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ABSTRACT
The skyline operator and its variants such as dynamic sky-
line and reverse skyline operators have attracted consid-
erable attention recently due to their broad applications.
However, computations of such operators are challenging
today since there is an increasing trend of applications to
deal with big data. For such data-intensive applications,
the MapReduce framework has been widely used recently.
In this paper, we propose efficient parallel algorithms for

processing the skyline and its variants using MapReduce.
We first build histograms to effectively prune out non-skyline
(non-reverse skyline) points in advance. We next partition
data based on the regions divided by the histograms and
compute candidate (reverse) skyline points for each region
independently using MapReduce. Finally, we check whether
each candidate point is actually a (reverse) skyline point in
every region independently. Our performance study con-
firms the effectiveness and scalability of the proposed algo-
rithms.

1. INTRODUCTION
The skyline operator [4] and its variants such as dynamic

skyline [22] and reverse skyline [11] operators have recently
attracted considerable attention due to their broad applica-
tions including product or restaurant recommendations [18,
19], review evaluations with user ratings [17], querying wire-
less sensor networks [29] and graph analysis [33].
The skyline is a set of all points that are not dominated

by any other point. A point pi is said to dominate another
point pj if pi is not greater than pj in all dimensions and pi
is smaller than pj in at least a single dimension. Consider
a laptop database D with price and weight attributes in
Figure 1(a). A user who wants to buy a laptop can consider
the laptops in the skyline {p1, p3, p5, p7} only, since there
always exists a better laptop in the skyline for any laptop
which is not in the skyline.
The dynamic skyline is a set of all points that are not

dominated by any other point with respect to (wrt) the dis-
tances to a given query point. When a user wants to find a
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laptop whose price and weight are close to 50 and 25 respec-
tively, the dynamic skyline of D wrt a query point ⟨50, 25⟩
can be useful candidate laptops to be purchased.

Suppose that each point pi represents a user who pur-
chased a laptop in Figure 1(a) and a company wants to es-
timate the sales of a laptop to be manufactured whose price
and weight will be 50 and 25 respectively. If q = ⟨50, 25⟩
belongs to the dynamic skyline of D wrt a point pi, we can
assume that the user pi finds the laptop q interesting. The
reverse skyline of D wrt q is defined as a set of every point
pi ∈ D such that q belongs to the dynamic skyline of D
wrt pi. Thus, the reverse skyline of D wrt q is a set of all
customers who will be interested in q.

Computing the skyline or its variants is challenging today
since there is an increasing trend of applications expected
to deal with big data. For example, Wal-Mart has a 4PB
(that’s 4 × 1015 bytes) data warehouse of purchase records
with dozens of attributes [5] where skyline and its variant
operators are frequently used as primitive operators to de-
termine pricing and marketing strategies. For such data-
intensive applications, the MapReduce[10] framework has
recently attracted a lot of attention. MapReduce is a pro-
gramming model that allows easy development of scalable
parallel applications to process big data on large clusters
of commodity machines. Google’s MapReduce or its open-
source equivalent Hadoop [2] is a powerful tool for building
such applications. Recently, a variant of Hadoop was also
developed to support online query processing in [9], which
enables MapReduce to be utilized for such applications in-
cluding event monitoring and stream data processing.

Most of existing serial algorithms[4, 7, 15, 22, 25] for (re-
verse) skyline computations rely on some centralized index-
ing structures such as B+-trees [8] or R∗-trees [3]. However,
in the MapReduce framework, there is no functionality pro-
vided for building and accessing such spatial indexes because
it is difficult to provide efficient and scalable distributed in-
dexes in several thousands of machines. Thus, it is hard to
extend such existing algorithms into the MapReduce frame-
work. A preliminary work to adapt skyline processing to the
MapReduce framework was recently presented in [30]. The
proposed algorithms are simple extensions of previous serial
skyline algorithms in [4, 7, 25]. Furthermore, dynamic sky-
line and reverse skyline operators were not addressed in [30].

In this paper, we propose efficient parallel algorithms,
called SKY-MR and RSKY-MR, which compute the skylines
and reverse skylines using MapReduce respectively. In the
first phase, we build new histograms, called the sky-quadtree
and rsky-quadtree, which are extensions of quadtrees [12]
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Figure 1: An example of a skyline

to effectively prune out non-skyline and non-reverse skyline
points respectively in advance. The new histograms are also
used for load balancing of computations in the MapReduce
framework. In the second phase, we partition data based on
the regions divided by our proposed histograms and compute
candidate (reverse) skyline points for each region indepen-
dently using MapReduce. Finally, we check whether each
candidate point is actually a (reverse) skyline point in every
region independently by another MapReduce phase. Exten-
sive performance study shows that our algorithms are very
efficient and significantly better than the state-of-the-art al-
gorithms [1, 14, 30]. Although our proposed algorithms are
devised for the MapReduce framework, they can be also ap-
plied to other frameworks such as MPI [16] and multi-cores.
Experimental results confirm the effectiveness and scalabil-
ity of our proposed algorithms in such other frameworks as
well.

2. PRELIMINARIES
2.1 Skyline and Its Variants
Consider a d-dimensional data set D = {p1, p2, . . . , p|D|}.

A point pi is represented by ⟨pi(1), pi(2), · · · , pi(d)⟩ where
pi(k) is the k-th coordinate of pi. A point pi dominates
another point pj , denoted as pi ≺ pj , if the two conditions
hold: (1) for every k with 1 ≤ k ≤ d, we have pi(k) ≤ pj(k)
and (2) there exists k with 1 ≤ k ≤ d such that pi(k) <
pj(k) holds. The skyline of D, represented by SL(D), is a
subset of D where every point in SL(D) is not dominated by
every other point in D. In other words, SL(D) = {pi ∈ D |
@ pj (̸= pi) ∈ D s.t. pj ≺ pi}.
Given a query point q, we say that a point pi dynamically

dominates another point pj with respect to (wrt) q, denoted
as pi ≺q pj , if and only if (1) |pi(k)−q(k)| ≤ |pj(k)−q(k)| for
all k with 1 ≤ k ≤ d and (2) there exists k with 1 ≤ k ≤ d s.t.
|pi(k) − q(k)| < |pj(k) − q(k)|. The dynamic skyline [22] is
represented by DSL(q,D) such that DSL(q,D) = {pi ∈ D |
@ pj (̸= pi) ∈ D s.t. pj ≺q pi}. To compute DSL(q,D), each
point pi in D is converted to a point p′i with p′i(k)=|pi(k)−
q(k)| for all k=1, 2, · · · , d. Then, DSL(q,D) is obtained by
computing the skyline among the converted points.
Based on the definition of the dynamic skyline, the no-

tion of the reverse skyline is proposed in [11]. Given a d-
dimensional data set D and a query point q, the reverse
skyline, represented by RSL(q,D), is the set of every point
pi in D satisfying q ∈ DSL(pi, D ∪ {q} − {pi}) (i.e., the
query point q is contained in the dynamic skyline wrt pi).

Example 2.1.: Consider the data D in Figure 1(a). In
Figure 1(b), we plot every point in D into a 2-dimensional
space where each point in SL(D) is represented by a shaded
circle. Since p1 is not dominated by any other point in D,
p1 ∈ SL(D). Figure 2(a) shows the converted points to
the new space whose origin is a query point q = ⟨50, 25⟩.
For instance, p1 = ⟨15, 85⟩ is converted to p′1 = ⟨|15 − 50|,
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Figure 2: An example of dynamic skylines

|85 − 25|⟩ = ⟨35, 60⟩. We represent DSL(q,D) = {p3}
with a bold circle in Figure 2(a). Figure 2(b) illustrates the
dynamic skyline wrt p4. Since q does not belong to the dy-
namic skyline wrt p4, p4 is not a reverse skyline point (i.e.,
p4 ̸∈ RSL(q,D)).

2.2 The MapReduce Framework
In the MapReduce framework, data is represented as (key,

value) pairs and a distribute file system (DFS) initially par-
titions data in multiple machines. Computation is carried
out by using two user defined functions: map and reduce
functions. A map function takes a key-value pair as input
and may output several key-value pairs. After the key-value
pairs emitted by all map functions are grouped by keys in
the shuffling phase, a reduce function is invoked with each
distinct key and the list of all values sharing the key, and
the reduce function may output key-value pairs. Presenta-
tion of a MapReduce algorithm consists of three functions
which are map, reduce and main functions.

