 50

p
a
g
e
 a

c
c
e
ss

e
s

top-k

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(b) I/O

Figure 14: Varying top-k on WEBSPAM for BkQ

 1

 10

 100

 1000

 10000

 100000

1 5 10 20 50

ru
n
ti

m
e
 (

m
il

li
se

c
o
n
d
)

top-k

CDIR
WIBR

IR2

IF-R*
KR*
SKI

(a) Runtime

 1

 10

 100

 1000

 10000

 100000

1 5 10 20 50

p
a
g
e
 a

c
c
e
ss

e
s

top-k

CDIR
WIBR

IR2

IF-R*
KR*
SKI

(b) I/O
Figure 15: Varying top-k on Twitter for BkQ

As we can see, all indices display an increasing tendency on
WEBSPAM and TWITTER in terms of both runtime and I/Os as
the number of keywords increases. For the text-first indices, which
include IF-R* and S2I, they need to access more posting lists of
words as the number of query keywords increases, and thus would
need more I/Os. For the space-first indices and tightly combined in-
dices, including CDIR, WIBR, IR2, SKI, and KR*, as the number
of keyword increases, the possibility for a tree node to contain all
the query keywords would be decreased, and the distance between
the query results and the query point would be increased. Thus,
such indices might check more nodes. However, on EURO as the
number of query keywords increases the text-first indices present
an increasing trend while the runtime of the other indices drops
when the number of keywords is larger than 5. This is because the
number of objects in EURO containing 5 or more query keyword-
s is small, and thus the number of nodes containing all the query
keywords is small (although they may be far from the query point).

A4 Effect of top-k value: Figures 13, 14, and 15 show results of
this experiment in which we investigate the effect of k by varying
the value k from 1 to 50. As expected, both the runtime and the
I/O cost of each index increase with an increasing value of k. A
larger value of k leads to a larger search region in query processing,

incurring more accesses to tree nodes.
- S2I consistently performs the best on EURO and WEBSPAM,

and WIBR performs the best on TWITTER. The performance
of S2I is less affected as we increase the value of k, compared
with other indices.

- The performance of the tightly combined indices deteriorates as
the k increases. This is because more nodes are accessed to find
the k nearest objects containing all the query keywords.

6.3 Varying Query Parameters for TkQ
In this round of experiments, we evaluate the performance for

processing the TkQ query for each geo-textual index.

A2 Effect of the number of query keywords: Figures 16, 17,
and 18 show the result when the number of query keywords is var-
ied from 1 to 6. All the indices present an increasing tendency on
both datasets as we increase the number of query keywords, which
is different from that for BkQ. This can be explained by the fact
that the result objects for TkQ do not necessarily contain all the
query keywords, and TkQ always returns k results. We also con-
sider the two baseline methods introduced in the work [7]—the first
only uses the inverted file and the second uses both the R-tree and

224



20

40

60

80

1 2 3 4 5 6

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
s
)

number of query keywords

IR
CDIR

IRLi
S2I

R+IF

(a) Runtime

50

100

150

200

1 2 3 4 5 6

p
a
g
e
 a

c
c
e
ss

e
s

number of query keywords

IR
CDIR

IRLi
S2I

R+IF

(b) I/O
Figure 16: Varying #keywords on EURO for TkQ

0

400

800

1200

1600

1 2 3 4 5 6

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
s
)

number of query keywords

IR
CDIR

IRLi
S2I

R+IF

(a) Runtime

0

100

200

300

400

1 2 3 4 5 6

p
a
g
e
 a

c
c
e
ss

e
d

number of query keywords

IR
CDIR

IRLi
S2I

R+IF

(b) I/O
Figure 17: Varying #keywords on WEBSPAM for TkQ

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
s
)

