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ABSTRACT

A common approach to data analysis involves understanding
and manipulating succinct representations of data. In earlier
work, we put forward a succinct representation system for
relational data called factorised databases and reported on
the main-memory query engine FDB for select-project-join
queries on such databases.

In this paper, we extend FDB to support a larger class
of practical queries with aggregates and ordering. This re-
quires novel optimisation and evaluation techniques. We
show how factorisation coupled with partial aggregation can
effectively reduce the number of operations needed for query
evaluation. We also show how factorisations of query results
can support enumeration of tuples in desired orders as effi-
ciently as listing them from the unfactorised, sorted results.

We experimentally observe that FDB can outperform off-
the-shelf relational engines by orders of magnitude.

1. INTRODUCTION
Succinct representations of data have been developed in

various fields, including computer science, statistics, applied
mathematics, and signal processing. Such representations
are employed among others for capturing data during mea-
surements, as used in compressed sensing and sampling,
and for storing and transmitting otherwise large amounts
of data, as used in signal analysis, statistical analysis, com-
plex query processing, and machine learning and optimisa-
tion [27]. They can speed up data analysis and in some cases
even bring large-scale tasks into the realm of the feasible.

In this paper, we consider the evaluation problem for
queries with aggregates and ordering on a succinct repre-
sentation of relational data called factorised databases [21].

This representation system uses the distributivity of prod-
uct over union to factorise relations, similar in spirit to fac-
torisation of logic functions [10], and to boost the perfor-
mance of relational processing [6]. It naturally captures as
a special case lossless decompositions defined by join de-
pendencies, as investigated in the context of normal forms
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in database design [2], conditional independence in Bayesian
networks [22], minimal constraint networks in constraint sat-
isfaction [13], and in our previous work on succinct represen-
tation of query results and their provenance polynomials [21]
used for efficient computation in probabilistic databases [29].
It also captures product decompositions of relations as stud-
ied in the context of incomplete information [20], as well as
factorisations of relational data representing large, sparse
feature matrices recently used to scale up machine learning
algorithms [25]. These existing decomposition techniques
can be straightforwardly used to supply data in factorised
form.

In earlier work, we introduced the FDB main-memory en-
gine for select-project-join queries on factorised databases [6]
and showed that it can outperform relational engines by or-
ders of magnitude on data sets with many-to-many relation-
ships. In this paper, we extend FDB to support a larger class
of practical queries with (sum, count, avg, min, max) aggre-
gates, group-by and order-by clauses, while still maintaining
its performance superiority over relational query techniques.

Factorisation can benefit aggregate computation. For in-
stance, counting tuples of a relation factorised as a union of
products of relations can be expressed as a sum of multiplica-
tions of cardinalities of those latter relations. The reduction
in the number of computation steps brought by factorisation
over relational representation follows closely the gap in the
representation size and can be arbitrarily large; we experi-
mentally show performance improvements of orders of mag-
nitude. Further speedup is achieved by evaluating aggrega-
tion functions as sequences of repeated partial aggregations
on factorised data, possibly intertwined with restructuring
of the factorisation.

For queries with order-by clauses, there are factorisations
of query results for which their tuples can be enumerated in
desired orders with the same time complexity (constant per
tuple) as listing them from the sorted query results. Any
factorisation can be restructured so as to support constant-
delay enumeration in a given order. This restructuring is
in most cases partial and builds on the intuition that, even
in the relational case, sorting can partially use an existing
order instead of starting from scratch. For instance, if a
relation is sorted by A,B,C, re-sorting by B,A,C need not
re-sort the C-values for any pair of values for A and B.

Example 1. Figure 1 shows a database with pizzas on of-
fer, prices of toppings, and pizza orders by date, as well as
a factorisation of the relation R = Orders ✶ Pizzas ✶ Items.
This factorisation has the nesting structure T1 (Figure 2)
that reflects the join dependencies in R as defined by the
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Orders

customer date pizza

Mario Monday Capricciosa
Mario Tuesday Margherita
Pietro Friday Hawaii
Lucia Friday Hawaii
Mario Friday Capricciosa

Pizzas

pizza item

Margherita base
Capricciosa base
Capricciosa ham
Capricciosa mushrooms
Hawaii base
Hawaii ham
Hawaii pineapple

Items

item price

base 6
ham 1
mushrooms 1
pineapple 2

〈Capricciosa〉 × (〈Monday〉 × 〈Mario〉 ∪
〈Friday〉 × 〈Mario〉)

× (〈base〉 × 〈6〉 ∪
〈ham〉 × 〈1〉 ∪
〈mushrooms〉 × 〈1〉) ∪

〈Hawaii〉 × 〈Friday〉 × (〈Lucia〉 ∪ 〈Pietro〉)
× (〈base〉 × 〈6〉 ∪

〈ham〉 × 〈1〉 ∪
〈pineapple〉 × 〈2〉) ∪

〈Margherita〉 × 〈Tuesday〉 × 〈Mario〉 × 〈base〉 × 〈6〉

Figure 1: From left to right: An example pizzeria database (Orders, Pizzas, Items); a factorisation of the
natural join of the three relations, whose nesting structure is given by the factorisation tree T1 in Figure 2.

pizza

date

customer

item
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date

customer

sumprice(item,price)

customer

pizza

date sumprice(item,price)

customer

pizza

countdate(date) sumprice(item,price)

T1 T2 T3 T4
Figure 2: Factorisation trees used Example 1.

natural join of the three relations. Such nesting structures
are called factorisation trees (f-trees). We read this factori-
sation as follows. We first group by pizzas; for each pizza,
we represent the orders separately from toppings and prices.

We next present three scenarios of increasing complexity
where factorisation can benefit aggregate computation. We
assume the factorisation of the materialised view R given.
Throughout the paper, we express aggregation using the
̟G;agg operator, which groups by attributes G and applies
the aggregation function agg within each group.

1. We first consider the case when the aggregation only
applies locally to a fragment of the factorisation and there is
no need to restructure the factorisation. An example query
would find the price of each ordered pizza:

S = ̟customer, date, pizza; sum(price)(R).

We can evaluate this query directly on the factorisation of R,
where for each pizza we replace the expressions over items
and price by the sum of the prices of all its items:

〈Capricciosa〉 × (〈Monday〉 × 〈Mario〉 ∪ 〈Friday〉 × 〈Mario〉) × 〈8〉 ∪

〈Hawaii〉 × 〈Friday〉 × (〈Lucia〉 ∪ 〈Pietro〉) × 〈9〉 ∪

〈Margherita〉 × 〈Tuesday〉 × 〈Mario〉 × 〈6〉

The f-tree of this factorisation is T2 from Figure 2.
2. If the aggregation attributes are distributed over the

f-tree, we may need to restructure the factorisation to be
able to aggregate locally as in the previous example. Alter-
natively, we can decompose the aggregation operation into
several partial aggregation steps and intertwine them with
restructuring operations. An example query in this category
finds the revenue per customer:

P = ̟customer; sum(price)(R).

