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ABSTRACT
Scaling iterative graph processing applications to large graphs is an
important problem. Performance is critical, as data scientists need
to execute graph programs many times with varying parameters.
The need for a high-level, high-performance programming model
has inspired much research on graph programming frameworks.

In this paper, we show that the important class of computation-
ally light graph applications – applications that perform little com-
putation per vertex – has severe scalability problems across mul-
tiple cores as these applications hit an early “memory wall” that
limits their speedup. We propose a novel block-oriented compu-
tation model, in which computation is iterated locally over blocks
of highly connected nodes, significantly improving the amount of
computation per cache miss. Following this model, we describe the
design and implementation of a block-aware graph processing run-
time that keeps the familiar vertex-centric programming paradigm
while reaping the benefits of block-oriented execution. Our exper-
iments show that block-oriented execution significantly improves
the performance of our framework for several graph applications.

1. INTRODUCTION
Graphs express complex data dependencies among entities, so

large graphs are a key modeling component for many applications,
such as structure from motion [9], community detection [32], phys-
ical simulations [33], and link analysis [7]. Graph processing usu-
ally exploits parallelism, since it is both compute- and memory-
intensive. Recently several graph computation frameworks have
been introduced with the express goal of helping domain experts
develop graph applications quickly [27, 25, 26, 19, 12, 40]. These
frameworks present to their users a “think-as-a-vertex” program-
ming model in which each vertex updates its own data based on
the data of neighboring vertices. The programming model is cou-
pled with an iterative execution model, which applies the vertex
update logic repeatedly until the computation converges. These
frameworks have been used successfully in many graph process-
ing applications [27, 25, 19].

Different graph applications perform different amounts of com-
putation per vertex. Computationally light applications, such as
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Figure 1: Memory Wall for Lightweight Computation

PageRank, perform tens of floating point operations (flops) per
vertex, whereas computationally heavy applications such as Be-
lief Propagation, may perform orders of magnitude more work per
vertex. This significantly affects performance: A computationally
heavy application can fully utilize several cores, while computa-
tionally light applications are limited by memory access rates.

We illustrate this phenomenon by running GRACE, our highly-
optimized graph processing engine [40], on a Xeon machine with
two sockets with four cores each. The processing threads are evenly
distributed across sockets, and there are no bottlenecks due to lock-
ing or critical sections [40]. Figure 1 shows how computational
load, measured in flops per vertex, impacts throughput, measured
in vertex updates per second. For computationally heavy appli-
cations, adding threads significantly improves throughput. But for
computationally light applications, there is negligible improvement
in throughput beyond four threads. This is because GRACE has
reached the memory bandwidth of the processor; the time spent re-
trieving vertex and edge data from memory exceeds the time spent
computing on the data. Adding more cores only exacerbates this
problem.

In this paper, we propose a novel block-oriented computation
modelthat significantly improves the throughput of computation-
ally light graph applications. Inspired by the block-oriented com-
putation model for matrices and grids from the HPC community [4],
we use standard methods to partition the graph into blocks of highly
connected vertices [3, 20, 36, 12]. Then, instead of scheduling in-
dividual vertices, we schedule blocks of related vertices. This new
model opens up two opportunities. First, we can update a block
repeatedly to improve locality while accelerating convergence. Re-
peatedly updating one vertex does not improve convergence, as the
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neighboring vertices always provide the same data, and thus the
computation always produces the same result. But in repeatedly up-
dating a block of connected vertices, each step can make additional
progress. Second, we can use a different scheduler inside a block
than the one we use across blocks. For example, we may schedule
nodes within blocks in a round-robin fashion, but schedule blocks
based on which block contains the node with the worst residual er-
ror. Since updating a block is more expensive than updating one
vertex, we can afford the overhead of a relatively more expensive
scheduler to choose blocks. We show that different scheduling al-
gorithms (of different cost) significantly affect the convergence of
graph computations, and thus the overall performance.

We have added support for block-level computation to GRACE
through a new block-aware runtime. This runtime has a novel
block-level concurrency control protocol based on snapshot iso-
lation; our approach effectively minimizes concurrency overhead.
The runtime supports separate scheduling policies for blocks and
for nodes within blocks, allowing users to trade off scheduling cost
against speed of convergence.

In the next section, we introduce the vertex-centric programming
abstraction for iterative graph processing and demonstrate the scal-
ability problems associated with poor locality in the corresponding
vertex-oriented computation model. In Section 3 we introduce our
block-oriented computation model, which has better locality. In
Section 4, we turn to our block-aware execution engine, and de-
scribe in detail the scheduling mechanisms that allow us to main-
tain fast convergence with low scheduling overhead. We present
experimental results in Section 5 to demonstrate how our block-
oriented computation model can improve update throughput and
convergence rates for real-world graph processing applications. We
survey related work in Section 6 and conclude in Section 7.

2. BLOCK VS. VERTEX-AT-A-TIME
Most parallel graph processing frameworks present to their users

a vertex-centric programming abstraction: application logic is writ-
ten as a local update function to be run at individual vertices. This
function is “local” in the sense that it is executed on a single ver-
tex, and updates the vertex data as a function of data at neighboring
edges and vertices. In this model, vertices communicate only with
their neighbors, either by sending messages or by remote data ac-
cess. Thus, vertex updates can proceed in parallel, with low-level
details of the parallelism handled transparently by the framework.

To be more concrete, suppose we are given a directed graph
G(V,E). Users can define arbitrary attributes on vertices and edges
to represent application data. To simplify the discussion, we as-
sume vertex values can be modified, but edge values are read-only.
This assumption does not limit expressiveness, since we can store
the writable data for edge (u, v) in vertex u.

We denote the data on vertex v by Sv , extending this notation
to sets of vertices as well. Similarly, we denote the data on edge
(u, v) by S(u,v). The update function for a vertex v depends only
on data on its incoming edges NE(v), and on the vertices NV (v)
that connect to v through NE(v). The function VertexUpdate that
maps the current state Sold

v of vertex v to its new state Snew
v has the

following signature:

Snew
v = VertexUpdate(Sold

v , SNV (v), SNE(v)).

During execution, the runtime schedules individual vertex updates.
To achieve scalability, existing frameworks either (1) follow the
Bulk Synchronous Parallel (BSP) model [38], arranging updates
into iterations separated by global synchronization barriers, with

Algorithm 1: Vertex-Oriented Computation Model

1 Initialize the vertex data ;
2 repeat
3 Get a vertex v to be updated from the scheduler ;
4 Update the data of v based on SNV (v) and SNE(v) ;
5 Commit the update to Sv ;
6 until No vertex needs to be updated anymore;

updates in one iteration depending only on data written in the pre-
vious iteration [27, 19, 42, 37, 40]; or (2) update vertices asyn-
chronously, based on the most recent data from neighboring ver-
tices, with static or dynamic scheduling of the updates to achieve
fast convergence [28, 26, 22]. Algorithm 1 summarizes this vertex-
oriented computation model, in which different scheduler imple-
mentations can lead to either synchronous or asynchronous execu-
tion policies. Whatever scheduler is used, the resulting execution
policy is at the granularity of vertices: the processor accesses one
vertex at a time, loading the data from the vertex and its neighbors
into local cache and triggering the update function VertexUpdate.
Note for the BSP model the commit is not executed immediately
but logged, and will be executed at the synchronization barrier.

