
An Experimental Analysis of Iterated Spatial Joins in Main
Memory

Benjamin Sowell†∗ , Marcos Vaz Salles‡∗, Tuan Cao§∗ , Alan Demers¶, Johannes Gehrke¶

†Amiato, Inc. ‡University of Copenhagen §Google, Inc. ¶Cornell University
Palo Alto, CA Copenhagen, Denmark Mountain View, CA Ithaca, NY

ben@amiato.com, vmarcos@diku.dk, tuancao@google.com, {ademers, johannes}@cs.cornell.edu

ABSTRACT
Many modern applications rely on high-performance processing of
spatial data. Examples include location-based services, games, vir-
tual worlds, and scientific simulations such as molecular dynam-
ics and behavioral simulations. These applications deal with large
numbers of moving objects that continuously sense their environ-
ment, and their data access can often be abstracted as a repeated
spatial join. Updates to object positions are interspersed with these
join operations, and batched for performance. Even for the most de-
manding scenarios, the data involved in these joins fits comfortably
in the main memory of a cluster of machines, and most applications
run completely in main memory for performance reasons.

Choosing appropriate spatial join algorithms is challenging due
to the large number of techniques in the literature. In this paper, we
perform an extensive evaluation of repeated spatial join algorithms
for distance (range) queries in main memory. Our study is unique
in breadth when compared to previous work: We implement, tune,
and compare ten distinct algorithms on several workloads drawn
from the simulation and spatial indexing literature. We explore the
design space of both index nested loops algorithms and specialized
join algorithms, as well as the use of moving object indices that
can be incrementally maintained. Surprisingly, we find that when
queries and updates can be batched, repeatedly re-computing the
join result from scratch outperforms using a moving object index in
all but the most extreme cases. This suggests that — given the code
complexity of index structures for moving objects — specialized
join strategies over simple index structures, such as Synchronous
Traversal over R-Trees, should be the methods of choice for the
above applications.

1. INTRODUCTION
A wide variety of applications rely on high-performance spatial

processing. These include location-based services [28], games [40],
virtual worlds [13], and scientific simulations, such as molecular
dynamics [36] and behavioral simulations [39]. In these applica-
tions, moving objects continuously explore and sense their envi-
ronment. For example, pedestrians moving in a city may wish to
∗Work was performed while the author was at Cornell University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

find friends and businesses in their vicinity, and agents in games or
behavioral simulations must query their surroundings in the virtual
environment in order to decide what to do next.

Since many moving objects may issue similar spatial queries re-
peatedly, the spatial join is a key primitive in many of these ap-
plications. It is also common for applications such as simulations
and games to batch updates in order to support evolving data more
efficiently. In these applications, batches correspond naturally to
the logical timesteps built into the application model. Thus we will
consider applications that process repeated or iterated spatial joins,
intermixed with batches of updates.

We have observed that all of the example applications above,
as well as many others, can be run completely in main memory.
Furthermore, several recent studies have argued that many moving-
object applications, including more traditional location based ser-
vices such as flight tracking, can tolerate some query staleness [9,
32]. However, these applications require very low response times
even in the presence of significant query and update rates.

In this paper, we experimentally study techniques to efficiently
process iterated spatial joins for moving object applications. Deter-
mining the most efficient techniques to process these spatial joins
is challenging for a variety of reasons. First, there have been a
tremendous number of join algorithms proposed in the literature,
many of which have never been compared directly. A number of
existing algorithms are based on an index nested loops join, and
thus require that we select from a wide variety of spatial indices
for the inner relation [9, 14, 21, 22, 29, 30, 37, 38]. Other ap-
proaches process the entire join in bulk, relying on lightweight aux-
iliary structures instead of a full-blown spatial index [3, 5, 17, 31].

Second, developers must choose a method to process updates.
Since objects move through space, we can take advantage of tech-
niques for indexing moving objects to avoid applying position
updates [30, 37] or even update the join result itself incremen-
tally [17]. Alternatively, since updates can be batched in many
moving object applications, we can either rebuild a static index or
reread the data for a bulk join method.

Third, many existing algorithms for spatial joins were optimized
for disk resident data since their workloads traditionally did not fit
in memory. As main memory sizes continue to grow, this constraint
no longer holds, so in addition to all of the decisions above, devel-
opers of high-performance spatial applications must decide which
methods make sense for a main memory environment. In partic-
ular, they must consider whether memory hierarchy optimizations
developed for disks translate naturally into cache optimizations for
main memory.

Although previous benchmarking studies provide some guid-
ance to developers, they fall short of comprehensively addressing
the breadth of options for moving object applications. Those that

1882

explicitly addressed main-memory execution have informed our
choice of data structures, but they focused on a small number of
static spatial indices rather than the full range of spatial join algo-
rithms evaluated in this study [15, 20, 38]. Another recent study
focused exclusively on moving object indices for non-predictive
range and nearest neighbor queries [6]. However, that study only
considered disk-resident data and only addressed monitoring sce-
narios in which there are a large number of moving objects but
relatively few queriers. We consider main memory moving object
applications in which a large fraction of the objects issue queries.

The novelty of our work lies in revisiting the vast literature on
spatial joins in light of emerging workloads and commodity hard-
ware. No previous experimental study has clarified the perfor-
mance tradeoffs for the workloads we are interested in. We derive
the non-obvious conclusion that if batching of queries and updates
is permissible,then static methods that rebuild index structures from
scratch outperform incremental methods in all but the most extreme
cases. More specifically, we make the following contributions:
1. A Study With Many, Varied Algorithms: Our study compares
ten representative techniques from the literature. We compare in-
dex nested loops joins using a variety of static and moving spatial
indices as well as several special purpose spatial join algorithms.
Some of these approaches have been evaluated independently in
the literature, but to our knowledge no existing study has compared
them all.
2. Experiments with Multiple Moving Object Workloads: We
tune all of the algorithms for main memory, and evaluate them on
uniform and skewed random workloads as well as two workloads
motivated by high-performance spatial applications: a behavioral
simulation of schooling fish [7] and a simple model of motion on
road networks, which has previously been used to evaluate moving
object indices [6]. We experiment with a wide range of parameters
so that our results can be applied to many different scenarios.
3. A Benchmark with Open-Source, Extensible Code: To moti-
vate further evaluation of future and existing iterated spatial join
techniques, we have organized our benchmark as an extensible
framework and made it available as infrastructure for the commu-
nity [1]. Our APIs, code, and scripts give developers of novel algo-
rithms easy access to an environment in which they can objectively
test against previous work. Until now, such testing has required
re-implementation of previous work in a common environment.
4. Integration of Parallelism and Predictive Queries: In addition
to comprehensively evaluating alternative methods to perform iter-
ated spatial joins on a single processor, we also experiment with the
best methods on more complex predictive queries as well as with
multi-core partitioned parallelism. These additional experiments
suggest directions for future research on parallel efficiency and use
of static methods for even more complex query types.

The remainder of the paper is organized as follows. Section 2
states requirements for iterated spatial processing techniques and
shows our processing model. We describe the ten spatial join al-
gorithms we evaluate in Section 3, and discuss our experimental
setup and workloads in Section 4. Section 5 documents our tuning
of the various algorithms, and Section 6 presents our experimental
results. We discuss other spatial benchmarks in Section 7.

2. BACKGROUND
2.1 Moving Object Applications

Moving object applications process a large number of objects
moving and interacting in some low-dimensional space. Unlike ap-
plications in which queries are posed by an external user, we focus
on agent-oriented moving object applications in which objects is-
sue queries to sense their environment and updates to change their