We first partially aggregate prices per pizza, see S above.
The factorisation of S is then restructured from the f-tree
T2 to T3 (see Figure 2), so that we first group by customers:

〈Lucia〉 × 〈Hawaii〉 × 〈Friday〉 × 〈9〉∪

〈Mario〉 × (〈Capricciosa〉 × (〈Monday〉 ∪ 〈Friday〉) × 〈8〉∪

〈Margherita〉 × 〈Tuesday〉 × 〈6〉)∪

〈Pietro〉 × 〈Hawaii〉 × 〈Friday〉 × 〈9〉

For each pizza ordered by a customer, we next count the
number of order dates and obtain the following factorisation
over the f-tree T4 in Figure 2:

〈Lucia〉 × 〈Hawaii〉 × 〈1〉 × 〈9〉∪

〈Mario〉 × (〈Capricciosa〉 × 〈2〉 × 〈8〉∪

〈Margherita〉 × 〈1〉 × 〈6〉)∪

〈Pietro〉 × 〈Hawaii〉 × 〈1〉 × 〈9〉

This is a further example of partial aggregation that helps
prevent possibly large factorisations. Finally, we compute
the revenue per customer by aggregating the whole subtree
under customer. This is accomplished by first computing
the revenue per pizza, which is obtained by multiplying the
partial count and sum aggregates and then summing over
all pizzas for each customer. The final result is:

〈Lucia〉 × 〈9〉 ∪ 〈Mario〉 × 〈22〉 ∪ 〈Pietro〉 × 〈9〉

The f-tree of this factorisation is:

customer

sumprice(item,price,pizza,date)

3. If we are interested in enumerating the tuples in query
results with constant delay, as opposed to materialising their
factorisations, we can avoid several restructuring steps and
thus save computation. For instance, if we would like to
compute the revenue per customer and pizza, we could read-
ily use the factorisation over T4, since for each customer we
could multiply the partial aggregates for the number of or-
der dates and the price per pizza for each pair of customer
and pizza on the fly. In general, if all group-by attributes
are above the other attributes in the f-tree of a factorised
relation, then we can enumerate its tuples while executing
partial aggregates on the other attributes on the fly. ✷

For queries with order-by clauses, the tuples in the fac-
torised query result can be enumerated with constant delay
in the order expressed in the query if two conditions are sat-
isfied: (i) as for group-by clauses, all order-by attributes are
above the other attributes in the f-tree of the factorisation,
and (ii) the sorting order expressed by the order-by clause
is included in some topological order of the f-tree.
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Example 2. Factorisations over T1 can support the orders:
(pizza); (pizza, date); (pizza, item); (pizza, item, date);
(pizza, date, item); and so on. The order (customer, pizza,
item, price) can be obtained by pushing up the customer at-
tribute past attributes date and pizza in the f-tree T1; this,
however, need not change the factorisation for pizza, items,
and price representing the right branch in T1. ✷

Our main observation is that the FDB query engine can
clearly outperform relational techniques if the input data
is factorised. This case fits a read-optimised scenario with
views materialised as factorisations and on which subsequent
processing is conducted. The key performance improvement
is brought by the succinctness of factorisations.

The contribution of this paper lies in addressing the evalu-
ation and optimisation problems for queries with aggregates
and ordering on factorised databases. In particular:
• We propose in Section 3 a new aggregate operator on

factorisations and integrate it into evaluation and fac-
torisation plans. For a given aggregation function, this
operator can reduce entire factorised relations to ag-
gregate values and follows simple compositional rules.
• We characterise in Section 4 those factorisation trees

that support efficient enumeration of result tuples for
queries with group-by and order-by clauses. For all
other factorisation trees, we show how to partially re-
structure them so as to enable efficient enumeration.
• We define in Section 5 the search space for optimal

evaluation plans on factorisations and introduce an op-
timisation strategy that subsumes existing techniques
for eager and lazy aggregation [30].
• We extend the main-memory FDB query engine with

support for queries with aggregates and group-by and
order-by clauses.
• We report in Section 6 on experiments with FDB and

the open-source relational engines SQLite and Post-
greSQL. Our experiments confirm that the performance
of these engines follow the succinctness gap for input
data representations. Since these relational engines
do not consider optimisations involving aggregates, we
also report on their performance with manually crafted
optimised query plans.

2. PRELIMINARIES
We assume familiarity with the vocabulary for relational

databases [2]. We consider queries expressed in relational
algebra using standard operators selection, projection, join,
and additional operators for aggregation, ordering, and limit:
• ̟G;α1←F1,...,αk←Fk

groups the input tuples by the at-
tributes in the set G and then applies the aggregation
functions F1 to Fk on the tuples within each group; the
aggregation results are labelled α1 to αk, respectively.
• oG orders lexicographically the input relation by the

list G of attributes, where each attribute is followed by
↑ or ↓ for ascending or descending order, respectively;
by default, the order is ascending and omitted.
• λk outputs the first k input tuples in the input order.
As selection conditions, we allow conjunctions of equalities

Ai = Aj and Aiθc, where Ai and Aj are attributes, c is a
constant, and θ is a binary operator. We consider standard
aggregation functions: sum, count, min, and max; avg can
be seen as a pair of (sum, count) aggregation functions.

SQL having clauses, which are conjunctions of conditions
involving aggregate functions, attributes in the group-by list
and constants, are readily supported. Such a clause can
be implemented by adding its aggregate functions to the
aggregate operator and by adding on top of the query a
selection operator whose condition is that of the clause.

2.1 Factorised Databases
We overview necessary vocabulary on factorised databases

[21] and on the state of the art on the evaluation and opti-
misation of select-project-join queries on such databases [6].
Factorisations. The key idea is to represent relations by
relational algebra expressions consisting of unions, products,
and singleton relations. A singleton relation 〈A :a〉 is a re-
lation over a schema with one attribute A containing one
tuple with value a.

Definition 1. A factorised representation (or factorisation)
over relational schema S is an expression of the form
• (E1∪· · ·∪En), where each Ei is a factorised represen-

tation over S ,
• (E1 × · · · × En), where each Ei is a factorised repre-

sentation over Si and S is the disjoint union of Si,
• 〈A :a〉, with attribute A, value a, and S = {A},
• 〈〉, representing the nullary tuple over S = {},
• ∅, representing the empty relation over any S .

Any factorisation E over S represents a relation JEK over
S , which can be obtained by equivalence-preserving rewrit-
ings in relational algebra that un-nest all unions within prod-
ucts. Any relation R can be trivially written as a union of
products of singletons, in which each such product corre-
sponds to a tuple of R. More succinct factorisations of R
are possible by the distributivity of product over union.

Example 3. The relation

R = {(♦, 1), (♦, 2), (♦, 3), (♣, 1), (♣, 2), (♣, 3)}
over schema {A,B} can be equivalently written as

E1 =(〈A :♦〉×〈B :1〉) ∪ (〈A :♦〉×〈B :2〉) ∪ (〈A :♦〉×〈B :3〉)∪
(〈A :♣〉×〈B :1〉) ∪ (〈A :♣〉×〈B :2〉) ∪ (〈A :♣〉×〈B :3〉)

and can be factorised as

E2 = (〈A :♦〉 ∪ 〈A :♣〉)× (〈B :1〉 ∪ 〈B :2〉 ∪ 〈B :3〉). ✷

Example 1 also gives several factorisations; for simplicity,
the attributes are not shown in the singletons of these fac-
torisations but can be inferred from the schema of the rep-
resented relation. The factorisations are more succinct than
the represented relations. For instance, in the factorisation
in Figure 1, since the information that Lucia and Pietro or-
dered Hawaii pizza on Friday is independent of the toppings
of this pizza, it is factored out and only represented once.

