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ABSTRACT
This paper presents a new space-efficient algorithm for count-

ing and sampling triangles—and more generally, constant-sized
cliques—in a massive graph whose edges arrive as a stream. Com-
pared to prior work, our algorithm yields significant improvements
in the space and time complexity for these fundamental problems.
Our algorithm is simple to implement and has very good practical
performance on large graphs.

1. INTRODUCTION
Triangle counting has emerged as an important building block in

the study of social networks [23, 14], identifying thematic structures
of networks [7], spam and fraud detection [4], link classification
and recommendation [21], and more. The triangle is an important
subgraph, and the number of triangles reveals important structural
information about the network. For example, in social network
analysis, widely used metrics such as transitivity coefficient and
clustering coefficient use the number of triangles as a component.
In these applications, streaming algorithms not only provide an
attractive option for real-time processing of live data, but also benefit
the analysis of large disk-resident graph data, allowing computations
in one or a small number of passes over the data.

This paper addresses the question of counting and sampling tri-
angles, as well as complete subgraphs, in the adjacency stream
model [3, 9, 5]. More specifically, we study the following closely
related problems:

(1) Triangle Counting: maintain an (accurate) estimate of the
number of triangles in a graph;

(2) Triangle Sampling: maintain a uniformly-chosen random
triangle from the set of all triangles in a graph;

(3) Transitivity Coefficient: maintain the transitivity coefficient
of a graph, defined as three times the ratio between the
number of triangles and the number of paths of length two
(wedges); and

(4) Higher-Order Clique Counting and Sampling: maintain an
accurate estimate of the count and a uniform sample of
cliques of 4 or more vertices (K`, ` ≥ 4).

The adjacency stream model is a streaming graph model where
a given graph G = (V, E) is presented as a stream of edges S =
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〈e1, e2, e3, . . . , e|E|〉. In this notation, ei denotes the i-th edge in
the stream order, which is arbitrary and potentially chosen by an
adversary. Let n = |V |, m = |E|, T (G) be the set of all triangles, and
τ(G) denote the number of triangles, i.e., τ(G) = |T (G)|. We assume
that the input graph is simple (no parallel edges and no self-loops).

Our algorithms are randomized and provide the following notion
of probabilistic guarantees: for parameters ε, δ ∈ [0, 1], an (ε, δ)-
approximation for a quantity X is a random variable X̂ such that
|X̂ − X| ≤ εX with probability at least 1 − δ. We write s(ε, δ) as a
shorthand for 1/ε2 · log(1/δ).

1.1 Our Contributions
— Neighborhood Sampling: We present neighborhood sampling, a
new technique for counting and sampling cliques (K` for ` ≥ 3) in
a graph stream. Neighborhood sampling is a multi-level inductive
random sampling procedure: first, a random edge in the stream is
sampled; then, in subsequent steps, an edge that shares an endpoint
with the sampled edge(s) is sampled. We show that this simple
technique leads to efficient one-pass algorithms with small space
complexity for triangle counting and related problems.
— Counting and Sampling Triangles: Using neighborhood sampling,
we present one-pass streaming algorithms for triangle counting and
triangle sampling. The space complexity is O(s(ε, δ)m∆/τ(G)) for
triangle counting and O(m∆/τ(G)) for triangle sampling, where ∆
is the maximum degree of any vertex. We provide a sharper space
bound for triangle counting in terms of the “tangle coefficient” of
the graph, which we define in our analysis. While in the worst case,
this results in the space bound we have stated above, it is often much
smaller in a typical case. These improve upon prior algorithms for
the same problem (see Section 1.2).

We also present a method for quickly processing edges in bulks,
which leads to a constant1 amortized processing time per edge. This
allows for the possibility of processing massive graphs quickly even
on a modest machine.
—Transitivity Coefficient: An important metric closely related to
triangle counting is transitivity coefficient—a measure of how “tight-
knit” communities in the graphs are [15]. In the context of social
networks, transitivity coefficient can be interpreted as a measure
of relative frequency of “friend of a friend is a friend” occurrences.
We extend our algorithms for neighborhood sampling and triangle
counting to approximate the transitivity coefficient of a graph stream.
Our streaming algorithm for estimating the transitivity coefficient
has the same space complexity as the triangle counting algorithm.
— Counting and Sampling Cliques: We extend neighborhood sam-
pling to the problem of sampling and counting cliques of size ` in
1In particular, by setting the batch size to w = Θ(r), where r is the
number of unbiased estimators maintained, the update time per edge
is amortized O(1 + r/w) = O(1).

1870



the graph, ` ≥ 4. For ` = 4, the space complexity of the counting
algorithm is O(s(ε, δ) · η/τ4(G)), and the space complexity of the
sampling algorithm is O(η/τ4(G)), where η = max{m∆2,m2} and
τ4(G) is the number of 4-cliques in G. General bounds for `-cliques
are presented in Section 5. To our knowledge, this is the best space
complexity for counting the number of `-cliques in a graph in the
streaming model and improves on prior work due to Kane et al. [10].