3. RELATED WORK
After skyline processing was introduced in [4], several

techniques were introduced in [7, 15, 22, 25]. In [22], the
progressive I/O optimal algorithm BBS was proposed and
the dynamic skyline was also introduced. Later on, the re-
verse skyline was introduced in [11], and the algorithms,
called BBRS and RSSA, are proposed for reverse skyline
processing. Many existing algorithms utilize R*-trees to
check whether a point belongs to the (reverse) skyline or
not. Since there is no functionality provided for building
and accessing distributed R*-trees in the MapReduce frame-
work, such algorithms are not suitable to be parallelized
using MapReduce. In addition, the variants of the skyline
queries such as top-k frequent skyline [6], spatial skyline [24],
probabilistic (reverse) skyline for uncertain data [20, 23],
continuous skyline for stream data [26, 31], and stochastic
skyline [21] have been introduced.

Recently, several techniques for processing skyline and re-
verse skyline queries in distributed environments such as
MANET [13], sensor networks [29] and other distributed sys-
tems [1, 14, 28, 32] have been proposed. Even though such
techniques are not proposed for the MapReduce framework,
the work in [1, 14] can be processed with MapReduce.

In [1], Afrati et al. investigated skyline processing using

other parallel models. They split the space into ⌈t1/(d−1)⌉d
(using GMP-model) or td (using MP-model) grid partitions
holding similar number of points, where t is the number of
machines to be used and d is the number of dimensions,
and prune the partitions without any skyline point by us-
ing dominance relationships of relaxed skylines. Then, the
global skyline is calculated in parallel in every unpruned par-
tition. The proposed 1-step and 2-step algorithms in [1] uti-
lize GMP-model and MP-model respectively. Even though
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the 2-step algorithm may be able to prune more points by
utilizing detailed smaller partitions, pruning partitions takes
significant amount of time than the 1-step algorithm due to
its quadratic nature of time complexity with a large number
of partitions. Note that the number of partitions split by
each algorithm is fixed according to the number of machines
used. In contrast, by utilizing a sky-quadtree with a split
threshold ρ, our SKY-MR varies the number of partitions
adaptively for load balancing and prunes a set of partitions
quickly at once by taking advantage of our node id represen-
tations to identify the dominance relationship between a leaf
node and an internal node representing all partitions repre-
sented by its descendant nodes in the sky-quadtree. SKY-
MR also performs effective skyline computation in each ma-
chine to process points in unpruned remaining partitions.
Köhler et al. proposed the algorithm PPPS for multi-core

machines in [14]. PPPS first samples a small set B and gen-
erates an initial partition with every point in D which is not
dominated by any point in B. Then, it repeatedly selects a
partition and splits it into two partitions until the number
of the partitions becomes the desired number of cores c. The
local skyline is next computed for every partition in parallel
using a multi-core machine. Finally, merging the local sky-
lines of all partitions are performed in O(log(c)) iterations.
In each iteration, pairs of partitions are merged in parallel
using multi-cores to compute the local skylines of merged
partitions until there remains a single partition only. Since
the number of partitions decreases in half by each iteration,
the i-th iteration can utilize c/2i cores only. However, our
SKY-MR computes the global skyline by considering every
partition independently and simultaneously once. To do so,
some local skyline points in each partition is sent to other
partition where those points are required to check whether
each local skyline point is actually a global skyline point or
not, by checking dominance relationship with node id rep-
resentations.
The most relevant work to ours is the algorithm MR-BNL

in [30]. The d-dimensional data space is first partitioned
into 2d subspaces according to the median of each dimen-
sion and the local skyline of every subspace is computed in
parallel. The global skyline is next calculated by MR-BNL
in a single machine from all the local skylines. Note that
identifying the median of every dimension is very expensive
and only up to 2d machines can be utilized for paralleliza-
tion. In addition, since a single machine computes the global
skyline, it is not scalable with a large number of local sky-
line points. Furthermore, processing of dynamic skyline and
reverse skyline was not addressed in [30].

4. SKYLINE PROCESSING USING MAPRE­
DUCE

The parallel algorithm SKY-MR to discover the skyline
SL(D) in a given data set D consists of the following three
phases. The pseudocode of SKY-MR is shown in Figure 3.
(1) Sky-quadtree building phase: To filter out non-

skyline points effectively earlier, we propose a new histogram,
called the sky-quadtree. To speed up, we build a sky-quadtree
with a sample of D where each leaf node with non-skyline
sample points only is marked as “pruned”.
(2) Local skyline phase: We partition the data D based

on the regions divided by the sky-quadtree and compute the
local skyline for the region of every unpruned leaf node in-
dependently using MapReduce by calling L-SKY-MR.

Function SKY-MR( D, ρ, d, δ )
D: a data set, ρ: the split threshold,
d: the dimension, δ : local skyline threshold
begin
1. sample = ReservoirSampling( D );
2. sky-quadtree = SKY-QTREE( sample, ρ, d );
3. Broadcast sky-quadtree;
4. Local-SL = RunMapReduce(L-SKY-MR);
5. if Local-SL.size ≥ δ then
6. Broadcast non-empty leaf node ids;
7. SL = RunMapReduce(G-SKY-MR);
8. else SL = G-SKY( Local-SL );
9. return SL;
end Figure 3: The SKY-MR
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Figure 4: An example of sky-quadtree building

(3) Global skyline phase: We calculate the global sky-
line using MapReduce from the local skyline points in ev-
ery unpruned leaf node by calling G-SKY-MR. When the
number of local skyline points is small, we run the serial
algorithm G-SKY in a single machine to speed up.

4.1 SKY­QTREE: The Sky­Quadtree Build­
ing Algorithm

A sky-quadtree is an extension of quadtrees [12] which sub-
divide the d-dimensional space recursively into sub-regions.
In a sky-quadtree, internal nodes have exactly 2d children
and each leaf node has at most a predefined number of
points ρ called the split threshold. We denote the region
of a node n as region(n). An id is assigned to each node
based on its location in sky-quadtrees. In a d-dimensional
space, the id of a node n with depth k is represented by
id(n) = a1a2 · · · ak·d which consists of the first (k − 1) ·
d bits coming from its parent node and the remaining d
bits a(k−1)·d+1a(k−1)·d+2 · · · ak·d where a(k−1)·d+i = 0 (or
a(k−1)·d+i = 1) if the i-th dimensional range of the region(n)
is the first half (or the second half) of its parent’s i-th dimen-
sional range. Similarly, we let node(id) represent the node
with an id id. We can decompose id(n) into d number of
bit strings sub(id(n), i)s (for 1 ≤ i ≤ d) s.t. sub(id(n), i) =
aia(i+d)a(i+2·d) · · · a(i+(k−1)·d).

Given a pair of bit strings a = a1a2 · · · ap and b = b1b2 · · · bq,
we say that a = b if ai = bi for all i = 1, 2, · · · , min(p, q),
and a < b if there exists an integer j, with 1 ≤ j ≤ min(p, q),
s.t. ai = bi for all i = 1, 2, · · · , j−1 and aj < bj . Similarly,
we write a > b if there exists an integer j, with 1 ≤ j ≤
min(p, q), s.t. ai = bi for i = 1, 2, · · · , j − 1 and aj > bj .

Definition 4.1.: Given a pair of leaf nodes ni and nj

in a sky-quadtree, if every point in region(ni) dominates all
points in region(nj), ni dominates nj and we represent it
by ni ≺ nj. If every point in region(ni) does not dominate
all points in region(nj), ni does not dominate nj and we
denote it by ni ̸≺ nj.

Dominance relationships by node ids: Based on the
following proposition, we can efficiently identify the nodes
dominated by another non-empty leaf node in a sky-quadtree
by utilizing node ids.