number of query keywords

IR
CDIR

IRLi
R+IF

(a) Runtime

10

100

1000

1 2 3 4 5 6

p
a
g
e
 a

c
c
e
ss

e
s

number of query keywords

IR
CDIR

IRLi
R+IF

(b) I/O
Figure 18: Varying #keywords on TWITTER for TkQ

 20

 40

 60

 80

 100

 120

 140

1 5 10 20 50

ru
n

ti
m

e
 (

m
il

li
s
e
c
o

n
d

)

top-k

IR
CDIR
IRLi

S2I
R+IF

(a) Runtime

 20

 40

 60

 80

 100

 120

 140

1 5 10 20 50

p
a
g

e
 a

c
c
e
ss

e
s

top-k

IR
CDIR

IRLi

S2I
R+IF

(b) I/O
Figure 19: Varying top-k on EURO for TkQ

 1

 10

 100

 1000

 10000

1 5 10 20 50

ru
n

ti
m

e
 (

m
il

li
s
e
c
o

n
d

)

top-k

IR
CDIR
IRLi

S2I
R+IF

(a) Runtime

 1

 10

 100

 1000

1 5 10 20 50

p
a
g

e
 a

c
c
e
ss

e
s

top-k

IR
CDIR

IRLi

S2I
R+IF

(b) I/O
Figure 20: Varying top-k on WEBSPAM for TkQ

 1

 10

 100

 1000

 10000

 100000

1 5 10 20 50

ru
n

ti
m

e
 (

m
il

li
s
e
c
o

n
d

)

top-k

IR
CDIR

IRLi
R+IF

(a) Runtime

 1

 10

 100

 1000

 10000

1 5 10 20 50

p
a
g

e
 a

c
c
e
ss

e
s

top-k

IR
CDIR

IRLi
R+IF

(b) I/O
Figure 21: Varying top-k on TWITTER for TkQ

0

20

40

60

80

0.1 0.3 0.5 0.7 0.9

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
)

α

IR
CDIR

IRLi
S2I

R+IF

(a) Runtime

0

30

60

90

120

0.1 0.3 0.5 0.7 0.9

p
a
g
e
 a

c
c
e
ss

α

IR
CDIR

IRLi
S2I

R+IF

(b) I/O

Figure 22: Varying α on EURO for TkQ

0

200

400

600

800

1000

0.1 0.3 0.5 0.7 0.9

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
)

α

IR
CDIR

IRLi
S2I

R+IF

(a) Runtime

0

50

100

150

200

250

0.1 0.3 0.5 0.7 0.9

p
a
g
e
 a

c
c
e
ss

e
d

α

IR
CDIR

IRLi
S2I

R+IF

(b) I/O
Figure 23: Varying α on WEBSPAM for TkQ

the inverted file. They perform worse than the other methods in
our experiments. We only include the second baseline, denoted by
R+IF, in Figure 16 since the first one performs worse. The interest-
ing findings are stated as follows.
- S2I performs the best when the number of query keywords is

smaller than or equal to 4 on EURO and WEBSPAM. However,
when it is 5 or 6, CDIR slightly outperforms S2I. The reason
is similar to that for the difference on the BkQ. Note again that
S2I does not work on TWITTER in our evaluation, and CDIR
performs the best on TWITTER.

- CDIR generally performs better than IR and IRLi. This can be
explained by its two optimizations over the IR-tree.

- The IR-tree performs similar to the IRLi-tree. It suggests that
whether storing the inverted lists for each node separately or s-
toring them together would make little difference on the runtime
and I/O cost. The WIR-tree performs similar to the IR-tree and
is omitted in the figures.