— Experiments: Experiments with large real-world graphs show that
our streaming algorithm for counting triangles is fast and accurate
in practice. For instance, the Orkut network (for a description, see
Section 4) with 117 million edges and 633 million triangles can
be processed in 103 seconds, with a (mean) relative error of 3.55
percent, using 1 million instances of estimators. The experiment was
run on a laptop, with an implementation that did not use parallelism.
Our experiments also suggest that fewer than Θ(s(ε, δ)m∆/τ(G))
estimators may be necessary to obtain good estimates.

1.2 Prior and Related Work
For triangle counting in adjacency streams, Bar-Yossef et al. [3]

present the first algorithm using reductions to the problem of com-
puting the zero-th and second frequency moments of streams derived
from the edge stream. Their algorithm on the adjacency stream takes
s = O( s(ε,δ)

ε
· (mn/τ(G))3) space and poly(s) time per item. They also

show that in general, approximating τ(G) in the streaming model
requires, in the worst-case, at least Ω(n2) space.

The space and time bounds were subsequently improved. Jowhari
and Ghodsi [9] present a one-pass streaming algorithm that uses
space and per-edge processing time O(s(ε, δ)m∆2/τ(G)). Our algo-
rithm significantly improves upon this algorithm in both space and
time. Note that the maximum degree ∆ for large graphs can be signif-
icant; for instance, the Orkut graph has a maximum degree of greater
than 66,000. They also give a three-pass streaming algorithm with
space and per-edge processing time O (s(ε, δ) · (1 + T2(G)/τ(G))),
where T2(G) is the number of vertex triples with exactly two edges
connecting them. Later, Buriol et al. [5] improve the space com-
plexity and per-edge time O(s(ε, δ)mn/τ(G)). When the maximum
degree ∆ is small compared to n, our algorithm substantially im-
proves upon theirs in terms of space; many real-world graphs tend
to have ∆ � n. Another difference is that Buriol et al.’s algorithm
needs to know the vertex set of the graph stream in advance, but
ours does not. This can be a significant advantage in practice when
vertices are being dynamically added to graph, or being discovered
by the stream processor. Recently, Pagh and Tsourakakis [16] give a
triangle counting algorithm on static (non-streaming) graphs and an
implementation on the MapReduce platform. With some work, their
algorithm can be adapted to the adjacency stream setting requiring
space O(1/ε2 · mσ/τ(G) · log(1/δ)), where σ is the maximum num-
ber of triangles an edge is contained in. Our algorithm has better
update time using bulk processing and ours requires less space when
the tangle coefficient γ (Section 3.2.1) is smaller than σ. Most re-
cently, Jha et al. [8] give a O(

√
n)-space algorithm for estimating the

number of triangles and the closely related problem of computing
the clustering coefficient of a graph stream. Their algorithm has
an additive error guarantee as opposed to the algorithms mentioned
earlier, which had relative error guarantees. None of the techniques
mentioned so far, as stated, extend to counting higher-order cliques.

On counting cliques, Kane et al. [10] present estimators for the
number of occurrences of an arbitrary subgraph H in the stream.
When applied to counting cliques on ` vertices in a graph, their space
complexity is O(s(ε, δ) · m(`2)/τ2

` (G)) which is much higher than the
space complexity that we obtain. We note that their algorithm works
in the model where edges can be inserted or deleted (turnstile model)
while ours is insert-only.

Manjunath et al. [13] present an algorithm for counting the num-
ber of cycles of length k in a graph; their algorithm works under
dynamic inserts and deletes of edges. Since a triangle is also a cycle,
this algorithm applies to counting the number of triangles in a graph,
but uses space and per item processing time Θ(s(ε, δ)m3/τ2(G)).
When compared with our algorithm, their space and time bounds
can be much larger, especially for graphs with a small number of
triangles. Recent work on graph sketches by Ahn, Guha, and Mc-
Gregor [1] also yield algorithms for triangle counting with space
complexity, whose dependence on m and n is the same as in [5].

Newman, Watts, and Strogatz [15] proposed the notion of tran-
sitivity coefficient as a metric for analyzing and understanding the
complexity of social network graphs. Transitivity coefficient is
closely related to clustering coefficient of a graph [24] and is the
same as weighted clustering coefficient2 (for an appropriate choice
of weight function). The algorithm of Buriol et al. [6] estimates
the transitivity coefficient in the incidence stream model, which
assumes that all edges incident at a vertex arrive together, and that
each edge appears twice, once for each endpoint. In the incidence
streams model, counting triangles is an easier problem, and there are
streaming algorithms [5] that use space O (s(ε, δ) (1 + T2(G)/τ(G))),
and counting the number of length-two paths is straightforward. By
contrast, we show that this space bound for triangle counting is not
possible in the adjacency stream model.

Becchetti et al. [4] present algorithms for counting the number
of triangles in a graph in a model where the processor is allowed
O(log n) passes through the data and O(n) memory. Their algorithm
also returns for each vertex, the number of triangles that the vertex is
a part of. There is a significant body of work on counting the number
of triangles in a graph in the non-streaming setting, for example [19,
22]. We do not attempt to survey this literature. An experimental
study of algorithms for counting and listing triangles in a graph is
presented in [18].