Proposition 4.2.: Given a pair of nodes ni and nj in a
sky-quadtree, ni dominates nj if sub(id(ni), k) < sub(id(nj),
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k) for all k=1, 2, · · · , d. Similarly, ni does not dominate nj

(i.e., ni ̸≺ nj) if there exists k such that sub(id(ni), k) >
sub(id(nj), k) with k=1, 2, · · · , d.
Proof: Let region(n)=⟨[n(1)−, n(1)+),· · · ,[n(d)−, n(d)+)⟩
where [n(k)−, n(k)+) is the range of the k-th dimension
of n’s covering region. If sub(id(ni), k) < sub(id(nj), k),
both [ni(k)

−, ni(k)
+) and [nj(k)

−, nj(k)
+) are disjoint and

ni(k)
+ ≤ nj(k)

−. Thus, for a pair of points pi in region(ni)
and pj in region(nj), we have pi(k) < ni(k)

+ ≤ nj(k)
− ≤

pj(k). If sub(id(ni), k) < sub(id(nj), k) holds for all k=1, 2,
· · · , d, we have pi ≺ pj and ni ≺ nj . Similarly, if there exists
k such that sub(id(ni), k) > sub(id(nj), k), we have pi(k) >
pj(k) and ni ̸≺ nj

Building a sky-quadtree: In order to quickly build a
sky-quadtree, we utilize a random sample obtained from D
by reservoir sampling [27]. Since we use a sample only, we
may prune fewer non-skyline points than using D. However,
the use of sampling does not affect the correctness of our
skyline computation algorithm SKY-MR because all skyline
points exist in unpruned leaf nodes.
The procedure SKY-QTREE (in line 2 of Figure 3) builds

a sky-quadtree by inserting a sample into the root node and
recursively splits each node n to 2d child nodes whenever the
number of points in n exceeds the split threshold ρ. When
splitting a node n, we insert each point p in region(n) into its
child node ni into which p is inserted. If the last d-bit string
of ni’s id is 00 · · · 0 (i.e., the first half in every dimension),
we mark nj whose last d-bit string of its id is 11 · · · 1 (i.e.,
the second half in every dimension) as “pruned” and skip
all remaining points belonging to nj . After all points are
inserted into child nodes, we recursively split each unpruned
child node. When we cannot split any more, starting from
the root node, we traverse the sky-quadtree to mark every
node dominated by a non-empty leaf node as “pruned”.

Example 4.3.: Consider the data D in Figure 1(a) and
the split threshold ρ=1. Suppose that a sample {p4, p6, p7, p8}
is inserted into the root node. In Figure 4(a), the root
node is subdivided since it has more than ρ points. The
id of the root node’s child node in the top-left corner is 01
since the region covers the first and second halves of the
root node’s first and second dimensions respectively. The
node id 1011 can be decomposed into sub(1011,1) = 11 and
sub(1011,2) = 01. Because sub(1000,1)<sub(1011,1) and
sub(1000,2)<sub(1011,2), we have node(1000) ≺ node(1011).
Thus, we mark node(1011) as “pruned” in Figure 4(b). In
addition, since node(1000) ≺ node(1110) and node(1000) ≺
node(1111) hold, both nodes are marked as “pruned”. The
final sky-quadtree obtained is presented in Figure 4(c).

4.2 L­SKY­MR: The Local Skyline Computa­
tion Algorithm

We next present the parallel algorithm L-SKY-MR that
calculates the local skyline independently for every unpruned
leaf node in the sky-quadtree. The sky-quadtree Q is first
broadcast to all map functions. Each map function is next
called with a point p in D. If the point p is in the region
of an unpruned leaf node np of Q, we output the key-value
pair ⟨np, p⟩. Otherwise, we do nothing.
In the shuffling phase, the key-value pairs emitted by all

map functions are grouped by each distinct leaf node, and
a reduce function is called with each node n and its point
list L. Each reduce function computes the local skyline in

L (i.e., SL(L)) and outputs ⟨n,p⟩ for every local skyline
point p. It also produces an artificial d-dimensional point
referred to as the virtual max point of the node n which is
denoted by vpn where vpn(k) = maxp∈SL(L)p(k) with 1 ≤
k ≤ d. Every virtual max point of each unpruned leaf node
is output to the file VIRTUAL in the Hadoop distributed
file system(HDFS). The virtual max point will be used to
reduce the number of checking dominance relationships by
the following proposition.

Proposition 4.4.: If a point p does not dominate the vir-
tual max point of a leaf node n (i.e., vpn) in a sky-quadtree,
p does not dominate every local skyline point in region(n).

Proof: We will prove the contrapositive: if p dominates a
local skyline point in region(n), we have p ≺ vpn. Since
the point p dominates a local skyline point pl in region(n),
we have p(k) ≤ pl(k) for every k with 1 ≤ k ≤ d and there
exists k such that p(k) < pl(k). By the definition of the
virtual max point, pl(k) ≤ vpn(k) holds for every k. Thus,
we also have p(k) ≤ vpn(k) for every k and there exists k
such that p(k) < vpn(k). In other words, p ≺ vpn.

In addition, each reduce function selects a single local sky-
line point, called a sky-filter point, for each dimension which
has the minimum value on the dimension. The local skyline
points dominated by such selected sky-filter points will be
filtered out in the next global skyline phase. All sky-filter
points are stored to the file called SKY-FILTER in HDFS.

Example 4.5.: Consider the sky-quadtree in Example 4.3.
Figures 5(a)–(d) show the data flow in the local skyline phase
of SKY-MR. After the sky-quadtree is broadcast to all map
functions, each map function is invoked with a point p in
D as illustrated in Figure 5(a). For instance, ⟨10, p1⟩ is
emitted since p1 is contained in the unpruned leaf node,
node(10). In Figure 5(b), the key-value pairs emitted from
all map functions are shown. The key-value pairs grouped
by each distinct key are provided in Figure 5(c). Each re-
duce function finally outputs the local skyline of a node and
the virtual max point as well as sky-filter points. Consider
node(10) whose skyline points are {⟨15, 85⟩, ⟨40, 60⟩}. The
reduce function with node(10) outputs ⟨15, 85⟩ and ⟨40, 60⟩
as sky-filter points. It also outputs ⟨40, 85⟩ as a virtual max
point. The points output by all reduce functions are illus-
trated in Figure 5(d).

Discussion: We can utilize R*-trees instead of our sky-
quadtrees. However, since R*-trees are optimized to reduce
the amount of ”dead space” (empty area) covered by their
nodes, a large portion of uncovered space tends to be gener-
ated in R*-trees. Furthermore, generating an R*-tree from
a sample increases uncovered space even more. Since every
point belonging to the uncovered space in an R*-tree can-
not be pruned, using an R*-tree instead of a sky-quadtree
produces a lot of unpruned points resulting in a significant
increase of execution times in the next phase. In addition,
it is difficult to compute local skyline and global skyline in
each node of an R*-tree independently because the regions
represented by nodes in an R*-tree are overlapped with each
other.

4.3 G­SKY­MR: The Global Skyline Compu­
tation Algorithm

The procedure G-SKY-MR computes the global skyline in
every non-empty unpruned leaf node independently using
MapReduce. In the map function called with each local
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Figure 5: The local and global skyline phases of SKY-MR

Function G-SKY-MR.map( ni, p )
ni: a node id, p: a point belongs to the node with id = key
begin
1. nodes = LoadNonEmptyNodes();
2. if DominatedByFilterPoints( p ) then return;
3. output( ni, (+, p) );
4. for each node id nj ( ̸= ni) in nodes do
5. if IsNeeded(ni, nj) then
6. if p ≺ vpnj

then output( nj , (∗, p) );

end
Figure 6: The G-SKY-MR.map

point, the point is emitted to every other unpruned leaf node
in which it may dominate at least a point in the node. Since
it is straightforward to implement the serial algorithm G-
SKY, we omit the details of G-SKY here.
The pseudocode of G-SKY-MR.map is shown in Figure 6.

In G-SKY-MR, a map function with each local skyline point
p discards the point p if p is dominated by a sky-filter point
chosen in the previous phase. Otherwise, the pair ⟨ni, (+, p)⟩
is emitted where ni is the leaf node containing p and the
symbol ‘+’ represents that p is in region(ni) (in lines 1-3 of
G-SKY-MR.map).
If a local skyline point pj of node nj is dominated by at

least a local skyline point of the other nodes, pj cannot be a
global skyline point. However, if every point p is sent to all
other nodes except ni, the communication overhead is very
expensive. By Definition 4.1, when ni ̸≺ nj , every point
in ni cannot dominate the points in nj . The procedure
IsNeeded(ni, nj) easily identifies such case (i.e., ni ̸≺ nj)
using ids of two nodes based on Proposition 4.2. If ni ̸≺ nj ,
IsNeeded(ni, nj) returns false. Otherwise, IsNeeded(ni, nj)
returns true and we output the pair ⟨nj , (∗, p)⟩ where ‘*’
indicates that the point p is not in region(nj) but p may
dominate at least a point in region(nj). However, if p does
not dominate vpnj , we do not emit the pair ⟨nj , (∗, p)⟩ due
to Proposition 4.4 (in lines 4-6).
Each reduce function called with a node ni next computes

the global skyline points by checking whether each of ni’s
local skyline points annotated with ‘+’ is dominated by a
local skyline point associated with ‘*’ which comes from the
other nodes.