positions and velocities. When taken collectively, the queries is-
sued simultaneously by multiple objects are logically equivalent to
a spatial join. While there have been many algorithms proposed to
answer spatial joins over moving objects, emerging trends have led
to important new requirements:
1. Bulk Operations: In many moving object applications, the ac-
tions of multiple objects occur simultaneously, e.g., the movement
of pedestrians in a city center or the simulation of characters in a
game. Thus, representing time in these applications is a challeng-
ing issue. A common approach, which we use in this study, is to
discretize time, leveraging the observation that there is a granu-
larity of either perception of simulated events or measurement of
events in the real world. This allows the applications to achieve
high throughput by processing both queries and updates in batches
that correspond to logical timesteps. However, this also creates a
tension in the choice of method. On one hand, we can use meth-
ods specifically designed for moving objects, such as the TPR-
Tree [37]. On the other hand, if queries and updates can be pro-
cessed in bulk, then it may be faster to re-execute a static join or
rebuild a static index to deal with every batch of queries and up-
dates [9, 40]. It is clear that rebuild approaches should outperform
incremental updates when batch sizes approach the total number of
objects. However, it is unclear which approach is best for the batch
sizes found in practice.
2. Varying Query and Update Rates: Agent-oriented moving ob-
ject applications support a wide range of query and update rates,
and both the query and update rates are correlated with the num-
ber of objects in the application. For example, in a widely used
model of animal movement, nearly every object issues a query and
changes direction at every timestep, leading to a huge number of
queries and updates [7]. This differs considerably from the tradi-
tional model of moving objects, which typically targets scenarios
with a relatively small number of monitoring queries. A recent ex-
perimental study evaluated range queries on up to a million moving
points, but issued batches of only 100 queries – four orders of mag-
nitude below what we expect in many simulations [6]. At the other
end of the spectrum, in certain location-based services only a small
fraction of individuals or cars issue queries about their vicinity at
any given time. We evaluate spatial join algorithms over this entire
range of query and update rates to determine the best indices for
each scenario.
3. Main Memory Execution: Moving object applications fre-
quently must support either extremely high throughput (e.g., sci-
entific simulations) or low response time (e.g., location- based ser-
vices). To support these demanding requirements, many moving
object applications are being executed entirely in main memory.
Unfortunately, many spatial join methods have been optimized for
data stored on disk, and it is not clear that the optimizations devel-
oped for disk-resident data will carry over when data is stored in-
memory. As memory sizes become larger and computers become
limited by memory bandwidth [23], it is becoming increasingly im-
portant to reevaluate spatial join techniques with these new metrics
in mind. We conjecture that most moving object applications will
move to main memory in the future. The raw representation of a
billion moving objects fits comfortably under a hundred gigabytes
– so even a service managing moving objects at planetary scale
could be run in the main memory of a modest cluster.

2.2 Processing Model
As noted above, many moving object applications batch queries

and updates, either for performance reasons, to mask latency and
communication costs, or as a fundamental part of the model (as in
some scientific simulations). We model these batches using atomic

1883

Join Approach Indexing Approach
Static Moving

Index R-Tree [14, 22] CR-Tree [21] TPR-Tree [37]

Nested Loops Linearized KD-Trie [9, 29] STRIPES [30]
Static Grid [38]

Specialized
Plane Sweep [3] AE [17]

PBSM [31]
Synchronous Traversal [5]

Table 1: Algorithms For Iterated Spatial Joins

timesteps called ticks. Each tick conceptually consists of a query
phase, in which we process batches of object queries, followed by
an update phase, in which we process batches of updates.

The query phase of a tick processes a batch of spatial queries
issued by some fraction of the objects which read the state of other
objects as of the previous tick. In this paper we will restrict our-
selves to orthogonal range (box) queries, as these typically form the
first and most expensive step of processing general range queries.
Following previous studies [6, 15, 20, 38], we focus our atten-
tion on two-dimensional data, as this is sufficient to demonstrate
the main conclusions of our study while controlling for its scope.
For the same reason, we leave the study of other kinds of spatial
queries, e.g., nearest-neighbor queries, for future work.

The update phase of a tick logically processes all updates in
bulk before the start of the next tick. An update may change an
object’s velocity or position, and different join algorithms handle
updates differently. Note that while ticks are atomic, we do not re-
quire that they correspond to a fixed unit of simulated (or real) time.
The amount of computation in consecutive ticks may vary widely,
allowing us to model many applications in the same framework.

3. SPATIAL JOIN TECHNIQUES
The spatial join algorithms evaluated in this paper can be divided

into four categories based on whether they index static points at
each tick or moving points across ticks and whether they use an
index nested loops algorithm or a more specialized method to com-
pute or maintain join results. Table 1 shows the ten algorithms we
implemented according to this categorization. We consider each
quadrant separately in the following subsections.

3.1 Static Index Nested Loops Join Methods
The simplest way to process iterated spatial joins is to build a

static index on the points and then probe it repeatedly for each
query. If most points are moving, it is more efficient to rebuild
the index at every tick than to delete and insert every point that
moves. Thus we need not support updates and can use efficient
bulk-loading methods. We evaluate four different choices of static
index: the R-Tree [14, 22], the CR-Tree [21], the Linearized KD-
Trie [9, 29] and a Simple Static Grid [38].
R-Tree. The R-Tree hierarchically decomposes spatial objects so
that each internal node corresponds to the minimum bounding rect-
angle (MBR) containing all of its children [14]. These MBRs are
not guaranteed to be disjoint, and the performance of range search
depends on the extent of their overlap. To reduce overlap and im-
prove query performance, we use the bulk-loading technique de-
veloped by Leutenegger et al., which first sorts data objects accord-
ing to their x-coordinate, and then divides the objects into roughly
equal-sized stripes and sorts each stripe by y-coordinate [22].
CR-Tree. The CR-Tree is a cache-optimized variant of the R-Tree
for use in main memory. It reduces the amount of space required
to store each internal node so that more nodes can be packed into
a single cache line and read from memory at once [21]. To accom-
plish this, the CR-Tree delta-encodes and quantizes keys, which
may lead to false positives that must be filtered out during search.

We use the same bulk loading algorithm for the CR-Tree as we did
for the R-Tree.
Linearized KD-Trie. The Linearized KD-Trie maps the two-
dimensional (or in general, k-dimensional) search problem to one
dimension by using a space-filling curve such as the z-curve [9, 29].
In this approach, each point is represented as a bit-string, where
each bit determines into which half of the space the point falls in
one dimension, much in the same way that space is partitioned in
a standard KD-Trie. Range probes, which are rectangles in two-
dimensional space, become sequences of interval probes along the
z-curve, which we can answer using binary search. Since the values
are packed sequentially in an array, this structure can yield better
cache behavior and main-memory performance than the standard
pointer-based KD-Trie [9].
Simple Grid. Recent evidence suggests that a simple grid-based
index performs well for orthogonal range queries [38]. This index
partitions space uniformly into a fixed number of cells stored as a
two-dimensional array. Each cell contains a pointer to a linked list
of buckets storing the points that fall within that cell. The search
algorithm must examine every cell that intersects the query region.
As with the previous methods, we rebuild the index at every tick.

3.2 Static Specialized Join Methods
A number of specialized spatial join algorithms have been de-

veloped that go beyond traditional index nested loops methods with
static indices. These algorithms often preprocess the queries and/or
data points in much the same way that standard merge/hash joins
do for relations. In this study we focus on two approaches: plane-
sweep algorithms [3, 31] and synchronous traversal algorithms [5].
Plane sweep methods, including the more recent PBSM technique,
can be thought of as extensions to the sort-merge join, while syn-
chronous traversal algorithms utilize two static indices to speed up
join processing. As in the previous case, these algorithms operate
on static points and must be re-executed at every tick.
Plane-Sweep. Plane-Sweep (or sweepline) algorithms are standard
and widely used algorithms for joining spatial data [8]. The ba-
sic idea is to sort the query rectangles and points together by the
x-coordinate (or any other single coordinate), and sweep a line
through this list in sorted order. Whenever this line crosses the
left side of a query rectangle, that rectangle becomes active and is
inserted into a sweep structure. Whenever it crosses the right side
of a rectangle, the rectangle is removed from the sweep structure.
This ensures that the x-coordinate of every point encountered dur-
ing the search falls within all of the active rectangles. We output as
join results those active rectangles that also contain the point in the
y-dimension.

We implemented several alternatives proposed by Arge et al. for
the sweep structure, including a simple linked list and a striped
sweep structure partitions the space into vertical strips and main-
tains a separate linked list for each one [3]. We also implemented
the forward sweep variant that does not use an explicit sweep struc-
ture. Instead, it maintains separate sorted lists for the points and
query and whenever it encounters an object in one list, it searches
forward in the other list and reports matching objects.
PBSM. The Partition Based Spatial-Merge Join (PBSM) of Patel
and Dewitt is an extension to the standard plane-sweep algorithm
for external memory databases [31]. We experiment with PBSM
to determine whether its optimizations also improve cache perfor-
mance in main memory. The algorithm starts by partitioning both
the data points and the query rectangles into the same uniform grid,
where the query rectangles are replicated in all of the partitions they
intersect. Each grid cell is then joined using a standard plane sweep
method. One problem with this approach is data skew. If the data

1884

is highly skewed, then some partitions may contain a large number
of objects and may not fit into main memory (resp. cache). To ad-
dress this, PBSM partitions the data into a much larger number of
tiles, which are assigned to partitions using a round-robin hashing
scheme. This effectively handles data skew, but it does introduce
extra replication since query rectangles may intersect many tiles.
Synchronous Traversal. Synchronous traversal algorithms are
a family of techniques that join two data sets by using R-Trees
(or similar structures) to prune pairs of nodes that do not join.
There are a number of variants, but we implement the version by
Brinkhoff et al [5]. At the beginning of each tick, we build one
R-Tree on the query rectangles and another on the data points. We
then perform a depth-first traversal on the trees starting at the roots.
At each pair of nodes, we compare MBRs of all the children of each
node and visit each pair that intersects. Comparing the MBRs can
be thought of as a join between sets of rectangles, and we evaluate
three different strategies (Section 5). The first is a simple quadratic
nested loops strategy that compares the MBRs for each pair of chil-
dren. The second is an optimization that prunes those MBRs that
do not intersect with the parent’s MBR in the other tree. Finally,
we can use forward plane-sweep to join the rectangles.