The tuples of the relation JEK of a factorisation E can
be enumerated from E with delay between successive tuples
constant in data size and linear in the schema size, which is
the same as enumerating them from JEK if it is materialised.
Factorisation trees. Factorisation trees act as both sche-
mas and nesting structures of factorisations. Several f-trees
are given in Figure 2 and discussed in Example 1.

Definition 2. A factorisation tree (f-tree for short) over
a schema S is a rooted forest whose nodes are labelled by
non-empty sets of attributes that form a partition of S .
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Given a select-project-join query Q = πPσϕ(R1 × · · · ×
Rn), we can characterise the f-trees that define factorisations
of the query result Q(D) for any input database D. Such f-
trees have nodes labelled by equivalence classes of attributes
in P ; the equivalence class of an attribute A consists of A
and of all attributes transitively equal to A in ϕ.

Proposition 1 ([21]). For any input database D, the
query result Q(D) has a factorised representation over an
f-tree T derived from Q if and only if T satisfies the path
constraint.

The path constraint states that dependent attributes can
only label nodes along a same root-to-leaf path in T . The at-
tributes of a relation are dependent, since in general we can-
not make any independence assumption about the structure
of a relation. Attributes from different relations can also be
dependent. If we join two relations, then their non-join at-
tributes are independent conditioned on the join attributes.
If these join attributes are not in the projection list P , then
the non-join attributes of these relations become dependent.
If a relation R satisfies a join dependency ✶ (X1, X2), i.e.,
R = πX1

(R) ✶ πX2
(R), then the attributes in X1 \ X2 are

independent of the attributes in X2 \X1 given the join at-
tributes X1 ∩X2.

We can compute tight bounds on the size of factorisations
over f-trees [21] using the notion of fractional edge cover
number of the query hypergraph [14]. These bounds can
be effectively used as a cost metric for f-trees and thus for
choosing a good f-tree representing the structure of the fac-
torised query result [6]. Our query optimisation approach
in Section 5 makes use of this cost metric.
Query evaluation using f-plans. FDB can compile any
select-project-join query into a sequence of low-level opera-
tors, called factorisation plan or f-plan for short [6]. These
operators are mappings between factorisations. At the level
of f-trees, they can restructure by swapping parent-child
nodes, merging sibling nodes, absorbing one node into its
ancestor, adding new f-trees, and removing leaves. A prod-
uct is implemented by simply creating a forest with the two
input f-trees. A selection A1 = A2 is implemented by a
merge operator if the attributes A1 and A2 lie in sibling
nodes, or by an absorb operator if A1’s node is a descen-
dant of A2’s node; otherwise, FDB swaps nodes until one of
merge or absorb operators can be applied. A projection with
attributes P is implemented by removing all attributes that
are not in P ; if this yields nodes without attributes, then re-
structuring is needed so that these nodes first become leaves
and then are removed from the f-tree. A renaming operator
can be used to change the name of an attribute. In FDB,
renaming needs constant time, since the attribute names are
kept in the f-tree and not with each singleton.

The execution cost of f-plans is dictated by the sizes of
its intermediate and final results, which depend on the suc-
cinctness of their factorisations. This adds a new dimension
to query optimisation, since, in addition to finding a good
order of the operators, we also need to explore the space of
possible factorisations for these results.

3. THE AGGREGATION OPERATOR
In this section we propose a new aggregation operator

on factorised data. To evaluate queries with aggregates,
the FDB query engine uses factorisation plans (sequences

of operators) in which the query aggregate is implemented
by one or more aggregation operators. We next give its
semantics and linear-time algorithms that implement it.

The syntax of this operator is γF (U), where F is the aggre-
gation function, which in our case can be any of sum, count,
max, or min (avg is recovered as a pair of sum and count),
and U is a subtree in the f-tree T of the input factorisation.
In case of an aggregation function sumA, minA or maxA, the
subtree U must contain the attribute A.

Given a factorisation over T , the operator evaluates the
aggregation function F over all attributes in U and stores the
result in a new attribute F (U). Expressed as a transforma-
tion of the relation JEK represented by the factorisation E,
this operator maps JEK to a relation R = ̟T \U ;F (U)←F JEK

over the schema1 (T \ U) ∪ {F (U)}.
In the resulting f-tree T ′, the subtree U is replaced by

a new node F (U). The resulting factorisation is uniquely
characterised by its underlying relation R and f-tree T ′. Sec-
tion 3.2 gives algorithms for our aggregation operator that
computes such factorisations.

Example 4. Figure 2 shows f-trees before and after the
execution of aggregate operators. For F = sumprice and

the subtree U rooted at node item in T1, the resulting f-
tree after the execution of the operator γF (U) is T2. For
F = countdate and the input f-tree T3, the resulting f-tree
after the execution of the operator γ

F (date) is T4. ✷

Similarly to the case of select-project queries, we can char-
acterise precisely all f-trees T ′ that define the nesting struc-
tures of factorisations for possible results of the aggregation
operator γF (U). The characterisation via the path constraint
in Proposition 1 also holds for aggregation, with the addition
that the aggregation operator introduces new dependencies
among the attributes in the f-tree T ′. By projecting away
the attributes in U , all attributes dependent on attributes in
U now become dependent on each other (as for the projec-
tion operator). In addition, the new attribute F (U) depends
on each of these attributes. The path constraint then stip-
ulates that any two dependent attributes must lie along a
same root-to-leaf path in the new f-tree T ′. Thus, the f-tree
T ′ resulting from the aggregation operator γF (U) satisfies
the path constraint and hence the resulting factorisation ex-
ists and is uniquely defined.

Example 5. Consider the aggregation operators described
in Example 4. In T2, the only new dependency introduced by
the aggregate operator is between the new attribute sumprice
and the attribute pizza, since we projected away the at-
tributes item and price that depended on the attribute pizza.

In T4, the new attribute countdate depends on all at-
tributes that the attribute data depended on, namely pizza
and customer. ✷

3.1 Composing Aggregation Operators
As exemplified in the introduction, for reasons of efficiency

we would often like to execute a query by implementing
aggregates via several aggregation operators and by possi-
bly interleaving them with restructuring operators. This
requires an approach that can compose aggregation opera-
tors so as to implement a larger aggregate. We next describe
such an approach.
1To avoid clutter, we slightly abuse notation and use T to
also denote the set of attributes in the f-tree T .
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We give special status to the attributes that hold results
of previous aggregate operators, and interpret them as pre-
computed values of an aggregate instead of arbitrary data
values. We refer to such attributes as aggregate attributes;
all other attributes are atomic. An aggregate attributeG(X )
carries along the aggregation function G and the original at-
tributes X to which G was applied. The aggregation oper-
ator then interprets factorisations 〈G(X ) :v〉 over the f-tree
consisting of the node G(X ) as a relation over schema X
and where the aggregate value for G is v. This special in-
terpretation of aggregate attributes helps us distribute the
evaluation of a query aggregate ̟G;α←F over several aggre-
gation operators. After the last operator is executed, we
execute a renaming operator that changes the name of the
last aggregation function application to the attribute α, as
specified by the query aggregate.