A4 Effect of top-k value: Figures 19, 20, and 21 report on this ex-
periment in which we investigate the effect of varying the number

225



of results k from 1 to 50. Figures 19 and 20 show that S2I perform-
s the best on EURO and WEBSPAM and that CDIR performs the
best on TWITTER. All the tightly combined hybrid indices signif-
icantly outperform the baseline for all values of k in terms of both
runtime and I/O cost.
- CDIR outperforms IR and IRLi in almost all cases. When the

value of k is smaller than 10, IR outperforms IRLi on EURO;
but when we proceed to increase k, both runtime and I/O cost
for IRLi would be lower than IR. A similar trend can be also ob-
served on WEBSPAM. This is because the I/O of IRLi for post-
ing lists are fixed for a query, irrespective of k although the I/O
for its R-tree component increases as the value of k increases.
However the I/O of IR for posting lists correlates to the num-
ber of accessed nodes of the IR-tree, which increases with the
increase of k. Note that IRLi has a single posting list for each
word, while each node of the IR-tree has a posting list for a word
appearing in the node. This can be observed from the I/O results.
The I/O of IRLi is insensitive to the value k while the I/O of IR
increases as k is increased.

- S2I is almost not affected by varying the value of k. This is a
characteristic of text-first indexing structures. Its I/O almost re-
mains the same as the value of k is varied.

A5 Effect of α: Figures 22 and 23 report on this experiment that
examines the effect of parameter α. From Figure 22, we find that
the performance results for both runtime and I/O cost are consis-
tent with those of the previous evaluations, where S2I and baseline
respectively bear the lowest and highest runtime or I/O cost. Note
that IR and IRLi perform better for large value of αwhile the CDIR
performs better for small value of α since the CDIR takes into ac-
count document similarity and the benefit is significant when the
text relevance is given higher weight. S2I presents a similar ten-
dency as do IR and IRLi with the variation of α.

6.4 Varying Query Parameters for BRQ
In this round of experiments, we evaluate the BRQ processing

performance for each geo-textual index. We only report the run-
time due to the space limitation.

A2 Effect of number of query keywords: Figure 24 shows that
SFC-Quad performs the best on WEBSPAM and TWITTER, espe-
cially for TWITTER, on which it runs with overwhelming superi-
ority. Even on EURO, SFC-Quad achieves the best runtime perfor-
mance in most cases, though the performance of S2I is close and
sometimes WIBR is the best. The good performance of SFC-Quad
for the BRQ can be ascribed to the OPT-PFD technique applied for
compressing the inverted file, the benefit of the space filling curve
while processing BRQ as well as various optimizations.

As expected, nearly all the R-tree based indices display result-
s that are qualitatively similar to those for the BkQ and TkQ if
applicable. The performance of the IR2-tree is not affected by the
number of query keywords, as the size of signature file to be loaded
is not affected by the number of query keywords (the spatial search
range is determined by the query region).

The two grid based indices are slower than most of the other in-
dices. The query processing algorithm for TS is based on a brute
force searching technique without any pruning strategy.

A3 Effect of query region size: This experiment investigates the
effect of the query region size. We vary the region radius from
1 to 20 km. Figure 25 shows that in general SFC-Quad beats all
the other indices on all the three datasets in terms of runtime and
I/O cost. In addition, the superiority of SFC-Quad over the other

indices becomes more obvious as the region becomes larger. The
reason is that multiple ranges of objects that fall in the query region
can be easily retrieved based on the Z-curve. Hence, instead of
loading the whole inverted list for a particular keyword, SFC-Quad
just needs to load the portions of posting lists that fall into relevant
ranges. In contrast, the other indices normally need to load more
posting lists and index nodes as the query region becomes larger.

6.5 Varying Indexing Parameters
We proceed to evaluate query performance with regard to the R-

tree page size for R-tree based indices and the LRU buffer size.

A7 Effect of R-tree page size: Figure 26 shows the effect of vary-
ing the R-tree page size from 2K to 32K for the indices based on
the R-tree on dataset EURO. The results on WEBSPAM and TWIT-
TER are qualitatively similar. We find that except the IR2-tree and
SKI, all the other R-tree based indices perform better as we increase
the page size. This may be explained as follows.
- When the page size is increased, the fanout of the R-tree would

also increases. Hence, when a node is loaded into memory, more
entries for child nodes are acquired, which might reduce the I/O
cost. However, a larger page size also increases the I/O cost of
accessing a node. When we further increase the page size to
64K, the performance of these indices does not become better.