2. PRELIMINARIES
For an edge e, let V(e) denote the two end vertices of e. We

say that two edges are adjacent to each other if they share a vertex.
Given an edge ei, the neighborhood of ei, denoted by N(ei), is the
set of all edges in the stream that arrive after ei and are adjacent
to ei. Let c(ei) denote the size of N(ei). Further, for a triangle
t∗ ∈ T (G), define C(t∗) to be c( f ), where f is its first edge in the
stream. Our algorithms use a procedure coin(p) that returns heads
with probability p and a procedure randInt(a, b) that returns an
integer between a and b uniformly at random. We assume both
procedures take constant time. Finally, we remember standard
measure concentration bounds that will be used in the proofs:

Theorem 2.1 (Chernoff Bounds) Let λ > 0 and X = X1 + · · ·+Xn,
where each Xi, i = 1, . . . , n, is independently distributed in [0, 1].
Then, if µ = E[X],

Pr
[
X ≥ (1 + λ)µ

]
≤ e−

λ2
2+λ ·µ and

Pr
[
X ≤ (1 − λ)µ

]
≤ e−

λ2
2 ·µ.

3. SAMPLING & COUNTING TRIANGLES
In this section, we present algorithms for sampling and count-

ing triangles. We begin by describing neighborhood sampling, a
basic method upon which we build an algorithm for counting trian-
gles (Section 3.2), an efficient implementation for bulk processing
(Section 3.3), and an algorithm for sampling triangles (Section 3.4).
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Figure 1: An example of a streaming graph, where the edges arrive
in order e1, e2, . . ., forming triangles t1 = {e1, e2, e3}, t2 = {e4, e5, e6},
and t3 = {e4, e7, e8}.

3.1 Neighborhood Sampling for Triangles
Neighborhood sampling is an algorithm for maintaining a random

triangle in a graph stream. In broad strokes, it first samples a random
edge r1 from the edge stream (using, e.g., reservoir sampling). It
then samples a random edge r2 from a “substream” of edges that
appear after r1 and are adjacent to r1. That is, the second edge is
sampled from the neighborhood of the first edge. This sample can
also be maintained using reservoir sampling on the appropriate sub-
stream. With these edges selected, the wedge r1r2 defines a potential
triangle, and the algorithm tries to close it with a subsequent edge
in the stream, forming a triangle t.

The triangle found by this procedure, however, is not necessarily
uniformly chosen from T (G). As an example, in the graph in
Figure 1, the probability that the neighborhood sampling procedure
chooses triangle t1 is the probability that e1 is chosen into r1 (which
is 1

10 ), and then from among the edges adjacent to e1 (i.e., e2 and e3),
e2 is chosen into r2, for a total probability of 1

2 ·
1

10 =
1

20 . But the
probability of choosing t2 is the probability of choosing e4 into r1

(which is 1
10 ), and then from among those edges adjacent to e4 and

arrive after e4 (i.e., {e5, e6, e7, e8, e9, e10, e11}), e5 is chosen into r2

(which is 1
7 ), for a total probability of 1

7 ·
1
10 =

1
70 . This bias poses a

challenge in our algorithms but can be normalized away by keeping
track of how much bias is incurred on the potential triangle.

We briefly contrast our algorithm with two other algorithms for
the adjacency stream that use random sampling: Like ours, Buriol
et al.’s algorithm [5] first samples a random edge from the stream,
say r1, but then unlike ours, it picks a random vertex that is not
necessarily incident on an endpoint of r1. The edge and the vertex
together form a potential triangle, and the algorithm then waits for
the triangle to be completed by the remaining two edges. In our
algorithm, instead of selecting a random third vertex, we select a
vertex that is already connected to r1. This leads to a greater chance
that the triangle is completed, and hence better space bounds.

The approach of Pagh and Tsourakakis [16], unlike Buriol et al.’s
and ours, does not rely on producing a random triangle. Instead, it
uses randomness on the vertices to whittle down the input stream:
Each vertex is assigned a random “color” and the algorithm main-
tains a subgraph G̃ of the stream by admitting only edges whose
endpoints are given the same color. Thus, the number of colors
controls the size of G̃. Then, queries about the stream are answered
by computing the statistic in G̃ and scaling the answer appropri-
ately. This leads to space bounds that depend on different graph
parameters than ours and are incomparable in general.

We now describe the neighborhood sampling algorithm in detail.
The algorithm maintains the following state:
— Level-1 edge r1: uniformly sampled from the edges so far;
— Level-2 edge r2: uniformly sampled from N(r1), i.e., those edges

in the graph stream that are adjacent to r1 and arrive after r1;
— Counter c: maintains the invariant that c = c(r1) = |N(r1)|, i.e,

the number of edges adjacent to r1 and appearing after r1; and
— Triangle t: a triangle formed using r1 and r2.