Example 6. After applying the operator γcount(item) to
the relation Pizzas in Figure 1, we get the factorisation

〈pizza:Margherita〉 × 〈count(item) :1〉 ∪

〈pizza:Capricciosa〉 × 〈count(item) :3〉 ∪

〈pizza:Hawaii〉 × 〈count(item):3〉.

A subsequent count(pizza, item) aggregation must inter-
pret the singleton 〈count(item):3〉 as a relation with three
items to obtain the correct result 〈count(pizza, item):7〉 and
not 〈count(pizza, item) :3〉. ✷

The composition rules for these operators are specified
next using a binary operator ◦: B ◦ A means that we first
evaluate A and then B.

Proposition 2. For any (sum, count, min, max) aggre-
gation functions F and G and f-trees U and V, it holds that:

• If U ⊇ V, then γF (U) ◦ γF (V) = γF (U).

• If U ⊇ V and A 6∈ V, then
γsumA(U) ◦ γcount(V) = γsumA(U).

• If U ∩ V = ∅, then γF (U) ◦ γG(V) = γG(V) ◦ γF (U).

Using Proposition 2, we can deduce that

γF (Un) ◦ · · · ◦ γF (U1) = γF (Un)

γFn(Un) ◦ · · · ◦ γF1(U1) = γFn(Un)

for any sequence of composable aggregation operators such
that ∀1 ≤ i ≤ n : Ui ⊆ Un, F can be any (sum, count,
min, max) aggregation function, and Fi is sumA whenever
A ∈ Ui, and the count aggregation function otherwise. In
other words, as long as the last operator aggregates over an
attribute set U , we can do pre-aggregations on subsets of U .

The query aggregates can then decompose as follows: count
aggregates can decompose into several count operators; sumA

aggregates can decompose into a mix of sumA and count
operators, min aggregates can decompose into several min
operators, and max aggregates into max operators.

Example 7. Consider the f-tree T4 in Figure 2 and the
factorisation in Example 1 that was obtained by executing
the operators γsumprice(item,price), followed by restructuring
and then γcount(date) on relation R. A subsequent operator
γsumprice(U), with U the subtree rooted at node pizza, uses

the results of the first two operators to compute the result
of the query aggregate ̟customer;sum(price)(R), as detailed
in Example 1. An alternative evaluation would only execute
γsumprice(U) without executing the previous two aggregation
operators. We can capture this equivalence as

γsumprice(U) ◦ γcount(date) ◦ γsumprice(item,price) = γsumprice(U).

3.2 Algorithms for the Aggregation Operator
In a factorisation over an f-tree T , the expressions over a

subtree U of T represent the values of the attributes of U
grouped by the remaining attributes T \ U . The aggrega-
tion operator γF (U) then only replaces each such expression
over U by a singleton 〈F (U) :v〉 where v is the value of the
aggregation function F on the relation represented by that
expression.

The value of F (JEK) for a given factorisation E over an
f-tree U can be computed recursively on the structure of E
in time linear in the size of E, even though E can be much
smaller than the relation JEK it represents. We reported in
earlier work a precise characterisation of the succinctness
gap between results to select-project-join queries and their
factorisations over f-trees [21]. This gap can be exponential
for a large class of queries.

We next give algorithms for each aggregation function.

3.2.1 The aggregation function count

We first give a recursive counting algorithm. The input
is a factorisation E over an f-tree and the output is the
cardinality of the relation JEK represented by E.

count(E):

• If E = 〈A :a〉 for atomic attribute A and value a, then
return 1.

• If E = 〈count(X ) :c〉 for any set of atomic attributes
X and number c, then return c.

• If E =
⋃

i Ei, then return
∑

i count(Ei),

since the relations JEiK represented by the subexpres-
sions Ei are disjoint.

• If E = ×iEi, then return
∏

i count(Ei).

3.2.2 The aggregation function sumA

The case of a sum aggregate is similar to count. The
following algorithm sumA takes as input a factorisation E
over an f-tree that contains the attribute A and outputs the
sum of all A-values in the relation JEK represented by E.

sumA(E):

• If E = 〈A :a〉, then return a.

• If E = 〈sumA(X ) :s〉 for any set of attributes X and
number s, then return s.

• If E =
⋃

i Ei, then return
∑

i sumA(Ei),

since the relations JEiK represented by the subexpres-
sions Ei are disjoint.

• If E = ×iEi, then exactly one of the expressions Ei

has the attribute A in its schema; let it be Ej .

Then return sumA(Ej) ∗
∏

i6=j count(Ei).
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Example 8. Consider the following factorisation

〈customer:Lucia〉 × 〈pizza:Hawaii〉 × 〈countdate(date) :1〉

× 〈sumprice(item, price) :9〉∪

〈customer:Mario〉 × (〈pizza:Capricciosa〉 × 〈countdate(date):2〉

× 〈sumprice(item, price) :8〉∪

〈pizza:Margherita〉 × 〈countdate(date) :1〉

× 〈sumprice(item, price) :6〉)∪

〈customer:Pietro〉 × 〈pizza:Hawaii〉 × 〈countdate(date) :1〉

× 〈sumprice(item, price) :9〉

over the f-tree T4 from Example 1. The operator γsumprice(U),
where U is the subtree of T4 rooted at node pizza, replaces
each expression over U with the aggregate value sumprice

of its represented relation. That is, we must calculate v =
sumpriceJEK, where

E =〈pizza:Hawaii〉 × 〈countdate(date):1〉×

〈sumprice(item, price) :9〉),

and replace E in the factorisation by v:

〈customer:Lucia〉 × 〈sumprice(item, price, pizza, date) :9〉).

Similarly, we obtain the following for Mario and Pietro:

〈customer:Mario〉 × 〈sumprice(item, price, pizza, date) :22〉)

〈customer:Pietro〉 × 〈sumprice(item, price, pizza, date) :9〉).

Using the algorithms, the value v = sumpriceJEK can be
computed as

J〈pizza:Hawaii〉 × 〈countdate(date):1〉 × 〈sumprice(item, price) :9〉)K

= 1 · J〈countdate(date):1〉K · J〈sumprice(item, price) :9〉K = 1 · 1 · 9 = 9.

Similarly, v = 1 · (1 ·2 ·8+1 ·1 ·6) = 16+6 = 22 for Mario
and v = 1 · 1 · 9 = 9 for Pietro. ✷

3.2.3 The aggregation functions minA and maxA

We next give an algorithm for the aggregation function
minA; the case for maxA is analogous.

minA(E):

• If E = 〈A :a〉, then return a.

• If E = 〈minA(X ) :c〉 for any set of attributes X and
value c, then return c.

• If E =
⋃

i Ei, then return mini minA(Ei).

• If E = ×iEi, where Ej is the expression that has the
attribute A in its schema, then return minA(Ej).

3.2.4 Composite aggregation functions

For a composite aggregation function (F,G), such as avgA
= (sumA, count), we apply the algorithms for the constituent
aggregation functions F and G separately. For an input fac-
torisation E, we then obtain (F (E),G(E)), e.g., (sumA(E),
count(E)) in case of avgA.

Query aggregates with more than one aggregation func-
tion also call for composite aggregate functions. For in-
stance, the query aggregate ̟G;α1←F1,...,αk←Fk

require the
evaluation of a k-ary aggregation function F = (F1, . . . , Fk).
As for unary aggregates, the evaluation of composite aggre-
gates can be distributed over several aggregation operators.