3.3 Moving Index Nested Loops Join Methods
Moving object indices maintain a set of moving points over time.

Since they maintain the velocities of the points as well as their po-
sitions, they do not need to be rebuilt at every tick, though they do
need to be updated when a point’s velocity changes. Many moving
object indices support sophisticated predictive queries [37], but our
workload requires only timeslice queries that return the result of a
range query at a specific time. With this functionality, a moving
object index can be used in a nested-loops join in the same way as
a static index, though it does not need to be rebuilt at every tick.In
this study, we evaluate the TPR-Tree [37] and the STRIPES [30]
index, which were found to perform well in a recent study [6].
TPR-Tree. The TPR-Tree extends the R-Tree to support moving
objects by changing the MBRs to be functions of time [37]. A
point is inserted with a reference position and a velocity, and the
bounding rectangles grow over time so that they continue to enclose
the same set of points. This causes overlap and may reduce query
performance, as in a standard R-Tree. Timeslice queries in a TPR
tree can be performed exactly as in an R-Tree where we evaluate the
the MBRs as of the query time. Velocity updates are also similar
to position updates in an R-Tree, though the splitting procedure is
slightly different. Rather than optimizing for area, perimeter, or
overlap, the TPR-Tree splitting algorithm attempts to optimize the
integral of these quantities over time. Even if an update does not
force a split, the authors suggest tightening the bounding rectangles
at every update in order to improve query performance. There have
been a number of extensions to the TPR-Tree, including the TPR∗-
Tree [33], but a recent experimental study found that the standard
TPR-Tree performed better for simple timeslice queries [6].
STRIPES. STRIPES is a moving object index that is based on a
technique called the dual transformation [30]. This transforma-
tion represents moving objects in two dimensions as a static points
in four dimensions. Two dimensional range queries can be trans-
formed into simplices in this same space. STRIPES is implemented
using two PR quadtrees. The first has reference time 0 and stores
objects updated between time 0 and L (where L is a parameter).
The second quadtree has reference time L and stores those objects
updated between time L and 2L. After time 2L, the first index is
emptied and used to index points updated in the next L time units,
and so on. Queries must be made to both quadtrees.

Interface 1: Iterated Spatial Join

IteratedSpatialJoin::startTick(vector<point>)
IteratedSpatialJoin::enumerationJoin(callback, vector<point>,

regionGen

IteratedSpatialJoin::afterInsert(point)
IteratedSpatialJoin::beforeDelete(point)
IteratedSpatialJoin::beforeUpdateVelocity(point, newVelocity)
IteratedSpatialJoin::endTick()

3.4 Moving Specialized Join Methods
The final class of algorithms maintains queries as continuously

moving rectangles. Since objects always query for objects within
a fixed distance, the queries move continuously along with the ob-
jects, and can be indexed with a structure such as the TPR-Tree.
These algorithms report join results incrementally by notifying a
callback whenever a pair is added to or deleted from the results.

While a number of related approaches have been explored in the
literature, including SINA [24], Conceptual Partitioning [25], AE
and NE [17], in this paper we implement the AE algorithm [17].
AE. The All Events (AE) algorithm is an example of an event-driven
continuous spatial join algorithm [17]. It precomputes the set of all
within events in a fixed time window (the event generation cycle)
corresponding to the times when a data point enters or exits a query
rectangle. These events are stored in a priority queue ordered by
time, and are used to update the join result. For example, when a
point (resp. query) is inserted, it is joined with the existing queries
(points) to produce new within events to be added to the queue.

Unlike Conceptual Partitioning, AE is designed for spatial joins
and not only k-NN queries. Unlike SINA, it is straightforward to
adapt the method to operate exclusively in main memory instead
of having separate data structures and processing phases for disk.
Unlike NE, AE batches event generation, a type of optimization
we found often important in main memory. We believe AE to be a
representative method for moving specialized join algorithms.

4. EXPERIMENTAL SETUP

4.1 Implementation
To ensure a fair comparison between the different join strate-

gies, we built an experimental framework to automate the pro-
cess of comparing methods and collecting experimental results.
This framework is responsible for managing and updating the base
data and issuing query and update calls to the join methods when
necessary. We experiment exclusively with secondary indices, so
the individual algorithms operate on pointers and never update the
base data directly. This is reasonable for many spatial applications
where each moving object may have multiple non-spatial attributes
accessed independently by other portions of the application logic.
We store the base data in an array and the update in the same way
regardless of the secondary index employed. As such, our measure-
ments include the time it takes to update the primary data, which
should be roughly the same for all methods.

We implemented all of the join methods against a common API,
shown in Interface 1. The model is explicitly time-stepped, and
each join method is notified at the beginning (startTick) and end
(endTick) of every tick. Some strategies, such as the static nested-
loops algorithms, rebuild an index during the startTick method,
while other algorithms that incrementally maintain an index may
do nothing in this method after the first tick.

Bulk queries are posed using the enumerationJoin method.
The method accepts a callback for reporting results, a set of query

1885

points, and a RegionGen instance, which contains a method to gen-
erate a query rectangle from a point. During experiments, the join
results are discarded at the end of each tick, but they can also be
saved and used for regression testing.

In order to keep indices that persist across multiple ticks up-
to-date, the framework notifies each join strategy of all updates
made to the moving objects at every tick. It does this by calling
the afterInsert, beforeDelete, and beforeUpdateVelocity
methods to indicate object insertion, deletion, and velocity up-
dates, respectively. Note that the framework will only call the
beforeUpdateVelocity method on moving algorithms. For static
algorithms, it will convert these velocity updates to position up-
dates, which are implemented with a delete followed by an insert.

Since the AE algorithm operates on continuous moving queries,
it requires a slightly different API. The algorithm maintains con-
tinuous query results in a special callback object, which is stored
as a hash table and contains both addResult and deleteResult
methods. We omit the details of this extended API for brevity.

We optimized the individual join algorithms and tuned their pa-
rameters to perform well in main memory (Section 5). Though our
implementations are all two-dimensional, we have made them as
generic as possible with respect to key type. Since some of the
main memory optimizations, such as quantization for the CR-Tree
and Linearized KD-Trie, are limited to numeric types, all of our
experiments use 64-bit floating point keys.

Our experimental framework and spatial join algorithms are im-
plemented in approximately 30,000 lines of C++ which we make
available for the community to use and extend [1].

4.2 Workloads
We experiment with four different workloads and a wide range

of parameters drawn from behavioral simulations as well as more
traditional moving object scenarios. We use a single binary trace
format for all workloads to ensure repeatability. A trace consists of
a set of initial points followed by a sequence of ticks, each of which
contains a sequence of queries and updates. Queries are specified as
a set of object identifiers and an x and y range for the query window
around each object. For simplicity, we fix the query window size
and vary the fraction of objects issuing the query at each tick. We
select the queriers uniformly at random at each tick, except when
experimenting with the AE algorithm. Since this algorithm main-
tains queries across ticks, it performs best when the same points
query at each tick. Thus, to evaluate the AE Join in a favorable set-
ting, we fix the set of queriers at the beginning of each experiment.

Updates are divided into four types: insert, delete, position up-
date, and velocity update, and each update is represented as a type
code, an object identifier, and the new object data to be inserted or
updated. The framework is responsible for interpreting these up-
dates and issuing the appropriate calls to the indices.

We group workloads into two categories: synthetic workloads
used to test specific parameters, and workloads based on simulation
models. We borrow several workloads from a recent benchmark by
Chen et al., but we experiment with a wider range of query and up-
date rates [6]. This ensures our results are comparable with previ-
ous work while still illuminating new parts of the parameter space.
Synthetic Workloads. To ensure that we can vary parameters inde-
pendently, we experimented with two workloads consisting of ran-
domly generated moving points. In the uniform workload of Chen
et al. [6], points are instantiated uniformly at random positions in a
fixed size square space and move in random directions. The speed
of each point is chosen uniformly at random from a fixed set of
possible speeds. We change the query workload so that at each
tick, a fixed uniformly-chosen fraction of objects issue queries, and

Parameter
Setting

Uniform Medium Large GaussUniform Uniform
Num. Ticks 100 100 500 120
Num. Points 10K .. 50K .. 90K 500K 1M 50K
Space Size 10K2 .. 22K2 .. 30K2 224K2 577K2 22K2

Max. Speed 200 2000 600 200
Query Size 400 4000 600 400
% Queriers 10% .. 50% .. 90% 50% 0.01%,1% 50%
% Updaters 10% .. 50% .. 90% 50% 0.01%,1% N/A

Table 2: Parameter Settings for Synthetic Workloads

a fixed fraction of objects change velocity. To handle boundaries,
we make the space a torus, so that objects that exit the space in the
upper right corner reappear in the lower left corner with the same
velocity. We accomplish this by inserting an explicit position up-
date into the trace. Thus the total number of updates at each tick
will slightly exceed the fraction of points issuing velocity updates.