2This differs from (unweighted) clustering coefficient; see, e.g., [17]

Algorithm 1: Algorithm NSAMP-TRIANGLE

Initialization: Set (r1, r2, t, c)← (∅, ∅, ∅, 0)
Upon receiving edge ei, i ≥ 1:
if coin(1/i) = “head” then

(r1, r2, t, c)← (ei, ∅, ∅, 0) // ei is the new level-1 edge.
else

if ei is adjacent to r1 then
c← c + 1;
if coin(1/c) = “head” then

(r2, t)← (ei, ∅) // ei is the new level-2 edge.
else

if ei forms a triangle with r1 and r2 then
t ← {r1, r2, ei} // ei closes the wedge r1r2.

We summarize the neighborhood sampling algorithm in Algorithm 1
and analyze the probability that a triangle is sampled by the algo-
rithm in the following lemma:

Lemma 3.1 Let t∗ be a triangle in the graph. The probability that
t = t∗ in the state maintained by Algorithm 1 after observing all
edges (note t may be empty) is

Pr[t = t∗] =
1

m ·C(t∗)

where we recall that C(t∗) = c( f ) if f is t∗’s first edge in the stream.

PROOF. Let t∗ = { f1, f2, f3} be a triangle in the graph, whose
edges arrived in the order f1, f2, f3 in the stream, so C(t∗) = c( f1) by
definition. Let E1 be the event that f1 is stored in r1, and E2 be the
event that f2 is stored in r2. We can easily check that neighborhood
sampling produces t∗ if and only if both E1 and E2 hold.

Now we know from reservoir sampling that Pr[E1] = 1
m . Further-

more, we claim that Pr[E2|E1] = 1
c( f1) . This holds because given

the event E1, the edge r2 is randomly chosen from N( f1), so the
probability that r2 = f2 is exactly 1/|N( f1)|, which is 1/c( f1), since
c tracks the size of N(r1). Hence, we have

Pr[t = t∗] = Pr[E1 ∩ E2] = Pr[E1] · Pr[E2 | E1]

=
1
m
·

1
c( f1)

=
1

m ·C(t∗)

3.2 Counting Triangles
For a given triangle t∗ ∈ T (G), neighborhood sampling produces

t∗ with probability 1
mC(t∗) . To estimate the number of triangles, we

first turn this into a random variable with the correct expectation:

Lemma 3.2 Let t and c be the values the neighborhood sampling
algorithm maintains, and m be the number of edges observed so far.
Define

τ̃ =

c × m if t , ∅
0 otherwise.

Then, E[τ̃] = τ(G).

PROOF. By Lemma 3.1, we sample a particular triangle t∗ with
probability Pr[t = t∗] = 1

mC(t∗) . Since c = C(t), we have that if t = t∗,
then τ̃ = mC(t∗). Therefore, the expected value of τ̃ is

E[τ̃] =
∑

t∗∈T (G)

mC(t∗) · Pr[t = t∗] = |T (G)| = τ(G).
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Given an estimate with the right expected value, to obtain good
accuracy with a high enough probability, we keep multiple inde-
pendent copies of the estimate and aggregate them. The following
theorem answers the question: how many such estimates are suffi-
cient to obtain an (ε, δ)-approximation?

Theorem 3.3 (Triangle Counting) Let 0 < δ, ε ≤ 1 and r ≥ 1.
There is a streaming algorithm using O(r) space that on an arbitrarily-
ordered stream of any graph G, returns an (ε, δ)-approximation to
the triangle count in G, provided that r ≥ 6

ε2
m∆
τ(G) log

(
2
δ

)
.

PROOF. Let α = 6
ε2

m∆
τ(G) log

(
2
δ

)
. We show that the average of

r ≥ α independent unbiased estimates from Lemma 3.2 is an (ε, δ)-
approximation. For i = 1, . . . , r, let Xi be the value of the i-th
estimate. Let X̄ = 1

r

∑r
i=1 Xi denote the average of these estimators.

Then, by Lemma 3.2, we have E[Xi] = τ(G) and E[X̄] = τ(G).
Further, for e ∈ E, we have c(e) ≤ 2∆, so Xi ≤ 2m∆. Let Yi =

Xi/(2m∆) so that Yi ∈ [0, 1]. By letting Y =
∑r

i=1 Yi, we have
E[Y] = r · τ(G)/(2m∆). Thus, we have that Pr

[
X̄ > (1 + ε) E[X]

]
is

at most

Pr
[∑

i Yi > (1 + ε) E[Y]
]
≤ e−

ε2
3 E[Y] ≤ δ/2

by Chernoff bound (Theorem 2.1). Similarly, we can show that
Pr[X < (1 − ε) E[X]] ≤ δ/2. Hence, with probability at least 1 − δ,
the average X̄ approximates the true count within 1 ± ε. Since each
estimator only takes O(1) space, the total space is O(r).