Since the grouping attributes G are the same for all aggre-
gation functions in F , each of these operators aggregates
over the same f-tree for all aggregation functions in F . The
resulting singletons in the factorisation would have the form
〈(F1, . . . , Fk) : (v1, . . . , vk)〉, where vi would be the result of
applying the aggregation Fi on the input.

If the same aggregation function has to be applied several
times, we calculate its result value only once. This situation
arises e.g. in case of the avgA aggregate or more generally
for query aggregates with count and sumA functions, since
sumA is decomposed into sumA and count, and the two
count computations can be shared.

4. GROUPBY AND ORDERBY CLAUSES
We next address the problem of evaluating group-by and

order-by clauses on factorised data. While these query con-
structs do not change the data, they may restructure it.

On relational data, grouping by a set G of attributes par-
titions the input tuples into groups that agree on the value
for G. Grouping is solely used in connection with aggre-
gates, where a set of aggregates are applied on the tuples
within each group. One approach to implementing group-
ing is to sort the input relation on the attributes of G using
some order of these attributes; this is similar in spirit to the
approach taken by the FDB.

Ordering an input relation by a list O of attributes sorts
the input relation lexicographically on the attributes in the
order given by O; for each attribute in O, we can specify
whether the sorting is in ascending or descending order.

The tuples in the sorted relation, or within a group in case
of grouping, can then be enumerated in the desired order
with constant delay, i.e., the time between listing a tuple
and listing its next tuple in the desired order is constant
and thus independent of the number of tuples. The limit
query operator λk then only returns the first k tuples from
the sorted relation.

In case of factorisations, tuple enumeration in a given or-
der or by groups may require restructuring. This restruc-
turing task can be effected without the need to flatten the
factorisations. In the following, we first characterise those
factorisations that support constant-delay enumeration in a
given order, and then explain how to restructure all other
factorisations to meet the constraint.

4.1 Ftree Characterisation by ConstantDelay
Enumeration in Given Orders

For any factorisation E over an f-tree T , it is possible to
enumerate2 the tuples in the represented relation JEK in no
particular order with constant delay [6]; more precisely, the
delay is linear in the size of the schema, which is fixed.

The goal of this section is to characterise those f-trees T
defining factorisations for which constant-delay enumeration
also exists for some given orders.

For any attribute, its singletons within each union are
kept sorted in ascending order and all operators preserve
this ordering constraint. This holds for the FDB implemen-
tation and also for all example factorisations in this paper.
This sorting is used for efficient implementation of equality
selections as intersection of sorted lists. It also serves well
our enumeration purpose. In particular, any factorisation

2The enumeration procedure uses a hierarchy of iterators in
the parse tree of the factorisation, one per node in T .
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already supports constant-delay enumeration in certain or-
ders, for example those representing prefixes of paths in the
f-tree of the factorisation.

Example 9. The f-tree T1 in Figure 2 supports constant-
delay enumeration in any of the orders (pizza); (pizza, date);
(pizza, date, customer); (pizza, item); or (pizza, item, price);
(pizza, date, item); but not in the orders (pizza, customer,
date); (customer, pizza). This can be verified on the factori-
sation over T1 given in Figure 1. The order on each of these
attributes need not be ascending. Indeed, if for instance the
order on the pizza attribute is descending, we iterate on the
sorted list of pizzas from the end of the list to the front. ✷

In contrast to ordering, grouping is less restrictive since
the order of the attributes in the group is not relevant. An
f-tree then readily supports constant-delay enumeration of
tuples by groups in a larger number of orders.

Example 10. The f-tree T1 in Figure 2 supports constant-
delay enumeration for grouping over all orders mentioned in
the previous example as well as all their permutations. ✷

We next make this intuition more precise. For the follow-
ing statements, we assume without loss of generality that no
two attributes in the attribute group G or order list O are
within the same equivalence class; if they are, their values
are the same for each tuple and we can ignore one of these
attributes in G and the last of the two in the ordered list O.

Theorem 1. Given a factorisation E over an f-tree T
and a set G of group-by attributes, the tuples within each
group of JEK can be enumerated with constant delay if and
only if each attribute of G is either a root in T or a child of
another attribute of G.

The case of order-by clauses is more restrictive.

Theorem 2. Given a factorisation E over an f-tree T
and a list O of order-by attributes, the tuples in JEK can be
enumerated with constant delay in sorted lexicographic order
by O if and only if each attribute X of O is either a root in
T or a child of an attribute appearing before X in O.

4.2 Restructuring Factorisations for Orderby
and Groupby Clauses

Restructuring factorisations can be implemented using the
swap operator [6]. We first recall this operator and then
discuss how it can be effectively used to implement group-
by and order-by clauses.

Given an f-tree T , the swap operator χA,B exchanges a
node B with its parent node A in T while preserving the
path constraint. We promote B to be the parent of A and
move up its children that do not depend on A. The effect of
the swapping operator χA,B on the relevant fragment of T
is shown below, where TB and TAB denote the collections of
children of B that do not depend, and respectively depend,
on A, and TA denotes the subtree under A. Separate treat-
ment of the subtrees TB and TAB is required so as to preserve
the path constraint. The resulting f-tree has the same nodes
as T and the represented relation remains unchanged:

· · ·

A

TA B

TAB TB

7→ · · ·

B

A

TA TAB

TB

While the above explanation of the swap operator was
given in terms of f-tree manipulation, the operator also re-
structures factorisations over this f-tree T . Any factorisa-
tion over the relevant part of the input f-tree T has the form

⋃

a

(

〈A :a〉 ×Ea ×
⋃

b (〈B :b〉 × Fb ×Gab)
)

,

while the corresponding restructured factorisation is

⋃

b

(

〈B :b〉 × Fb ×
⋃

a (〈A :a〉 × Ea ×Gab)
)

.

The expressions Ea, Fb and Gab denote the factorisations
over the subtrees TA, TB and respectively TAB. The swap
operator χA,B thus takes an f-representation where data is
grouped first by A then B, and produces an f-representation
grouped by B then A.

To restructure any f-tree T so that constant-delay enu-
meration is enabled (i) for grouping by a set G of attributes
and then (ii) for ordering by a list O of attributes, we es-
sentially follow the characterisation of good f-trees given by
Theorems 1 and 2. For grouping, we push all attributes in
G above all other attributes. For ordering, we proceed as
for grouping and in addition ensure that the attribute or-
der in the list O does not contradict the root-to-leaf order
in the f-tree. Each attribute push can be implemented by
a swap operator. The actual order of the swap operators
can influence performance and is thus subject to optimisa-
tion which is discussed in Section 5 in the greater context of
optimisation of f-plans with several other operators.

5. QUERY OPTIMISATION
FDB compiles a query into a sequence of operators, called

an f-plan. While in Section 3.1 we present rules for compos-
ing aggregation operators, in this section we define possible
f-plans for arbitrary queries with aggregates and present al-
gorithms for finding f-plans. There exist several f-plans for a
given query that differ in the join order, sequence of partial
aggregates, and factorisation restructuring.