The gaussian workload models a skewed workload in which ob-
jects cluster around a fixed set of hotspots as in previous work [6].
The hotspots are initialized at uniform random locations, and points
are distributed into rings around each hotspot according to a Gaus-
sian distribution. The rings affect the speed and update frequency
of the points – those points closer to a hotspot move faster and
update more frequently. This ensures that the points maintain a
skewed distribution over time [6]. Note that a point’s velocity is up-
dated at regular intervals depending on its ring. Thus if the points
were to be inserted all at once at the beginning of the trace, as in the
uniform workload, updates would clump together every few ticks.
To spread out update load, we inserted the points over a period of
20 ticks. We do not include the time for these ticks in our results.

Table 2 shows the parameter settings we used for the uniform
and gaussian workloads. We experimented primarily with between
10,000 and 90,000 moving points. This is quite small compared
to the number of points that fit in main memory, but we believe
it is a reasonable estimate for the number of objects that are pro-
cessed on a single core for many spatial applications, since these
applications often include a considerable amount of computation
in addition to the spatial joins, limiting the number of objects that
can be feasibly handled on a single core. To evaluate how the meth-
ods perform when the data set is larger than the cache size, we also
employed two additional uniform workloads with “Medium” and
“Large” numbers of points. The “Large Uniform” workload, in
particular, contains one million points and has a much smaller frac-
tion of queries and updates. As we scale the number of points, we
also scale the size of the space so that the density remains constant
for the uniform traces. This allows us to evaluate the scalability of
the join methods without the number of joining points becoming
quadratic and dominating the performance. Note that increasing
the query window size generates the same effect of quadratic scal-
ing on join result, and we thus only report one window size setting
for each of our workloads in the interest of brevity.

We vary the fraction of points issuing queries or velocity updates
per tick from 10%-90% of the total number of points. These are
very high rates compared to many existing spatial database work-
loads, but as we noted in Section 2.1, applications such as simula-
tions often have very high query and update rates, and we believe it
is valuable to consider this part of the parameter space. In order to
determine when moving object indices perform best, we have also
conducted several experiments with lower query and update rates,
between 0.01% and 1% of the points per tick. We execute this
large trace for 500 ticks rather than 100, in order to better observe
the benefits of incremental computation at low update rates.
Simulation Workloads. To model constrained motion in space, we
use the network-based workload proposed by Chen et al. [6]. This

1886

Parameter Setting
Num. Nodes 6,105, 11,414, 175,343
Num. Edges 7,035, 15,641, 223,308

Num. Objects 100,000
Space Size 100,0002

(a) Network Settings

Parameter Setting
Num. fish 100K. . . 900K

Num. goals 10
% informed 10%

α 25
ρ 160

(b) Fish Settings
Table 3: Simulation Workload Settings

workload models random motion on three real road networks from
Oldenburg, Singapore, and San Francisco that were originally used
by the Brinkhoff moving object generator [4]. Objects are placed
randomly on network edges and move randomly over time. When
an object reaches a network node, it chooses a random edge in-
cident to that node and proceeds with a new speed. If an object
overshoots the next node during a tick, its position is corrected us-
ing a special position update in the trace. This must be applied to
both moving and static indices. As with the previous workloads,
each object queries with a fixed probability at every tick. Table 3a
shows the parameter settings for the Oldenburg, Singapore, and San
Francisco networks, respectively. The networks are scaled to the
same space size, so the edges in the larger networks will be shorter
than those in the smaller networks, yielding more updates.

To evaluate our spatial join algorithms on a realistic application,
we implemented a model of schooling fish proposed in Nature by
Couzin et al [7]. In this model, fish move and interact according to
two simple rules: (1) they avoid (turn away from) other fish within
a small fixed distance α from their current position, and (2) if there
are no fish within distance α, then they turn toward fish within a
distance ρ > α. Additionally, a certain number of “informed” fish
have a desired goal that influences their direction of motion.

Rather than reading updates from a trace, we implement and exe-
cute the simulation itself using two spatial joins between fish corre-
sponding to the steps described above. Note that the second join is
performed only for those fish with no neighbors within distance α.
As in our other experiments, we perform orthogonal range queries
rather than proper distance queries, since answering the former is
typically the first and most expensive part of processing the latter.
Table 3b shows the settings we choose for the simulation.

4.3 Hardware
We ran all experiments on an Intel Xeon 5500 2.66 GHz with

48 GB RAM and four cores running Ubuntu Linux. Except for the
multi-core experiment in Section 6.5, our code is run on a single
thread and thus utilizes only one core. Each core has 32 KB of
L1 cache and 256 KB L2 cache and they share 8 MB of L3 cache.
To account for experimental overhead, we present build, query, and
update times separately where appropriate. Unless otherwise noted,
we ran each experiment on the synthetic data for 100 ticks with
three randomly generated traces and report the average, min, and
max values (the later two using error bars).

4.4 Parallel Execution
We also extend the framework to support parallel (multi-core)

execution for static methods. We use a simple spatial partition-
ing method motivated by our distributed simulation platform [39].
While this method is unlikely to outperform special-purpose paral-
lel join methods such as the TwinGrid index [32], it does not require
modifying any of the join algorithms.

The parallel partitioning algorithm we use divides the points into
disjoint rectangular regions at each timestep using a KD-Trie. Sup-
pose we have n points and the desired degree of parallelism is p.
(1) First we sample the data set and construct a partial KD-Trie on

Method CPI
Total LOAD LOAD Ops Breakdown
Ops Ops L1 LFB L2 L3 Mem(billion) (billion)

R-Tree 2.2 2,353.1 973.7 93.4% 2.5% 0.5% 0.3% 1.0%
CR-Tree 1.4 2,732.9 1,133.5 93.8% 2.2% 1.7% 0.4% 1.0%

Table 5: Profiling: 50% queries and updates, 500K points

the base data with p leaves. This step is performed sequentially.
For our experiments we use a sample size of 1000, which is suf-
ficient for uniform data. (2) In parallel, thread i examines 1/pth
of the data set, and partitions the points according to the KD-Trie.
It stores the resulting p partitions in shared memory. (3) Finally,
in parallel, thread i takes the ith partition from each thread in the
previous step and merges it into a list of points that will processed
during the join. In order to ensure a fair distribution of points, we
construct the KD-Trie with r > p partitions and then assign multi-
ple partitions to each thread. In our experiments r = 4p. Queries
are partitioned in the same way using the same KD-Trie.

Note that if we execute the join independently on each partition,
the result may be incorrect, as points near the boundary of a par-
tition will not be joined with points from outside the partition. As
in [39], we address this by replicating all points within distance q
of the boundary of each region, where q is the maximum radius
of a query rectangle that makes up the join. Note that we do not
replicate the query points in order to avoid over-counting. Finally,
since we do not migrate points between partitions, this method does
not work with the moving or incremental join methods described in
Sections 3.3 and 3.4.

In order to better understand the performance on a larger number
of cores, we run our multi-core experiments on a machine with two
6-core Intel Xeon X5680 processors clocked at 3.3 Ghz. Each core
has 32 KB L1 data cache and 256 KB L2 cache, and each CPU has
12 MB L3 cache. The system has 48 GB of RAM.

5. PARAMETER TUNING
In this section, we discuss tuning the parameters for all the spa-

tial join methods we implemented. Due to space constraints, we
present detailed results for our tuning of the R-Tree and CR-Tree
only, since these results are surprising in light of previous work.
For all remaining methods, we simply document the parameters
used in subsequent experiments in the interest of repeatability and
completeness.
R-Tree and CR-Tree. We organized each R-Tree and CR-Tree
node as in [15] to avoid unnecessary pointer-dereferencing (and
hence cache misses). Figure 4 shows the effect of increasing the
node size on the performance of the R-Tree and the CR-Tree in
which keys are quantized to 1, 2, or 4 bytes from their original
8 bytes. We found that both structures did best with a node size
corresponding to a small multiple of the cache line size, though
the decrease in performance due to larger node sizes is relatively
minor. The CR-Tree was also relatively insensitive to the quan-
tization level, and we use 2 bytes for all remaining experiments.
Interestingly, the R-Tree and CR-Tree perform comparably in this
experiment, with the R-Tree actually outperforming the CR-Tree
by a small amount. This result differs from previous work, and
we expect that it is because existing comparisons do not evalu-
ate bulk-loaded R-Trees [15, 21]. The CR-Tree trades precision of
MBRs during query processing, via quantization, for better pack-
ing of data. The hope is to increase cache efficiency and thus gain
in performance. However, the improved precision of a bulk-loaded
R-Tree during query processing may offset the gains obtained by
the CR-Tree with data packing.