The vertex-centric model is a useful programming abstraction,
but the corresponding vertex-centric update mechanisms result in
poor performance for computationally light graph algorithms, such
as PageRank, shortest paths, connected components, and random
walks. Such algorithms are communication-bound: computing a
vertex update is cheaper than retrieving the required data from neigh-
boring vertices. Thus, these algorithms scale poorly with increas-
ing parallelism. Researchers have proposed ways to reduce the
networking overhead for computationally light applications in dis-
tributed memory environments [12, 18]; but we have observed poor
scaling even in shared-memory environments, where main memory
bandwidth quickly becomes a bottleneck [40].

On the other hand, researchers in high-performance computing
(HPC) have studied communication bottlenecks for many years
in the context of sparse matrix routines and PDE solvers, which
make up a special class of iterative graph processing algorithms [4].
Many of the optimization techniques from this literature apply to
other graph algorithms as well.

Domain Decomposition for Elliptic PDEs. Large, sparse linear
systems and non-linear systems of equations often come from dis-
cretized elliptic partial differential equations (PDEs). These linear
systems are typically solved by iterative methods [4], the most com-
mon of which are Krylov subspace methods with a preconditioning
solver to accelerate the rate of convergence. For these problems,
domain decomposition is widely used to construct both precondi-
tioners and stand-alone solvers [34]. Domain decomposition meth-
ods partition the original domain into disjoint or overlapping sub-
domains, possibly recursively. The subdomain sizes are typically
chosen to minimize inter-processor communication and maintain
good cache locality. Each subdomain is updated in a local compu-
tation. Because the subdomain solvers are often expensive, these
methods tend to have good communication-to-computation ratios;
consequently, domain decomposition methods are popular in par-
allel PDE solvers.

Block-oriented Scheduling for Eikonal Equations. The eikonal
equation is a nonlinear hyperbolic PDE that describes continuous
shortest paths through a medium with varying travel speeds. It
is used in many applications, ranging from optics to etch simula-
tion [33]. Various methods with different vertex-scheduling mech-
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Figure 2: Vertex- vs. Block-Oriented Computation

anisms have been proposed for this problem. Fast-Marching meth-
ods, like Dijkstra’s algorithm for discrete shortest path problems,
dynamically schedule nodes so they are processed in increasing or-
der of distance from the starting set. In contrast, Fast-Sweeping
methods update in a fixed order, and so have lower scheduling
overhead and more regular access patterns; but they require mul-
tiple iterations to converge. As with elliptic PDEs, domain decom-
position has been used to parallelize Fast-Sweeping [43]; and re-
cent work has introduced a domain decomposition approach that
uses sweeping on subdomains and marching to schedule subdo-
main solves [8]. It has proven to be very effective, achieving fast
convergence rates by using dynamic scheduling for subdomains
while maintaining low scheduling overhead by using static schedul-
ing at the per-vertex level.

Blocking is a standard idea that has been applied in many set-
tings. Examples include tile-based Belief Propagation [24], Block
Coordinate Descent [6], and cache-aware graph algorithms [30].
Unfortunately, a general data-centric framework for graph struc-
tured computations, which would save people from reinventing the
wheel, is missing from the literature. In this paper, we take the first
step toward this goal by proposing a general block-oriented compu-
tation model for graph computations. As we will show below, our
block-oriented computation model still works with a vertex-centric
programming abstraction to achieve easy programming.

3. BLOCK-ORIENTED COMPUTATION
The block-oriented computation model is a natural extension to

the vertex-oriented computation model. Figure 2 illustrates the two
models: small red, yellow, and green circles represent vertices to
be updated, vertices on which the update depends, and vertices un-
related to the current update. In the vertex-oriented computation
model, only one vertex and the data on which it depends are loaded
from memory for each update, while in the block-oriented compu-
tation model, all the vertices belonging to the same block are loaded
from memory and updated together. For a cluster of processors, one
can first partition the graph and assign subgraphs to the processors,
then further partition the assigned subgraphs into blocks. The sub-
graphs are chosen to minimize the number of edges between them,
so that adjacent vertices are likely to be in the same block.

3.1 Block Formulation
We initially partition G(V,E) into disjoint blocks B1(V1, E1),

B2(V2, E2), · · · , Bk(Vk, Ek), where k should be much greater
than the expected degree of parallelism. Block Bi contains all the
edges that originate in Vi, i.e. Ei = {(u, v) ∈ E|u ∈ Vi}. Vertices
Vi are the local vertices of Bi; and edges Ei are its local edges.

Algorithm 2: Block-Oriented Computation Model

1 Initialize the graph data ;
2 repeat
3 Get a block B to be updated from scheduler ;
4 Update the data of u based on its boundary data SNV (B)

and SNE(B) ;
5 Commit the update to SV (B) ;
6 until No block need to be updated anymore;

Algorithm 3: Cache-Aware Vertex-Oriented Computation
Model

1 Initialize the vertex data ;
2 repeat
3 Get a set of vertices V ′ ⊂ V from global scheduler, the

vertices in V ′ are closely connected ;
4 Add the scheduled vertices in V ′ into the local queue Q ;
5 while Local queue Q is not empty do
6 v = Q.pop() ;
7 Update the data of v based on SNV (v) and SNE(v) ;
8 Commit the update to Sv ;
9 end

10 until No vertex needs to be updated anymore;

For a given block B, we will also use V (B) to denote its set of
local vertices and E(B) to denote its set of local edges. When
updating Bi, the local edges are read-only and the local vertices
are read-write. We define the incoming boundary vertices of Bi as
NV (Bi) = {u ∈ V − Vi|(u, v) ∈ E, v ∈ Vi}; and we define the
incoming boundary edges as NE(Bi) = {(u, v) ∈ E|u ∈ V −
Vi, v ∈ Vi}. This part of the state is read-only when updating Bi,
and can be viewed as part of the input to the update procedure for
Bi. Block Bj is an incoming neighbor block of Bi if Bj contains
any incoming boundary vertices of Bi, i.e. Vj ∩NV (Bi) 6= ∅

Similarly, we define the outgoing boundary vertices of Bi as
OV (Bi) = {v ∈ V − Vi|(u, v) ∈ E, u ∈ Vi}, and the outgoing
boundary edges as OE(Bi) = {(u, v) ∈ E|v ∈ V − Vi, u ∈ Vi}.
Block Bj is an outgoing neighbor block of Bi if Vj∩OV (Bi) 6= ∅

The goal of the partitioning is to minimize the number of edges
cut by the partition, while making the blocks roughly the same size
to facilitate load balance. This is a well-studied problem for which
many efficient methods are known [20, 3, 36, 35].