Example 11. Consider the aggregate operator

̟customer; revenue ← sum(price)

whose input factorisation is over the f-tree T1. Example 1
describes an f-plan for this query. It computes sumprice(item,
price) to obtain a factorisation over T2, then pushes the
node customer to the root and aggregates the remaining
attributes. Assuming that pizza and customer are inde-
pendent (e.g. if the relation Orders(pizza, date, customer)
was obtained as a join of the daily Menu(pizza, date) and
Guests(date, customer)), a different plan executes the same
query. It would also first compute sumprice(item,price) and
obtain a factorisation over T2. Then, it would push the node
date to the root using a swap operator:

date

customer pizza sumprice(item, price)

The next operator would aggregate its two rightmost chil-
dren to obtain a factorisation with structure

date

customer sumprice(item, pizza, price)
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R1 = Orders ✶ Items ✶ Packages
Q1 = ̟package, date, customer; sum(price)(R1)

Q2 = ̟customer; revenue ← sum(price)(R1)

Q3 = ̟date, package; sum(price)(R1)

Q4 = ̟package; sum(price)(R1)

Q5 = ̟sum(price)(R1)
︸ ︷︷ ︸

AGG

Q6 = ocustomer(Q2)
Q7 = orevenue(Q2)
Q8 = odate, package(Q3)

Q9 = opackage, date(Q3)
︸ ︷︷ ︸

AGG+ORD

R2 = opackage, date, item(R1)

R3 = odate, customer, package(Orders)

Q10 = R2

Q11 = opackage, item, date(R2)

Q12 = odate, package, item(R2)

Q13 = ocustomer, date, package, item(R3)
︸ ︷︷ ︸

ORD

Figure 3: Three sets of queries used in the experiments. Relations R1, R2, and R3 are materialised.

and only then swap customer to the root to restructure the
factorisation as follows:

customer

date

sumprice(item, pizza, price)

We next perform the final aggregate and obtain

customer

sumprice(item, pizza, price, date)

The last operator renames sumprice(item, pizza, price, date)
to revenue. ✷

The goal of query optimisation is to find an f-plan whose
execution time is low. The cost metric that we use to differ-
entiate between plans is based on asymptotically tight upper
bounds on the sizes of the factorisations representing inter-
mediate and final results. Size bounds are a good prediction
for the time needed to create such factorisations. As shown
in earlier work [6], this can be computed by inspecting the
f-tree of each of these results as well as using the sizes of the
input relations.

We next qualify which sequences of operators correctly ex-
ecute the query. Then, we describe two optimisation tech-
niques: an exhaustive search in the space of all possible
operators that finds the cheapest f-plan under a given met-
ric but requires exponential time in the query size, and a
greedy heuristic whose running time is polynomial. Both
techniques subsume the respective optimisation techniques
given in earlier work for select-project-join queries [6].

5.1 Search Space of Fplans for a Given Query
We consider a general3 query with ordering, aggregates

and selections of the form

Q = oL
(

̟G;α←F (σA1=B1,...,Am=Bm,ϕ(R1 × · · · ×Rn))
)

Since product operators are the cheapest operators to exe-
cute on factorisations, we always execute them first: a prod-
uct of n relations can be represented as a factorisation that
is a product relational expression whose children are the n
relations. Selections with constants expressed by the condi-
tion ϕ can also be evaluated in one traversal of this factori-
sation. The remaining query constructs can be implemented
using further f-plan operators; a list of available f-plan op-
erators is given in Section 2, with the addition of the newly
introduced aggregation operator.

Let Q be a query without products or selections with con-
stants, and let E be a factorisation over an f-tree T . A se-
quence of operators S correctly implements the query Q on
E if and only if it satisfies the following three conditions:
3This discussion can be extended to composed aggregation
functions following our remarks from Section 3.2.4.

• For each selection condition Ai = Bi in Q, S contains a
selection operator that merges the equivalence classes
of Ai andBi as well a their nodes in its input f-tree. No
selection operator in S merges nodes with attributes
that are not equivalent in the selection of Q or in the
original f-tree T .
• The sequence S contains the aggregation operator γF (U)

for some subtree U whose set of attributes is T \G. It
may be preceded by any number of aggregates γF (V)

with V ⊆ (T \ G) to implement partial aggregation,
as allowed by the composition rules of Proposition 2.
There are no other aggregation operators. A renaming
operator occurs after γF (U) in S to rename F (U) to α.
• The output f-tree of the last operator must satisfy the

condition of Theorem 2 for the order-by list L.
These conditions present global requirements on an f-plan:

they characterise which sequences of operators correctly ex-
ecute a given query Q. Next we turn them into local re-
quirements: at any point in the f-plan we characterise which
single operator can be evaluated next so that we can still ar-
rive at the result of Q. This is possible since at any stage of
the f-plan, the f-tree encodes information about the previ-
ous operators in the f-plan as well as about the structure of
the factorisation. The nodes of the f-tree encode informa-
tion about the underlying relation (equalities and aggregates
already performed), and the shape of the f-tree encodes in-
formation about how the relation is factorised.

Consider the scenario of executing a query Q on an in-
put factorisation over the f-tree T , and suppose we already
executed a sequence S′ of operators. Call an operator per-
missible if it is one of the following:
• Any selection operator for one of the remaining selec-

tions Ai = Bi to be executed; we consider two selection
operators, one operator (merge) requires the attributes
Ai and Bi to be siblings in the f-tree, the other oper-
ator (absorb) requires one of the attributes to be a
descendant of the other in the f-tree.
• Any aggregate operator γF (U) with U ⊆ (T \ G) is

permissible unless U contains an attribute Ai that is
still to be equated with Bi. (Otherwise the equality
Ai = Bi could not be performed afterwards.)
• Any restructuring (swap) operator.

Proposition 3. The sequence S′ followed by the opera-
tor x can be extended to an f-plan of Q if and only if x is
permissible.

We can represent the space of all f-plans as a graph whose
nodes are f-trees and whose edges are operators between
them. An f-plan then corresponds to a path in the graph,
and an f-plan for the query Q is a path to any f-tree sat-
isfying the selection, aggregation, and order conditions. In
the presence of a cost metric for individual operators, such
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Figure 4: The effect of dataset scale on performance.

as the one based on size bounds for factorisations of opera-
tor outputs, we can utilise Dijkstra’s algorithm to find the
minimum-cost f-plan executing the query Q. Proposition 3
characterises the outgoing edges for each node and allows us
to construct the graph incrementally as it is explored.

5.2 Greedy Heuristic
The size of the space of all f-plans is exponential in the

size of the query, and searching for the optimal f-plan be-
comes impractical even for simple queries. We propose a
polynomial-time greedy heuristic algorithm for finding an
f-plan for a given query Q and input f-tree T0:

Repeat
1. If there are any permissible selection operators, choose

one involving a highest-placed node in the f-tree and
execute it.

2. Else if there are any permissible aggregate operators
γF (U), choose one with maximal U and execute it.

3. Else if there still exists a condition Ai = Bi such that
Ai and Bi are not in the same node, calculate the cost
for repeatedly pushing up (a) Ai, or (b) Bi, or (c) both
Ai and Bi, until Ai and Bi are siblings or one is an
ancestor of the other. Pick the cheapest option and
execute it.

4. Else if there is an attribute A ∈ G with parent B /∈ G,
swap A with B.

5. Else if there is an attribute A ∈ L with parent B such
that B is not before A in L, swap A with B,

6. Else break.

After this algorithm terminates, all selection conditions
have been evaluated in (1) possibly using the restructuring
from (3), all attributes not in G have been aggregated in
(2) possibly using the restructuring in (4), and the order
condition is met because of (5). There may still be several
aggregate attributes in the f-tree, the value of the final ag-
gregate is the product (or min or max, depending on the
aggregation function F ) of these values. This can be calcu-
lated during enumeration.