3.2.1 A Sharper Space Bound For Triangle Counting
The sufficient condition in the previous theorem is rather con-

servative. In practice, we tend to observe much better results than
the theorem suggests. We now show a sharper bound on the space
requirement by being more precise about the spectrum of the c(·)
values. Toward this goal, we define a measure that captures the
amount of interaction between triangles and non-triangle edges in
the graph. The tangle coefficient of a graph G, denoted by γ(G), is
given by

γ(G) :=
1

τ(G)

∑
t′∈T (G)

C(t′)

or equivalently, γ(G) = 1
τ(G)

∑
e∈E c(e)s(e), where s(e) counts the

number of triangles t′ ∈ T (G) such that the first edge of t′ is e.
Using the tangle coefficient, we prove the following theorem, which
gives a different way to aggregate the results of different unbiased
estimators (we briefly discuss the intuition behind tangle coefficient
after that):

Theorem 3.4 (Improved Triangle Counting) Let γ(G) denote the
tangle coefficient of a graph G. Let 0 < δ, ε ≤ 1 and r ≥ 1. There
is a streaming algorithm using O(r) space that on an arbitrarily-
ordered stream of any graph G, returns an (ε, δ)-approximation to
the triangle count in G, provided that r ≥ 48

ε2
mγ(G)
τ(G) log

(
1
δ

)
.

PROOF. First, we note that an estimator in Lemma 3.2 has vari-
ance at most m

∑
t∈T (G) C(t) = m · τ(G)γ. We will run α = 4/ε2 ·

γm/τ(G) independent parallel copies of such an estimator. Let the
average of these estimates be Y . By Chebyshev’s inequality, we
have Pr[|Y − E[Y] | > ε · τ(G)] ≤ 1

4 . To increase the success prob-
ability to 1 − δ, we will run β = 12 ln(1/δ) independent copies of
Y estimators and take the median. Hence, our median estimator
fails to produce an ε-approximation only if more than β/2 fails to
produce an ε-approximation. In expectation, the number of “failed”
estimators is at most β/4. Therefore, by a Chernoff bound (The-
orem 2.1), it fails with probability at most exp(− 12(β/4)

3 ) = δ. We

conclude that the final estimate is an (ε, δ)-approximation using at
most O(αβ) space.

Notice that the tangle coefficient γ is at most 2∆, recovering the
original bound we proved. But γ is often much smaller than that,
especially in graphs such as power-law graphs, where there are only
a few vertices with degree close to ∆ and the degrees of rest of the
vertices are much smaller than ∆. We can gain more understanding
of the tangle coefficient γ by considering the following random
process: Fix a stream and pick a random triangle from this graph. If
e is the first edge in the stream of this triangle, then the value of γ is
the number of edges that are adjacent to e and come after e. In this
view, γ can be seen as a measure of how entangled the triangles in
this stream are—as our intuition suggests, if the triangles “interact”
with many non-triangle triples, we will need more space to obtain
an accurate answer.

3.3 Nearly-Linear Time Triangle Counting
Our discussion thus far directly leads to a simple O(mr)-time

implementation, where r is the number of estimators being main-
tained; however, this can be too slow for large graphs. We want
the algorithm to take time linear in the number of edges m and the
number of estimators r.

This section describes a bulk-processing scheme that delivers sig-
nificantly better performance than the naı̈ve implementation. Bulk
processing helps because the estimators need to be updated much
less often. It also represents a common usage pattern: in many
applications, the algorithm receives edges in bulk (e.g., block reads
from disk) or has infrequent queries compared to updates (e.g., users
only make queries every once in a while, so the incoming changes
can be queued up). We show the following bounds:

Theorem 3.5 (Bulk Processing) Let r ≤ m be the number of esti-
mators. There is an algorithm bulkTC for triangle counting that
processes a batch of w edges in time O(r + w). Furthermore, at any
point in time, the algorithm needs at most O(r + w) space.

As a corollary, using a batch size of w = Θ(r), we can process
m edges in dm/we batches in Θ(m + r) total time using O(r) space.
That is, with a (small) constant factor increase in space, we are able
to achieve O(m + r) time bound as opposed to O(mr).

3.3.1 Conceptual Overview
Suppose our estimators have already observed the stream S =

〈e1, . . . , em〉 and there is a batch B = 〈b1, . . . , b|B|〉 of newly-arriving
edges. We will devise an algorithm that simultaneously advances
the states of all r estimators to the point after incorporating the
batch B. Effectively, the states of the r estimators will be as if they
have observed the stream S concatenated with B. The accuracy
guarantees from the previous section follow directly because our
process simulates playing these edges one by one in the same order.

We will frequently refer to the prefixes of B: To facilitate the
discussion, let B(i) = 〈b1, . . . , bi〉 (B(0) is the empty sequence), and
for a sequence of edges A, let degA(x) denote the degree of node x
in the graph induced by the edge set A. Furthermore, we define two
quantities:

c−(r) = |N(r) \ B| and c+(r) = |N(r) ∩ B|

We remember that neighborhood sampling (Section 3.1) main-
tains for each estimator the following quantities: (1) r1—a uniformly-
chosen random edge from the stream; (2) r2—a uniform sample
from N(r1); (3) t—a triangle if the edge closing the wedge r1r2 is
found in N(r2); and (4) c = |N(r1)|. Conceptually, the batch B can
be incorporated as follows:
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1
2

3

4

5

I J K L

degB(1) (after KL) ∅ ∅ 1 1
degB(2) (after JK) ∅ 1 2 1
degB(3) (after IK) 1 1 3 1
degB(4) (after IJ) 2 2 3 1
degB(5) (after IL) 3 2 3 2

Figure 2: A 4-node streaming graph where a batch B =

〈KL, JK, IK, IJ, IL〉 of 5 new edges (solid, labeled with their arrival
order) is being added to a stream of 1 edge (dashed) which has
arrived earlier—and the corresponding deg values as these edges
are added. Degree values that change are circled.