3.2 Per-Block Update
We organize computations around a block update function; see

Algorithm 2. The block update function has the signature

Snew
B = BlockUpdate(Sold

B , SNV (B), SNE(B)),

where SNV (B) and SNE(B) denote the data on the boundary ver-
tices and boundary edges of B. A straightforward way to imple-
ment this function would be to let the user directly specify the
block-level logic: by analogy to the vertex programming abstrac-
tion, we could have a block programming abstraction, exposing the
block structure, block data, and the dependent boundary data to the
user. However, this block programming abstraction would not fol-
low the “think-as-a-vertex” philosophy that has proven so success-
ful in practice [27, 12]. The block-centric programming abstraction
is more complicated than the vertex-centric programming abstrac-
tion because it introduces an artificial distinction between local and
boundary vertices: a local vertex is modifiable and can access its
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Table 1: Benefit of Cache Performance
Scheduler Time # Updates # LLC Misses
Non Cache-Aware 9.52 34,152,807 197,500,000
Cache-Aware 5.15 34,152,807 37,500,000

neighbors’ data, while a vertex vertex is read-only and has no ac-
cess to its neighbors’ data. Moreover, users are already familiar
with the vertex-centric programming abstraction; many graph ap-
plications have already been written using it, and it would be in-
convenient for users to learn a new abstraction and migrate their
existing applications into it. Thus our goal is to let users write
vertex-centric programs, then run those programs in the block exe-
cution model. To achieve this, our block update function is defined
in terms of a (traditional) vertex update function and an optional
inner-block scheduling policy InnerScheduler:

BlockUpdate = InnerScheduler(VertexUpdate)

The inner-block scheduler iterates over some or all of the vertices
inside a block and applies the user-specified VertexUpdate func-
tion to these vertices, possibly multiple times. For example, a sim-
ple inner-block scheduler could update each vertex in the block ex-
actly once in a fixed order, while a more sophisticated scheduler
could update vertices repeatedly until the block data converged.

A key benefit of this block computation model is improved lo-
cality of reference: by loading a block of closely connected ver-
tices into the cache, we increase the cache hit rate and thus reduce
the average data access time. We demonstrated this effect in the
GRACE engine [40] using the experimental setup described in de-
tail in Section 5.2. We ran personalized PageRank on the Google
graph using both a vertex-centric scheduler (Algorithm 1) and a
cache-aware scheduler (Algorithm 3). Algorithm 1 uses the default
vertex scheduler in GRACE: it iterates over the vertices in a random
order until convergence, with no regard for graph partitioning. The
cache-aware scheduler in Algorithm 3 uses the graph partitioning to
improve cache performance. Instead of fetching one vertex v and
updating it, the cache-aware vertex scheduler fetches a set V ′ of
closely-connected vertices, then updates each vertex in turn. Since
vertices in V ′ share many neighbors, this method achieves better
cache utilization. As shown in Table 1, the cache-aware vertex
scheduler reduces the number of Last-Level-Cache (LLC) misses
by about 80% compared to the non-cache-aware vertex scheduler,
and reduces the total run time by nearly 50% with the same number
of updates. We observed this effect in all the social graphs in our
experiments.

Computationally light applications, which exhibit high data ac-
cess to computation ratios, can run even faster by updating each
vertex in a block multiple times before evicting it from the cache.
This reduces the data access to computation ratio, improving end-
to-end performance as long as the extra computations make at least
some progress towards convergence. In fact, this idea has been used
for years in large-scale linear system solvers in the high-performance
computing literature [34]. We illustrate this idea again on the Google
graph by showing the overall time for ten steps of the computation
of personalized PageRank. Figure 3 shows how block updates im-
prove the data access to computation ratio. On one thread, each
extra sweep over the block increases the overall time by about 530
ms, while on eight threads, which use much more memory band-
width than one thread, each extra sweep takes only about 20 ms.
Thus, for computationally light applications updating data in the
cache is cheap. As the amount of parallelism increases and each
thread’s share of the available memory bandwidth decreases, we
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Figure 3: Running time vs. inner iterations for PageRank.

should iterate over vertices that are already in cache multiple times
as long as this accelerates convergence.

3.3 Two-Level Scheduling
In addition to its improved cache behavior resulting from data

locality, our block-oriented computation model also enables flex-
ible scheduling of computation both at the block level and within
each block. As discussed in Section 2, dynamic scheduling of ver-
tex updates can improve convergence. However, this improvement
comes at a cost. A vertex-oriented dynamic scheduler usually re-
quires some scheduling metadata on each vertex, such as a schedul-
ing priority value or a flag indicating whether the vertex is in the
scheduling queue. Updating this metadata and querying it to make
scheduling decisions can be expensive relative to a simple static
scheduler that stores no scheduling metadata. For example, a pri-
oritized scheduler maintains priority values for all the vertices and
selects the highest priority vertex to be processed next. A com-
mon implementation uses a heap-based priority queue, and requires
Ω(log |V |) time to update the vertex priority and to pop the highest
priority vertex from the queue.

As a result, even if a dynamic scheduler performs fewer vertex
updates than a static scheduler, the dynamic scheduler might yield
worse overall performance due to the extra scheduling overhead.
For example, the Fast-Marching method can be outperformed by
the simpler Fast-Sweeping method on problems with constant char-
acteristic directions, because the dynamic scheduling overhead of
the Fast-Marching method outweighs its benefit of triggering fewer
vertex update functions [8].

For the block-oriented computation model, however, scheduling
decisions can be made at the block level instead of the vertex level.
This greatly reduces the overhead of dynamic scheduling, since the
scheduling metadata only needs to be maintained per-block. Mak-
ing scheduling decisions at the block level can be less accurate than
making them at the vertex level, and thus result in more vertex
updates before convergence, but for computationally light appli-
cations this is unlikely to be a problem, since the number of vertex
updates alone does not determine the overall performance.

In addition to the block-level scheduler, which chooses the order
in which blocks are updated to achieve fast global convergence, we
may benefit from an inner-block scheduler that chooses the order in
which vertices are updated within the scheduled block. Although
high overheads make vertex-level dynamic inner-block schedulers
unattractive for computationally light applications, some applica-
tions still benefit from various static inner-block schedulers. For ex-
ample, alternating sweeping ordering within the block can improve
the convergence of the fast sweeping method and the Bellman-Ford
algorithm [21, 8].

In principle, any vertex scheduling strategy could be used in the
inner-block scheduler. In practice, we prefer low-overhead strate-
gies such as static scheduling and FIFO scheduling to keep the total
scheduling overhead small.
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4. BLOCK-AWARE EXECUTION ENGINE
We now present the design and implementation of a block-aware

execution engine that follows the block-oriented computation model
of Section 3. Our engine builds upon GRACE [40], a scalable par-
allel graph processing engine. In GRACE, users specify the appli-
cation logic through a vertex update function as described in Sec-
tion 2. Computation on the graph in GRACE proceeds in iterations,
and a subset of all vertices are processed during an iteration. The
selection of the subset of the vertices and their order of process-
ing within an iteration depends on a scheduling policy that GRACE
also enables the user to define. Thus GRACE cleanly separates the
application logic (defined through the vertex update function) from
the computation strategy (defined through the scheduling policy).

