
Towards Social Data Platform:
Automatic Topicfocused Monitor for Twitter Stream ∗

Rui Li†
ruili1@illinois.edu

Shengjie Wang†

wang260@illinois.edu
Kevin ChenChuan

Chang†,∗

kcchang@illinois.edu
† Department of Computer Science, University of Illinois at UrbanaChampaign, Urbana, IL, USA

∗ Advanced Digital Sciences Center, Illinois at Singapore, Singapore

ABSTRACT
Many novel applications have been built based on analyzing
tweets about specific topics. While these applications pro-
vide different kinds of analysis, they share a common task
of monitoring “target” tweets from the Twitter stream for
a topic. The current solution for this task tracks a set of
manually selected keywords with Twitter APIs. Obviously,
this manual approach has many limitations. In this paper,
we propose a data platform to automatically monitor tar-
get tweets from the Twitter stream for any given topic. To
monitor target tweets in an optimal and continuous way, we
design Automatic Topic-focused Monitor (ATM), which it-
eratively 1) samples tweets from the stream and 2) selects
keywords to track based on the samples. To realize ATM,
we develop a tweet sampling algorithm to sample sufficient
unbiased tweets with available Twitter APIs, and a key-
word selection algorithm to efficiently select keywords that
have a near-optimal coverage of target tweets under cost
constraints. We conduct extensive experiments to show the
effectiveness of ATM. E.g., ATM covers 90% of target tweets
for a topic and improves the manual approach by 49%.

1. INTRODUCTION
Recently, various social media services, such as Twitter

and Weibo, have emerged to support users to publish and
share information online. In particular, Twitter, a pioneer of
such social media services which we will focus on, is the most
popular “micro-blog” for users to publish and share tweets.
It now has nearly 140 million active users, who generate 340
million tweets everyday.

∗
This material is based upon work partially supported by NSF Grant

IIS 1018723, the Advanced Digital Science Center of the University of
Illinois at Urbana-Champaign and the Multimodal Information Ac-
cess and Synthesis Center at UIUC. Any opinions, findings, and con-
clusions or recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views of the funding
agencies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 21508097/13/14... $ 10.00.

Compared to traditional media (e.g., web pages), Twitter
and other social media have several unique advantages: 1)
broad coverage, tweets cover every aspect of our life, from na-
tional news (e.g., president election), local events (e.g., car
theft at 2nd st.), to personal expressions (e.g., “I like iPad”);
2) fresh content, with the brevity of tweets (140 character-
s) and the wide use of mobile devices, tweets are generated
timely; 3) rich attributes, tweets not only contain text but
also are associated with many attributes (e.g., authors, time
stamps and locations).

The unique advantages of Twitter and other social media
make them information treasures for many applications.

• Emergency Management (EM) Monitoring tweets about
emergencies (e.g., crimes and disasters) helps first aid re-
sponders to detect and handle crises timely. E.g., Sakak-
i et al. [21] track earthquakes instantly, and Li et al. [12]
detect crime events in real time.

• Business Intelligence (BI) Monitoring tweets about prod-
ucts (e.g., “iPad”) or brands (e.g., “Apple”) helps busi-
ness owners to know customers’ opinions [26] and address
them accordingly. Moreover, it even provides accurate
indicators for market analysts to predict stock prices [22].

• Political Analysis (PA) Monitoring tweets about politic-
s helps politicians to find concerns of voters in particular
demographic groups (e.g., females in California), and sup-
ports political analysts to predict election results [24].

As these and many other scenarios indicate, social media
based applications [21, 12, 24, 22] usually share the same
workflow. They start with collecting potentially relevant
tweets for a topic (e.g., crime), apply a classifier f to au-
tomatically determine whether a collected tweet is indeed
relevant to the topic, and process the tweets that pass f for
application-specific analysis.

Thus, while these applications conduct different kinds of
analysis, they face the same problem of monitoring target
tweets from the Twitter stream with respect to a given clas-
sifier f . Everyday, while hundreds of millions of tweets are
generated, only a small percentage of them may pass the
classifier f as target tweets for an application. It is difficult
to collect most of them effectively.

To effectively support monitoring target tweets for any
applications (e.g., EM, BI, PA), we propose a social data
platform, which allows users to plug in any classifier f as
input and automatically collects target tweets for f from
the Twitter stream as output. Ideally, the platform should
meet the following requirements.

1966

• Optimal : it should collect, with optimal or near-optimal
guarantees, as many target tweets as possible under giv-
en computation resources, since many applications need
a comprehensive coverage of target tweets to perform ac-
curate analysis (e.g., reporting a car theft at 2nd street).
As target tweets are sparsely scattered, they are hard to
catch comprehensively.

• Continuous: it should collect target tweets from the Twit-
ter stream continuously, since new tweets are being creat-
ed all the time. As target tweets with new content (e.g.,
“Boston bomb”) may arise, it is challenging to capture
the dynamics of the Twitter stream.

While the two requirements are crucial for all application-
s, current solutions of monitoring target tweets for a given
classifier f (topic) cannot satisfy them.
Twitter provides a set of APIs [25], which represent stan-

dard programmatic ways of monitoring a document stream,
but none of them can directly be used for monitoring tar-
get tweets for a topic. The filter API, which returns all the
tweets containing a given keyword, will miss many target
tweets that do not contain the keyword. The sample API,
which returns 1% of all tweets (and thus 1% of target tweet-
s), is insufficient for many applications mentioned above.
The firehose API returns all tweets but requires a specific
permission to use. Even if it is open to access, as it requires
prohibitive processing costs (e.g., classifying all tweets), it
is inefficient to use. Thus, for Twitter, monitoring target
tweets for a topic is an unsolved problem.
Given Twitter APIs, since target tweets for a topic (e.g.,

crime) may share some relevant keywords (e.g., “shoot”),
many existing applications [21, 26, 22] use the filter API
with a set of manually selected keywords (e.g., {“shoot”,
“kill”}). However, this manual approach has severe disad-
vantages. First, it is laborious, as it requires extensive hu-
man efforts to select keywords for each topic. Second, the
selected keywords have no guarantee of optimality. People
might miss useful keywords (e.g., “police”) and thus many
target tweets. Third, the keywords may quickly become out-
dated as time goes by, since new target tweets, which have
different contents from previous ones (e.g., “Boston bomb”),
are emerging and will be missed by them.

ATM Framework Thus, to monitor target tweets for a
given classifier (topic), we have to address how to enable au-
tomatically selecting “optimal” and “continuous” keywords.
As our first contribution, in Sec. 3, we propose the Auto-

matic Topic-focused Monitor (ATM) framework. Our basic
intuition is that the “current” can predict the “near future”.
Particularly, to select optimal and continuous keywords, we
can estimate the “usefulness” of any set of keywords based
on recent samples from the Twitter stream and select the
most “useful” set to monitor. Thus, ATM takes a sampling,
optimizing and tracking approach to monitor target tweets
iteratively. In an iteration, ATM 1) samples tweets from the
stream to enable estimation, 2) optimizes keywords to use
based on their estimated coverage of target tweets, and 3)
tracks target tweets with the selected keywords. To monitor
target tweets continuously, ATM repeats the procedure in
iterations (i.e., it tracks a new set of keywords every itera-
tion). Since within a short iteration contents of tweets are
similar and ATM selects keywords based on their coverage,
the keywords are optimal. Further, in every iteration, AT-
M updates keywords according to recent samples from the
Twitter stream, so the keywords are continuous.

Tweet Sampling To realize ATM, we need to sample a suf-
ficient number of random tweets from the Twitter stream
in each iteration for accurate estimation. It is challenging
because the available APIs are limited or biased. As we will
prove in Sec. 4, the “accuracy” of the estimated coverage
of keywords is inversely related to the sample size, so the
sample API, which only returns 1% of tweets in an itera-
tion, is limited. Further, directly using the filter API with
keywords is biased to the tweets containing the keywords.

As our second contribution, in Sec. 4, we develop a ran-
dom sampling algorithm to collect a sufficient number of
random tweets with the limited and biased APIs. To sample
additional tweets, we effectively combine the available APIs
to conduct random walk sampling on a carefully designed
“tweet graph”. The method samples tweets according to a
trial distribution defined by the graph. Further, we utilize
rejection sampling to adjust the tweets from the trial dis-
tribution to the uniform distribution. As the main merit
of our algorithm, we carefully design a tweet graph, which
connects tweets with appropriate weights, to make sure that
the random walk sampling 1) can be easily realized with the
available APIs and 2) theoretically converges to a known
trial distribution over tweets.

Keyword Selection To realize ATM, we further need to
optimize keywords to use for a given classifier based on sam-
ples. When optimizing keywords, we have to consider “fil-
tering costs” at Twitter and “post-processing costs” in AT-
M, since each selected keyword (or collected tweet) takes
filtering (or post-processing) costs and both computation
resources are limited. We formally model our problem as s-
electing a set of keywords that have the maximum coverage
of target tweets under two cost constraints, 1) cardinali-
ty constraint, which limits the number of selected keywords
below a threshold M , and 2) budget constraint, which limits
the total number of collected tweets below a budget B. The
problem is challenging, as we have to select keywords effi-
ciently. As we will prove in Sec. 5, the problem is NP-hard,
which prohibits finding the optimal solution in real time.