Example 4.6.: The behavior of G-SKY-MR is illustrated
in Figures 5(d)–(g). Every map function is called with each
local skyline point. For example, the map function with p1
emits ⟨01,(+,p1)⟩ since the point p1 is in region(node(01)).
In addition, ⟨1101,(*,p1)⟩ is emitted since p1 dominates the
virtual max point of node(1101). However, in the map func-
tion invoked with p5, ⟨1101,(*,p5)⟩ is not emitted because p5
does not dominate the virtual max point ⟨65,90⟩ in node(1101).
Figure 5(e) shows the key-value pairs emitted by all map
functions. The key-value pairs after the shuffling phase are
shown in Figure 5(f). Each reduce function computes the
global skyline of its associated node. After all reduce func-
tions are finished, we obtain the skyline in Figure 5(g).

Extending to dynamic skylines: We first convert each
point pi in D to a point p′i using a query point q where

p′i(k)=|pi(k) − q(k)| for k=1, · · · , d, as presented in Sec-
tion 2.1. Then, we calculate the dynamic skyline wrt q by
computing skyline points among the converted points. Ex-
tending SKY-MR to handle the dynamic skylines is straight-
forward since at the first and second phases, each point in
D can be easily transformed into a new space whose origin
is the query point q. Due to lack of space, we do not present
the details of dynamic skyline processing using MapReduce.

Extending to multi-cores: We can develop the multi-
thread procedure SKY-MC to compute skylines with the
key idea of SKY-MR by using multiple threads instead of
MapReduce. After data are divided into partitions based on
a sky-quadtree, threads calculate the local skylines in parallel
independently for every unpruned leaf node. To compute the
global skyline in parallel by utilizing sky-filter and virtual
max points, we invoke multiple threads again.

Extending to MPI:Message Passing Interface (MPI) [16]
is a language-independent communication protocol used to
develop parallel programs on a cluster of machines. We can
also develop the procedure SKY-MP which computes sky-
lines using MPI with the key idea of SKY-MR.

5. REVERSE SKYLINE PROCESSING US­
ING MAPREDUCE

To filter out non-reverse skyline points efficiently, we di-
vide the data D into 2d orthants wrt a query point q as
illustrated in Figure 2(a). The set of all data points located
in an orthant o is denoted as Do. For each orthant o rep-
resented by the region ⟨[o(1)−, o(1)+], · · · , [o(d)−, o(d)+]⟩,
the id, denoted by a1a2· · · ad, is assigned where ai = 0 if
[o(i)−, o(i)+] = [−∞, q(i)] and ai = 1 if [o(i)−, o(i)+] =
[q(i),∞].

Lemma 5.1.: For pi, pj ∈ D, if pj is located at an orthant
o and pj dynamically dominates a query point q wrt pi (i.e.
pj ≺pi q ), then pi is also in the same orthant o.

Proof: When pj ≺pi q, we have |q(k) − pi(k)| ≥ |pj(k) −
pi(k)| for all k = 1, · · · , d. Squaring both sides and re-
arranging terms, the above condition becomes equivalent
to 0 ≥ (pj(k) − pi(k))

2 − (q(k) − pi(k))
2. Then, we get

0 ≥ (pj(k) + q(k) − 2pi(k)) · (pj(k) − q(k)) = −2 · (pi(k) −
q(k))(pj(k) − q(k)) + (pj(k) − q(k))2. Since 2 · (pi(k) −
q(k)) · (pj(k)− q(k)) ≥ (pj(k)− q(k))2 ≥ 0 for all k=1,· · · ,d,
(pi(k)− q(k)) and (pj(k)− q(k)) have the same sign. Thus,
pi and pj are in the same orthant.

Note that pi ̸∈ RSL(q,D) if there exists a point pj ∈ D
such that pj ≺pi q. Since every point dynamically dom-
inating q wrt pi is always located in the same orthants in
which pi is located by Lemma 5.1, our brute-force algorithm
BR-RSKY-MR calculates the reverse skyline of each orthant
independently and merges all reverse skylines.
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Function RSKY-MR(D, q, ρ, d, δ)
D: a dataset, q: a query point, ρ: the split threshold,
d: the dimension, δ: strong reverse skyline threshold
begin
1. sample = ReservoirSampling( D );
2. rsky-quadtrees=RSKY-QTREE(sample, ρ, d);
3. Broadcast q and rsky-quadtrees;
4. Local-RSL = RunMapReduce(L-RSKY-MR);
5. if Local-RSL.size ≥ t
6. then Broadcast q, non-empty leaf node ids;
7. RSL = RunMapReduce(G-RSKY-MR);
8. else RSL = G-RSKY(Local-RSL);
9. return RSL;
end

Figure 7: The RSKY-MR

To compute RSL(q,D) efficiently, we next devise the al-
gorithm RSKY-MR with the following three phases. RSKY-
MR utilizes rsky-quadtrees which are a variant of sky-quadtrees.
The pseudocode of RSKY-MR is presented in Figure 7.
(1)Rsky-quadtree building phase: By running RSKY-

QTREE, we build an rsky-quadtree associated with each or-
thant from a sample obtained by reservoir sampling [27].
(2) Local reverse skyline phase: For each unpruned

leaf node of every rsky-quadtree, we compute candidate re-
verse skyline points in parallel by invoking L-RSKY-MR. In
addition, the local dynamic skyline of the midpoints between
every point p (∈ D) and q is selected to prune non-reverse
skyline points in the next phase.
(3) Global reverse skyline phase: We check in paral-

lel whether each candidate reverse skyline point is actually a
global reverse skyline point. Similar to SKY-MR, depending
on the number of candidate reverse skyline points produced
in the previous phase, the global reverse skyline is computed
on a single machine by calling G-RSKY or on multiple ma-
chines by invoking G-RSKY-MR.

5.1 RSKY­QTREE: The Rsky­Quadtree Build­
ing Algorithm

For effective pruning with rsky-quadtrees, we adopt the
idea of midpoints introduced in [11, 29]. The midpoint be-
tween a point p and a query point q is defined as mid(p, q) =
⟨(p(1)+q(1))/2, · · · , (p(d)+q(d))/2⟩. Since |(p(i)+q(i))/2−
q(i)| ≤ |p(i)− q(i)| holds for each dimension i, the following
is trivially true.

Proposition 5.2.: The midpoint mid(p, q) always dy-
namically dominates p wrt q.

We develop the following lemmas to identify efficiently
whether a point in D is a global reverse skyline point.

Lemma 5.3.: Given an orthant o and a query point q,
pi ∈ Do is not in the reverse skyline of Do wrt q, if and only
if there exists another point pj ∈ Do s.t. mid(pj , q) ≺q pi.

Proof: (⇒:) When pi ̸∈ RSL(q,Do), q ̸∈ DSL(pi, Do)
holds and there exists a point pj(∈ Do) s.t. pj ≺pi q. Since
|pj(k) − pi(k)| ≤ |q(k) − pi(k)| for all k=1, · · · , d, we can
derive (pj(k) − q(k))2 ≤ 2 · (pi(k) − q(k))(pj(k) − q(k)), as
shown in the proof of Lemma 5.1. Since pi and pj are in the
same orthant by Lemma 5.1, |pj(k) − q(k)|/2 = |(pj(k) +
q(k))/2 − q(k)| ≤ |pi(k) − q(k)|. Similarly, we can derive
|(pj(k)+ q(k))/2− q(k)| < |pi(k)− q(k)| for at least a single
dimension k. Thus, by the definition of the midpoints, there
exists pj ∈ Do such that mid(pj , q) ≺q pi.

(⇐:) We have |(pj(k)+q(k))/2−q(k)| = |pj(k)−q(k)|/2 ≤
|pi(k)− q(k)| for all k=1, · · · , d, when mid(pj , q) ≺q pi. By
multiplying 2(pj(k)− q(k)) to both sides, we get

(pj(k)− q(k))2 ≤ 2(pj(k)− q(j))(pi(k)− q(k)). (1)

the rsky-quadtree
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Figure 8: An example of rsky-quadtree building
Since |pj(k) − pi(k)| = |pj(k) − q(k) − pi(k) + q(k)|, we

have (pj(k) − pi(k))
2 = (pj(k) − q(k))2 + (pi(k) − q(k))2 −

2(pj(k) − q(k))(pi(k) − q(k)). By replacing (pj(k) − q(k))2

with 2(pj(k) − q(j))(pi(k) − q(k)) and using the above in-
equality (1), we obtain (pj(k) − pi(k))

2 ≤ (pi(k) − q(k))2

and thus |pj(k) − pi(k))| ≤ |pi(k) − q(k)| holds for every
dimension k. Similarly, we can show that |pj(k)− pi(k))| <
|pi(k) − q(k)| for at least a dimension k. Consequently,
pj ≺pi q and q cannot be a dynamic skyline point wrt pi.
In other words, if mid(pj , q) ≺q pi, pi ̸∈ RSL(q,Do).