Adapting GRACE to block-oriented computation in a shared-
memory parallel environment poses several challenges. First, we
want to isolate users from any low-level details of concurrency con-
trol inside the engine; users should simply write their application
logic through the vertex update function, and the engine should
handle all low-level details associated with parallelism. Second, we
now have the opportunity to define two different scheduling poli-
cies, one at the level of blocks and another at the level of vertices
within a block. In the remainder of this section we describe how
we addressed these two issues in our execution engine.

4.1 Concurrency Control
As described in Section 3, we partition the input graph into blocks.

We use the popular METIS [20] package for this. We split the
iteration-based BSP model of GRACE into two levels, which we
call outer iterations and inner iterations. In each outer iteration
we process a subset of the blocks; and in each of these blocks we
perform one or more inner iterations to execute the vertex update
procedure on a subset (or the whole set) of the vertices of the block.
In an outer iteration, each thread repeatedly chooses a block of
the graph, reads it from shared memory into its local cache, and
then performs inner iterations before fetching the next block. The
blocks are chosen without replacement, so a block can be processed
at most once per outer iteration. Since blocks are generated from
highly connected vertices, when the update procedure of a vertex
needs to access its neighbor vertices, they are likely to be in the
same block and hence already resident in the local cache, so for
these vertices the threads can directly read their values without gen-
erating cache faults.

However, some of the neighbor vertices will be boundary ver-
tices residing in other blocks (see Section 3.1). Thus simultaneous
application of vertex update procedures inside different blocks can
access the same vertex data, causing read/write conflicts. This is
similar to the read/write conflicts in the vertex-oriented computa-
tion model when neighboring vertices are updated simultaneously,
and synchronization is required to avoid such conflicts. This syn-
chronization is usually done at the vertex level. However, for com-
putationally light applications, such fine-grained synchronization
introduces overhead comparable to the computation logic itself,
significantly degrading performance.

For the block-oriented computation model, we can synchronize
at the granularity of blocks instead of vertices. One naive ap-
proach would be to refrain from scheduling a block if any of its (in-
coming or outgoing) neighbor blocks is currently being processed.
This locking-based scheme guarantees serializability but severely
restricts parallelism: two threads cannot concurrently process ver-
tices u and v if they belong to blocks B and B′ that are neighbor
blocks, even if u and v themselves are not neighbor vertices and so
their update procedures could safely be applied in parallel.

To increase parallelism, our block-aware execution engine im-
plements a simple form of multi-version concurrency control that
allows neighboring blocks to be processed concurrently within an
outer loop with guaranteed snapshot isolation [5]. To update a
block B, we create a replica into which the updated block will be
written. The thread computing over B writes into the newly cre-
ated version of B, while it and other threads can read from the old
version. In this way, reads and writes from different threads oc-
cur in different data versions, so no locking is required. After a
thread finishes updating a block, the update is commited. Note that
since edge data is read-only, we do not need to maintain multiple
versions of the edges within the block. Since each block is pro-
cessed at most once during each outer iteration, maintaining two
versions of the data for each block is sufficient to implement this
simple multi-version concurrency control. We maintain a bit for
each block indicating which of its versions was most recently up-
dated. When a thread begins processing a newly scheduled block
B, it reads and caches the version bits of all the incoming neighbor
blocks, and it reads from these versions while processing B. If a
neighbor block B′ is updated while B is being processed, it does
not impact the processing of B because updates to B′ are made to
the version not being used to process B.

4.2 Scheduling
As GRACE separates the application logic from scheduling poli-

cies, it allows users to specify their own execution polices by relax-
ing data dependencies. The original GRACE system leverages the
message passing programming interface to capture data dependen-
cies. To efficiently support our block-aware execution engine with
the underlying snapshot-based concurrency control protocol, we re-
place the GRACE programming interface by a remote read pro-
gramming interface. Nevertheless, the new GRACE system could
also support flexible vertex-oriented execution polices with a simi-
lar customizable execution interface.

GRACE’s original vertex-oriented runtime maintains a dynamic
scheduling priority on each vertex to support flexible ordering of
vertex updates. Users can instantiate a set of runtime functions
to define various scheduling policies by relaxing the data depen-
dency implicitly encoded in messages. We adapt the same idea to
let users specify their per-vertex scheduling policies in a remote
access programming abstraction. Whenever a vertex u finishes its
update procedure, the following user-specified function is triggered
on each one of its outgoing vertices v:

void OnNbrChange(Edge e, Vertex src, Priority prior)

In this function, users can update vertex v’s scheduling priority
based on the neighbor’s old and new data. For example, to ap-
ply Dijkstra’s algorithm for the shortest path problem, the vertex’s
scheduling priority can simply be set to its current tentative distance
to the destination, and the above function can be implemented by
updating the vertex priority value to the minimum of its current
value and the newly updated distance via its changed neighbor:

void OnNbrChange(Edge e, Vertex src, Priority p) {
VtxData vdata = GetNewData(src);
double newDist = vdata.dist + e.cost;
if (newDist < GetDstData(e).dist)
p.Update(newDist, min);

}

As in the original GRACE runtime, at the beginning of each it-
eration the following function is triggered:

void OnPrepare(List<Priority> prior)
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in which users can call engine-provided functions to dynamically
select the subset of vertices to be updated in the next iteration. For
example ScheduleAll can be used to schedule all the vertices that
satisfy a user-provided predicate. We refer readers to the original
GRACE paper [40] for a detailed description to the functions pro-
vided by the engine. As a concrete example, to implement Dijk-
stra’s algorithm, we can choose the single vertex with the smallest
priority value in the OnPrepare function. Alternately, since little
parallel work is available if we update only one vertex, we could
schedule approximately r · |V | of the vertices with smallest prior-
ities by estimating a threshold from a sample of all the priorities
and calling ScheduleAll to schedule those vertices with priorities
below the estimated threshold. The following code shows the im-
plementation:

void OnPrepare(List<Priority> prior) {
List<Priority> samples = Sample(prior, m);
Sort(samples, <);
double threshold = sample[r * m].value;
ScheduleAll(PriorLessThan(threshold));

}

4.2.1 Block-Level Scheduling
By instantiating the above OnNbrChange and OnPrepare func-

tions, users can design flexible per-vertex policies in a remote ac-
cess programming abstraction. Our block-aware execution engine
automatically transforms these policies to follow the block-oriented
computation model. To do this, an addition scheduling priority
is maintained for each block. Intuitively, a block update should
have high priority when some (or most) of its vertices have high
priority. Thus we could estimate the block scheduling priority by
aggregating the scheduling priorities of vertices in the block. For
example, one way of implementing a block-level Dijkstra-like al-
gorithm would define the block priority as the minimum vertex pri-
ority. Then, when a block commits the update, the update function
adjusts the priorities of its outgoing neighbors as well as its own
priority. Algorithm 4 shows a straightforward block update func-
tion that maintains block-level priorities. The priorities of vertices
in the block are maintained during the block update (line 6), and
these are used to calculate the aggregated priority (line 9). When
the block is committed, the priorities of outgoing boundary vertices
are updated (line 12), and the new priorities are used to update the
aggregated priorities of the outgoing blocks (line 15). Here, the
function VertexPriorAggr(B) calculates the priority of block
B from the vertex priorities.