As our third contribution, in Sec. 5, we develop a key-
word selection algorithm, which finds a near-optimal solu-
tion in polynomial time. Towards developing our algorithm,
we observe and prove that our problem possesses a desir-
able “submodular” property. While optimizing a submodu-
lar function with one constraint is well known, our problem
has two constraints and needs a new solution. Based on the
fact that maximizing a submodular function with one con-
straint can be approximated with a greedy algorithm, we
develop a new greedy algorithm for our problem, which first
relaxes our problem to a simple problem with one constrain-
t (i.e., budget) and then handles the other constraint (i.e.,
cardinality). We also give its approximation rate.

Experiments We implement our ATM framework based
on the two algorithms and evaluate it with extensive experi-
ments in Sec. 6. Our experiments show the following results.
First, our sampling algorithm collects a large number of ad-
ditional random tweets. Second, our selection algorithm 1)
is effective, which collects 84% of target tweets for a topic
with only 20 keywords and improves the best baseline by
19%, 2) is efficient, and 3) works for various topics and con-
straints. Third, as an integrated framework, ATM greatly
improves a manual (and static) approach by 49%.

2. RELATED WORK

1967

In this section, we discuss our related work. Our work is
related to crawling web pages, monitoring social media, and
retrieving relevant documents with keywords.
Web page crawling has been a fundamental task since the

beginning of the Web. Many studies, which focus on differ-
ent issues, have been done. A good survey of them can be
found in [16]. Among them, Chakrabarti et al. [5] propose
the concept of focused crawling, which crawls pages relevant
to a predefined topic. Specifically, before crawling a URL,
a topic-focused crawler analyzes the URL’s context and its
link structure to determine whether it is relevant. Our task
is different, as we monitor tweets for a topic with keywords
instead of crawling pages via hyperlinks.
Social media monitoring becomes an important task due

to the emergence of social media based applications. While
most applications [21, 22, 24] monitor data based on a man-
ual approach, some automatic monitors have been proposed.
Hurst and Maykov [7] propose an architecture for monitor-
ing general blogs, but they select blog feeds using simple
rules (e.g., how often a new blog is posted) without con-
sidering topics. Our problem is different, as we design a
topic-focused monitor. Boanjak et al. [4] propose a focused
crawler, which crawls topic related tweets from heuristically
selected users (i.e., the user who has the most connection-
s to the existing ones). We [12] also present a heuristic
rule to select keywords for monitoring crime-related tweets.
However, these methods have two limitations: 1) they se-
lect users/keywords heuristically without any performance
guarantees, and 2) they do not consider cost constraints.
Selecting keywords to retrieve relevant documents have

been studied [20, 8, 1, 6] in other settings (instead of moni-
toring social media). For example, Robertson and Jones [20]
design a weighting function to find keywords to retrieve ad-
ditional relevant documents for a query. Agichtein and Gra-
vano [1] utilize the function in [20] and other rules to find the
keyword queries that retrieve only the relevant documents
for information extraction. As these methods [20, 8, 1, 6]
focus on different settings, they are not to find the keywords
that have the maximum coverage of target tweets for a topic
under two cost constraints. Thus, they 1) neither have guar-
anteed performance for our problem (e.g., keywords selected
in [1, 20] are too specific to cover many target tweets), 2)
nor consider cost constraints (e.g., they [6] do not limit the
total number of collected documents). Further, they do not
address how to sample sufficient tweets from the Twitter
stream to update keywords iteratively.
Our ATM framework advances the above methods [12, 4,

20, 8, 6] from two aspects. First, ATM selects keyword-
s in a constrained optimization approach, which 1) finds
near-optimal keywords with guarantees and 2) considers t-
wo types of costs. Second, ATM updates keywords in itera-
tions, which monitors the dynamic Twitter stream continu-
ously. To enable updating keywords, we design a sampling
algorithm to sample random tweets from the stream.

3. OVERVIEW
In this section, we propose our ATM framework and ab-

stract two challenging problems in realizing ATM.

Twitter APIs To begin with, we introduce three Twitter
APIs for monitoring public tweets from the Twitter stream.
They represent three standard programmatic ways of access-
ing a corpus. Details of them can be found in [25].

• Sample returns a set of random samples (approximately
1%) of all public tweets.

• Filter returns the public tweets that match given filter
predicates (e.g., a keyword “police”).

• Firehose returns all public tweets.

Given the three APIs, we choose the filter API to monitor
target tweets for a topic for two reasons. First, we cannot
use the sample API or the firehose API. The sample API
only gives 1% of target tweets, which are not enough for
many applications (e.g., detecting local crimes [12] or pre-
dicting stock prices based on redundancies [22]). We note
that the sample API returns the same samples even if we
call it from different machines. The firehose API requires
a permission to use and is not available to general users.
Even if it is available, we should not use it, as it requires
prohibitive processing costs (e.g., processing all the tweets).
Second, it is possible to collect most target tweets for a topic
(e.g., crime) using the filter API with well selected keyword-
s, since, intuitively, different target tweets may share similar
keywords (e.g., “shoot”). We note that Twitter has other
APIs, but they are not for monitoring public tweets. E.g.,
the user API requires a user’s authentication, and returns
the tweets from his friends.

ATM Overview Based on Twitter APIs, we propose AT-
M to effectively monitor the Twitter stream for any given
classifier (topic). As Fig. 1 illustrates, ATM generally takes
any classifier f as input and outputs target tweets for f un-
der certain cost constraints. Specifically, given a classifier f
(e.g., crime), to collect its targets tweets from the Twitter
stream in an optimal and continuous way, ATM iteratively
selects optimal keywords to track.

At the ith iteration, to monitor target tweets with “opti-
mal” keywords, ATM works in three steps. First, to enable
estimating the usefulness of any set of keywords, a sampler
collects a large amount of tweets Si (e.g., t1:“police detained
17 people...”, t2: “car theft ...”, t3: “enjoy my tea...”) from
the stream. Then, given the samples Si and the classifier
f , a selector selects a set of keywords K∗

i (e.g., {“police”,
“theft”}) that have the maximum coverage of target tweets
in Si (e.g., t1, t2) under cost constraints. Finally, a tracker
calls the filter API with K∗

i to collect target tweets (e.g., t:
“police arrested ...”) from the stream for this iteration.

To monitor target tweets with new content “continuous-
ly”, ATM updates keywords iteratively. While the tracker
monitors target tweets with keywords K∗

i for the ith itera-
tion, the sampler collects new samples Si+1 (e.g., t1 “bomb
in Marathon...”, t2 “FBI came...”, t3 “good food...”) for the
(i+1)th iteration. When the ith iteration finishes, the selec-
tor selects a new set of keywords K∗

i+1 ({“bomb”, “FBI”})
based on Si+1, and the tracker uses K∗

i+1 to collect target
tweets for this new iteration.

Here, we explain that it is reasonable to take a classifier f
as input. As we motivated in Sec.1, our goal is to generally
support monitoring target tweets for various social media
based applications (e.g., EM, BI, PA), which have already
used classifiers [12, 22, 26] to automatically determine their
target tweets. Thus, our framework only leverages the ex-
isting classifiers in those applications and does not add any
extra burden. Further, while our focus is not the scenarios
where classifiers do not already exist, it is possible to train
classifiers and use ATM for these scenarios, since many clas-
sifiers have been studied in general or for Twitter [26, 19],

1968

Twitter Stream

Emergency

Response

Politic

Analysis

Business

Intelligence

Applications

ATM
Classifier f Target Tweets ti…..

Oct 1 | Oct 2 | Oct 3 |

Twitter APIs

Sampler

Tracker

Selector S={t
1
,t

2
}

K*={k
1
,k

2
}

 ti, ...