To better understand this effect, we profiled cache performance
of the two methods using the Medium Uniform workload described

1887

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000 2500 3000

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Node Size in Bytes

R-Tree
CR-Tree, 1 Byte

CR-Tree, 2 Bytes
CR-Tree, 4 Bytes

Figure 4: RTree Node Size: 50% queries and updates, 50K points

in Section 4.2. This dataset is larger than the last-level cache,
and we used the Intel VTune Performance Analyzer to analyze the
memory access behavior [16]. For each method, Table 5 shows the
cycles-per-instruction count (CPI), the number of total instructions
and load instructions, and a breakdown of the percentage of LOADs
serviced from different levels of the memory hierarchy. Note that
a request is serviced from a line fill buffer (LFB) if another request
for the same data item is already outstanding.

From this table, we see that the R-Tree and CR-Tree display
very similar cache performance. They both service over 95% of the
LOADs from the L1 cache or the line fill buffers and only 1% of the
accesses from main memory, suggesting that the aggressive com-
pression used by the CR-Tree provides relatively little benefit when
compared to a bulk-loaded R-Tree. Since the R-Tree does not have
to filter false positives or perform quantization, it executes fewer
total instructions. These results suggest that when bulk-loading is
used, one should prefer the simpler R-Tree to the CR-Tree.
Remaining Methods. For completeness, we document below the
parameters we found most effective for all remaining methods [1].
We found empirically that full partitioning of queries is best for the
Linearized KD-Trie, while the Simple Grid performs best when
configured with 13 cells per side with our standard uniform work-
load. To adjust for data size, we fix the average number of points
per cell to 296, with four points per bucket, for other workloads as-
suming a uniform distribution. While these settings are much less
granular than grid settings used by continuous spatial query ap-
proaches, such as Conceptual Partitioning [25], the computational
overhead of static methods is significantly smaller than that of mov-
ing methods, a point we will explore in Section 6.

In accordance with the results of Arge et al. [3], we found
striped-sweep to be the best choice for Plane Sweep, and 128
stripes to be a good setting. However, we employed forward sweep
for PBSM, both because it is was used in the PBSM proposal and
because striped-sweep effectively increases the number of parti-
tions, complicating the evaluation [31]. We found 45 partitions
per side to be optimal with our standard uniform workload, and
to adjust for data size we fix the number of partitions so that each
partition holds an average of 25 data points. We set the number of
tiles to be equal to the number of partitions, since we found the ef-
fect of tiling to be modest even with skewed workloads. Since we
found the optimal R-Tree node size to be quite small (8 entries),
we adopted the nested loops algorithm to join individual R-Tree
nodes in Synchronous Traversal, as this simple method is just as
effective as more complex methods at such small node sizes.

We made several optimizations to the standard TPR-Tree. To
improve update performance, we use the R∗-Tree splitting algo-
rithm and maintain a hash table from point id to tree node so that
we do not have to perform an additional search for deletes. In
contrast to static methods, we found per-node computation cost
(e.g., the cost of maintaining the time-parameterized rectangles)

to be considerable for the TPR-Tree, so that reducing the num-
ber of nodes continues to improve performance beyond what we
would expect by caching effects. We found a good setting for node
size to be 5,204B (68 entries). For high query and update rates,
we found the lifetime parameter to have relatively little effect on
performance, as the bounding rectangles are already compressed
during updates. For experiments with the uniform and gaussian
workloads, we choose a lifetime of 60 ticks, so that the tree will be
rebuilt only once during a 100 tick experiment. The lifetime has a
more significant impact at lower query and update rates. We found
settings above 100 ticks to be best, with modest improvements even
for larger settings. We choose a lifetime of 250 ticks when running
experiments with the large trace.

Recall that STRIPES uses two quadtrees which index points up-
dated between time 0 and L and time L and 2L respectively, where
L is a lifetime parameter. We observed the lifetime of STRIPES to
be best at the low setting of just two ticks for the uniform workload,
and at the somewhat higher setting of 50 ticks for the large uniform
workload. The corresponding parameter for the AE Join is the
event generation cycle. As we expect the join to perform poorly for
high query and update rates, we focused our optimization efforts on
the large (1M point) trace. With 0.01% queries and 0.1% updates,
the performance improved by over a factor of seven as we increased
the event generation cycle from 2 to 22. The performance contin-
ued to improve modestly as we increased the event generation cycle
further, but memory usage became a problem since the number of
events stored in the queue grows with the event generation cycle
length and the number of queries. We picked 20 ticks as the event
generation cycle for the experiments, as this seemed to provide a
good tradeoff between performance and space.

6. EXPERIMENTAL RESULTS
In this section, we analyze the effect of query and update rates

and data skew on the performance of the various methods. We
also measure the scalability of the methods and their effectiveness
on several realistic workloads. In addition to the ten methods de-
scribed in Section 3, we implemented a simple baseline algorithm
which sorts the data points by one coordinate, and uses a nested
loops algorithm with binary search to compute the join result.

6.1 Effect of Query and Update Rates
Scaling the Query Rate. Figure 6 shows the performance of the
methods as we scale the fraction of points that issue queries from
10% to 90% for 50,000 points. The update rate is fixed at 50%.

Part (a) shows the performance of the five static indices, in-
cluding the Binary Search method described above. Among these
strategies, the R-Tree, CR-Tree, and Linearized KD-Trie perform
best and are very similar, though the R-Tree is up to 20% faster
than the CR-Tree. The Simple Grid is over a factor of four slower
than the R-Tree when 90% of the points query, while Binary Search
is slightly faster than the Simple Grid. We found this result to be
stable, even though a recent study indicated grids not to perform
significantly worse than trees in main memory [38]. However, in
our study static structures are rebuilt at every tick instead of up-
dated over time, and this changes the performance trade-offs, as
discussed in more detail below.

Part (b) of Figure 6 shows the performance of specialized join
methods. The slowest join, the standard Plane Sweep with a linked-
list sweep structure, is 1.5 times slower than the Simple Grid at 90%
query rate (note the different scales). However, the plane sweep
methods that partition the space, PBSM and Striped Sweep, do
much better, and SynchTraversal does best of all, outperforming
List Sweep by a factor of 7.9 and the R-Tree by a factor of 1.25.

1888

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.3 0.5 0.7 0.9

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Fraction of points issuing queries

Binary Search
R-Tree

CR-Tree
Linearized KD-Trie

Simple Grid

(a) Static Indices

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.1 0.3 0.5 0.7 0.9

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Fraction of points issuing queries

List-Sweep
Stripes-Sweep 128

Forward-PBSM
Synch. Traversal

(b) Static Joins

 0

 2

 4

 6

 8

 10

0.1 0.3 0.5 0.7 0.9

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Fraction of points issuing queries

STRIPES
TPR-Tree

AE-Join

(c) Moving Indices
Figure 6: Scaling the Query Rate

Method Build (s) Query (s) Update (s)
R-Tree 0.02 0.14 0.002
CR-Tree 0.02 0.17 0.002
Lin. KD-Trie 0.007 0.16 0.001
Simple Grid 0.002 0.61 0.003

List Sweep 0.008 0.71 0.001
Striped Sweep 0.008 0.22 0.001
Forward PBSM 0.008 0.16 0.001
Synch. Traversal 0.02 0.11 0.002

TPR-Tree 0.03 1.12 0.58
STRIPES 0.001 4.58 0.06

Table 7: Breakdown: 50% queries and updates, 50K points

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0.1 0.3 0.5 0.7 0.9

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Fraction of points issuing updates

STRIPES
TPR-Tree

Figure 8: Scaling the Update Rate

Part (c) of Figure 6 shows the performance of moving methods.
As expected, both STRIPES and the TPR-Tree scale linearly with
the query rate. However, their performance is over an order of mag-
nitude worse than that of the best static methods. We also show the
performance of the AE-Join starting at 10% queries, but it scales
poorly and already spends more than 20s per tick at 30%. For
this reason we exclude this method for all experiments except those
with very low query and update rates below.

To better understand where the time is spent, we further break
down the performance into build, query, and update times. Table 7
shows this breakdown for all methods on 50,000 points with 50%
queries and updates. Note that update times are still reported as
non-zero for static methods, because we invoke the corresponding
empty operations from our API. The query cost dominates for all of
the indices, which suggests that we should prefer methods that are
optimized for query performance, even at the cost of build and up-
date time. As moving indices trade query for update performance,
their total processing time deteriorates dramatically.
Scaling the Update Rate. We also vary the fraction of points that
are updated at every tick. Figure 8 shows the performance of the
moving object indices as we increase the update rate to 90% of the
points per tick. The query rate is fixed at 50%. We do not report
results for the static nested loops or static join methods since they
are re-executed every tick and thus are insensitive to update rate.