If we require the result of the aggregate in a single at-
tribute, we need to arrange all nodes dependent on the ag-
gregation attributes into a single path. This can be achieved
by repeatedly swapping them up:

7. Let P be the least common ancestor in T of all at-
tributes of T \G. While P has a child with an atomic
attribute R, swap P and R.
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Figure 5: Performance of AGG queries on the (fac-
torised) materialised view R1 at scale 32.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of our query engine FDB

against the SQLite and PostgreSQL open-source relational
engines. Our main finding is that FDB outperforms rela-
tional engines if its input is factorised. In addition to the
gain brought by factorisations, two optimisations supported
by FDB are particularly important: (1) Partial aggrega-
tion that reduces the size of intermediate factorisations and
(2) the reuse of existing sorting orders as enabled by local,
partial restructuring of factorisations. While the former op-
timisation is relevant to queries with aggregates, the second
is essential to queries with order-by clauses and can make
a difference even for simple queries that just sort the input
relation. We also found that limit clauses, which allow users
to ask for the first k tuples in the result, can benefit from
factorisations coupled with partial restructuring.
Competing Engines. FDB is implemented in C++ for
execution in main memory. We consider two flavours in the
experiments: FDB produces flat, relational output, whereas
FDB f/o produces factorised output. The lightweight query
engine SQLite 3.7.7 was tuned for main memory operation
by turning off the journal mode and synchronisations and by
instructing it to use in-memory temporary store. Similarly,
we run PostgreSQL 9.1.8 (PSQL) with the following pa-
rameters: fsync, synchronous commit, full page writes and
background writer are off, shared buffers, working memory
and effective cache size increased to 12 GB. For PSQL we
run each query three times and time the last repetition, for
which internal tables are cached and queries are optimised
for main memory. For all engines we report wall-clock times
to execute the query plans; these times exclude importing
the data from files on disk and writing the result to disk.
Our measurements indicate that the disk I/O for SQLite is
zero and zero or negligible for PSQL (always smaller than
when reading input and writing output to disk, which in-
creases execution time by at most 10%.)
Experimental Setup. All experiments were performed
on an Intel(R) Xeon(R) X5650 dual 2.67GHz/64bit/59GB
running VMWare VM with Linux 3.0.0/gcc4.6.1.
Experimental Design. We use a synthetic dataset that
consists of three relations: Orders, Items, Packages, gener-
alising the pizzeria database from Example 1. We control
their sizes, and therefore the succinctness gap between fac-
torised and flat results of queries on this dataset, using a
scale parameter s. The number of dates on which orders

1998



 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5

W
a

ll-
c
lo

c
k
 t
im

e
 [
s
e

c
]

FDB f/o
FDB

SQLite
SQLite man

PSQL
PSQL man

Figure 6: Performance of AGG queries on flat input
at scale 32. SQLite and PSQL using their own plans
and also manually optimised plans (man).

are placed is 800s, the average number of order dates per
customer is 80s and the average number of orders per or-
der date is 2, both with a binomial distribution. There are
100
√
s different items and 40

√
s packages of 20

√
s items in

average. Scaling generates database instances for which the
size of the natural join of all three relations grows as s4 while
its factorisation over the following f-tree T grows as s3.

package

date

customer

item

price

For the scale factor 32, the join has 280M tuples (1.4G sin-
gletons), while the factorisation has 4.2M singletons.

We use three sets of queries, cf. Figure 3. The set AGG
consists of five queries with aggregates and group-by clauses.
The set AGG+ORD consists of four queries with order-by
clauses and aggregates. The set ORD consists of four order-
by queries on top of sorted relations R2 and R3.

We next present five experiments whose focus is on per-
formance of query evaluation; a comprehensive experimen-
tal evaluation of our query optimisation techniques is avail-
able online at the FDB web page: http://www.cs.ox.ac.uk/

projects/FDB/. For all queries used in the following exper-
iments, the heuristic algorithm gives optimal f-plans under
the asymptotic bounds metric.
Experiment 1: Aggregate queries on materialised
views. Figure 4 shows that FDB clearly outperforms SQLite
and PSQL in our experiments on the factorised materialised
view with AGG queries Q2 and Q3. The evaluation of both
queries in FDB is done using partial aggregation and re-
structuring, similar to the query P in the introduction. The
relational engines only perform grouping and aggregation
on the materialised view; PSQL uses hashing while SQLite
uses sorting to implement grouping. The performance gap
widens as we increase the scale factor and raises from one
order of magnitude for scale 1 to two orders of magnitude
for scale 32 when compared to PSQL; SQLite shows one
additional order of magnitude gap. Notably, the reported
timing for FDB includes the enumeration of result tuples,
i.e., its output is flat as for relational engines.

Figure 5 looks closer at this scenario for scale 32 and AGG
queries. When computing the result as factorised data, the
performance gap further widens by two orders of magnitude
for Q1. This is the time needed to enumerate the tuples in
the query result and is directly impacted by the cardinality
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Figure 7: Performance of AGG+ORD queries on
the (factorised) materialised view R1 at scale 32.

of the result. The result of Q1 is large as it consists of
all joinable triples of packages, dates, and customers. The
results of the other queries have less attributes and smaller
sizes. For them, the enumeration time takes comparable or
much less time as computing the factorised result.
Experiment 2: Aggregate queries on relational data.
Figure 6 presents FDB’s performance for evaluating aggre-
gate queries on flat, relational data (no materialised view
this time) and producing flat output. Surprisingly, FDB
outperforms SQLite and PSQL in their domain. A closer
look revealed that both relational engines do not use par-
tial aggregation and hence only consider sub-optimal query
plans. With handcrafted plans that make use of partial and
eager aggregation [30], all engines perform similarly. If we
set for factorised output, then FDB f/o outperforms FDB in
case of large factorisable results (Q1, Q3); for small results,
there is no difference to FDB as expected.
Experiment 3: Aggregate and order-by queries on
materialised views. Figure 7 shows that ordering only
adds a small overhead to queries with aggregates. For FDB,
the result of Q2 is already ordered by customer, and thus the
additional order-by clause in Q6 is simply ignored by FDB.
Re-ordering by the result of aggregation, as done in Q7, does
only add a marginal overhead, not visible in the plot due to
the log scale on the y axis. This is explained by the relatively
small result of Q2. A similar situation is witnessed for the
pair of queries Q8 and Q9 that apply different orders on the
result to Q3. Overall, it takes longer since Q3 has a larger
result than Q2 (there are more pairs of date and package
than customers). Following the pattern for queries Q2

and Q3 discussed in Experiment 1 and the lack of impact of
ordering in this experiment, FDB outperforms the relational
engines in this experiment, too.
Experiment 4: Partial sorting via restructuring of
factorisations. In this experiment we investigate the per-
formance of the class ORD of order-by queries, and their
versions asking for the first 10 tuples only, see Figure 8.
FDB restructures the factorisation whenever necessary be-
fore enumeration in the required order. The time required
for the restructuring is essentially captured by the execu-
tion time of the limit variant, since enumerating the first 10
tuples only adds a small constant overhead.