Tracker Sampler

Selector

Iteration 1

Iteration 2

Figure 1: Overview of ATM

and can accurately predict target tweets for a topic with
advanced models [26, 19] and novel features [12].
We further emphasize that the iteration length l should be

carefully set in ATM. For any topic, l could not be too short
or too long. On the one hand, l cannot be too long (e.g., a
day) since target tweets with new content may emerge and
need to be captured with new keywords. On the other hand,
l cannot be too short (e.g., 5 mins), since we may not collect
enough tweets in a short iteration to accurately estimate
the usefulness of keywords. Further, since different topics
require different numbers of samples for accurate estimation
(e.g., a sparse topic like crime needs many samples) and their
target tweets change at different rates (e.g., tweets about
olympics news develop very fast), l should be different for
different topics. Thus, for a topic, we treat l as an important
parameter to tune. As ATM works for any given l, we can
find a reasonable l for a topic via testing the performance
of ATM with different l. We note that we focus on the two
essential problems of each iteration in this paper and leave
how to automatically set l for a topic as our future work.
ATM meets our requirements in Sec. 1. First, it is guar-

anteed to use optimal or near-optimal keywords, since we
can intuitively assume that, within a short iteration, target
tweets are similar to those in samples, and it selects key-
words based on their usefulness on the samples. Second, it
can continuously monitor target tweets, since every iteration
it uses new keywords based on the most recent samples.
To realize ATM, in each iteration (i.e., a short time pe-

riod), we have to 1) sample a sufficient amount of random
tweets, which may be more than the samples returned by
the sample API (i.e., 1% of tweets in an iteration) for accu-
rate estimation, and 2) efficiently find the optimal keywords
to use under cost constraints based on the samples.
Here, we treat them as two independent problems, tweet

sampling and keyword selection, for two reasons. First,
a separate sampler is “topic-independent” and can collect
samples for serving different topics (e.g., crime or politic).
Second, each problem is meaningful by itself with many ap-
plications. The solution for tweet sampling can be used
as a general crawler to collect sufficient random tweets, as
many applications (e.g., estimating prosperities of the Twit-
ter stream in a day) require collecting more than 1% of
tweets. The solution for keyword selection can also be ap-
plied to other scenarios (e.g., selecting experts for a com-
munity). We note that, for Twitter, which has access to
all the tweets, the first problem might be easy, but how to
solve the second problem is unclear. Further, as most social
media based applications [21, 22, 12] only have access to the
filter and sample APIs, both problems are challenging.

Problem Abstraction Next, we formally define the two
problems. To begin with, we introduce some notations. We

use 1) t as a tweet, 2) k as a keyword, 3) T as the set of all the
tweets in an iteration, and 4)K as the set of all the keywords
that can be used as filters. A keyword k ∈ K can be any
single term (e.g., “police”). To cover all useful keywords, K
should be complete (i.e., it covers all the keywords in T).
We can construct K via enumerating all the unigrams in T .
We use K′ to denote a subset of K. We define the match
of a tweet t, denoted as M(t), as the set of keywords that t
contains, and the volume of a keyword k, denoted as V (k),
as the set of the tweets containing k.

First, we abstract the tweet sampling problem. We rep-
resent a set of samples of T as S. To make unbiased es-
timation, S should be uniformly sampled from T , which
means that ∀ ti, tj ∈ T , the probability of ti in S, denoted
as P (ti ∈ S), is the same as P (tj ∈ S). To make accurate
estimation, S should contain a sufficient number of samples,
which means |S| should be larger than a threshold γ. Thus,
we formally state the tweet sampling problem as follows.

Tweet Sampling Problem Let T be all the tweets in an
iteration. Given a threshold γ, which is smaller than |T |,
the filter API, and the sample API, output a set of samples
S ⊂ T , s.t. ∀ti, tj ∈ T , P (ti ∈ S) = P (tj ∈ S) and |S| > γ.

Next, we abstract the keyword selection problem. We de-
note the given classifier for a topic as a binary function f .
Given a tweet t, f outputs 1 if t is revelent to the topic, and
0 otherwise. If f(t) = 1, we call t a target tweet, and use
R to represent all target tweets, R = {t|f(t) = 1, t ∈ T}.
Based on f , we quantify the “usefulness” of keywords as fol-
lows. We define the cover of a keyword k, denoted as C(k),
as the set of the target tweets containing k, C(k) = {tj |tj ∈
V (k)∩R}, and measure the usefulness of a set of keywords
K′ ⊂ K, denoted as U(K′), as the number of the target
tweets covered by K′, | ∪ki∈K′ C(ki)|. In this paper, we use
“usefulness” and “coverage” interchangeably. Further, we
formally model two constraints.

• Cardinality constraint limits filtering costs of a solution
K′. It takes costs to filter incoming tweets for each key-
word, but such computation resources are limited. E.g.,
the filter API only accepts up to 400 keywords as filters.
Thus, we use K′’s cardinality |K′| to model its filtering
costs, and limit |K′| below a threshold M .

• Budget constraint limits post-processing costs of a solu-
tion K′. It takes costs to process each collected tweet,
but such computation resources are limited. We use the
number of the tweets collected by K′ to model its post-
processing costs, denoted as P (K′), and limit P (K′) be-
low a budget B. P (K′) =

∑
ki∈K′ |V (ki)|. We measure

P (K′) as the sum of the volumes of keywords in K′ with-
out considering that a tweet can be covered by multiple
keywords, since each keyword filter is applied individually
and we suffer from processing such redundancies.

Now, we formally abstract the keyword selection problem.

Keyword Selection Problem Given a classifier f , a set
of tweets T , a set of candidate keywords K, a threshold M
and a budget B, output K′ ⊂ K, s.t. U(K′) is maximized
subject to |K′| ≤ M and P (K′) ≤ B.

4. TWEET SAMPLING PROBLEM
We first focus on the tweet sampling problem. We aim

to collect a sufficient number of random samples S from
all the tweets T in an iteration with the available Twitter
APIs (i.e., the filter and sample APIs) for estimating the

1969

usefulness U(K′) and the post-processing cost P (K′) for
any set of keywords K′.

4.1 Motivation
First, we motivate the need of a sampling algorithm be-

sides the sample API, which returns 1% of tweets. As we
discussed in Sec. 3, to capture the dynamics of the Twitter
stream, especially for fast developing topics (e.g., olympic
news), ATM prefers a short iteration. Further, as we will
show below, to enable accurate estimation, ATM needs a
sufficient number of samples, which may be more than 1%
of tweets in an iteration. Thus, it is desirable to have a sam-
pling algorithm, which provides additional samples besides
the sample API, to enable collecting sufficient samples in a
short iteration or to speed up the sample API for capturing
the dynamics of the stream.
Next, we develop a theorem to formally relate the estima-

tion accuracy and the sample size. We focus on estimating
U(K′) for a set of keywords K′, but our discussion can be
applied to P (K′). We denote the estimated value in S as

Ũ(K′) to differentiate it from the true value U(K′) in T .
We first show our intuition for the theorem. Here, we

take a simple but realistic assumption. While the sample
API samples tweets with replacement, we assume it samples
without replacement, since T is very large and the chance of
getting the same sample is negligible. Intuitively, as U(K′)
measures the number of the tweets that 1) are target tweets
and 2) match any keyword k ∈ K′ in T . a random tweet
from T has a probability U(K′)/|T | to meet the two require-
ments. Since a set of random samples S can be viewed as
drawing tweets repeatedly for |S| times, we can view S as
a Bernoulli Process with a success probability U(K′)/|T |,
and Ũ(K′) as the number of successes in |S| independent
Bernoulli trials, which follows the binomial distribution with
a success probability U(K′)/|T |. Thus, our task becomes
how accurately we can estimate the parameter |U(K′)|/|T |
of the binomial distribution with Ũ(K′) succusses observed
from |S| samples. We directly obtain our theorem from ex-
isting results about the parameter estimation for the bino-
mial distribution in statistics [27].

Theorem 4.1. Given random samples S from the set T

and an error percentile α, with 1 − α confidence, |U(K′)|
|T | is

within Ũ(K′)
|S| ±z1−α/2

√
Ũ(K′)/|S|−(Ũ(K′)/|S|)2

|S| , where z1−α/2

is the 1−α/2 percentile of the standard normal distribution.

The theorem is useful from several aspects. 1) It shows
that, given a confidence level (e.g., 95%), we should increase

the sample size |S| to make our estimation Ũ(K′)/|S| close
to the true value U(K′)/|T |. 2) It gives a formula to calcu-
late the necessary number of samples for achieving a certain
accuracy. 3) It shows that the required numbers of samples
are different for different topics, since U(K′) is different.

4.2 Tweet Sampling Algorithm
Now, we develop our sampling algorithm with the avail-

able Twitter APIs. Since the sample API may not provide
enough samples, we need to use the filter API. However, di-
rectly using it with a set of keywords is biased to the tweets
containing those keywords. Thus, it is challenging to collect
additional unbiased (or uniform) samples. Here, we clari-
fy that we aim to collect additional samples besides those
returned by the sample API instead of replacing them.

We develop our sampling algorithm based on a widely
used sampling framework, which uniformly samples nodes
from a graph via integrating two sampling methods, ran-
dom walk sampling and rejection sampling. In the litera-
ture, specific algorithms have been developed based on the
framework to sample pages from the Web graph [3] or users
from a social network graph [9]. In this paper, we adopt the
framework to develop a new algorithm for sampling tweets
with the available Twitter APIs. It is possible, because we
can connect tweets as a “tweet graph” through the APIs.
However, we cannot apply the existing algorithms, because
they sample from different graphs (e.g., a social network
graph) with different access functions (e.g., getting friend-
s of a user). We must design our own “tweet graph” and
sample with the available APIs.

Preliminary To begin with, we briefly describe random
walk sampling and rejection sampling methods.