Step 1: Resample Level-1 edges. If there were m edges prior to the
batch B of size w, for each estimator, keep the current edge with
probability m

w+m , and with the remaining probability, replace it with
an edge uniformly chosen from B. We will also reset c to 0 if the
level-1 edge is replaced.

Step 2: Identify Level-2 candidates and sample from them. For each
estimator, the sample space we want to sample uniformly from is
N(r1). Given the current r2, we know that c−(r1) is the current c
(note that if the level-1 was replaced, c was also reset to 0). Hence,
we use the following rule to update Level-2 edges:

With probability c+(r1)
c−(r1)+c+(r1) , pick a random edge from

N(r1) ∩ B; otherwise, keep the current r2. Moreover,
the number of candidate edges c is c+(r1) + c−(r1).

Step 3: Detect edges that will close the wedges. For each estimator
with level- 1 and 2 edges r1 and r2, we check if an edge in B that
comes after r2 can close the wedge r1r2 and update t accordingly.

3.3.2 An Efficient Implementation
We give an efficient implementation of the conceptual algorithm.

The implementation maintains r estimator states est1, . . . , estr, where
each esti maintains esti.r1, esti.r2, esti.t, and esti.c according to
neighborhood sampling. When we store an edge, we also keep the
position in the stream where it appears.

Implementing Step 1: In one randInt(1, r+w) call, we can decide
for each estimator whether to retain the current level-1 edge or which
new edge in B to select. Thus, in O(r) time, all level-1 edges are
properly updated. This is essentially a direct translation of the
conceptual algorithm.

Implementing Step 2: Although conceptually rather simple, this
step turns out to be the most involved part in the whole algorithm.
The challenge is that we cannot afford to explicitly construct the
candidate sets (our r estimators can potentially have all different
candidate sets). Instead, we need to navigate the input stream while
implicitly tracking the r “substreams” simultaneously in space O(r+
w)—merely a constant factor more than the space needed to keep
the estimator states and the newly-arrived edges alone.

The crux of our solution is an observation that characterizes the
candidate set of a given level-1 edge (i.e., N(r1) ∩ B) in terms of
the degrees of the relevant nodes in the prefixes of B. We state the
observation first and explain it with examples after that:

Observation 3.6 For an edge e and a node w ∈ e, the set of edges
in B incident to node w that comes after e is

Γ
(e)(w) = {bi ∈ B : w ∈ bi and degB(i) (w) > β(e)(w)}

where β(e)(w) = degB(k) (w) if e is bk ∈ B, or β(e)(w) = 0 otherwise.

Therefore, for an edge e = {x, y}, the set of edges in B adjacent to e
that come after e is given by N(e) ∩ B = Γ(e)(x) ∪ Γ(e)(y).

To help understand this observation and subsequent descriptions,
imagine adding the edges in B one by one—b1, b2, . . . , bw—and
at every step, observe how the degrees of the nodes relevant to B
change; see Figure 2 for a running example. In this view, β(e)(w) is
the degree of the node w at the point when the edge e is added. In
our running example, β(JK)(K) = 2 and β(IK)(I) = 1. Moreover, since
JL < B, we have β(JL)(L) = 0. Now, notice that as an edge e = {x, y}
is added, exactly two places in the degree vector change—i.e., the
degrees of x and y increase by 1 (these are circled). Hence, if b j ∈ B
comes after bi ∈ B and both are incident on a node x, the degree
of x when b j is added is necessarily larger than that when bi was
added—or mathematically, degB( j) (x) > degB(i) (x). Therefore, in
words, Observation 3.6 says that every edge incident on x with a
degree of x higher than β(e)(x) comes after e in the stream. To give
some examples, consider that β(IK)(I) = 1, so the edges incident on I
that comes after IK are exactly those with degB(i) (I) > 1—that is, IJ
and IL. As another example, we know that β(IK)(K) = 3, so there is
no edge incident on K that comes after IK because none of the edges
have degB(i) (K) > 3.

Algorithm 2: edgeIter—a degree-keeping edge iterator

B deg[] – an array where deg[u] contains the degree of vertex
u, initially 0.

for i = 1 to |B| do
{x, y} ← bi

deg[x] = deg[x] + 1 and deg[y] = deg[y] + 1
notify(EVENTA (i, {x, y}, deg)).
notify(EVENTB (i, {x, y}, x, deg[x])).
notify(EVENTB (i, {x, y}, y, deg[y])).

return deg.