Figure 4 illustrates the block level scheduling of a shortest path
computation in a path with four blocks: the upper, left, middle and
right block. Each block is a triangle with unit-weight edges, and
each vertex is labeled with its current distance estimate. Block up-
dates are scheduled in descending priority value. In the first state
shown (Figure 4(a)) the upper block has just been updated, and pri-
orities for the remaining three blocks have been calculated. The
middle block has the lowest block priority, so it is scheduled next.
When the update to the middle block is committed, the priorities of
the neighboring blocks are adjusted, so that the left block now has
a lower priority than the right block (Figure 4(b)). The left block is
thus processed next, and once the update has been committed, the
state is as shown in Figure 4(c).

Because it works at a coarse granularity and ignores potential
dependencies among vertices, block-level scheduling is in general
less accurate than vertex-level scheduling. However, block-level
scheduling results in less scheduling overhead and better cache
utilization, and researchers have successfully used block schedul-
ing with block priorities defined by aggregation in several applica-
tions [8, 13, 41]. Our framework is general enough to support all

Algorithm 4: Block Update with Priority Maintenance
Input: Block B

1 while Inner scheduling queue is not empty do
2 Get a vertex u from inner scheduler ;
3 Reset u.prior ;
4 Perform vertex update on u ;
5 foreach e = (u, v) ∈ E(B), v ∈ V (B) do
6 OnNbrChange(e, u, v.prior) ;
7 end
8 end
9 B.prior = VertexPriorAggr(B) ;

10 Commit block update ;
11 foreach e = (u, v) ∈ E(B), v ∈ V (B′), B′ 6= B do
12 OnNbrChange(e, u, v.prior) ;
13 end
14 foreach B’s outgoing block B′ do
15 B′.prior = VertexPriorAggr(B′) ;
16 end

the aggregation methods used in these papers. However, for some
applications, these aggregates may not be suitable, and users will
need to define application-specific block priority functions.

We note two general optimizations to this straightforward imple-
mentation. First, many aggregation functions can be maintained
incrementally [15]. For example, to maintain the sum of the pri-
orities, we could simply subtract the old priority from the sum and
add the new priority into it. In such cases, line 9 and line 15 could
be replaced by incremental updates. Second, maintaining vertex
priorities in the block after each individual vertex update (line 6)
is sometimes unnecessary. If the blocks are run to convergence
– a reasonable choice for many applications, as our experiments
will show – we do not need to maintain vertex scheduling priorities
during block update, which means line 6 could be skipped. Al-
ternatively, if static inner scheduling is used for block updates, the
vertex-level scheduling priorities need to be updated only in the last
inner iteration. In other words, line 6 would only be executed for
the last inner iteration. Both these optimizations are implemented
in our system.

As a special case of the second optimization, we observed that
for many applications the user-specified OnNbrChange function
actually maintains the scheduling priority as an aggregation. For
example, for the Dijkstra algorithm, the OnNbrChange function
maintains the MIN aggregate over the tentative distances. If the
same aggregate is used to define block scheduling priority the run-
time can skip updating the vertex priority and update the block pri-
ority directly when the second optimization is enabled. To imple-
ment this, lines 3 , 9 and 15 would be skipped. Line 6 would change
to OnNbrChange(e, u, B.prior) and line 12 would change
to OnNbrChange(e, u, B’.prior). This optimization is
supported by the GRACE engine, but must be enabled explicitly.

Using the block priorities, it is straightforward to dynamically
select a subset of blocks for each iteration. The engine simply
passes the scheduling information to the user-defined OnPrepare
to decide the blocks scheduled for the next iteration.

4.2.2 Inner-block Scheduling
As discussed in Section 3, in addition to block-level scheduling

we can have low-overhead vertex schedulers within a block. We
currently support both static and dynamic inner-block scheduling.
To use them, users just need to specify the inner scheduling policy
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Figure 4: Illustration for Block Level Scheduling

and the parameters.
Inside-Block Ordering. Inside a block, vertex updates are done
sequentially. Since only one assigned thread is responsible for up-
dating the block, there are no update conflicts inside the block.
As each update is immediately visible to later updates, the up-
date ordering for each inner iteration can make a significant differ-
ence. Currently, we provide two pre-defined static inner schedulers:
fixed-order sweeping and alternating sweeping. For fixed-ordering
sweeping, the engine updates vertices in the same order in each in-
ner iteration, while alternating sweeping reverses the order between
inner iterations.
Dynamic Inner Scheduling. Instead of statically sweeping over
the vertices inside the block for a fixed number of sweeps or until
convergence, we may use dynamic inner scheduling, potentially
eliminating update function calls for vertices whose neighbors have
unchanged data. To this end, we have implemented a low-overhead
dynamic inner scheduler. Each block has a queue of vertices whose
neighbor data has changed since the last update. Every incoming
boundary vertex also has an extra outer scheduling bit. For a given
block B and incoming boundary vertex v, this outer scheduling bit
is set if the data on any of v’s incoming neighbors outside block B
have changed.

When block B is chosen to be updated, all the vertices with outer
scheduling bits set are added to the queue. The GRACE engine then
repeatedly pops a vertex u from the queue and invokes the update
function on it. If the vertex data of u changes, the engine pushes
all of u’s outgoing vertices inside the block B onto the queue. The
block update continues until the queue is empty, or a pre-defined
maximum number of updates is reached. In the latter case the ver-
tices remaining in the queue wait for the next time that block B is
chosen to be updated.

Once block B commits, the GRACE engine iterates over all
outgoing boundary vertices u that have changed, setting the outer
scheduling bit for all vertices v s.t. (u, v) ∈ E, v /∈ B.
Maximum Number of Inner Iterations. We need to decide the
maximum number of inner iterations per block update. At one ex-
treme, we can perform only a single iteration; i.e., update each ver-
tex once per block update. This is similar to the traditional vertex
execution model, except it yields better cache performance because
we usually read the same vertex data repeatedly when updating a
block. At the other extreme, we can set this number to infinity,
so that each block is repeatedly updated until it converges for its
current boundary values. How to make this choice depends on the
ratio of data access to computation cost and on how much addi-
tional inner iterations benefit convergence. If little computation is
done for each byte fetched from memory and each inner iteration
significantly accelerates global convergence, the number of inner

iterations should be large. On the other hand, if the computation
is heavy, or if additional inner iterations do not accelerate global
convergence very much, the maximum number of iterations should
be small.