Lemma 5.4.: For two points pi, pj ∈ Do, if pj ≺q pi, we
have pi ̸∈ RSL(q,Do).

Proof: Sincemid(pj , q) ≺q pj by Proposition 5.2, mid(pj , q)
≺q pi holds. Thus, pi ̸∈ RSL(q,Do) due to Lemma 5.3.

We develop the procedure RSKY-QTREE to build rsky-
quadtrees. The main differences from SKY-QTREE pre-
sented in Section 4.1 are as follows:

(1) Given a query point q and a data set D, an rsky-
quadtree associated with each orthant o is built by inserting
sample points p ∈ Do(⊂ D) and their midpoints. (2) In an
rsky-quadtree, every node n is marked as “pruned” if there
exists a point p ∈ Do dynamically dominating the node n
since all points belonging to the node n cannot be in the
reverse skyline. (3) In an rsky-quadtree, every node n is
also marked as “pruned” if there exist at least two points
pi, pj ∈ Do whose mid(pi, q) and mid(pj , q) dynamically
dominate the node n. Since mid(p, q) always dynamically
dominates p according to Proposition 5.2, we need at least
two midpoints to prune a node of an rsky-quadtree.

Example 5.5.: Consider the data D in Figure 1(a) with
a query point q=⟨0, 0⟩ and the split threshold ρ=2. Dividing
D into 4 orthants wrt q results in a non-empty orthant o
with id=11 only. Assume {p1, p4, p5, p8} is a sample of
D. All sample points and their midpoints are inserted into
the root node as shown in Figure 8(a) where mi represents
mid(pi, q). We recursively subdivide the data space starting
from the root node until the number of points and midpoints
in each unpruned leaf node of the rsky-quadtree is at most ρ.
Since there are multiple midpoints dynamically dominating
the node with id=11 (i.e., m1, m4, m5 and m8), it is marked
as “pruned” as illustrated in Figure 8(b). The rsky-quadtree
constructed from the sample is shown in Figure 8(c).

5.2 Computations of Reverse Skylines using
Rsky­Quadtrees

To illustrate how to compute the reverse skylines using
rsky-quadtrees, we utilize the following definitions.

Definition 5.6.: For a leaf node n, let Lp(n) = {p ∈
D| p is located in region(n)}, Lm(n) = {mid(p, q)|p ∈ D
s.t. mid(p, q) is located in region(n)} and L(n) = Lp(n) ∪
Lm(n). The strong reverse skyline SRSL(q, L(n)) of L(n)
wrt q is {pj ∈ Lp(n) | pj ∈ RSL(q, Lp(n)) and @m( ̸=
mid(pi, q)) ∈ Lm(n) s.t. m ≺q pj}.
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A reverse skyline point p is a strong reverse skyline point
of the node containing p since p is not dominated by the
midpoints of all other points in D according to Lemma 5.3.
Thus, if we can eliminate all non-reverse skyline points from
SRSL(q, L(n)) of every node n in rsky-quadtrees, we can
obtain the reverse skyline.
To eliminate non-reverse skyline points in each node n, we

need the local dynamic skyline midpoints DSL(q, Lm(n)) of
every other node. For example, consider the points pi, pj , pk
∈ Do. If mid(pk, q) ≺q mid(pj , q) and mid(pj , q) ≺q pi, we
have mid(pk, q) ≺q pi and pi ̸∈ RSL(q,Do) by Lemma 5.3.
Thus, if mid(pk, q) ≺q mid(pj , q), we only need mid(pk, q)
to check whether pi is a reverse skyline point or not.
The local dynamic skyline midpoints themselves are not

sufficient, however, to eliminate all non-reverse skyline points
from the strong reverse skylines. For instance, consider the
point pi in Figure 9. Although pi is a strong reverse sky-
line point, pi ̸∈ RSL(q,D) because mj(= mid(pj , q)) ≺q pi
holds. Since mi(= mid(pi, q)) ≺q mj in node(00), mj is not
a local dynamic skyline midpoint. Thus, if we only use the
local dynamic skyline midpoints blindly, we cannot elimi-
nate pi correctly. However, since mi is a local dynamic sky-
line midpoint, we can annotate mi with a special symbol,
representing that mj dynamically dominates pi, in order to
utilize mi to prune pi. We call such annotated midpoints
the verification midpoints as defined below:

Definition 5.7.: Given a query point q and the set of
midpoints Lm(n) of an unpruned leaf node n in an rsky-
quadtree, consider a point p such that mid(p, q)∈DSL(q,
Lm(n)). The midpoint mid(p, q) is a verification midpoint
if there exists mj ∈ Lm(n) such that mid(p, q) ≺q mj ≺q p.

Lemma 5.8.: Given a query point q and an rsky-quadtree
r of an orthant o, p ∈ Do is a reverse skyline point if and
only if (1) p is in SRSL(q, L(n)) of an unpruned leaf node
n in r,(2) mid(p, q) is not a verification midpoint, and (3)
for every unpruned leaf node n′ in r, there does not exist
m(̸= mid(p, q)) ∈ DSL(q, Lm(n′)) such that m ≺q p.

Proof: (⇒:) We prove the contrapositive: when one of the
three conditions is not satisfied, p ̸∈ RSL(q,D).
When the condition (1) is not satisfied, by Definition 5.6,

there is m( ̸= mid(p, q)) ∈ Lm(n) or pi( ̸= p) ∈ Lp(n) s.t.
m ≺q p or mid(pi, q) ≺q p. If the condition (2) is not sat-
isfied, there is a midpoint m s.t. mid(p, q) ≺q m ≺q p by
Definition 5.7. When the condition (3) is not satisfied, there
is m( ̸= mid(p, q)) ∈ DSL(q, Lm) s.t. m ≺q p. Thus, when-
ever one of the three conditions is not satisfied, there exists
a midpoint m ̸= mid(p, q) s.t m ≺q p and p ̸∈ RSL(q,Do)
according to Lemma 5.3. Therefore, p ∈ RSL(q,Do) implies
that all three conditions are satisfied.

(⇐:) For the purpose of contradiction, suppose p ̸∈ RSL(q,
Do). Based on Lemma 5.3, there exists a midpoint m ̸=
mid(p, q) s.t. m ≺q p for a point p contained in the or-
thant o. Without loss of generality, assume that m is in an
unpruned leaf node. (Otherwise, let m be mu where mu

(̸= mid(p, q)) is a midpoint which is in an unpruned leaf

Function L-RSKY-MR.map(key, p)
key: null, p: a point
begin
1. rsky-qtrees = LoadTrees(), q = LoadQuery();
2. O(p) = FindOrthants(p, q);
3. for each o ∈ O(p) do
4. np = GetNode(p, rsky-qtrees[o]);
5. if np.pruned == false then emit((o,np),(“P”,p));
6. nm = GetNode(mid(p, q), rsky-qtrees[o]);
7. if nm.pruned == false then emit((o,nm),(“M”,mid(p,q)));
end
Function L-RSKY-MR.reduce(key, L)
key: (orthant id o, a node id n), L: a list of points and midpoints
begin
1. q = LoadQuery();
2. SRSL = StrongReverseSkyline(q,L);
3. output(key, SRSL);
4. Lm = {m ∈ L|m has symbol “M”};
5. DSL = DynamicSkyline(q,Lm);
6. for each midpoint m in DSL do
7. if IsVerificationMidpoint(m, Lm) then output (key, (“V”,m);
8. else output (key, (“M”,m);
9. append(RSKY-FILTER, FilterPoint(DSL);
10. append(RVIRTUAL, VirtualMax(SRSL);
end

Figure 10: The L-RSKY-MR

node and dynamically dominates m. The midpoint mu al-
ways exists by the properties of the rsky-quadtrees and we
have mu ≺q p).