- Although the IR2-tree and SKI benefit from the effect mentioned
above, more signatures or longer bitmaps are also fetched when
the fanout is increased, which increases the I/O cost.

A6 Effect of buffer size: The results are shown in Figures 27, 28,
and 29. We simulate the number of accessed pages for each index
using an LRU buffer, varying the buffer size from 4MB to 16MB
for EURO and from 0.5GB to 2GB for WEBSPAM. As expected,
more buffer space improves the I/O performance of all indices. The
results also suggest that indices with lower space requirements tend
to achieve a more significant improvement of the I/O performance
as the buffer size increases. The I/O costs of the IR2, R+IF, SKI, T-
S, SKIF, and SFC-Quad are markedly reduced when the buffer size
increases. All of these indices are relatively less space-consuming,
which is shown on Table 5. In contrast, the S2I, which requires
much more space in comparison to the others, exhibits a nearly
constant performance when we vary the buffer size.

6.6 Scalability
In this round of evaluation, we first conduct an experiment vary-

ing the number of objects to evaluate the scalability of the indices
for each type of query. In addition, to evaluate the effect of the text
size of each object, we conduct an experiment varying the average
number of words per object for the BRQ on WEBSPAM.

A1 Effect of the number of objects: Figures 30(a), 30(b), and 30(c)
show the results of varying the number of objects from 20M to
100M. Increasing the number of objects leads to increasing num-
bers of tree nodes or grid cells. Also, the length of each posting list
when employed increases. We observe that all the indices exhibit a
linear growth trend in terms of query runtime for all the three types
of queries when we increase the number of objects in dataset.

A9 Effect of text length: Figure 30(d) shows the results of varying
the average number of words per object and keeping the number of
objects constant. We find that IF-R*, S2I, and TS perform worse
as we increase the text length, while the performance of the others
is much less affected by the text length. These findings can be ex-

226



0

40

80

120

160

1 2 3 4 5 6

ru
n

ti
m

e
 (

m
il

li
se

c
o

n
d

s)

number of query keywords

CDIR
WIBR

IR2
IF-R*

S2I

SFC-Quad
TS

SKIF
kR*

(a) Runtime on EURO

0

50

100

150

200

250

300

1 2 3 4 5 6

ru
n

ti
m

e
 (

m
il

li
se

c
o

n
d

s)

number of query keywords

CDIR
WIBR

IR2
IF-R*

S2I

SFC-Quad
TS

SKIF
kR*

(b) Runtime on WEBSPAM

10

100

1000

10000

1 2 3 4 5 6

ru
n

ti
m

e
 (

m
il

li
se

c
o

n
d

s)

number of query keywords

CDIR
WIBR

IR2
IF-R*

SFC-Quad
TS

SKIF
kR*

(c) Runtime on TWITTER
Figure 24: Varying the number of keywords for BRQ

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 5 10 20

ru
n
ti

m
e
 (

m
il

li
s
e
c
o
n
d
)

query region radius (kilometer)

CDIR
WIBR

IR2

IF-R*
S2I

SFC-Q

TS
SKIF
kR*

(a) Runtime on EURO

 0

 50

 100

 150

 200

 250

 300

 350

1 2 5 10 20

ru
n
ti

m
e
 (

m
il

li
se

c
o
n
d
)

query region radius (kilometer)

CDIR
WIBR

IR2

IF-R*
S2I

SFC-Q

TS
SKIF
kR*

(b) Runtime on WEBSPAM

 1

 10

 100

 1000

 10000

 100000

1 2 5 10 20

ru
n
ti

m
e
 (

m
il

li
se

c
o
n
d
)

query region radius (kilometer)

CDIR
WIBR

IR2
IF-R*

SFC-Q
TS

SKIF
kR*

(c) Runtime on TWITTER
Figure 25: Varying the query region size for BRQ

 0

 50

 100

 150

 200

2 4 8 16 32

ru
n

ti
m

e
 (

m
il

li
s
e
c
o

n
d

)

page size (KB)