To apply the observation, we describe an edge iterator algorithm
edgeIter (Algorithm 2) that maintains a table of the nodes’ degrees.
The variable deg is initially an empty table and at the end of each
iteration i, deg contains the degrees of all nodes present in B(i).
Moreover, the algorithm generates the following two types of events
as it rolls over the batch of edges:

EVENTA (i, {x, y}, deg)—after going over the edge {x, y} at index i,
the current degree vector (degB(i) ) is deg.

EVENTB (i, {x, y}, v, a)—after going over the edge {x, y} at index i,
the degree of node v is now updated to a.

These events provide the “cues” needed to track the candidate sets
for our estimators.

The implementation of Step 2 consists of three substeps:
B Step 2a: Calculate for each esti with level-1 edge {x, y}, the
values of β(r1)(x), β(r1)(y), degB(x) and degB(y); these quantities
are sufficient to define implicitly the set N(r1) ∩ B according to
Observation 3.6. To accomplish this, we temporarily store two
additional fields per estimator—β(r1)(x), β(r1)(y)—and make a table
L[] mapping L[i], i ∈ {1, . . . , |B|}, to a list of estimators whose
level-1 edge is bi (an “inverted index” of the estimators that just
replaced their level-1 edges). Building this table takes O(r) time.
Initially, set β(r1)(x), β(r1)(y) to 0 for all estimators. Then, we run
edgeIter and on EVENTA (i, {x, y}, deg), we go over the list L[i]
and store in these estimators β(r1)(x) = degB(i) (x) = deg[x] and
β(r1)(y) = degB(i) (y) = deg[y]. When edgeIter is finished, its
return vector is degB. This can be implemented in O(r + w) time
because the length of lists in L (i.e.

∑
i |L[i]|) is r.

B Step 2b: Pick the level-2 edges, each in terms of an EVENTB. With
the information collected in 2a, Observation 3.6 fully defines the
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sample space for level-2 edges in terms of EVENTB’s. To illustrate,
consider that in Figure 2, the neighborhood of level-1 edge IK is
N(IK) = {IJ, IL}. The edge IJ creates two EVENTB’s that we will
use to identify it: EVENTB (4, {I, J}, I, 2) and EVENTB (4, {I, J}, J, 2).
Likewise, the edge IL generates two EVENTB’s: EVENTB (5, {I, L}, I, 3)
and EVENTB (5, {I, L}, L, 2).

More generally, consider a level-1 edge r1 = {x, y}. There are a =
degB(x) − β(r1)(x) edges in Γ(r1)(x), namely the edges corresponding
to EVENTB (∗, ∗, x, β(r1)(x)+1), . . . , EVENTB (∗, ∗, x, degB(x)), where
∗ denotes a wildcard match. Similarly, there are b = degB(y) −
β(r1)(y) edges in Γ(r1)(y), namely the edges corresponding to EVENTB
(∗, ∗, y, β(r1)(y) + 1), . . . , EVENTB (∗, ∗, y, degB(y)).

Thus, for each estimator, we have c−(r1) = c (inherited from
Step 1) and c+(r1) = a + b. Let ϕ = randInt(1, c− + c+), where
c− = c−(r1) and c+ = c+(r1) and translate ϕ as follows:

Algorithm 3: Translating edge numbers into events
if (ϕ ≤ c−) then keep existing r2
else if (ϕ ≤ c− + a) then

pick the edge that causes EVENTB(∗, ∗, x, β(r1)(x) + ϕ − c−)
else

pick the edge that causes EVENTB(∗, ∗, y, β(r1)(y) + ϕ − c− − a)

B Step 2c: Convert the selection into actual edges. Each estimator
has decided which new edge, if any, is replacing the current level-
2 edge but it is given in terms of an EVENTB event. To convert
these events into actual level-2 edges, we create a (hash) table P[]
mapping an ordered-pair (x, d) to a list of estimators that subscribe
to the event EVENTB (∗, ∗, x, d) from the previous step. Then, we
run edgeIter and on EVENTB, we consult the table P to see which
estimators, if any, selected this edge. Step 2c requires O(r +w) time
and P consumes at most O(r) space since

∑
`∈P |`| ≤ r.

Implementing Step 3: We keep a (hash) table Q that maps an edge
needed to complete a triangle to the estimator(s) that needs it. This
table can be populated by by looking at our estimator states. Once
this table is constructed, we simply have to go through the edges in
B and check whether bi is present in Q and if so, whether it comes
after the level-2 edge that expects it. This is easy to check because
we store with every edge its position in the stream. Hence, Step 3
takes at most O(r + w) time since Q can contain at most r entries.

In sum, we have shown that each of these steps can be imple-
mented in O(r + w) time using at most O(r + w) space. Hence, the
algorithm bulkTC satisfies Theorem 3.5, as promised.

3.4 Sampling Triangles
We now turn to the problem of maintaining k ≥ 1 triangle(s)

uniformly-sampled with replacement from a graph stream. First,
we show how to sample one triangle uniformly with a reasonable
success probability. Following that, we apply it to sample k ≥ 1
triangles and outline how to adapt the efficient implementation
(Section 3.3) to this case.