When p and m are located in the same node n of r,
p ̸∈ SRSL(q, L(n)) since m ≺q p. It contradicts the con-
dition (1) resulting that p and m should be located in dif-
ferent nodes of r. In the unpruned leaf node nm contain-
ing m, if m ∈ DSL(q, Lm(nm)), it contradicts the condi-
tion (3). Therefore, there exists another midpoint m′ ∈
DSL(q, Lm(nm)) s.t. m′ ≺q m. If m′ ̸= mid(p, q), it also
contradicts the condition (3) since m′ ≺q m ≺q p. This im-
plies that m′ = mid(p, q). Since m and mid(p, q) are located
in the same unpruned leaf node and mid(p, q) ≺q m ≺q p,
mid(p, q) is a verification midpoint by Definition 5.7. It con-
tradicts the condition (2). Therefore, if all three conditions
hold, p is a reverse skyline point.

We next define the reverse virtual max point of each leaf
node of an rsky-quadtree and provide the property of the
reverse virtual max points.

Definition 5.9.: The reverse virtual max point of each
leaf node n of an rsky-quadtree, denoted by rvpn, is de-
fined as the point whose k-th dimensional value rvpn(k) is
maxpi∈SRSL(q,L(n)) |pi(k)− q(k)| for every k=1,2,· · · ,d.

Proposition 5.10.: If a midpoint m does not dynamically
dominate the reverse virtual max point of a leaf node n in
an rsky-quadtree, m does not dynamically dominate every
strong reverse skyline point in region(n).

We omit the proof of Proposition 5.10 because it is similar
to that of Proposition 4.4 in Section 4.2.

5.3 L­RSKY­MR: The Local Reverse Skyline
Computation Algorithm

Based on Lemmas 5.1, 5.3 and 5.8, the procedure L-RSKY-
MR in Figure 10 computes the strong reverse skyline and lo-
cal dynamic skyline midpoints in every unpruned leaf node
of all rsky-quadtrees.

Each map function is called with a point p in D. To
check whether a point p is a reverse skyline point or not,
we examine only the points in each orthant containing p by
Lemma 5.1. Thus, in the map function called with p, we
examine each orthant o containing p independently. Note
that if a point p ∈ Do is in the pruned leaf node of the
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Figure 11: The local and global reverse skyline phases of RSKY-MR

rsky-quadtree, p is not a global reverse skyline point due to
Lemma 5.3 since there exists a midpoint of another point in
Do which dynamically dominates p wrt q. For each orthant
o, we perform the following two steps: (1) We check whether
p belongs to an unpruned leaf node of o’s rsky-quadtree. If it
does, we emit ⟨(o, np),(“P”, p)⟩ where “P” represents that p
is a point (in lines 2-5 of L-RSKY-MR.map). (2) If mid(p, q)
belongs to an unpruned leaf node nm, we output ⟨(o, nm),
(“M”, mid(p, q))⟩ where “M” denotes that m is a midpoint
(in lines 6-7).
After the shuffling phase groups the output of the map

functions according to each distinct unpruned leaf node, a
reduce function is called with each distinct group. For each
distinct group (o, n), the list L(n), which is Lp(n)∪Lm(n)
as defined in Definition 5.6, is generated.
Consider the reduce function called with a distinct group

(o, n) and the input value list L(n). The reduce function
computes the strong reverse skyline (i.e., SRSL(q, L(n)))
and the local dynamic skyline of midpoints (i.e., DLS(q,
Lm(n))) according to Lemma 5.8 (in lines 1-5 of L-RSKY-
MR.reduce). For every strong reverse skyline point, the re-
duce function outputs the key-value pair ⟨(o, n), (“P”, p)⟩ (in
line 3). In addition, the reduce function emits ⟨(o, n), (“V”,
v)⟩ for every verification midpoint v in DSL(q, Lm(n)) de-
fined in Definition 5.7 (in lines 6-7). For every midpoint m
in DSL(q, Lm(n)) which is not a verification midpoint, the
reduce function outputs ⟨(o, n), (“M”, m)⟩(in line 8).
Similar to L-SKY-MR, for each dimension, the reduce

function chooses a single midpoint, called an rsky-filter mid-
point, in DSL(q, Lm(n)) which has the minimum value of
the dimension. The reduce function also computes the re-
verse virtual max point of the leaf node n. Finally, the
reduce function outputs the rsky-filter midpoints and the
reverse virtual max point to the files called RSKY-FILTER
and RVIRTUAL in HDFS respectively (in lines 9-10).

Example 5.11.: Consider the rsky-quadtree in Example 5.5.
In the local reverse skyline phase, a map function is invoked
with each point p ∈ D. For instance, the map function with
p5 outputs ⟨(11, 10), (“P”, p5)⟩ because p5 belongs to the un-
pruned leaf node, node(10), in the orthant with id=11. In
addition, since mid(p5, q) belongs to an unpruned leaf node,
node(0010), in the same orthant, the map function also out-
puts ⟨(11, 0010), (“M”, mid(p5, q))⟩. The key-value pairs
output by all map functions are shown in Figure 11(b). The
output of the shuffling phase is presented in Figure 11(c).
For each distinct key (o, n), a reduce function is called with

the list of points and midpoints in region(n). For instance,
the reduce function invoked with the key (11,10) receives
{p3, p5, p6} as input value list and outputs ⟨(11,10),(p5,“P”)⟩
since p5 is a strong reverse skyline point. The reduce func-
tion next calculates the verification midpoints, reverse vir-

Function G-RSKY-MR.map(key, p)
key: (an orthant id o, a node id n), p: (a point or a midpoint p, mark)
begin
1. q = LoadQuery();
2. if IsPoint(p) then
3. if DynamicDominatedByFilterPoints(p,q,o) then return;
4. emit(key, (“P”, p));
5. if IsMidpoint(p) then
6. rsky-quadtrees = LoadTrees()
7. nodes = LoadNonEmptyNodes(o);
8. for each node id ni in nodes
9. if IsNeeded(n, ni)then
10. output((o,ni), (mark, p));
end

Figure 12: The G-RSKY-MR.map

tual max point and rsky-filter points. In node(0011), m4 is
annotated with “V” since m2 is in region( n) and m2 domi-
nates p4. In node(0011), m4 and m8 are selected as the rsky-
filter midpoints since m8(1) = 32.5 and m4(2) = 27.5 are the
minimum value on the first and second dimensions respec-
tively. In Figure 11(d), we have shown the output emitted
by all reduce functions where the rsky-filter midpoints are
circled.

5.4 G­RSKY­MR: The Global Reverse Sky­
line Computation Algorithm

The parallel algorithm G-RSKY-MR finds the global re-
verse skyline points independently in each non-empty un-
pruned leaf node by Propositions 4.2, 5.10 and Lemma 5.8.
We omit the details of the serial algorithm G-RSKY due to
space limitations.

For every strong reverse skyline point p, we check whether
(1) p is not dynamically dominated by a local dynamic sky-
line midpoint m (i.e., m ̸≺q p) and (2) p’s midpoint is not
one of the verification midpoints. If both conditions are sat-
isfied, p is a global reverse skyline point due to Lemma 5.8.
To check the condition (1), we examine whether m ≺q p for
every midpoint m contained in all unpruned leaf nodes ni.
However, we do not need to check whether m ≺q p if there
is k such that sub(id(ni), k) > sub(id(nj), k) where nj is the
node containing p and sub(id(n), k) is the k-th substring of
n’s id defined in Section 4.1. The reason is that we have m
̸≺q p for every point p in nj according to Proposition 4.2. In
addition, if m ̸≺q rvpnj (i.e., the reverse virtual max point
of nj), since m ̸≺q p for every strong reverse skyline point
p belonging to nj by Proposition 5.10, we do not need to
check m ≺q p either.