Somewhat unintuitively, the TPR-Tree actually gets slightly
faster as the update rate increases. The phenomenon was observed

Query Update Method Build (s) Query (s) Update (s) TotalRate Rate

0.0001 0.0001

R-Tree 0.57 0.0002 0.03 0.61
SynchTraversal 0.60 0.0007 0.02 0.63
TPR-Tree 0.15 0.12 0.05 0.32
STRIPES 0.004 0.10 0.05 0.15
AE-Join 1.12 0.0003 0.05 1.17

0.0001 0.01

R-Tree 0.57 0.0002 0.03 0.61
SynchTraversal 0.60 0.0007 0.02 0.63
TPR-Tree 0.15 0.12 0.44 0.71
STRIPES 0.004 0.12 0.08 0.20
AE-Join 1.15 0.0005 0.30 1.45

0.01 0.0001

R-Tree 0.57 0.02 0.03 0.63
SynchTraversal 0.60 0.05 0.02 0.67
TPR-Tree 0.15 11.39 0.05 11.59
STRIPES 0.004 9.46 0.05 9.52
AE-Join 2.02 0.07 0.12 2.21

Table 9: Breakdown: 1M points

Method CPI
Total LOAD LOAD Ops Breakdown
Ops Ops L1 LFB L2 L3 Mem(billion) (billion)

R-Tree 2.03 463.4 165.8 86.5% 4.0% 3.1% 3.0% 1.2%
Synch. 2.2 438.2 159.4 85.0% 4.8% 3.2% 4.0% 1.3%Traversal

TPR-Tree 0.88 558.9 211.7 95.1% 1.0% 0.07% 0.05% 0.06%
STRIPES 2.33 101.7 34.3 91.6% 3.8% 0.4% 0.2% 1.8%
AE-Join 0.69 2,037 945.3 99.3% 0.3% 0.1% 0.1% 0.04%

Table 10: Profiling: 0.01% queries and 0.01% updates, 1M points

in a previous study, and is due to the time-parameterized bounding
rectangles being retightened after each insert [6]. This increases
the update time slightly, but is more than made up for by the de-
crease in overlap and the resulting increase in query performance.
STRIPES is dominated by the TPR-Tree across the whole spectrum
of update rates. At 90% updates, the gap between the methods is
more than a factor of 2.5.

We also note that for most update rates, the query cost is still
the dominant component in the runtime. At 90% updates, query
cost for the TPR-Tree is 0.93s per tick, only slightly smaller than
the update cost of 1.01s. For STRIPES, the query cost at the same
point is 4.74s, significantly more than its update cost of 0.08s.

Even at their best performance, the moving object algorithms
are still considerably worse than the static methods. At 90% up-
date rate, the TPR-Tree is still an order of magnitude slower than
Synchronous Traversal, for instance. In an attempt to find a sce-
nario in which the moving indices outperform the static methods,
we also experimented with much lower query and update rates. In-
tuitively, moving object indices should perform well with these set-
tings, since it is necessary to rebuild the static index at every tick.
To ensure that the build cost is non-trivial, we use the “Large Uni-
form” workload described in Section 4.2 with one million points.

Table 9 shows the performance breakdown for the three moving
methods and the best methods from the other quadrants. We exper-
iment with query and update rates of 0.01% and 1% . We construct

1889

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 10 100 1000

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Number of Hotspots, logscale

Binary Search
R-Tree

CR-Tree
Linearized KD-Trie

Simple Grid

(a) Static Indices

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 10 100 1000

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Number of Hotspots, logscale

List-Sweep
Stripes-Sweep 128

Forward-PBSM
Synch. Traversal

(b) Static Joins

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Number of hot Spots, logscale

STRIPES
TPR-Tree

(c) Moving Indices
Figure 11: Scaling the Number of Hotspots

0 1 2 3 4 5 6 7 8

STRIPES

TPR-Tree

Synch. Traversal

R-Tree Build

Query

Update

(a) Oldenburg

0 2 4 6 8 10 12 14

STRIPES

TPR-Tree

Synch. Traversal

R-Tree Build

Query

Update

(b) Singapore

0 2 4 6 8 10 12 14 16 18

STRIPES

TPR-Tree

Synch. Traversal

R-Tree Build

Query

Update

(c) San Francisco
Figure 12: Road Network Simulation

three extreme scenarios illustrating the effect of changing either the
query or update rate between these values. In the base scenario in
the first row of Table 9, only 100 agents issue queries and updates
at every tick. As the table shows, STRIPES outperforms the R-Tree
at this point by a factor of 4, and the TPR-Tree outperforms the R-
Tree by a factor of 1.9. The AE-Join remains slower, however, as it
spends most of its time enqueueing events.

Increasing the update rate by two orders of magnitude has a very
minor impact on the performance of STRIPES, but the TPR-Tree is
more than twice as slow. This is likely due to the cost of retighten-
ing the bounding rectangles. This should improve query time, but
the query rate is so low at this point, that the effect is not visible.
Increasing the query rate instead of the update rate has a dramatic
impact on the TPR-Tree and STRIPES. Both slow down by more
than an order of magnitude, while the static methods degrade by
only a small amount. Interestingly, the AE-Join performs the best
of the moving object indices, as the low update rate means that the
event queue will have to be changed relatively infrequently.

We confirm the observations above by detailed profiling num-
bers for 0.01% queries and 0.01% updates (Table 10). Even with
1M points, the five methods shown exhibit good cache hit rates.
Over 89% of LOADs are served from either the L1 cache or the
line fill buffers. Out of the remaining accesses only a small fraction
on the order of 2% or lower have to fetch data from main mem-
ory. A smaller percentage of LOADs are served from L1 for static
methods than for moving methods. Moreover, the CPI values in-
dicate that static methods spend roughly half of their time stalled.
Even though instruction efficiency is better for moving methods,
the latter use a larger number of instructions. The AE-Join executes
roughly 4.6 times more instructions than Synchronous Traversal,
for instance. Interestingly, STRIPES behaves more like a static
method in this case, likely because the dual transformation converts
moving queries to static queries in a quadtree.

6.2 Effect of Data Skew
To validate our experimental results on realistic workloads, we

report on several experiments with the Gaussian as well as the net-
work simulation workloads described in Section 4.2.
Gaussian Workload. To test how the spatial join algorithms han-
dle skew, we vary the number of hotspots in the Gaussian workload.
Figure 11 shows the results as we scale the number of hotspots from
1 to 1,000 using a log scale. Recall that the points cluster around

each hotspot, so the workload with 1 hotspot is the most skewed.
The workload with 1,000 hotspots is essentially uniform.

We observe from this set of graphs that all of the methods im-
prove considerably as the skew decreases. The CR-Tree is almost
five times faster with 1000 hotspots than with 1 hotspot, for in-
stance, and the TPR-Tree is seven times faster. The relative order-
ing of the methods remains essentially the same as in the previ-
ous experiments. However, we do observe that for the static join
methods (part (b)) the algorithms that partition the data in both di-
mensions (PBSM and SynchTraversal) improve by a factor of two
or more relative to the Striped Sweep method which uses vertical
stripes that only partition one dimension of the space.
Network Simulation Workload. Figure 12 shows the results of
one trial of the network simulation on road networks from Olden-
burg (part (a)), Singapore (part (b)), and San Francisco (part (c)).
Recall that we fix the size of the space and scale the networks so
that they fill the available space. Since the networks increase in size
from left to right, the individual road segments become shorter and
the number of updates becomes larger.

STRIPES, as we saw previously, degrades when the number of
updates is large, and takes 2.2 times longer on the San Francisco
network than on the Oldenburg network. Once again, we see that
this is almost entirely due to the query cost – STRIPES must search
in two trees for those points that have been updated, so the query
cost grows with the update rate. As expected, the TPR-Tree shows
the opposite effect, with query cost decreasing under high update
rates. While the cost of applying the updates increases, the total
cost is still smaller for the San Francisco network when compared
to Singapore. As observed previously, static methods comfortably
dominate moving methods, with the synchronous traversal method
slightly outperforming the R-Tree.