Query Q10 asks for a specific order on the materialised
view R2 that is already sorted in that order. FDB thus needs
no restructuring of the view and enumerates the results.
The relational engines need no additional sorting and only
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Figure 8: Performance of ORD queries with and
without a LIMIT 10 statement (lim) on the (fac-
torised) materialised view R1 at scale 16.

scan the relation R1. This allows us to see how relation
scanning compares against FDB enumeration: The latter is
about the same speed as the PSQL scan. SQLite is faster
than both; this is possibly because FDB is not optimised
for string manipulation (by, e.g., hashing all strings in a
relation). Returning the first 10 tuples only takes negligible
time for both FDB and PSQL, SQLite takes longer.

Query Q11 asks for a slightly different order than the one
existing in the relational input R2. FDB need not do any
work, since its factorisation of R2 does already support this
new order, as well as the original order. Simultaneous sup-
port for several orders is a key feature of FDB. The f-tree of
the factorised materialised view R1 is T1 from the introduc-
tion, where we have package instead of pizza. It can there-
fore support both orders (package, date, item) and (package,
item, date). In contrast, both relational engines need to sort
the relation from scratch. Enumeration with FDB takes
the same time as for Q10, yet now the relational engines
need more time to sort, PSQL about one order of magni-
tude more. Even to return the first 10 tuples requires major
work for the relational engines, while FDB returns each of
these tuples with constant delay and no precomputation.

Query Q12 asks for an order that is not already supported
by the f-tree of the factorised materialised view. In this
case, FDB needs restructuring before the enumeration: one
swap between date and its parent node package is enough,
and is still faster than sorting from scratch using either of
the relational engines. Returning the first 10 tuples in the
required order using PSQL takes the same time as the swap.

Query Q13 just sorts the relation R3. Remarkably, even
for sorting a (non-factorised) relation, FDB outperforms the
relational engines since it only needs to partially re-sort the
input. This is achieved by swapping the attributes date and
customer. The factorisation constructed by FDB groups the
relation by the first attribute in the sorting order, then by
the second, and so on. The swap of date and customer re-
groups by customer instead of date, yet the list of packages
for each date and customer remains sorted.
Experiment 5: Overhead of relational engines. PSQL
and SQLite are full-fledged engines while FDB is not. To
understand their overhead, we also benchmarked a basic
main-memory relational engine called RDB; this has been
previously used for benchmarking against FDB [6] for select-
project-join queries and we extended it with sorting and ag-
gregation operators for our purpose. We ran all queries in

the previous experiments also with RDB. Where grouping is
required, RDB first sorts the records (using C++ STL sort)
and then performs aggregation in one scan. We found that
RDB’s performance is very close to SQLite’s (which imple-
ments grouping by sorting using B-trees) and we therefore
not explicitly show it in the plots.

7. RELATED WORK
There is a wealth of related work on storage layout, suc-

cinct data representations, schema design, polynomial-delay
enumeration for query results, and aggregate processing.
Storage layout. Similar to FDB, columnar stores, e.g.,
MonetDB [9] and C-Store [9, 28], target read-optimised sce-
narios. Horizontal partitioning or sharding is used for data
distribution and can increase parallelisation of query pro-
cessing. Partitioning-based automated physical database
design [3, 15] has been proposed for maximising the perfor-
mance of a particular workload. RodentStore is an adaptive
and declarative storage system providing a high-level inter-
face for describing the physical representation of data [11].
In contrast to existing approaches, FDB intertwines verti-
cal and horizontal partitioning of relational data. For this
reason, existing techniques are not directly applicable.

Distributed database systems such as Google’s Megas-
tore [5] and F1 [26] and Microsoft’s Cloud SQL Server [8]
achieve scalability by factorising databases to increase data
locality for common access patterns: the tables are pre-
joined and clustered following an f-tree (called tree schema)
predefined by existing key-foreign key constraints. The data
is then partitioned across servers into factorisation frag-
ments rooted at different tuples of the root table. The FDB
query operators are defined on general factorisations and
can thus be naturally ported to such a distributed setting.
Data compression. Data compression shares with factori-
sation the goal of compact data representation, as used e.g.,
for column compression [28, 15] and dictionary-based value
compression in Oracle [23]. Such data compression schemes
can benefit FDB and complement the structural compres-
sion brought by factorised representations.
Schema design. Factorisation trees rely on join dependen-
cies, which form the basis of the fifth normal form [24]. Join
dependencies were not used previously as a basis for a repre-
sentation system for relational data that can support query
processing. Factorisations can go beyond the class of factori-
sation trees and the query processing techniques developed
in this paper can be adapted to more general factorisations.
Succinct representation systems and applications.
Factorised databases have been introduced recently [21, 6].
Generalised hierarchical decompositions [12] and compacted
relations [7] are equivalent to factorisations over f-trees but
questions of succinctness have not been addressed by ear-
lier work. Nested relations [19, 17, 1] are also structurally
equivalent to factorisations over f-trees, their data model is
explicitly non-first normal form. Previous work does not
study representing standard relations by nested relations,
nor the related questions of choosing a succinct representa-
tion and evaluating queries on the represented relation.

In provenance and probabilistic databases, factorisations
can be used for compact encoding of provenance polynomi-
als [21] and for efficient query evaluation [29]. They can be
used to represent large spaces of possibilities or choices in
design specification [16] and in incomplete information [20].
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Aggregate processing. Our approach to partial aggre-
gation before restructuring is intimately related to work by
Yan and Larson on partially pushing sum and count ag-
gregation past joins [30]. This is called eager aggregation
and contrasts with lazy aggregation, which is applied af-
ter joins. While their technique relies on query rewriting,
our approach conveys information about partial aggregation
in the f-trees of temporary results, and replaces elaborate
rewrite rules by simple compositional rules for aggregation
operators. In relational processing, eager aggregation re-
duces the size of relations participating in a join and pre-
vents unnecessary computation of combinations of values
that are later aggregated anyway. FDB already avoids the
explicit enumeration of such combinations by means of fac-
torisation, whose size is at most the size of the join input
and much less for selective joins. FDB thus combines the
advantages of both lazy and eager aggregation.
Enumeration of query results. Factorised representa-
tions of query results allow for constant-delay enumeration
of tuples. For more succinct representations, e.g., binary
join decompositions [13] or just the pair of the query and
the database [4], retrieving any tuple in the query result
is NP-hard. Factorised representations can thus be seen as
compilations of query results that allow for efficient sub-
sequent processing. There has been no previous work on
enumeration in sorted order on factorised data. The clos-
est in spirit to ours is on polynomial-delay enumeration in
sorted order for results to acyclic conjunctive queries [18].

8. CONCLUSION AND FUTURE WORK
In this paper we introduce processing techniques for que-

ries with aggregates and order-by clauses in factorised data-
bases. These techniques include partial aggregation and
constant-delay enumeration for query results and are imple-
mented in the main-memory query engine called FDB. We
show experimentally that FDB can outperform the open-
source engines SQLite and PostgreSQL if its input is repre-
sented by views materialised as factorisations.

An intriguing research direction is to go beyond factori-
sations defined by f-trees and consider more succinct repre-
sentations such as decision diagrams.
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representations of query results: Size bounds and
readability. In ICDT, pages 285–298, 2012.

[22] J. Pearl. Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann,
1989.
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