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(a) Runtime

 1

 10

 100

 1000

 10000

2 4 8 16 32

p
a
g

e
 a

c
c
e
ss

e
d

page size (KB)

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(b) I/O
Figure 26: Varying the page size

10

100

1000

0 4 8 12 16

p
a
g

e
 a

c
c
e
s
s
e
s

buffer size (MB)

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(a) I/O on EURO

30

100

1000

0 0.5 1 1.5 2
p

a
g

e
 a

c
c
e
s
s
e
s

buffer size (GB)

CDIR
WIBR

IR2
IF-R*

KR*
S2I
SKI

(b) I/O on WEBSPAM
Figure 27: Varying the buffer size for BkQ

0

20

40

60

80

100

0 4 8 12 16

p
a
g

e
 a

c
c
e
s
s
e
d

buffer size (MB)

IR
CDIR

IRLi

S2I
R+IF

(a) I/O on EURO

0

50

100

150

200

250

0 0.5 1 1.5 2

p
a
g

e
 a

c
c
e
s
s
e
d

buffer size (GB)

IR
CDIR
IRLi

S2I
R+IF

(b) I/O on WEBSPAM

Figure 28: Varying the buffer size for TkQ

0

40

80

120

160

0 4 8 12 16

p
a
g
e
 a

c
c
e
s
s
e
d

buffer size (MB)

CDIR
WIBR

IR2
IF-R*

S2I

SFC-Quad
TS

SKIF
kR*

(a) I/O on EURO

0

100

200

300

400

500

0 0.5 1 1.5 2

p
a
g
e
 a

c
c
e
s
s
e
d

buffer size (GB)

CDIR
WIBR

IR2
IF-R*

S2I

SFC-Quad
TS

SKIF
kR*

(b) I/O on WEBSPAM

Figure 29: Varying the buffer size for BRQ

plained by that text-first indices would index some objects increas-
ingly many times in the R-trees or cells for different keywords.

7. SUMMARY AND CONCLUSION
By surveying and subjecting 12 geo-textual indexing techniques

empirical study, the paper offers structure that may help the area of
geo-textual indexing progress more effectively. The paper consid-
ers the support for three fundamental kinds of geo-textual queries.

We summarize the experimental findings below. Additional details
are found in the main body.

- Applications that target the BRQ are best served by the SFC-
Quad that beats all the other indices for this type of query.

- For applications that target the BkQ, if the dataset is relatively
small and the number of keywords in queries is small, S2I is
the most efficient index. However, when the number of query

227



0

2000

4000

6000

8000

20M 40M 60M 80M 100M

ru
n
ti

m
e
 (

m
il

li
s
e
c
o

n
d
s
)

number of objects

CDIR
WIBR

IR2
IF-R*

KR*
SKI

(a) Varying #objects for BkQ

0

2000

4000

6000

8000

20M 40M 60M 80M 100M

ru
n
ti

m
e
 (

m
il

li
s
e
c
o

n
d
s
)

number of objects

IR
CDIR

IRLi
R+IF

(b) Varying #objects for TkQ

0

1000

2000

3000

4000

5000

6000

7000

20M 40M 60M 80M 100M

ru
n
ti

m
e
 (

m
il

li
s
e
c
o

n
d
s
)

number of objects

CDIR
WIBR

IR2
IF-R*

SFC-Quad
TS

SKIF
kR*

(c) Varying #objects for BRQ

0

30

60

90

120

150

180

100 200 300 400

ru
n
ti

m
e
 (

m
il

li
s
e
c
o

n
d
s
)

average number of words per object

CDIR
WIBR

IR2
IF-R*

S2I

SFC-Quad
TS

SKIF
kR*

(d) Varying text length for BRQ

Figure 30: Scalability

keywords is large or a space limitation has to be strictly satisfied,
WIBR is preferable since it scales well with the number of query
keywords and is much less space-consuming than S2I.