Random Walk on a graph G(N,E), where N denotes a set
of nodes and E denotes a set of weighed edges, is a markov
chain on a finite state space N [13]. It can be described as a
surfer randomly walking among G. At a node ni, the surfer
visits a neighbor node nj randomly according to the weight
of their edge eij . After several steps, the surfer reaches
different nodes with different probabilities. In theory, if G
is “ergodic”, the probabilities of visiting different nodes are
guaranteed to converge to a distribution ϕ over nodes N . G
is ergodic, if 1) G is strongly connected, and 2) the greatest
common denominator of all cycle lengths is 1. Thus, random
walk sampling works in two steps. 1) It randomly walks for
several steps, which are called as the burning period. 2) It
generates the next visited node as a sample. If G is ergodic,
the samples are generated according to the distribution ϕ
defined by G, which we call a trial distribution.

Rejection Sampling is a simulation method for generating
samples according to a target distribution π with samples
generated from a trial distribution ϕ. Intuitively, it uses
“acceptance probabilities” to bridge the gap between ϕ and
π. E.g., when π is the uniform distribution and ϕ is anoth-
er distribution, it assigns high acceptance probabilities to
instances that have low probabilities in ϕ. As rejection sam-
pling only cares the relativity of ϕ and π, it is defined based
on their un-normalized forms. We define an un-normalized
form of a distribution π, denoted as π̂, if ∃Zπ, s.t. ∀n ∈ N ,
π̂(n) = π(n) × Zπ. Given an un-normalized trial distribu-

tion ϕ̂ and an un-normalized target distribution π̂ over the
space N , the acceptance probability of an instance n is de-
fined as π̂(n)/(Cϕ̂(n)), where C is a constant that satisfies

C ≥ maxn∈N π̂(n)/ϕ̂(n).

Algorithm 1 TweetSample()

while true do
t = RandomWalkϕ();

toss a coin with head probability
π̂(t)

Cϕ̂(t)
;

If head return t
end while

Sampling Algorithm Alg. 1 shows our sampling algorithm
based on the framework. It first calls RandomWalkϕ to get
a sample t. This function utilizes the available APIs to con-
duct random walk sampling on a “tweet graph”. We denote
the tweet graph as G(T,E), where the nodes are tweets T
and they are connected by weighed edges E. We will define
G and describe RandomWalkϕ in detail later. As t follows

1970

the trial distribution ϕ defined by G instead of the uniform
distribution π, Alg. 1 then applies rejection sampling to de-
cide whether t is accepted with the acceptance probability
π̂(t)/(Cϕ̂(t)). As π is the uniform distribution, π̂(t) = 1. We
show ϕ̂(t) and C after we define G.

Challenges To complete Alg. 1, we need to design G(T,E),
which connects tweets T with weighed edges E. It is not
easy, as G has to meet two requirements.

• Feasible: We can realize random walk from ti to tj ac-
cording to their edge weight eij with the available APIs.

• Ergodic: G must be ergodic so that random walk on G
converges to a unique probability distribution ϕ.

Tweet Graph As the key merit of our algorithm, we design
a tweet graph G, which meets the two requirements. We
clarify that our algorithm only needs to conduct random
walk from a tweet to another tweet according to their weight
in G and does not need to build a complete G explicitly. We
use P (ti → tj) to denote the probability of walking from ti to
tj . According to random walk sampling, P (ti → tj) =

eij
D(ti)

,

where D(ti) is the degree of ti, D(ti) =
∑

tj∈T eij .

To make G feasible, we use the filter API to randomly
“walk” from ti to tj . As the filter API uses a keyword to re-
trieve tweets, we can implement walking in two steps. First,
we randomly pick a keyword k from the set of keywords in ti,
which is M(ti). Second, we use the filter API with k to get
a random tweet tj from the set of the tweets containing k,
which is V (k). In this way, the probability of walking from
ti to tj through a keyword k is 1

|M(ti)||V (k)| . As ti and tj

may share multiple keywords, denoted as M(ti)∩M(tj), we
have P (ti → tj) =

1
|M(ti)|

∑
k∈M(ti)∩M(tj)

1
|V (k)| . For differ-

ent tj , P (ti → tj) is proportional to
∑

k∈M(ti)∩M(tj)
1

|V (k)| ,

as |M(ti)| is a constant at a specific ti. According to the
definition, P (ti → tj) is proportional to eij , so we directly
set eij as

∑
k∈M(ti)∩M(tj)

1
|V (k)| .

However, G with eij defined above may not be ergodic, as
G may not be strongly connected.
To make G ergodic, we add a small teleport weight to

the edge of any pair of tweets. Thus, at a tweet ti, we can
“jump” to any tweet tj with a small probability. As any pair
of tweets is connected, G is ergodic. Specifically, we add a
total weight λ for jumping from ti to all the tweets in T ,
and a weight λ

|T | for jumping from ti to tj . Thus, we adjust

eij as (
∑

k∈M(ti)∩M(tj)
1

|V (k)|)+
λ
|T | . To implement jumping

from ti to tj , we use a sample returned by the sample API,
as we can view the sample API as a uniform sampler, which
returns a tweet tj with

1
|T | but can only be used for a limited

number of times (i.e., |T |/100). Thus, G is feasible.
According to the new weight, we need to determine how

likely we do “walking” and “jumping” at a tweet ti. We first
calculate the new D(ti) based on the new weight eij , and
then derive P (ti → tj) based on

eij
D(ti)

.

D(ti) =
∑

tj∈T ((
∑

k∈M(ti)∩M(tj)
1

|V (k)|)+
λ

|T |)=|M(ti)|+λ(1)

P (ti→tj) =
|M(ti)|

|M(ti)|+λ
(
∑

k∈M(ti)∩M(tj)
1

|V (k)||M(ti)|
)

+ λ
|M(ti)|+λ

1
|T | (2)

Based on Eq. 2, we can interpret P (ti → tj) as a combi-
nation of “walking” (

∑
k∈M(ti)∩M(tj)

1
|V (k)||M(ti)|

) based on

the filter API with a probability |M(ti)|
|M(ti)|+λ

and “jumping”(1
|T |)

based on the sample API with a probability λ
|M(ti)|+λ

. λ

works as a parameter for choosing “jumping” or “walking”.
We discuss how to set λ. λ is used to theoretically guaran-

tee that our graph is ergodic and our random walk converges,
so it should be a non-zero value. As we will prove below,
our random walk converges to different known distributions
with different λ, and all of them can be adjusted to the u-
niform distribution. Here, the λ value plays the same role
as the teleport weight used in pagerank [17]. Pagerank con-
verges with any non-zero teleport weight. In our scenario,
a large λ will cause to use the sample API a lot and collect
only a small percentage of additional samples with the filter
API. Thus, to collect many additional samples, we set λ to
a small value (i.e., 0.1) in practice.

Convergence Distribution As G is ergodic, random walk
on G converges to a unique distribution ϕ over T . We for-
mally give the un-normalized distribution ϕ̂ over T with
Theorem 4.2.

Theorem 4.2. The random walk on G(T,E) converges

to an un-normalized distribution ϕ̂ over T , where ϕ̂(t) =
|M(t)|+ λ,∀t ∈ T .

Proof. According to our definition, we have eij = eji.
Thus, G can be viewed as an undirected graph. According
to [13], the stationary distribution of an undirected and com-
plete graph is proportional to the degree distribution. As E-
q. 1 shows, D(t) = |M(t)|+ λ. Thus, ϕ̂(t) is |M(t)|+ λ.

The theorem formally shows that we can sample tweets
according to a known distribution for any λ. Further, we can
use rejection sampling to adjust the tweets according to the
uniform distribution. As ϕ̂(t) is at least one and π̂(t) = 1,
C = 1 is sufficient for the acceptance probability.

Random Walk AlgorithmNow, we present RandomWalkϕ
in Alg. 2. “Burning” is a general term used in Markov chain
Monte Carlo methods (e.g., random walk sampling) to de-
scribe getting a “good” starting point t0. Usually, we can
start from the previous sample collected by the algorithm
and may throw away some iterations at the very beginning.
After burning, the algorithm generates a sample based on t0.
It decides whether “walking” or “jumping” with probability

|M(t0)|
|M(t0)|+λ

. If yes, it samples a keyword k from M(t0), calls

the filter API with k, and outputs a random tweet match-
ing k as the sample. Otherwise, it uses a sample from the
samples returned by the sample API.

Algorithm 2 RandomWalkϕ()

t0 = do Burning;

toss a coin with head probability
|M(t0)|

|M(t0)|+λ
;

if !head then
k = randomly sample a keyword from M(t0);
t = a random tweet returned by the filter API with k;

else
t = a random tweet returned by the sample API;

end if
return t;

Efficiency We now discuss the efficiency of our algorithm.
Our algorithm costs insignificant CPU resources, as it only
requires to compute a few easy-to-compute variables (e.g.,
|M(t0|). Its efficiency mainly depends on how quickly we
get a sample with the Twitter APIs (e.g., it takes time to
connect Twitter and get a sample). We can efficiently imple-
ment it in practice (e.g., we start multiple random walkers

1971

together and merge their API requests; and when calling
the filter API with a keyword, we cache several samples for
future reuse). As our experiments will show, our algorithm
runs efficiently in the Twitter stream. E.g., it collects 30K
additional samples per hour from the stream, which helps
to speed up the sample API by 1.4 times.
Further, we explain that our algorithm enables collecting

a desired percentage of random samples from the Twitter
stream. While the number of additional samples collected
by a single instance of our algorithm is limited (i.e., 30K),
running our algorithm in parallel can scale up the efficiency,
since different instances randomly choose different keywords
and collect different samples. As our experiments will show,
two instances of our algorithm collect 1.96 times as many
additional samples as a single instance. Recall that calling
the sample API from different machines gives the same sam-
ples (i.e., 1%). Further, it is reasonable to collect random
samples with multiple instances for ATM, since, as we men-
tioned in Sec 3, the samples are “topic-independent” and
can serve many topics (e.g., crime, politic).