Given the fixed boundary data SNV (B) and SNE(B), it is possi-
ble for a block to converge before the maximum number of inner
iterations is reached. In this case the block update can be termi-
nated. This situation is likely when the global graph data is close
to convergence.

5. EXPERIMENTS
We added block updates to GRACE, a shared-memory parallel

graph processing framework implemented in C++ with pthreads [40].
We did not change its vertex-oriented programming model, but
modified the runtime as described in Section 4 to support block-
aware execution. Although this preliminary implementation is not
(yet) a general engine – currently the block level schedulers are
manually coded, based on the scheduling policies used in the exper-
iments – it can already demonstrate the key techniques described in
Section 4 and hence be used to validate their performance benefits.

The original GRACE runtime provides two dynamic scheduling
policies: Eager and Prior. Users need only provide an application-
specific function to compute priorities. Both policies schedule only
a subset of the vertices in each tick: for the Eager policy, a vertex is
scheduled if a neighbor’s data has changed; and for the Prior policy,
only the r · |V | highest-priority vertices are scheduled for update,
where r is a configurable selection ratio. Both of them are extended
to be executed with the block-oriented computation model as we
discussed in Section 4.

Our experimental evaluation has three goals. First, we want to
verify that our block-oriented computation model can improve end-
to-end performance compared with the vertex-oriented computa-
tion model. Second, we want to show that this end-to-end per-
formance gain comes from both better cache behavior and lower
scheduling overhead. Last, we want to evaluate the effect of inner-
block scheduling policies on the convergence rate.

5.1 Applications
Personalized PageRank. Our first application, Personalized PageR-
ank (PPR), is a PageRank computation augmented with a personal
preference vector [17]. We randomly generated a sparse person-
alization vector in which all but 1% of the entries are zeros. The
standard iterative algorithm is a Richardson iteration for solving
a linear system. The natural algorithm in GRACE is a Jacobi or
Gauss-Seidel iteration, while the natural approach in our block-
aware execution engine is a block Jacobi or block Gauss-Seidel
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Table 2: Dataset Summary

Data Set Vertices Edges Partition Application
×103 ×103 Time (s)

DBLP 968 7,050 38 PPR
Web-Google 876 5,105 34 PPR
LiveJournal 4,848 68,994 659 SSSP
3D Grid 1,728 9,858 N/A Etch Sim
UK02 18,520 298,114 1034 PPR

iteration [11, 4]. We declare convergence when all the vertex up-
dates in an iteration are less than a tolerance of 10−3.
Single-Source Shortest Path. Our second application is Single-
Source Shortest Paths (SSSP), where each vertex repeatedly up-
dates its own distance based on the neighbors’ distances from the
source. GRACE’s original vertex-oriented execution with eager
scheduling corresponds to the Bellman-Ford algorithm, and its pri-
oritized scheduling corresponds to Dijkstra’s algorithm. We are
not aware of any algorithms in the literature that correspond to ap-
proaches in our block-aware excution engine, though there has been
work on similar blocked algorithms for the related problem of solv-
ing the eikonal equation [8]. All the variants of this algorithm con-
verge exactly after finitely many steps, and we declare convergence
when no vertex is updated in an iteration.
Etch Simulation. Our third application is a three-dimensional Etch
Simulation (Etch Sim) based on an eikonal equation model [33].
The simulation domain is discretized into a 3D grid and represented
as a graph. The time at which an etch front passes a vertex can
be computed iteratively based on when the front reaches its neigh-
bors. The vertex-oriented execution engine with eager scheduling
in GRACE corresponds to the Fast Sweeping method for solving
the equations, while its original prioritized scheduling corresponds
to the Fast Marching method. Our block-aware execution engine
with block-level eager scheduling corresponds to the Fast Sweep-
ing method with Domain Decomposition [34], while our block-
aware execution engine with block-level prioritized scheduling cor-
responds to the Heap-Cell method [8]. As with SSSP, all these al-
gorithmic variants converge exactly after finitely many steps, and
we declare convergence when no vertex is updated in an iteration.

5.2 Experimental Setup
Machine. We ran all our experiments using an 8-core computer
with 2 Intel Xeon L5335 quad-core processors and 32GB RAM.
Datasets. Table 2 summarizes the datasets we used for our ap-
plications. For PPR, we used a coauthor graph from DBLP col-
lected in Oct 2011, which has about 1 million vertices and 7 mil-
lion edges. We also used a web graph released by Google, which
contains about 880,000 vertices and 5 million edges. We omit the
running time results on DBLP graph due to the space limitations.
For Shortest Path, we used a social graph from LiveJournal with
about 5 million vertices and 70 million edges. For the Etch Simula-
tion application, we constructed a 3D grid that has 120×120×120
vertices. Finally, we demonstrate the performance of our system
on a larger example, a web graph of the .uk domain crawled in
2002. This graph contains about 18 million vertices and 300 mil-
lion edges. Vertices are ordered randomly in all the datasets except
the 3D grid dataset.
Partition Time. For the DBLP, Google, and LiveJournal graphs,
we used METIS [20] to partition the graph into blocks of around
100. For the .uk web graph, we partitioned into blocks of size

400. We report the partitioning times in Table 2. While partition-
ing is itself expensive, our focus is problems where the partitioning
work will be amortized over many executions of the main com-
putation. Given that relatively small blocks appear useful in prac-
tice, recently-developed fast algorithms for bottom-up graph clus-
tering [35] may perform better on these problems.
Scheduling. As mentioned in Section 4, static scheduling and two
common dynamic scheduling policies (Eager and Prior) are imple-
mented in the GRACE runtime. To use Prior scheduling, users must
also provide the application-specific priority calculation. For the
Eager scheduling policy, the scheduling priority for a vertex is a
boolean value indicating whether any neighboring vertex data has
changed. Thus we use boolean OR as the block priority aggrega-
tion, which means a block would be scheduled if its boundary data
has changed, or its last update did not run to convergence. For the
Prior scheduling policy, each vertex holds a float value to indicate
its priority. The priority aggregation used for SSSP and EtchSim
is MIN in our experiments, while the aggregation used for PPR is
SUM. Notice that since we use MIN for SSSP, it is eligible for the
direct block-priority update optimization described in Section 4.

5.3 Results

5.3.1 Block Size
The Etch Simulation application has a natural grid structure, and

we used sub-grids of size b×b×b as blocks, while for other applica-
tions we used METIS to partition the graph into blocks of roughly
equal size. The best block size depends on many factors, including
characteristics of the machine, characteristics of the data and ap-
plication, how the graph is partitioned, and how block updates are
scheduled. In our applications, the performance was only moder-
ately sensitive to the block size, as we illustrate in the first column
of Figure 5. Because block sizes between 100 and 400 performed
well for these examples, we chose a default block size of 100 for
the PPR and SSSP test cases except the UK dataset, and used a
5×5×5 sub-grid as a block for the Etch Simulation. For the much
larger UK dataset, we set the block size to be 400.