- Likewise, the S2I beats all the other indices on the TkQ except
when the number of query keywords exceeds 5, at which point
the CDIR starts to perform better. Consequently, if space use is
not an issue and the number of query keywords is modest, S2I
is the most suitable index; otherwise, CDIR is the best choice.
In addition, if the top-k parameter for TkQ is big, IRLi is also a
good alternative.

- While a previous study [18] finds that S2I is an order of mag-
nitude better than DIR in terms of both runtime and I/O cost,
we find that S2I is just slightly better than CDIR, while CDIR
even performs better in some cases. One possible reason for
this discrepancy is the performance differences between DIR
and CDIR.

- Grid based indices are not attractive for the BRQ compared with
the other indices.

- We do not find dramatic difference in relative performance a-
mong the indexing techniques for any of the three datasets.

- The query processing of the indices scales linearly with the num-
ber of objects and text length per object. Text-first indices are
more sensitive to text length than the other types of indices.

- The R-tree page size for all R-tree based indices is experimen-
tally shown to be a factor that makes a great difference on query
performance.

8. ACKNOWLEDGMENTS
This work is supported in part by a grant awarded by a Singapore

MOE AcRF Tier 2 Grant (ARC30/12) and by the Geocrowd Initial
Training Network funded by the European Commission.

9. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The

R*-tree: An efficient and robust access method for points and
rectangles. In SIGMOD, pages 322–331, 1990.

[2] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard,
D. Wu, and M. L. Yiu. Spatial keyword querying. In ER, pages
16–29, 2012.

[3] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD, pages 373–384, 2011.

[4] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for
processing top-k spatial boolean queries. In SSDBM, pages 87–95,
2010.

[5] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD, pages 277–288, 2006.

[6] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel.
Text vs. space: efficient geo-search query processing. In CIKM,
pages 423–432, 2011.

[7] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[8] C. Faloutsos and S. Christodoulakis. Signature files: An access
method for documents and its analytical performance evaluation.
ACM Trans. Inf. Syst., 2(4):267–288, 1984.

[9] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pages 656–665, 2008.

[10] R. Göbel, A. Henrich, R. Niemann, and D. Blank. A hybrid index
structure for geo-textual searches. In CIKM, pages 1625–1628, 2009.

[11] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[12] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (sk) queries in geographic information retrieval (gir)
systems. In SSDBM, page 16, 2007.

[13] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient safe-region
construction for moving top-k spatial keyword queries. In CIKM,
pages 932–941, 2012.

[14] A. Khodaei, C. Shahabi, and C. Li. Hybrid indexing and seamless
ranking of spatial and textual features of web documents. In DEXA,
pages 450–466, 2010.

[15] G. Li, J. Feng, and J. Xu. Desks: Direction-aware spatial keyword
search. In ICDE, pages 474–485, 2012.

[16] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang.
Ir-tree: An efficient index for geographic document search. IEEE
TKDE, 23(4):585–599, 2011.

[17] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In SIGMOD, pages 349–360, 2011.

[18] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg.
Efficient processing of top-k spatial keyword queries. In SSTD, pages
205–222, 2011.

[19] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual
indexing for geographical search on the web. In SSTD, pages
218–235, 2005.

[20] D. Wu, G. Cong, and C. S. Jensen. A framework for efficient spatial
web object retrieval. VLDBJ, 21(6):797–822, 2012.

[21] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k spatial
keyword query processing. IEEE TKDE, 24(10):1889–1903, 2012.

[22] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In ICDE, pages
541–552, 2011.

[23] H. Yan, S. Ding, and T. Suel. Inverted index compression and query
processing with optimized document ordering. In WWW, pages
401–410, 2009.

[24] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, pages 688–699, 2009.

[25] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources
in web 2.0. In ICDE, pages 521–532, 2010.

[26] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In CIKM, pages 155–162,
2005.

228