5. KEYWORD SELECTION PROBLEM
We now develop our keyword selection algorithm. As we

need to select keywords in each iteration (e.g., every hour)
timely, the algorithm has to be efficient. Here, we simply
view the collected samples S as the entire set of tweets T .

NP-hard Problem To formally argue that our problem is
difficult, we prove the following theorem.

Theorem 5.1. Keyword selection problem is NP-hard.

Proof. We prove the theorem via reducing the set cover
problem to our problem. The set cover problem is, given an
element set E = {e1, ..., em}, a collection S = {S1, ..., Sn} of
subsets of E, and an integer I, to determine whether there
is a sub-collection S′ ⊂ S of size I that covers E. We reduce
it to our problem. For ∀ej ∈ E, we create a tweet tj in T
and let f(tj) = 1; for ∀Si ∈ S, we create a keyword ki in
K. We set tj ∈ C(ki) if ej ∈ Si. We set B to infinite, and
M to I. If we have a solver g(T,K,M,B) for our problem,
then we can use it to solve the set cover problem by checking
whether the keywords returned by g(T,K,M,B) can cover
|T | target tweets. The reduction completes the proof.

The theorem suggests that there is no polynomial time al-
gorithm for the optimal solution. A basic exponential algo-
rithm works as follows. It enumerates all the subsets that
contain at most M keywords, evaluates their usefulness and
post-processing costs, and outputs the most useful set whose
costs are under the budget. It is inefficient, as it enumerates
|K|M subsets, where |K| is usually larger than thousands
and M is larger than 10.
While we cannot find the optimal solution efficiently, we

aim to find a near-optimal solution efficiently. Towards de-
veloping our algorithm, we make two contributions.

Nontrivial Submodular Maximization Problem As
our first contribution, we formally prove a desirable prop-
erty (submodular) of the usefulness measure U(K′) in our
problem, and model our problem as a non-trivial submodu-
lar function maximization problem.
In combinatorial optimization problems, the submodular

property of a target function F is a desirable property for
deriving efficient approximation algorithms. Specifically, a
function F : 2S → R, which returns a real value of any subset
S′ ⊂ S, is a submodular function if F (B ∪ {e}) − F (B) ≤

F (A ∪ {e}) − F (A) for any A ⊂ B ⊂ S and e ∈ S\B.
Maximizing such a function with some types of constraints
(e.g., the cardinality or budget constraint) can be solved
near-optimally with simple greedy algorithms. In the liter-
ature, the submodular property has been studied for many
NP-hard problems (e.g., the set cover and knapsack prob-
lems), and leads to efficient approximation algorithms. Re-
cently, it is explored to solve many data mining [10] and
machine learning [2] problems. Here, we explore the sub-
modular property for a new problem of monitoring social
media, and present the following theorem as our finding.

Theorem 5.2. The function U(K′) in the keyword selec-
tion problem is a monotonic submodular function.

Proof. First, we show U(K′) is a monotonic function.
Specifically, U(K1) ≤ U(K2) for all K1 ⊂ K2 ⊂ K, since
adding any keyword k to K1 can only increase its coverage.

Second, we show that U(K1 ∪ {k}) − U(K1) ≥ U(K2 ∪
{k})− U(K2) for all K1 ⊂ K2 ⊂ K.

U(K1∪{k})−U(K1)=
1|(∪ki∈K1

C(ki)∪C(k))−∪ki∈K1
C(ki)|

=2|(T−∪ki∈K1
C(ki))∩C(k)|≥3|(T−∪ki∈K2

C(ki))∩C(k)|

=4|(∪ki∈K2
C(ki)∪C(k))−∪ki∈K2

C(ki)|=5U(K2∪{k})−U(K2)

At step 2, we apply (A∪B)−A = (U −A)∩B, where U is
the universe, A ⊂ U , and B ⊂ U . At step 3, since K1 ⊂ K2,
∪ki∈K1C(ki) ⊂ ∪ki∈K2C(ki) and T − ∪ki∈K2C(ki) ⊂ T −
∪ki∈K1C(ki).

Thus, we model our problem as maximizing a monotonic
submodular function U(K′) under two constraints, 1) the
cardinality constraint |K′| ≤ M , and 2) the budget con-
straint P (K′) =

∑
ki∈K′ |V (ki)| ≤ B.

This is a non-trivial problem because greedy algorithms
are only proved to work for maximizing a submodular func-
tion under either the cardinality constraint [15] or the bud-
get constraint [23]. Alg. 3 and Alg. 4 are the correspond-
ing greedy algorithms. The combination of two constraints
makes both algorithms fail, since the result of the algorith-
m for one constraint may violate the other constraint. We
note that the problems [10, 2] explored in data mining or
machine learning are all associated with one constraint.

Only until recently, theoretical computer scientists devel-
op a randomized approximation algorithm MLC [11] for
maximizing a submodular function with multiple constraints
with a (1− ϵ)(1− e−1) approximation by expectation for a
given constant ϵ. However, MLC is hardly applied to our
setting, as it has a high order in its polynomial complexity
(e.g., it has to solve several linear programming problems),
and the result is non-deterministic.

Greedy Algorithm As our second contribution, we devel-
op an efficient algorithm and show its approximation rate.
Our intuition is that we can relax our problem to the prob-
lem with the budget constraint first, which we solve with a
greedy algorithm (Alg. 4), and then handle the cardinality
constraint only if the returned solution of the relaxed prob-
lem violates it. Alg. 5 shows our algorithm. It considers the
budget constraint first and calls Alg. 4, which iteratively se-
lects useful keywords based on the marginal usefulness ratio
in a greedy way. If the returned solutionK′ of Alg. 4 satisfies
the cardinality constraint, our algorithm returns K′ as the
solution. Otherwise, it handles the cardinality constraint via
selecting theM keywords that have the maximum usefulness
from K′. This can be viewed as a problem of maximizing

1972

the submodular function under the cardinality constraint.
Thus, it calls Alg. 3, which selects keywords based on its
marginal usefulness, and returns its result as the solution.

Complexity Now we analyze the complexity of Alg. 5. Both
routines (Alg. 3 and Alg. 4) greedily select keywords one by
one. At most B and M keywords are selected in Alg 4 and
Alg. 3. To select a keyword, it needs to measure the weight-
s for at most |K| keywords, and the weight of a keyword
requires at most O(|T |) comparisons, where |T | is the size
of the corpus. Thus, its complexity is O((M + B)|K||T |),
which is much more efficient than the exponential algorithm,
whose complexity is O(|T |KM).

Algorithm 3 CardinalityConstraint(M,T,K)

K′ = {};
for a = 1 → M do

let k = argmaxki∈K−K′U({ki} ∪K′)− U(K′);
K′ = K′ ∪ {k};

end for
return K′;

Algorithm 4 BudgetConstraint(B,T,K)

K′ = {};
let best = argmaxki

U(ki) subject to P ({ki}) ≤ B;
while true do

let k = argmaxki∈K−K′
U({ki}∪K′)−U(K′)
P ({ki}∪K′)−P (K′) subject to

P ({ki}) + P (K′) ≤ B;
if (k does not exist) break;
K′ = K′ ∪ {k};

end while
return argmaxK′

best
∈{{best},K′}U(K′

best)

Algorithm 5 GreedyApproximation(B,T,M,K)

K′ = BudgetConstraint(B, T,K);
if |K′| ≤ M return K′;
else return CardinalityConstraint(M,T,K′);

Approximation Rate Further, we analyze the approximation
rate of our algorithm with the following theorem.

Theorem 5.3. Alg. 5 achieves an approximation rate at

least M

|O′
B
|
(1− e−1)2, where |O

′
B | is the number of keywords

returned by Alg 4.

Proof. The proof is based on the intuition. First, we
denote the optimal solutions for maximizing the function U
under both constraints and only the budget constraint as O
and OB , respectively. As O is the solution with an additional
constraint, we have U(OB) ≥ U(O). Second, we denote the
solution returned by Alg 4 as O′

B . As shown in [23], U(O′
B) ≥

(1 − e−1)U(OB). Thus, if O′
B satisfies the cardinality con-

straint, we have U(O′
B) ≥ (1 − e−1)U(OB) ≥ (1 − e−1)U(O).