5.3.2 End-to-End Performance
To see how the block-oriented computation model performs com-

pared to the vertex-oriented computation model, we ran each of our
example applications under different scheduling polices. The mean
run times for the scheduling policies are shown in the second col-
umn of Figure 5; the bars labeled Vertex and BlockCvg correspond
respectively to applying this schedule to individual vertex updates
and to block updates. Here when a block is scheduled, each vertex
is repeatedly updated until the block data converges. We omit the
time for the static scheduling policy for the Etch Simulation appli-
cation from Figure 5. While a well-chosen static schedule leads to
very fast convergence for this problem [43], the naive static sched-
ule in our current implementation takes much longer than the two
dynamic scheduling polices: 15.9s for the vertex model and about
3.6s for the block model.

In our experiments, the best scheduling policy under the vertex
model is also the best scheduling policy under the block model.
More specifically, for the SSSP and Etch Simulation applications,
the best scheduling policy is the prioritized policy. For the PPR
application, the best scheduling policy depends on the dataset char-
acteristics. On the Google and UK graph, dynamic scheduling per-
forms better than static scheduling, while on the DBLP graph, the
static scheduling policy performs best. This is because the DBLP
graph has a much larger clustering coefficient than the Google and
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Figure 5: Timing details for five application scenarios.

UK graph. Thus the computational savings due to dynamic schedul-
ing polices are smaller and are outweighed by the high overhead of
the dynamic schedulers themselves. Moreover, dynamic schedul-
ing policies tend to schedule vertices with higher degrees in the
PPR application, which makes the vertex updates more expensive.

In general, the blocked computation outperforms the correspond-
ing vertex-centric computation under each scheduling policy. In the
PPR application, our block engine runs 3.5× – 7.0× faster than
the vertex-centric computation for the best scheduling policy. For
the SSSP and Etch Simulation applications, we cut the run time
roughly in half. Also, we observed that the block-oriented com-
putation model is more robust to the “wrong choice” of schedul-
ing policy. For example, the vertex-centric prioritized scheduler
is about 2.5× slower than the vertex-centric static scheduler, but
the block prioritized scheduler is about 60% slower than the block
static scheduler. This is because by scheduling blocks rather than
vertices, we significantly reduce the total scheduling overhead.

5.3.3 Analysis of Block Processing Strategies
Recall that the block-oriented computation model has three main

benefits: (1) It has a better memory access pattern due to visiting
vertices in the same block together. (2) It has reduced overhead for
isolation due to providing consistent snapshots at block level in-
stead of at vertex level. (3) It can achieve better cache performance
by doing multiple iterations in a block. To understand how each of
these benefits contributes to improved end-to-end performance, we
analyzed the run time for each application in two execution models
that are hybrids of the pure vertex-oriented computation model and
the pure block-oriented computation model used in general perfor-
mance comparison. We show the running times of all these sched-
ulers in the second column of Figure 5.

To understand how the memory access pattern affects perfor-
mance, we used the cache aware vertex-oriented computation model
(VertexCA) introduced in Section 2. Recall this execution model
still updates one vertex at a time, and makes scheduling decisions
at the vertex level. However, it is aware of the graph partitioning
and updates the vertices in block order; i.e., it updates all the sched-
uled vertices of a given block before proceeding to the next block.
By doing so it achieves better temporal locality. We also report the
running time for two different inner-block schedulers: the simple
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block model, which just sweeps all the vertices once (BlockS), and
the convergent block model, which iteratively updates the block
data until it converges (BlockCvg). Note that the major difference
between the simple block model and the cache-aware vertex model
is the isolation and scheduling overhead. GRACE uses snapshot
isolation; thus, before updating a vertex or block the engine is re-
sponsible for choosing the right version of the data to be passed
to the update function. By making this decision at the block level
rather than at the vertex level, the average overhead is greatly re-
duced. Finally, the difference between the simple block model and
the convergent block model is that the CPU is able to do more work
on data residing in the cache when the memory is saturated.

With the cache-aware vertex model, we observed a significant re-
duction in running time of the PPR and SSSP applications, achiev-
ing savings of 36% to 52% on the best scheduling policy except for
the UK graph. We observed much more saving on the larger UK
graph, in which the cache-aware vertex model is more than 5 times
faster than the vertex model. In contrast, the cache-aware vertex
model only saves about 10% of the time for the prioritized policy
in Etch Simulation application. This is because the grid-structure
graph used in the Etch Simulation already has a regular memory ac-
cess pattern, while the memory access pattern for arbitrary graphs
could be quite random.

Switching from the cache-aware vertex model to the convergent
block model, we save about half the time for PPR on the DBLP and
Google graphs. We see similar savings for the Etch Simulation ap-
plication, but for different reasons. For PPR, performance improves
from the cache-aware vertex model to the simple block model and
finally to the convergent block model. However, for Etch Sim-
ulation, the simple block model has worse performance than the
cache-aware vertex model, while the convergent block model has
much better performance. This is because scheduling at the block
level wastes many vertex updates in this case. For PPR on the UK
graph, switching from VertexCA to BlockCvg reduces the running
time by about 20% for the eager scheduling policy, which is not
as significant as PPR on other two datasets. This is because run-
ning until convergence inside a block gives only a slight improve-
ment. As we will see in Section 5.3.4, an inexact block solve im-

proves the overall running time on this dataset. For SSSP, BlockS
has roughly the same running time as VertexCA, while BlockCvg
only improves the performance by 10%. This is because social net-
works obeying a power-law are hard to partition – in the partitions
we used in our experiments, more than half the edges are cutting
edges. Thus updating the block until convergence contributes lit-
tle to achieving global convergence. Researchers have shown that
overlapping partitions would help this problem [1], and some re-
cent emergent graph processing frameworks such as PowerGraph
[12] have designed their programming interfaces to naturally sup-
port computation on overlapping partitions. We expect this block
computation model would have more benefits on social graph com-
putations for these frameworks. We oalso bserved that the direct
block-priority update optimization to BlockCvg reduces the run-
ning time from 12.3 seconds to 10.5 seconds, and makes BlockCvg
22% faster than VertexCA.

5.3.4 Effect of Inner-Block Scheduling
In this subsection we focus on the effect of inner-block schedul-

ing. In particular, we have seen that updating each vertex multiple
times in a single block update often improves performance. For
example, if the boundary data of the block has already converged,
then iterating over the vertices until the block data converges is
a natural way to define the block update function. However, this
could be a poor choice if the boundary data of the block is incor-
rect. The tradeoff is that doing more updates inside the block leads
to better cache performance, but it could waste CPU time if the
boundary data has not converged. As we mentioned in Section 4,
we can set a maximum number of inner iterations Iθ , and termi-
nate the block update after Iθ sweeps even if the block has not yet
converged.