The pseudocode ofG-RSKY-MR is presented in Figure 12.
Each map function is invoked with a strong reverse skyline
point (i.e., annotated with “P”) or a local dynamic sky-
line midpoint (i.e., annotated with “M” or “V”) which were
generated at the previous phase. Consider a map function
called with a strong reverse skyline point p in an unpruned
leaf node n in an orthant o. Note that p is not a global
reverse skyline point if p is dominated by another point’s
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Parameter Range Default

No. of samples (s) 100 ∼ 8, 000 400 (for skyline)
1,000(for reverse skyline)

Split threshold (ρ) 10 ∼ 60 20 (for skyline)
40 (for reverse skyline)

No. of points (n) 107 ∼ 4 × 109 108

No. of dimensions (d) 2 ∼ 10 6
No. of machines (t) 5 ∼ 20 10

Table 1: Parameters

(a)anti-correlated (b)independent (c)correlated

Figure 13: Examples of data sets

midpoint by Lemma 5.3. Thus, the map function emits
⟨(o, n), (“P”,p)⟩ if p is not dynamically dominated by rsky-
filter midpoints (in lines 1-4 of G-RSKY-MR.map).
For the map function called with a local dynamic skyline

midpoint m contained in an unpruned leaf node nm in an
orthant o, the map function should find out all unpruned
leaf nodes n requiring m to check whether n’s strong reverse
skyline points are the global reverse skyline points. If nm ̸≺
n or m ̸≺q rvpn, n does not require m to check n’s strong
reverse skyline points by Propositions 4.2 and 5.10. For each
unpruned leaf node n which requires m, the map function
outputs ⟨(o, n), (“V”,m)⟩ if m is a verification midpoint.
Otherwise, it outputs ⟨(o, n), (“M”,m)⟩ (in lines 5-10).
The key-value pairs emitted by map functions are grouped

according to each distinct unpruned leaf node in the shuf-
fling phase and a reduce function is called with each distinct
group. Each reduce function checks whether the strong re-
verse skyline points in a node are the global reverse skyline
points based on Lemma 5.8. If a strong reverse skyline point
p is dynamically dominated by the midpoints coming from
the other nodes or p’s midpoint is annotated with “V”, p
cannot be a reverse skyline point. Finally, the reduce func-
tion outputs the global skyline points.

Example 5.12.: Assume a map function is called with
each point in the output of the local reverse skyline phase in
Example 5.11. Since m1 in node(0001) dynamically dom-
inates the reverse virtual max point of node(01), the map
function with m1 emits ⟨(11,01), (“M”, m1)⟩. However,
since m3 does not dynamically dominate the reverse virtual
max point of node(1000), we do not emit ⟨(11,1000), (“V”,
m3)⟩. Figures 11(e) and 11(f) show the output of all map
functions and the result of the shuffling phase respectively.
For every unpruned leaf node, a reduce function is called

to see whether each strong reverse skyline point is actually
a global reverse skyline point. For example, the input value
list of the reduce function with the key (11, 01) is {p1, m1}.
Since m1 is not a verification midpoint, p1 is a global re-
verse skyline point. After every reduce function is finished,
{p1, p5} becoms the reverse skyline as in Figure 11(g).

6. EXPERIMENTS
We empirically evaluated the performance of our proposed

algorithms using the parameters as summarized in Table 1.
All experiments on MapReduce were performed on the clus-
ter of 20 nodes of Intel(R) Core(TM) i3 CPU 3.3GHz ma-
chines with 4GB of main memory running Linux. The im-
plementations of all algorithms were complied by Javac 1.6.
We used Hadoop 1.0.3 for MapReduce [2]. The execution
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Figure 14: SKY-MR with varying s and ρ

Algorithm Description

SKY-MR-S/M SKY-MR-S utilizes the serial algorithm G-SKY.
SKY-MR-M utilizes G-SKY-MR.

SKY-MR SKY-MR adaptively selects G-SKY-MR or
G-SKY wrt the number of local skyline points.
If it is less than 7 × 105, G-SKY is selected.

MR-BNL The state-of-the-art using MapReduce in [30].
PPPS-MR The MapReduce implementation of PPPS in [14].

We set the sample size (s) to 1,000 which shows
the best performance.

GRID-MR-1/2 The MapReduce implementations of the 1-step
and 2-step algorithms in [1].

SKY-SC The serial implementation of SKY-MR.
BBS The state-of-the-art for a single core in [22].

SKY-MC The implementation of SKY-MR for multi-cores.
PPPS The state-of-the-art for multi-cores in [14].

SKY-MP The implementation of SKY-MR using MPI.
GRID-1/2 The implementations of the 1-step and 2-step

algorithms using MPI in [1].

Table 2: Implemented skyline algorithms

times in the graphs shown in this section are plotted in log
scale. We ran all algorithms five times and measured the av-
erage execution times. We do not plot the execution times
of some algorithms when they did not finish within 8 hours.

Data sets: We built three synthetic data sets which were
randomly generated by correlated, independent and anti-
correlated distributions. The three types of data sets are
typically used to evaluate the performance of skyline algo-
rithms [4]. Figure 13 shows the examples of such data sets
where skyline points are represented by small bold circles.
The sizes of resulting synthetic data sets are varied from
392MB to 153GB depending on the number of points (n) as
well as the number of dimensions (d).

Implemented algorithms: The MapReduce algorithms
implemented for skyline and reverse skyline are presented in
Table 2 and Table 3 respectively. Furthermore, we also im-
plemented the variants of SKY-MR for other environments
such as using a single-core machine, multi-core machines and
message passing interface (MPI) library [16] to see the effec-
tiveness of our proposed algorithms compared to the existing
algorithms[1, 14, 22] in such environments.

6.1 Performance Results for Skylines
Default values of s and ρ: To find the proper values

of s and ρ, we ran SKY-MR with varying s from 100 to
8, 000 and ρ from 10 to 60. The average execution times of
SKY-MR for all data sets are shown in Figure 14. Since the
best performance of SKY-MR is obtained with s = 400 and

Algorithm Description

RSKY-MR-S/M RSKY-MR-S utilizes G-RSKY.
RSKY-MR-M utilizes G-RSKY-MR.

RSKY-MR RSKY-MR adaptively selects G-RSKY-MR
or G-RSKY wrt the number of strong reverse
skyline points. If it is less than 104,
G-RSKY is selected.

BR-RSKY-MR Our brute-force algorithm without using
rsky-quadtrees in Section 5

Table 3: Implemented reverse skyline algorithms
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Figure 15: Varying the number of points (n) for skyline processing
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Figure 16: Varying the number of dimensions (d) for skyline processing

ρ = 20, we set s = 400 and ρ = 20 as the default values.
When the sample size s decreases, since the samples do not
reflect the data distribution precisely, the number of pruned
points decreases and SKY-MR becomes inefficient. In SKY-
MR, virtual max points, sky-filter points and local skyline
points of an unpruned node are sent to the other unpruned
leaf nodes. Thus, as the sample size s increases, the number
of unpruned leaf nodes of a sky-quadtree which receives such
points from other unpruned nodes increases and SKY-MR
becomes inefficient due to high network costs. Decreasing ρ
has also a similar effect of increasing the sample size s.

Varying n: We varied n from 107 to 4×109 and plot the
running times of the algorithms in Figure 15. SKY-MR is
always better than SKY-MR-S/M since it switches to SKY-
MR-S or SKY-MR-M adaptively based on the number of
local skyline points. Thus, we do not report the performance
of SKY-MR-S/M in the rest of the paper.
Since the number of skyline points of the anti-correlated

data sets is generally larger than those of the independent
data sets and the correlated data sets, the algorithms with
the anti-correlated data sets take generally more execution
time than those of the other data sets.
GRID-MR-2 is always the worst performer due to the high

cost of computing the relaxed skyline grids from td grids
(e.g., when t = 10 and d = 6, we have td = 106 num-
ber of grids). MR-BNL performs better than GRID-MR-2,
but it is still slower than SKY-MR because MR-BNL cal-
culates the global skyline in a single machine only. GRID-
MR-1 performs poorly because it broadcasts all points p
in each relaxed skyline grid to every other grid containing
points which may be dominated by p. Since SKY-MR filters
out non-skyline points effectively using the sky-quadtree, it
shows the best performance.

Varying d: With varying d from 2 to 10, we plot the
execution times of the algorithms except GRID-MR-1/2 in
Figure 16 because they show similar patterns with varying
n.
The execution times of all algorithms increase gradually

with increasing d since checking the dominance relationship
between two points becomes more expensive with large val-
ues of d. Furthermore, when d = 2, MR-BNL becomes slow
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Figure 17: Relative speed with varying the number
of machines (t) for skyline processing

SKY-MR F and V F V NONE

Correlated 218 229 234 242
Independent 260 281 283 283
Anti-correlated 840 1146 952 1207

Table 4: Effects of the virtual max points (V) and
the sky-filter points (F) (sec)

because MR-BNL utilizes only 4 (= 2d) machines out of
10 machines. For the independent and anti-correlated data
sets, PPPS-MR becomes slow since the last two partitions
are merged in a single machine. However, PPPS-MR be-
comes fast for the correlated data sets, since there are a
small number of local skyline points and merging them can
be done quickly. The graphs confirm that SKY-MR is gen-
erally the best performer.