Otherwise, we run Alg 3. We denote the result of the optimal
M keywords in O′

B as OM . As OM is the optimal set of M

keywords in O′
B , we have U(OM) ≥ M

|O′
B
|
U(OB′). As shown

in [15], Alg 3 returns a (1 − e−1) approximation to U(OM),
and thus a M

|O′
B
|
(1− e−1)2 approximation to U(O).

We note that, although the approximation rate is lower
than MLC in theory, as our experiments will show, our al-
gorithm is accurate in practice. When the budget is small,
as keywords usually have large volumes and the budget con-
straint is easily to be violated, our algorithm rarely goes

to the second routine. Even if it goes to the second rou-

tine, |O
′
B | is not much larger than M . When the budget is

large, our algorithm first finds a large set of useful keyword-
s from candidates and then selects M -best keywords from
those useful ones, which performs similarly as the M -best
keywords selected from all candidates without the budget
constraint. We can also improve the approximation rate. S-
ince we can estimate it with Theorem 5.3, for the rare cases
that have rates lower than a threshold C(1− e−1), where C
is a constant, we can call MLC [11] as backup to find accu-
rate results. Thus, our algorithm can have an approximation
rate of C(1− e−1).

6. EXPERIMENTS
6.1 Experiment Setup

Experiment Settings To fully evaluate ATM, we conduct
experiments in the following two settings.

Fixed Corpus We first conduct experiments on a pre-crawled
Twitter corpus T to fully evaluate ATM (and other base-
lines). We collect billions of tweets with the sample API,
and use a subset of 5 million English tweets as our corpus.
We use a fixed corpus instead of the Twitter stream for t-
wo reasons. First, with a fixed corpus, to which we have
complete access, we can evaluate ATM with different con-
figurations (e.g., different sets of samples). Second, with
a fixed corpus, we can isolate the dynamics of the Twitter
stream and compare experiments executed at different time.
In this setting, we assume that T is all the tweets and we
select keywords to cover target tweets R in T . We construct
candidate keywords K based on all unigrams in T . To get
meaningful keywords, we remove stop words (e.g., “the”),
common Twitter words (e.g., “rt”, which means retweet),
and infrequent words (e.g., misspelled words). Finally, K
contains about twenty thousand keywords.

Twitter Stream We also conduct experiments on the Twit-
ter stream. Although we cannot fully evaluate ATM on the
stream due to our limited access (e.g., we cannot compare
many algorithms simultaneously, as Twitter limits the num-
ber of simultaneous connections for a user), the experiments
are important to show ATM’s performance in practice. In
this setting, we monitor target tweets iteratively. In each it-
eration, we sample tweets from the stream, select keywords
based on the samples, and track target tweets with the key-
words. We tune the iteration length l from 30 mins to 4
hours and use the best one (i.e., 2 hours). We also update
candidate keywords K iteratively via adding all meaningful
terms in the samples of each iteration.

Classifiers To show that ATM works for any classifier, we e-
valuate it with classifiers of two topics, 1) crime/disaster [12,
21] and 2) sport. We obtain a classifier f of a topic in the
following steps. First, we define different types of features
(refer [12] for detailed features), including 1) word features
and 2) other additional features (e.g., whether a tweet is
from a news agent). Then, we label a set of tweets for train-
ing, and train classifiers with different classification models.
Finally, we select the best one to use.

We also evaluate ATM (and other baselines) using differ-
ent classifiers for crime/disaster. Here, we emphasize that
our focus is not designing classifiers. Instead, we aim to
show that ATM can take any classifier as input and monitor
target tweets for it.

1973

Baseline Methods To show that ATM advances existing
methods, we compare it with three kinds of baselines.

• BaseS monitors target tweets for a topic using the sample
API without any keyword. It is used in many existing
social media based systems [14, 18]. However, as it sam-
ples 1% of tweets, it only retrieves about 1% of target
tweets. We use it as a baseline to motivate the need for
topic-focused monitoring.

• BaseM monitors target tweets for a topic using the filter
API with a set of manually selected keywords. It is the
most commonly used approach for focused monitoring [21,
26]. However, as we have discussed in Sec. 1, it has many
limitations. We evaluate it to show its limitations and
motivate our automatic approach. In our experiments,
we obtain the keywords by asking 10 cs students to work
together and select a ranked list of 20 keywords for each
topic. We show them in our case studies.

• BaseH monitors target tweets for a topic using the fil-
ter API with a set of heuristically selected keywords. We
compare three heuristic methods proposed in the litera-
ture. We use BaseH to refer all the three methods.

• BH-1 is proposed to select keywords for monitoring tar-
get tweets for a classifier [12]. It weighs a keyword k

according to |C(k)|+α
|V (k)|−|C(k)|+β

, where α and β are priors

to penalize rare keywords, and selects M keywords ac-
cording to their weights. We tune α and β from 1 to
200, and use the best values.

• BH-2 is a probabilistic method [6] for finding relevant
hashtags from relevant tweets of a topic. We use it
to select keywords from target tweets of a classifier.
Specifically, it estimates a language model θR (i.e., a
multinomial distribution over keywords K) for target
tweets R and a language model θk for each keyword k
based on the tweets containing k, and ranks k accord-
ing to the negative KL divergence between θR and θk,
denoted as −DKL(θR||θk).

• BH-3 , called Robertson-Sparck-Jones weight, is pro-
posed to select keywords for finding relevant documents
for a query [20], and has been widely used for finding
relevant keywords in other settings [1]. It weighs a key-

word k by log (|C(k)|+0.5)/(|R|−|C(k)|+0.5)
(|V (k)|−|C(k)|+0.5)/(|T |−|V (k)|−|R|+|C(k)|+0.5)

.

Our Configurations To fully evaluate ATM, we test ATM
with different configurations. First, to show that ATMwork-
s for different cardinality (M) and budget (B) constraints,
we evaluate ATM on different M and B. Second, to validate
that ATM collects unbiased samples, we evaluate ATM on
the samples collected by three sampling methods, 1) stan-
dard uniform sampling (ATMu), 2) biased sampling (ATM-
b), and 3) our random walk based sampling (ATMr). ATMb
uses the filter API with a set of randomly selected keywords
to get samples, so the samples are biased to the tweets con-
taining the keywords. Third, to show the advantages of our
iterative framework, we evaluate ATM with different itera-
tion lengths (l) and compare ATM with a static approach.

Measure To measure the effectiveness of a method, we re-
port the “coverage” of its selected keywords K′. In the
fixed corpus setting, as the total number of target tweets is
known, we report the percentage of target tweets covered by
K′, named as c-rate. In the Twitter stream setting, as we do
not have the total number of target tweets to normalize to,
we report the number of target tweets covered by K′, named

Method BaseS BaseM BH-1 BH-2 BH-3 ATM
C-Rate 0.01 0.41 0.59 0.65 0.33 0.84

Figure 2: ATM vs. Baselines for Crime/Disaster

as c-size. We also report the number of tweets collected by
K′, named as p-cost, to measure its post-processing costs
P (K′). Here, we clarify that as our goal is to maximize the
number of target tweets covered by K′ under the two cost
constraints, c-rate (or c-size), which represents the “recall”
in IR, is the the most meaningful measure in our setting.
Other measures like “precision” (i.e., the percentage of tar-
get tweets in the collected tweets) are not suitable, because
algorithms with high precisions may not fully utilize B bud-
gets with M keywords and collect only few target tweets,
which are not desirable for our problem. In addition, to
evaluate the efficiency of a method, we report the average
time of 5 repeated runs in terms of seconds.

6.2 Experiment Results
Now, we present our experiment results. we first evaluate

ATM and the baselines on the fixed corpus. Then, we show
their performances on the Twitter stream. Finally, we give
some case studies.

6.2.1 Fixed Corpus Setting
In this setting, we conduct the following experiments to

fully evaluate ATM. First, we compare ATM with the base-
lines to show that 1) ATM outperforms all the baselines for
different topics. Second, we evaluate ATM with addition-
al configurations, including different constraints, sampling
methods and iteration lengths, to show that ATM can 2)
handle various constraints, 3) collect unbiased samples, and
4) take advantages of iterations. Third, we report the effi-
ciency of ATM to show that 5) ATM is efficient.

To rule out the impacts of different samples or iteration
lengths in selecting keywords K′, we estimate U(K′) and
P (K′) based on the entire T for most of the experiments,
except those experiments that compare sampling methods
or iteration lengths.

ATM vs. Baselines First, we show the performances of
ATM and the baselines for crime/disaster in Fig. 2. Here,
we setM to 20, as BaseM only selects 20 keywords. Further,
since all the baselines do not consider the budget constraint,
we set B to a large value (e.g., a number larger than the cor-
pus size) to reduce the impacts of the budget constraint for
ATM. This configuration represents a very useful scenario,
which selects M keywords with a large budget B.