To understand this tradeoff, we plot running time against the
number of inner-block iterations Iθ in the third column of Figure 5.
For PPR, the best performance occurs around Iθ = 3, and after
that the running time remains the same as running until conver-
gence for both DBLP and Google datasets. However, for the UK
dataset, further increasing Iθ increases the overall run time signifi-
cantly. Specifically, running until convergence is 24% slower than
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setting Iθ = 3. On the other hand, for the Etch Simulation appli-
cation, more inner iterations always yields better performance. We
believe that besides the application characteristics, the higher di-
ameter of the graph also favors more inner iterations because they
help information propagate across the graph faster.

Dynamic scheduling may also be used inside blocks to reduce
the number of updates, at the cost of paying some extra schedul-
ing overhead. To study this tradeoff, we compare the run times for
static and dynamic inner scheduling in Figure 6. For all three appli-
cations, dynamic inner scheduling reduces the number of vertex up-
dates; nonetheless, static scheduling outperforms dynamic schedul-
ing for the SSSP problem, because the computational saving is
outweighed by the scheduling overhead. For PPR, we observed
that dynamic inner scheduling is slightly faster than the static inner
scheduling on Google graph, while it is slower than the static inner
scheduling on the DBLP graph. However, dynamic inner schedul-
ing yields nearly 25% improvement in the Etch Simulation applica-
tion, as the vertex update function is slightly computationally heav-
ier than the previous two applications and the convergence for this
problem is particularly sensitive to update order.

5.3.5 Comparison with GraphLab
To evaluate the performance of the vertex execution model im-

plemented in GRACE, we compare the running time of GRACE
with the GraphLab shared-memory multicore version on all three
applications under different scheduling policies. Recall that GraphLab
provides two different isolation levels for concurrent vertex up-
dates: vertex consistency, which allows two neighboring vertices
to update simultaneously, and edge consistency, which guarantees
serializability of updates. As pointed out by the GraphLab authors,
for some graph applications vertex consistency can produce inaccu-
rate results, as it does not avoid read/write conflicts on neighboring
vertices [25, 26]. We report GraphLab’s run time under both isola-
tion levels in Figure 7.

For Eager and Prior scheduling, GRACE’s run time is between
that of GraphLab with vertex consistency and GraphLab with edge
consistency. This is because the isolation level used by GRACE
– snapshot isolation – is between GraphLab’s vertex consistency
and GraphLab’s edge consistency. The only exception is the Eager
scheduling for eikonal equation, in which GRACE is faster than
GraphLab whether vertex or edge consistency is used. This is be-
cause the corresponding scheduler in GraphLab executes more than
twice as many updates as GRACE.

For Prior scheduling, GRACE is always faster than GraphLab,
because it makes the scheduling decision by iterations rather than
by vertex [40]. Thus we expect the block model could benefit
GraphLab even more than GRACE, since GraphLab has higher
scheduling overhead.

6. RELATED WORK
Most existing graph programming frameworks can be catego-

rized into two groups. The first group are mainly designed for
distributed memory environments and are based on the Bulk Syn-
chronous Parallel (BSP) [38] model, which allows processors to
compute independently within each iteration and uses global syn-
chronization between iterations for processors to communicate. Ex-
ample frameworks in this group include PEGASUS [19], Pregel [27],
PrIter [42], AsyncMR [18] and Naiad [28], which are mostly built
on MapReduce or DryadLINQ with a higher level programming
model. The second group of frameworks are mainly designed for
multi-core shared memory architectures and usually do not apply

global synchronization barriers for threads to communicate. In-
stead, threads can proceed asynchronously, which enables vari-
ous scheduling of computation tasks to achieve better convergence.
Consistency is guaranteed either by a fine-grained locking mech-
anism to synchronize shared data access or by requiring all oper-
ations to be commutative and able to be rolled back in case of a data
race. Frameworks in this group include GRACE [40], GraphLab [25],
GraphChi [23] and Galois [22]. One note here is that GraphChi is
designed to store graphs out-of-core and its “sliding window” idea
bears some resemblance to our cache-aware approaches.

Nevertheless, both these groups provide a local vertex compu-
tational interface to users to code their application logic, and both
groups execute the coded applications in a per-vertex update man-
ner. As we have illustrated in Section 1, such a per-vertex update
model, while appropriate for programming, is not an ideal execu-
tion model for computationally light applications due to its poor
locality and high demand for memory bandwidth.

The idea of having more local computations to reduce the com-
munication overhead has also been suggested in the AsyncMR frame-
work [18]. However, since the AsyncMR framework follows the
MapReduce model, the main communication overhead is global
synchronization. We are applying this optimization technology to
GRACE, an asynchronous framework in which global synchroniza-
tion is not the main communication overhead. In addition, because
of its underlying MapReduce framework, AsyncMR does not sup-
port flexible dynamic outer scheduling.

Blocking is widely used in high-performance computing to im-
prove memory access patterns. A textbook example is blocked ma-
trix multiplication [31, Section 5.3], which is the basic building
block for high-performance dense linear algebra libraries like LA-
PACK [2]. For large problems, such cache-blocked dense linear
algebra codes typically use O(

√
M) floating point operations per

cache miss, where M is the cache size [10]. Similar optimizations
apply to graph algorithms such as Floyd-Warshall that are struc-
turally similar to dense linear algebra operations [30]. In contrast,
sparse matrix algorithms have relatively irregular memory access
patterns, and it is more difficult to block them for efficient cache
use. Recent research addresses this to some extent by automat-
ically reorganizing the graph data structures used to store sparse
matrices in order to optimize key operations such as sparse matrix-
vector multiplication [16, 39, 29]. Blocking is also used for im-
proved locality and convergence in many iterative solvers for linear
and nonlinear equations and optimization problems; examples in-
clude block Jacobi and block Gauss-Seidel methods for accelerat-
ing iterative solvers [4], domain decomposition and substructuring
methods used in linear and nonlinear PDE solvers [34], and block
coordinate descent methods in optimization [6], etc. Because the
local block updates are relatively expensive, these methods often
achieve good communication-to-computation ratios [14].

7. CONCLUSIONS
In this paper we presented a new block-oriented computation

model that is compatible with vertex-centric programming abstrac-
tion but executes a block of highly connected vertices at a time in-
stead of one vertex at a time. Our block-aware graph execution en-
gine can achieve better cache performance and enables more flex-
ible block-level and vertex-level scheduling to further accelerate
convergence. In particular, it can provide near-interactive runtime
and better multicore speedup than current per-vertex computation
models for a large class of graph processing applications.

We believe that this work is only a first step towards more con-
fluence between the HPC and the database communities and a ma-
jor step towards enabling iterative graph processing with interac-
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tive response times, a fascinating topic for future research. We
are aware that other framework providers are actively improving
the performance of their graph processing engines. However, our
block-oriented execution model provides an orthogonal perspective
on optimizing computationally light graph applications, and we be-
lieve that it is applicable to other frameworks as well.
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