6.3 Scalability
In this section, we first evaluate the scalability of the various

methods in the number of moving objects under a uniform ran-
dom workload. We then present the scalability behavior of the best
methods of each quadrant when integrated into a real simulation,
which includes time not only for data access but also for computa-
tion of the simulation model.
Uniform Random Workload. Figure 13 shows how the indices
perform as we increase the number of points from 10,000 to 90,000.
Recall that we keep the point density and the query size fixed as we

1890

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

10K 30K 50K 70K 90K

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Num. of Points

Binary Search
R-Tree

CR-Tree
Linearized KD-Trie

(a) Static Indices

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

10K 30K 50K 70K 90K

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Num. of Points

List-Sweep
Stripes-Sweep 128

Forward-PBSM
Synch. Traversal

(b) Static Joins

 0

 2

 4

 6

 8

 10

 12

 14

10K 30K 50K 70K 90K

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Num. of Points

STRIPES
TPR-Tree

(c) Moving Indices
Figure 13: Scaling the Number of Points

 0

 50

 100

 150

 200

 250

 300

 350

100K 300K 500K 700K 900K

A
vg

. T
im

e
pe

r T
ic

k
(s

)

Num. Fish

R-Tree
SynchTraversal

TPR-Tree

Figure 14: Scaling the Fish Simulation

scale, so the average number of points returned for a single query
remains constant. As the number of queriers is a fixed percent-
age of the number of points, all strategies (except binary search)
scale roughly linearly. The results confirm our previous observa-
tions about the relative ordering of the methods. The fastest static
join, Synchronous Traversal, is roughly 1.5 times faster than the
fastest static index and more than an order of magnitude faster than
the moving strategies.
Fish Simulation. Figure 14 shows the performance of the fish sim-
ulation as we scale the number of fish from 100,000 to 900,000. We
scale to a much larger number of objects in this example to demon-
strate the impact of join method on large scenarios. Even when
computation of the simulation model is introduced, the contribu-
tion of data processing method to performance is significant. The
results we observe are similar to the synthetic experiments reported
in Figure 13. Moving methods are dominated by static index nested
loops joins, which in turn are dominated by static specialized joins.
At 900,000 fish, the simulation with Synchronous Traversal runs
by a factor of 1.5 faster than with the R-Tree. Note that due to the
size of this experiment, we ran only a single trial.

6.4 Predictive Queries
In addition to current time queries, moving object indices like the

TPR-Tree and STRIPES can be used to answer predictive queries
about the state of the database in the future. The simplest form of
predictive query is the timeslice query, which returns the result of a
spatial query (or join) k ticks in the future assuming that all points
continue to move with the same velocity. We can adapt the static
join methods to support predictive queries by simply copying the
data points, moving the copied points by k ticks, and computing
the join over these updated points.

Figure 15 shows the impact of increasing the prediction time
from 0 to 200 ticks at four different query and update rates with
1M points and 500 ticks. Note that the scale of the y-axis in the top
row (0.01% query rate) differs from that in the bottom row (0.1%
query rate). As expected, the static methods are insensitive to the
predictive lookahead because they are rebuilt at every tick and the
cost of copying and moving the points is negligible. The perfor-

R-Tree Synch. Traversal TPR-Tree Stripes

0 100 200
Predictive Lookahead (ticks)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

A
v
g
.
T
im

e
 p

e
r

T
ic

k
(s

)

(b) q=0.01%, u=0.01%

0 100 200
Predictive Lookahead (ticks)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

A
v
g
.
T
im

e
 p

e
r

T
ic

k
(s

)

(c) q=0.01%, u=0.1%

0 100 200
Predictive Lookahead (ticks)

0
1
2
3
4
5
6
7
8

A
v
g
.
T
im

e
 p

e
r

T
ic

k
(s

)

(d) q=0.1%, u=0.01%

0 100 200
Predictive Lookahead (ticks)

0
1
2
3
4
5
6
7
8

A
v
g
.
T
im

e
 p

e
r

T
ic

k
(s

)

(e) q=0.1%, u=0.1%
Figure 15: Performance of Predictive Queries

AB
1

AB
2

AB
3

AB
4

AB
5

AB
6

AB
7

AB
8

AB
9

AB
10

AB
11

AB
12

Num. Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
g
.

T
im

e
 p

e
r

T
ic

k
(s

) A: R-Tree
B: Synch. Traversal

Partition Join Update

Figure 16: Multicore Scalability Results

mance of the moving methods degrades as the prediction time in-
creases, however. This is due to the larger boundary rectangles for
the TPR-Tree and the larger query rectangles for STRIPES. This
degradation is more dramatic for the TPR-Tree. With 1.0% queries
and updates, the average time per tick is over three times larger for
a predictive query at 200 ticks than for a current time query.

As in the current time case, STRIPES outperforms the static
methods by up to a factor of two when the query rate is very low
(0.01%). However, when the query rate increases to 1.0%, the static
methods outperform both moving methods by more than an order
of magnitude regardless of update rate. These results suggest that
even for simple predictive queries, static methods work well for all
but the lowest query rates.

6.5 Multi-Core Experiments
In this section, we evaluate the performance of the R-Tree and

Synchronous Traversal methods on multiple cores using the space

1891

partitioning method described in Section 4.4. Due to limited space,
we are only able to present one graph. Figure 16 shows the average
time per tick as we vary the number of cores from 1 to 12 for the
large uniform workload with 1 million points and a 1% query and
update rate. We break each tick into three parts: the time to do
the partitioning (shown in blue), the time to do the join (shown in
yellow), and the time to update the points at the end of each tick
(shown in red). The updates are performed linearly at the end of
each timestep but have a negligible impact on overall performance.

As we increase the number of threads from 1 to 2, the per-
formance improves considerably – by a factor of 1.66 for the R-
Tree and a factor of 1.88 for Synchronous Traversal. However, we
quickly hit the point of diminishing returns. For instance, the im-
provement going from 11 to 12 cores is only a factor of 1.07 for the
R-Tree. Overall the R-Tree is 4.68 times faster on 12 cores than on
1, and Synchronous Traversal is 5.17 times faster.

We have identified several factors that contribute to this relatively
disappointing speedup. First, since we must synchronize the all
threads after each step of the partitioning algorithm and every phase
of the join, the overall performance is limited to that of the slowest
thread in both parts. This makes the algorithm particularly sensitive
to the size of the partitions, and while we construct the KD-Trie
with more leaves than cores in part to help balance the partition
sizes, there will still be some variability unless the tree is perfectly
balanced. Second, since we must replicate points on the boundaries
of each partition, the number of duplicate points increases with the
number of partitions. When we go from 2 cores to 12 cores, the
number of duplicated points increases by a factor of 17.7 to 3.7%
of the data set.

Overall, these results suggest that while it is possible to achieve
some speedup using the simple partitioning method described
above, the potential is limited due to the need to replicate boundary
points and the difficulty of producing equal-size partitions using the
KD-Trie method. We hope that these results provide a baseline for
future work developing and evaluating more sophisticated parallel
spatial join methods.

7. RELATED WORK
In this section we provide an overview of existing spatial bench-

marks. We discussed specific algorithms in Section 3.
Spatial indexing has been an active area of research for decades,

and there have been a large number of efforts to benchmark alter-
native algorithms. For indexing stationary points, the surveys by
Gaede and Günther [11] and Ahn et al. [2] provide summaries of
many of these results. More related to our own work are several
studies that compared the performance of spatial indexing struc-
tures in main memory. Hwang et al. compared a number of main-
memory R-Tree variants, though they considered only static data
and did not use bulk loading algorithms [15]. More recent stud-
ies by Kalashnikov et al. and Šidlauskas et al. found that a simple
uniform grid index was particularly effective in main memory and
performed similarly to an optimized R-Tree [20, 38]. These results
informed our choice of static indices.

There have been fewer experimental evaluations of spatial joins.
A recent survey by Jacox and Samet provides an excellent overview
of different approaches, but it does not include experimental re-
sults [18]. Nearly a decade earlier, Günther et al. evaluated several
algorithms for joining static collections of rectangles, including a
naïve nested-loops join and several index-based approaches using
quadtrees [12]. They found that the index-based approaches con-
siderably outperformed the naïve nested-loops join when the output
size was much less than the full cross product, but they did not in-
clude the cost of building the indices or test any other algorithms.

Efforts to evaluate moving object indices have largely fallen into
one of two categories: data generators and benchmarks for gener-
ating moving objects and queries, and actual experimental studies
of the indices themselves. Early work in the first category, such as
the GSTD and G-TERD generators, provided support for generat-
ing moving rectangles that move randomly with parameters drawn
from a set of standard distributions [34, 35]. In order to gener-
ate more realistic patterns of motion, more recent generators such
as the Brinkhoff generator [4] and BerlinMOD [10] provide high-
level models of vehicular traffic.

There have been several experimental evaluations falling into
the second category. Myllymaki and Kaufman performed some of
the earliest experiments with their Dynamark and LOCUS bench-
marks [26, 27, 28]. They focus on indexing point data and sup-
port simple (non-predictive) range and k-NN queries. These bench-
marks were based on IBM’s CitySimulator, which produced traces
of people moving in a city. Unfortunately, CitySimulator is no
longer available and these benchmarks are no longer usable. The
COST Benchmark also defined a workload to evaluate several mov-
ing object indices, but it focused on scenarios in which the object
locations are inaccurate [19].

The study most related to ours is a recent experimental paper
by Chen et al. that compared six different moving object indices
for non-predictive range and nearest neighbor queries [6]. They
used several synthetic datasets and a network dataset based on the
Brinkoff Generator [4]. While we use similar datasets, our work
(i) considers memory-resident data, while their study assumed all
data was stored on disk; (ii) uses a much higher number of queries
per tick to reflect the fact that all objects in an application may be
querying simultaneously; and (iii) rebuilds static indices each tick
rather than just evaluating moving object indices.