We have the following observations. First, BaseS per-
forms the worst, as it randomly samples only 1% of all tweet-
s. It clearly suggests that we should use a topic-focused ap-
proach instead of collecting random samples generally. Sec-
ond, BaseM greatly improves BaseS, which clearly shows
the advantage of monitoring target tweets with well selected
keywords. Third, BH-1 and BH-2 further improve BaseM.
It indicates that it is possible to select good keywords auto-
matically. Here, BH-3 performs worse than BaseM, because
its heuristic is biased to very specific keywords. BH-1 uses
α and β to punish those keywords and improves BH-3. BH-
2 further improves BH-1, as it uses the similarity between
two language models to select general and useful keywords.
Fourth, ATM performs the best, as it is designed to find the
optimal set of keywords that together have the maximum
coverage of target tweets.

1974

Method BaseS BaseM BH-1 BH-2 BH-3 ATM
C-Rate 0.01 0.52 0.64 0.69 0.19 0.81

Figure 3: ATM vs. Baselines for Sport

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB-W NB-W+A SVM-W SVM-W+A

BaseS BaseM BH-1 BH-2 BH-3 ATM

Figure 4: ATM vs. Baselines for Different f .

Classification Function Next, we validate that ATM outper-
forms the baselines for any given classifier f . Here, we use
the same M and B as the previous experiment.
We first show the performances of ATM and the baselines

for sport in Fig. 3. The results confirm the above findings.
E.g., ATM significantly outperforms all the baselines.
Further, we compare their performances for four differen-

t classifiers of crime/disater in Fig. 4. The classifiers are
trained with two models (NB and SVM) on word (W) and
other additional (A) features (e.g., social features). The re-
sults show that ATM performs the best for all the classifiers.
Specifically, for NB-W and SVM-W, which only use word
signals, ATM covers most target tweets with only 20 key-
words, as it successfully reveals the important keyword sig-
nals used by the classifiers. For NB-W+A and SVM-W+A,
which use additional social signals to accurately determine
target tweets, ATM might not cover all target tweets with
only 20 keywords but still performs much better than the
baselines. Note that, as different classifiers predict target
tweets differently, it is meaningless to compare performances
across them.
Thus, we can safely conclude that ATM performs the best

for any given f .

Cardinality Constraints Next, we demonstrate that ATM
outperforms the baselines for different constraints. Since the
baselines cannot model the budget constraint, we evaluate
them with different cardinality constraints (M) in Fig. 5.
ATM outperforms the baselines for any M . Specifically, 1)
ATM selects keywords of any large size, while BaseM uses
a limited number of keywords, as it is difficult for human
to select many keywords. 2) ATM is better than BaseH for
any M , because BaseH selects keywords individually while
ATM optimizes a set of keywords.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 50 400

BaseM

BH-1

BH-2

BH-3

ATM

Figure 5: ATM vs. Baselines for Different M
Different Configurations Then, we fully evaluate ATM
with different configurations.

Cardinality Constraints First, we evaluate ATM with differ-
ent cardinality constraints M (from 10 to 400) and a small
budget constraint B (30K) in Fig. 6. This experiment is dif-
ferent from the previous one as it uses a small B to represent

M 10 20 50 400
C-Rate 0.37 0.48 0.57 0.58
P-Cost 14429 23650 28343 29999

Figure 6: ATM with Different M and B = 30000
B 20000 30000 40000 50000

C-Rate 0.39 0.48 0.62 0.75
P-Cost 17983 23650 32923 41856

Figure 7: ATM with Different B and M = 20

the case that we have to limit post-processing costs. The
results show that ATM handles cardinality constraints well
with a small budgetB. ATM’s c-rate increases asM increas-
es, since ATM can take advantage of additional keywords,
but it does not change much from M = 50 to M = 400, as
the selected keywords reach the bottleneck of B.

Budget Constraints Second, we show the results of ATM
with different budget constraints B (from 20K to 50K) and a
moderate M (20) in Fig. 7. The results show that ATM can
handle budget constraints well. Specifically, its p-costs are
all under the given B and its c-rate increases as B increases.

Sampling Algorithm Third, we evaluate our sampling algo-
rithm. To enable evaluation, we simulate the sample and
filter APIs in the fixed corpus according to their specifica-
tions described in Sec 3. We use three sampling algorithms,
uniform sampling (ATMu), biased sampling (ATMb), and
our random walk based sampling (ATMr) to collect differ-
ent numbers of samples from T , and report the performances
of the keywords selected based on them in Fig. 8. We set
M=20, and B to a large value (i.e., the corpus size). The
results shows that, 1) the performance of ATMu increases
as the sample size increases, which validates that we need
sufficient samples for accurate estimation; 2) ATMu outper-
forms ATMb significantly on different numbers of samples,
which validates that we need unbiased samples for estima-
tion; and 3) ATMr performs similarly to ATMu, which sug-
gests that ATMr is a uniform sampler like ATMu.

Iteration Lengths Fourth, we evaluate ATM with different it-
eration lengths l and compare ATM with a static approach.
To enable evaluation, we partition our corpus into about 80
units (hours) according to tweets’ time stamps. We set l
to different numbers of units. Like in the Twitter stream,
we select keywords based on the tweets in the ith iteration
and use the keywords to monitor in the i + 1th iteration.
We set M to 20 and B to the corpus size of an iteration.
Fig. 9 shows the overall c-rates of ATM with different l.
The results validate our analysis in Sec. 3. When l is small
(e.g., 0.1 hour), the c-rate of ATM is low, because there are
not sufficient samples for accurate estimation in short itera-
tions. When l becomes very large (e.g., 24 hours), the per-
formance decreases, because long iterations cannot capture
the dynamics of the Twitter stream well. ATM performs the
best when l is 2 hours. We also compare ATM with a static
approach BaseM, which keeps using the manually selected

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

10K 20K 50K 100K

C
-R
a
te

Number of Samples

ATM u

ATM r

ATM b

Figure 8: ATM with Different Sampling Algorithms

1975

Units 0.1 0.5 1 2 4 12 24
C-Rate 0.73 0.84 0.87 0.90 0.88 0.84 0.74

Figure 9: ATM with Different Iteration Lengths
Method BH-1 BH-2 BH-3 ATM

Time (sec) 1.67 247.12 1.68 23.68

Figure 10: Efficiency of ATM and Baselines.

keywords. The c-rates of BaseM is 0.41, and ATM greatly
improves it by 49%.

Efficiency Finally, we show the efficiency of ATM on a mod-
erate computer (4GB Memory and Intel i7-2640M 2.8Ghz
CPU). Since the efficiency of our sampling algorithm de-
pends on Twitter APIs, we evaluate it in the Twitter stream
setting and focus on the selection algorithm here.
First, we report the efficiency of ATM and the baselines in

Fig. 10. Since BaseS does not select keywords and BaseM
selects keywords manually, we compare ATM with BaseH.
We set M and B as the first experiment. The results show
that 1) ATM is efficient, which takes only 23 seconds to
process a large corpus with 5M tweets and 26K candidate
terms, and 2) while ATM is less efficient than BH-1 and
BH-3, it is much more efficient than BH-2, which is the best
baseline in Fig. 2. BH-1 and BH-3 are more efficient than
ATM because they measure keywords’ weights only once but
ATM updates the weights iteratively. ATM is more efficient
than BH-2, because ATM weighs keywords with an easy-to-
compute measure but BH-2 uses a complex formula.
Then, we show the efficiency of ATM with different con-

straints in Fig. 11. First, we analyze the efficiency with
different B and a fixed M . The results show that 1) the
running time increases as B increases, since ATM uses ad-
ditional loops in its first step (Alg. 4) to select keywords
when B increases, and 2) such increases are sub-linear, be-
cause each selected keyword can take many budgets instead
of one. Then, we analyze the efficiency with different M and
a fixed B. The running time increases insignificantly as M
increases, because, after running the first step (Alg. 4), only
a limited number of keywords are selected, and the second
step (Alg. 3) of ATM takes a small amount of time to select
M keywords from them.
Further, we show ATM’s efficiency on corpora of different

sizes in Fig. 12. We set B to the corpus size and M = 20.
The results show that the running time increases linearly
with the size and ATM only takes seconds for processing
400K tweets. Thus, ATM is efficient and scalable for a big
corpus like the Twitter stream.

6.2.2 Twitter Stream Setting
We first report ATM’s effectiveness on the Twitter stream

for crime/disaster to demonstrate that ATM is effective in
practice. We set l to 2 hours, M to 20, and B to 140K (the
number of the tweets collected by BaseS in an iteration).
Fig. 13 shows their average c-sizes and p-costs per hour.
The results confirm our findings from the previous setting.
E.g., ATM has a large improvement over all the baselines
and it costs even less than BaseM and BH-2. BH-3 is low,
because it only selects specific keywords.