Varying t: We show the relative speed of the tested al-
gorithms averaged over all data sets in Figure 17. That is,
for each algorithm, we plot its running time with 5 machines
divided by its running time with t machines. For example,
if the running times of SKY-MR with 5 and 20 machines are
T5 and T20 respectively, we plot the ratio T5/T20 for t=20.
In an ideal case, if the number of machines increases by 4
times from 5 to 20, the speed will be 4 times faster. We also
plot the ideal speedup curve in the graphs of Figure 17. For
the relative speed, our proposed algorithm SKY-MR shows
the best scalability since SKY-MR effectively prunes data by
partitioning with the sky-quadtrees and utilizes the virtual
max points and sky-filter points to reduce the unnecessary
comparisons.

The effects of the virtual max and sky-filter points:
To evaluate the performance improvements by utilizing the
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Figure 18: RSKY-MR with varying s and ρ

virtual max points and sky-filter points, we report the execu-
tion times of SKY-MR using virtual max point and the sky-
filter points (F and V), SKY-MR using only the sky-filter
points (F), SKY-MR using only the virtual max points(V),
and SKY-MR without both points (NONE) in Table 4. For
the correlated data set, the performance of SKY-MR is im-
proved mainly by the sky-filter points, since most of the
local skyline points are removed by sky-filter points in the
third phase. For the anti-correlated data set, since the vir-
tual max points reduce unnecessary comparisons between
the local skyline points by Proposition 4.4, the running time
decreases. Since SKY-MR utilizes both sky-filter points and
virtual max points, it runs faster than the other algorithms.

6.2 Performance Results for Reverse Skylines
We next present the experimental results of the reverse

skyline algorithms with randomly generated query points.

Default values of s and ρ: To choose the proper values
of s and ρ, we varied s from 100 to 8, 000 and ρ from 10 to
60. Figure 18 presents the average execution time over all
data sets. We utilize s = 1, 000 and ρ = 40 as the default
values since RSKY-MR shows the best performance with
those values. Note that small and large values of s make
RSKY-MR inefficient, as we mentioned in Section 6.1.

Varying n: We varied n from 107 to 4 × 109 and plot
the execution times in Figure 19. Similar to the skyline ex-
perimental results with varying n, the performance of every
algorithm on the anti-correlated data set is worse than that
of itself on the other data sets. When there is a skew in data
such that a lot of points belong to an orthant, BR-RSKY-
MR shows the worst performance since BR-RSKY-MR com-
putes the reverse skyline in each orthant independently.
RSKY-MR-M shows better performance than RSKY-MR-

S due to its parallelization of the third phase when the
number of strong reverse skyline points is large. As we ex-
pected, the performance of RSKY-MR-S is better than that
of RSKY-MR-M only for small correlated data sets. Since
RSKY-MR selects RSKY-MR-M or RSKY-MR-S adaptively
depending on the number of strong reverse skyline points,
RSKY-MR always shows the best performance.

Varying t and d: As expected, RSKY-MR shows the
best scalability with varying t and d. The graphs with vary-
ing t show almost the same trends with those for skyline
processing with varying t in Figure 17. Furthermore, the
graphs varying d have almost the same trends with those
with varying n in Figure 19. Thus, we do not provide the
graphs for the experiments with varying t and d.

6.3 Performance Results in Other Environ­
ments

We finally present the experimental results by comparing
the performance of our ported algorithms to other environ-
ments with the existing state-of-the-art algorithms in such

Distr.
PPPPPAlg.

n
105 106 107 108 109

Anti. SKY-SC 1.5 91.3 949.8 8906.8 -
BBS 39.9 603.2 16334.5 - -

Ind. SKY-SC 0.6 1.6 10.1 70.4 -
BBS 0.3 1.9 12.6 2275.8 -

Cor. SKY-SC 0.2 0.5 3.3 41.5 -
BBS 0.1 0.2 1.3 11.6 -

Table 5: Varying n on a single core machine (sec)

Distr.
PPPPPAlg.

n
107 4 × 107 108 4 × 108 109

Anti. SKY-MC 116.8 380.2 877.4 - -
PPPS 2201.5 10887 21736 - -

Ind. SKY-MC 11.3 37.7 81.4 290.8 666.0
PPPS 14.9 66.5 193.1 1171.3 -

Cor. SKY-MC 5.1 17.8 44.5 170.3 410.8
PPPS 4.9 20.5 50.2 216.3 512.2

Table 6: Varying n on a multi-core machine (sec)

environments. We did experiments with varying n and d,
but reported only the experimental results with varying n.

Single core machine: We compared our serial algorithm
SKY-SC to the state-of-the-art serial algorithm BBS [22]
which utilizes an R*-tree on a single core machine. We re-
port the average execution times with varying n from 105 to
109 in Table 5. We do not include the construction time of
R*-trees for BBS, but we include the construction time of
sky-quadtrees for SKY-SC in Table 5. Whenever any algo-
rithm did not finish due to lack of memory, we do not show
the running time in Table 5.

BBS finds skyline points progressively in increasing order
of their distances to the origin. When the number of sky-
line points is small (i.e., correlated data), most of minimum
bounding rectangles (MBRs) of R*-trees are pruned by the
skyline points found at the beginning of BBS and thus BBS
shows slightly better performance than SKY-SC. However,
when the number of skyline points is large (i.e., indepen-
dent or anti-correlated data), many MBRs are not pruned
by the skyline points. Since SKY-SC filters out non-skyline
points effectively using the sky-quadtree as well as virtual
max points and sky-filter points, when the number of sky-
line points becomes large, SKY-SC performs much better
than BBS.

Multi-core machine: We evaluated our SKY-MC and
PPPS [14] devised for multi-core machines. Experiments
were performed on a 32-core machine of Intel(R) Xeon(TM)
E7 CPU 2.67GHz with 128GB of main memory running
Linux. We show the average execution times with varying n
from 107 to 109 in Table 6. Whenever any algorithm did not
finish due to lack of memory, we do not show the running
time in the table. As shown in Table 6, SKY-MC is much
better than PPPS for all cases even if our work is originally
developed for MapReduce. The reason is that SKY-MC fil-
ters out non-skyline points effectively using the sky-quadtree
as well as virtual max points and sky-filter points.

MPI:We compared our SKY-MP withGRID1 andGRID2

Distr.
PPPPPAlg.

n
107 4 × 107 108 4 × 108 109

Anti. SKY-MP 190 665 1478 4513 9509
GRID1 226 699 1586 4651 9698
GRID2 5134 20955 - - -

Ind. SKY-MP 12 53 183 669 1583
GRID1 20 69 142 785 1801
GRID2 641 860 1139 2300 4250

Cor. SKY-MP 4.9 16 51 365 669
GRID1 5.4 28 66 442 1126
GRID2 237 447 642 1250 2322

Table 7: Varying n on MPI (sec)

2012



 10

 100

 1000

 10000

 100000

 1e+07  1e+08  1e+09  4e+09

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Number of points

BR-RSKY-MR
RSKY-MR-M
RSKY-MR-S

RSKY-MR

(a) Anti-correlated

 100

 1000

 10000

 100000

 1e+07  1e+08  1e+09  4e+09

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Number of points

BR-RSKY-MR
RSKY-MR-M
RSKY-MR-S

RSKY-MR

(b) Independent

 10

 100

 1000

 10000

 100000

 1e+07  1e+08  1e+09  4e+09

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Number of points

BR-RSKY-MR
RSKY-MR-M
RSKY-MR-S

RSKY-MR

(c) Correlated

Figure 19: Varying the number of points (n) for reverse skyline processing

proposed in [1]. We used MPICH2 [16] for the implementa-
tions of MP-model and GMP-model. We report the average
execution times with varying n in Table 7. Whenever any
algorithm did not finish within 8 hours, we do not show the
running time in the table. Similar to the experiments with
multi-core machines, our SKY-MP performs better than the
others due to effective pruning.

7. CONCLUSION
We study the problems of skyline and reverse skyline com-

putations using MapReduce. We introduce the parallel algo-
rithms, SKY-MR and RSKY-MR, which compute the sky-
line and reverse skyline respectively. To filter out non-
skyline points and non-reverse skyline points in advance, we
propose new histograms, called the sky-quadtree and rsky-
quadtree. Both SKY-MR and RSKY-MR partition the data
based on the region split by the sky-quadtree and rsky-quadtree
respectively and compute the candidate (reverse) skyline
points independently for each partition. Our experiments
confirm the effectiveness and scalability of our algorithms.
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