Finally, several recent projects have exploited the benefits of bulk
operations in settings where slightly stale results are acceptable.
The MOVIES index periodically discards and rebuilds a static in-
dex rather than updating it in place [9]. The authors show that
MOVIES outperformed existing index structures by more than an
order-of-magnitude for a large distributed main-memory workload.
Rather than rebuilding a single index, the TwinGrid index main-
tains separate indices for reads and writes and copies data between
them using an efficient parallel memcpy [32]. Both structures may
become out of date for short periods of time. Our work extends
these results by considering a broader range of static and moving
indices and join algorithms.

8. RECOMMENDATIONS
In this paper we presented a comprehensive experimental study

of iterated spatial join techniques, with an emphasis on emerging
workloads and commodity hardware.

We summarize our conclusions as a list of recommendations to
developers of high-performance spatial applications:
1. Surprisingly, static methods outperform moving methods at all
but the lowest query and update rates. Even though the former
methods re-scan the whole data at every tick, their improved query
performance amply compensates for this cost. STRIPES is very
sensitive to the query rate, and the TPR-Tree is very sensitive to
both the query and update rate. At extremely low query and update
rates, STRIPES and the TPR-Tree do outperform the static meth-
ods, by at most a factor of 2− 4×. Otherwise, the static methods
often outperform moving methods by more than 10×.
2. For all but the lowest query and update rates, specialized join
methods that prune results using all spatial dimensions outperform
index nested loops methods as well as plane sweep methods that

1892

partition at first in only one dimension. This result is the com-
bination of improved query performance with very efficient bulk
build procedures. Among the methods we evaluated, Synchronous
Traversal was the top performer and significantly improved pro-
cessing time of a real simulation of fish schools.
3. Our profiling results indicate that higher-order algorithmic ef-
fects still dominate performance in main memory, but there is room
for improvement in the instruction efficiency of static methods.
4. Simple space partitioning provides limited utility when scaling
to more than a small number of cores. Studying specialized parallel
join methods remains an exciting area of future work.

To enable development of new methods and comparison with
existing techniques, the experimental framework developed in this
paper is freely available to the community at [1].

Acknowledgements In order to solicit feedback from the com-
munity, we assembled an advisory board of distinguished re-
searchers to help guide our work. We would like to thank the mem-
bers: Michael Gertz, Christian Jensen, Beng Chin Ooi, Jignesh Pa-
tel, and Bernhard Seeger for their feedback. This research has been
supported by the National Science Foundation under Grants IIS-
0911036 and IIS-1012593, by the Air Force Office of Scientific
Research under Award FA9550-10-1-0202, the iAd Project funded
by the Research Council of Norway, and by gifts from NEC and
Google. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

9. REFERENCES
[1] Project Website.

www.cs.cornell.edu/bigreddata/spatial-indexing/.
[2] H. K. Ahn, N. Mamoulis, and H. M. Wong. A survey on

multidimensional access methods. Technical Report
UU-CS-2001-14, Department of Information and Computing
Sciences, Utrecht University, 2001.

[3] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter.
Scalable sweeping-based spatial join. In Proc. VLDB, pages
570–581, 1998.

[4] T. Brinkhoff. A framework for generating network-based moving
objects. Geoinformatica, 6(2):153–180, 2002.

[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of
spatial joins using R-trees. In Proc. SIGMOD, pages 237–246, 1993.

[6] S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating
moving object indexes. Proc. VLDB, pages 1574–1585, 2008.

[7] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective
leadership and decision-making in animal groups on the move.
Nature, 433(7025):513–516, 2005.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Cheong.
Computational Geometry: Algorithms and Applications.
Springer-Verlag, second edition, 2000.

[9] J. Dittrich, L. Blunschi, and M. A. Vaz Salles. MOVIES: indexing
moving objects by shooting index images. Geoinformatica,
15(4):727–767, 2011.

[10] C. Düntgen, T. Behr, and R. H. Güting. BerlinMOD: a benchmark for
moving object databases. The VLDB Journal, 18(6):1335–1368,
2009.

[11] V. Gaede and O. Günther. Multidimensional access methods. ACM
Comput. Surv., 30(2):170–231, 1998.

[12] O. Günther, V. Oria, P. Picouet, J.-M. Saglio, and M. Scholl.
Benchmarking spatial joins à la carte. In Proc. SSDBM, 1998.

[13] N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, and W. White.
Scalability for virtual worlds. In Proc. ICDE, 2009.

[14] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In Proc. SIGMOD, pages 47–57, 1984.

[15] S. Hwang, K. Kwon, S. Cha, and B. Lee. Performance evaluation of
main-memory R-tree variants. Advances in Spatial and Temporal
Databases, pages 10–27, 2003.

[16] Intel VTune Performance Analyzer.
http://software.intel.com/en-us/intel-vtune.

[17] G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of k-nn and
spatial join queries on continuously moving points. ACM Trans.
Database Syst., 31(2):485–536, 2006.

[18] E. H. Jacox and H. Samet. Spatial join techniques. ACM Trans.
Database Syst., 32(1):7, 2007.

[19] C. Jensen, D. Tiešytė, and N. Tradišauskas. The cost
benchmark—comparison and evaluation of spatio-temporal indexes.
Database Systems for Advanced Applications, pages 125–140, 2006.

[20] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main
memory evaluation of monitoring queries over moving objects.
Distrib. Parallel Databases, 15(2):117–135, 2004.

[21] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional
index trees for main memory access. SIGMOD Rec., 30(2):139–150,
2001.

[22] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple
and efficient algorithm for R-tree packing. Technical report, Institute
for Computer Applications in Science and Engineering (ICASE),
1997.

[23] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database
architecture for the new bottleneck: memory access. The VLDB
Journal, 9:231–246, December 2000.

[24] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: scalable incremental
processing of continuous queries in spatio-temporal databases. In
SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 623–634, New York, NY,
USA, 2004. ACM.

[25] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual
partitioning: an efficient method for continuous nearest neighbor
monitoring. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages
634–645, New York, NY, USA, 2005. ACM.

[26] J. Myllymaki and J. Kaufman. Locus: A testbed for dynamic spatial
indexing. IEEE Data Eng. Bull., 25:48–55, 2002.

[27] J. Myllymaki and J. Kaufman. Dynamark: A benchmark for dynamic
spatial indexing. In Proc. MDM, pages 92–105, 2003.

[28] J. Myllymaki and J. Kaufman. High-performance spatial indexing for
location-based services. In Proc. WWW, pages 112–117, 2003.

[29] J. A. Orenstein and T. H. Merrett. A class of data structures for
associative searching. In Proc. PODS, pages 181–190, 1984.

[30] J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: an efficient index
for predicted trajectories. In Proc. SIGMOD, pages 635–646, 2004.

[31] J. M. Patel and D. J. DeWitt. Partition based spatial-merge join.
SIGMOD Rec., 25(2):259–270, 1996.

[32] D. Šidlauskas, K. Ross, C. Jensen, and S. Šaltenis. Thread-level
parallel indexing of update intensive moving-object workloads. In
Advances in Spatial and Temporal Databases, volume LNCS 6849,
pages 186–204. Springer Berlin / Heidelberg, 2011.

[33] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: an optimized
spatio-temporal access method for predictive queries. In Proc. VLDB,
pages 790–801, 2003.

[34] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the
generation of spatiotemporal datasets. In Proc. SSD, pages 147–164,
London, UK, 1999.

[35] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. On the
generation of time-evolving regional data. Geoinformatica,
6(3):207–231, 2002.

[36] L. Verlet. Computer "experiments" on classical fluids. i.
thermodynamical properties of lennard-jones molecules. Phys. Rev.,
159(1):98, 1967.

[37] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the positions of continuously moving objects. In Proc.
SIGMOD, pages 331–342, 2000.

[38] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen, and
D. Šaulys. Trees or grids?: indexing moving objects in main memory.
In Proc. GIS, pages 236–245, 2009.

[39] G. Wang, M. V. Salles, B. Sowell, X. Wang, T. Cao, A. Demers,
J. Gehrke, and W. White. Behavioral simulations in mapreduce. Proc.
VLDB, 3:952–963, September 2010.

[40] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.
Scaling games to epic proportions. In Proc. SIGMOD, 2007.

1893

www.cs.cornell.edu/bigreddata/spatial-indexing/

	Introduction
	Background
	Moving Object Applications
	Processing Model

	Spatial Join Techniques
	Static Index Nested Loops Join Methods
	Static Specialized Join Methods
	Moving Index Nested Loops Join Methods
	Moving Specialized Join Methods

	Experimental Setup
	Implementation
	Workloads
	Hardware
	Parallel Execution

	Parameter Tuning
	Experimental Results
	Effect of Query and Update Rates
	Effect of Data Skew
	Scalability
	Predictive Queries
	Multi-Core Experiments

	Related Work
	Recommendations
	References