M = 20 B = 20K B = 40K B = 80K B = 120K
Time (sec) 1.65 1.94 2.97 3.32
B = 40K M = 10 M = 20 M = 50 M = 400
Time (sec) 1.90 1.94 1.96 2.04

Figure 11: Efficiency with Different M and B

Size 100k 200k 300k 400k
Time (sec) 4.66 5.42 6.19 6.69

Figure 12: Efficiency on Different Sample Sizes

Method BaseS BaseM BH-1 BH-2 BH-3 ATM
C-Size 309 11962 4292 12373 1564 17760
P-Cost 70291 33750 10804 38349 3628 33186

Figure 13: ATM vs. Baselines on Twitter Stream

We then evaluate ATM’s efficiency on the Twitter stream.
Since we have evaluated the selection algorithm in the pre-
vious setting (Fig 10), we focus on the sampling algorithm
ATMr. We compare ATMr with the only available random
sampling method for the Twitter stream (i.e., the sample
API). Fig. 14 shows how many additional samples (besides
what returned by calling the sample API from a single ma-
chine) each method collects with different hours. The result-
s show that 1) running ATMr on a single machine collects
about 30K additional samples per hour, which speeds up
the sample API by 1.4 times (the sample API returns 70K
samples per hour), 2) calling the sample API from different
machines (i.e., 2* sample) does not provide any additional
sample, and 3) running ATMr in parallel can scale up the ef-
ficiency (e.g., 2*ATMr collect 1.96 times as many additional
samples as ATMr does). The results demonstrate that our
algorithm can help to collect additional samples, which is
beyond the limit of the sample API. We note that our im-
plementation follows all Twitter APIs service’s rules [25].
(e.g., an instance sends an API request every 25 seconds).

0

50000

100000

150000

200000

250000

300000

1 hour 2 hour 3 hour

sample ATMr

2*sample 2*ATMr

3*ATMr

Figure 14: Efficiency of Sampling Algorithms

6.2.3 Case Study
We first give the top five keywords selected by each method

in the fixed corpus setting in Fig. 15. We can see that all the
methods choose topic-related keywords (e.g., “traffic”, “kil-
l”). As all keywords look meaningful, it is difficult for human
to select the optimal set, which motivates our optimization
based approach. We can also find why BH-2 is better than
BH-3. BH-2 selects general and useful keywords (e.g., “kil-
l”), while BH-3 selects specific keywords (e.g., “shoplifter”).
In addition, the results illustrate that ATM indeed performs
the best. E.g., it ranks “traffic”, which is the most useful
keyword in the corpus, at the top,

Fig. 15 also gives the keywords selected by each method
based on the Twitter stream setting (on 10/30/2012). First,
we can see that ATM keeps keywords up-to-date via selecting
keywords based on recent tweets. It rates “hurricane” as the
top one, since hurricane Sandy hit New York in late Oct, and
rates “earthquake” in top 5, as an earthquake struck Canada
on Oct 28. All such keywords can hardly be predicated by
experts or discovered by a static approach. Second, ATM
selects more meaningful words than the baselines. E.g., the
words selected by BaseH are less informative (e.g., BH-1

1976

BaseM BH-1 BH-2 BH-3 ATM
Fixed Corpus

kill burglary fire publicity traffic
shoot suspect traffic shoplifter kill
fire hazard kill warning rob

traffic warning police robbery suspect
police traffic warning traffic firefighter

Twitter Stream
kill warning hurricane severe hurricane

shoot flood warning harzard kill
fire murder flood warning fire

traffic rob sandy assault earthquake
police cocaine robbery firefighter traffic

Figure 15: Examples of ATM and Baselines

Iteration 8 Iteration 9 Iteration 10 Iteration 11
25% 20% 25% 20%

flood (+) stabbed (+) shot (+) fatal(+)
heroin(+) earthquake(+) tsunami (+) death (+1)
assault(+) injuries (+) investigate (+) injured (+)

hurricane (-) robbed (-) stabbed(-) earthquake (-)
severe(-) assault(-) heroin(-) brush (-)
injuries(-) police (-) injuries(-) investigate(-)

Figure 16: Keyword Changes in Each Iteration

uses “flood” instead of “hurricane”) and less complete (e.g.,
BH-2 misses “earthquake”) than those selected by ATM.
Further, we show how ATM updates keywords iterative-

ly during a one-day period (i.e., 05/09/2013). We set the
iteration length to 2 hours and select 20 keywords every iter-
ation. Fig. 16 shows iterations 8-11. The second row shows
the percentages of new keywords in each iteration, and the
third row gives examples of newly added (+) and retired (-)
keywords in each iteration. We can clearly see that more
than 20% keywords are updated to capture new content.
E.g., as users frequently discuss “heroin” related news (e.g.,
“cops look to link heroin busts”) initially, “heroin” is used.
After four hours, when users talk more about “tsunami”
(e.g., “tsunami hit Malaysia”), “tsunami” is picked.

7. CONCLUSION
In this paper, we study the task of monitoring target

tweets for a topic with Twitter APIs, which is importan-
t to many social media based applications. We make the
following contributions to the task. First, we propose AT-
M framework, which enables monitoring target tweets in
an optimal and continuous way. Second, we develop a tweet
sampling algorithm, which enables collecting additional ran-
dom tweets from the Twitter stream with the limited and
biased APIs. The algorithm is useful for many settings that
need more than 1% tweets. Third, we develop a keyword se-
lection algorithm, which finds a set of keywords that have a
near-optimal coverage under two constraints in polynomial
time. Forth, we conduct extensive experiments to evaluate
ATM and demonstrate that ATM covers most target tweets
for a topic and greatly improves all the baseline methods.

8. REFERENCES
[1] E. Agichtein and L. Gravano. Querying text databases for

efficient information extraction. In ICDE, pages 113–124,
2003.

[2] F. R. Bach. Structured sparsity-inducing norms through
submodular functions. In NIPS, pages 118–126, 2010.

[3] Z. Bar-Yossef and M. Gurevich. Random sampling from a
search engine’s index. J. ACM, 55(5):24:1–24:74, Nov. 2008.

[4] M. Boanjak, E. Oliveira, J. Martins, E. Mendes Rodrigues,
and L. Sarmento. Twitterecho: a distributed focused
crawler to support open research with twitter data. In
WWW Companion, pages 1233–1240, 2012.

[5] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
crawling: A new approach to topic-specific web resource
discovery. Computer Networks, 31(11-16):1623–1640, 1999.

[6] M. Efron. Hashtag retrieval in a microblogging
environment. In SIGIR, pages 787–788, 2010.

[7] M. Hurst and A. Maykov. Social streams blog crawler. In
ICDE, pages 1615–1618, 2009.

[8] P. G. Ipeirotis, L. Gravano, and M. Sahami. Qprober: A
system for automatic classification of hidden-web
databases. ACM TOIS, 21:1–41, 2003.

[9] L. Katzir, E. Liberty, and O. Somekh. Estimating sizes of
social networks via biased sampling. In WWW, pages
597–606, 2011.

[10] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. In KDD,
pages 137–146, 2003.

[11] A. Kulik, H. Shachnai, and T. Tamir. Maximizing
submodular set functions subject to multiple linear
constraints. In SODA, pages 545–554, 2009.

[12] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang.
Tedas: A twitter-based event detection and analysis
system. In ICDE, pages 1273–1276, 2012.

[13] L. Lovsz. Random Walks on Graphs: A Survey, 1993.

[14] M. Mathioudakis and N. Koudas. Twittermonitor: trend
detection over the twitter stream. In SIGMOD, pages
1155–1158, 2010.

[15] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular set
functions. Mathematical Programming, 14:265–294, 1978.

[16] C. Olston and M. Najork. Web crawling. Foundations and
Trends? in Information Retrieval, 4(3):175–246, 2010.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, November
1999.

[18] S. Petrović, M. Osborne, and V. Lavrenko. The edinburgh
twitter corpus. In Workshop on Computational Linguistics
in a World of Social Media, pages 25–26, 2010.

[19] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to
classify short and sparse text & web with hidden topics
from large-scale data collections. In WWW, pages 91–100,
2008.

[20] S. E. Robertson and S. K. Jones. Relevance weighting of
search terms. Journal of the American Society for
Information Science, 27(3):129–146, 1976.

[21] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes
twitter users: real-time event detection by social sensors. In
WWW, pages 851–860, 2010.

[22] T. Sprenger. Tweettrader.net: Leveraging crowd wisdom in
a stock microblogging forum. In ICWSM, pages 663–664,
2011.

[23] M. Sviridenko. A note on maximizing a submodular set
function subject to a knapsack constraint. Oper. Res. Lett.,
32(1):41–43, 2004.

[24] A. Tumasjan, T. Sprenger, P. Sandner, and I. Welpe.
Predicting elections with twitter: What 140 characters
reveal about political sentiment. In AAAI conference on
weblogs and social media, pages 178–185, 2010.

[25] Twitter. Streaming apis documentation.
https://dev.twitter.com/docs/streaming-apis, 2012.

[26] X. Wang, F. Wei, X. Liu, M. Zhou, and M. Zhang. Topic
sentiment analysis in twitter: a graph-based hashtag
sentiment classification approach. In CIKM, pages
1031–1040, 2011.

[27] Wikipedia. Binomial proportion confidence interval.
http://en.wikipedia.org/wiki/Binomial_proportion_
confidence_interval, Oct 2012.

1977