Our starting point is the neighborhood sampling algorithm, which
maintains a random triangle. The problem, however, is that this sam-
ple is not necessarily uniform. But this is easy to fix, as described in
the following lemma:

Lemma 3.7 Let G be a streaming graph. Let t and c be the values
the neighborhood sampling algorithm maintains. Define

unifTri(G) =

t with prob. c
2∆

∅ otherwise.

Then, unifTri(G) produces a triangle (i.e. unifTri(G) , ∅) with
probability at least τ(G)

2m∆ . Furthermore, if it returns a triangle, each
triangle in T (G) is equally likely to be produced.

PROOF. By Lemma 3.1, neighborhood sampling picks a partic-
ular triangle t∗ with probability Pr[t = t∗] = 1/mC(t∗). Further,
note that C(t∗) ≤ 2∆. Therefore, if neighborhood sampling picks
the triangle t∗, the probability that t∗ is passed on as our output is

1
mC(t∗) ·

C(t∗)
2∆ =

1
2m∆ , where we note that c = C(t∗) and the normaliza-

tion factor c
2∆ ≤ 1. Finally, since the events of different triangles

being returned are all disjoint from each other, the probability that
some triangle is returned by the algorithm is τ(G)

2m∆ .

We extend this to sample k triangles by running multiple copies
of unifTri and picking any k triangles at random. Below, we
calculate the number of copies sufficient for producing k triangles
with probability at least 1 − δ.

Theorem 3.8 For 0 < δ < 1, r ≥ 1, and k ≥ 1, there is an algorithm
unifTri(G, k) with space requirement O(r) that on any stream
graph G with τ(G) > 0, returns k triangles uniformly-chosen with
replacement from G that succeeds with probability at least 1 − δ, as
long as r ≥ 4mk∆ ln(e/δ)

τ(G) .

PROOF. We run r ≥ α = 4mk∆ ln(e/δ)
τ(G) independent copies of

unifTri from Lemma 3.7 and randomly pick k triangles these
copies yield. Thus, it succeeds as long as at least k copies yield a
triangle. To analyze this, let X be the number of copies that yield
a triangle and p = 2m∆/τ(G) be a sampler’s success probability
(Lemma 3.7). Therefore, X is a Binomial random variable with
mean αp because these are independent samplers succeeding with
probability p. Hence, unifTri(G, k) succeeds with probability
Pr[X ≥ k] = 1 − Pr[X < k], where Pr[X < k] ≤ exp(− 1

2αp (αp −
k)2) ≤ δ/e ≤ δ by Chernoff bounds (Theorem 2.1). We conclude
that the algorithm succeeds with probability at least 1 − δ and con-
sumes O(r) space because each copy takes constant space.

The algorithm unifTri(G, k) can also benefit from the bulk-
processing implementation from Section 3.3. Since Theorem 3.5 im-
plements neighborhood sampling for bulk arrival, the states it keeps
are readily consumable by our unifTri algorithm (Lemma 3.7).
Hence, together with the theorem above, we have that as long as we
keep r ≥ 4mk∆ ln(e/δ)

τ(G) , we can maintain k uniformly-sampled triangles
in the same space/time bounds as Theorem 3.5; that is, O(m + r)
total time and O(r + w) space.

3.5 Transitivity Coefficient
Another important triadic graph measure is the transitivity coeffi-

cient, proposed by Newman, Watts, and Strogatz [15]:

κ(G) =
3τ(G)
ζ(G)

,

where ζ(G) =
∑

u∈V(G)

(
deg(u)

2

)
is the number of connected triplets

in the graph G. Since we already have an algorithm for triangle
counting, we will estimate the transitivity coefficient by designing
an algorithm for estimating ζ(G). To start, we express ζ(G) in terms
of a quantity related to what neighborhood sampling tracks:

Claim 3.9 If c(e) is the number of edges incident on e that arrive
after e in the stream, then

ζ(G) =
∑
e∈E

c(e)

1875



PROOF. Let S = {{e, f } ⊆ E(G) : e , f and |e ∩ f | = 1} be
the set of unordered pairs of edges that share a common vertex, so
|S| = ζ(G). Further, let T = {(p, q) : p ∈ E(G) and q ∈ N(p)}, so
|T| =

∑
e∈E c(e). We prove the claim by giving a bijection between

S and T, showing that |S| = |T|. For this, we map each (p, q) ∈ T to
{p, q} ∈ S. It is routine to check that this mapping is well-defined
and is bijective.

Using this relationship, we can estimate ζ(G) as follows:

Lemma 3.10 Let c be the quantity that neighborhood sampling
tracks and m be the total number of edges seen so far. Define

ζ̃ = m × c.

Then, E
[
ζ̃
]
= ζ(G).

PROOF. Fix an edge e ∈ E. Neighborhood sampling picks this
edge as its level-1 edge with probability 1/m and when this edge
is picked, the value c is c(e), so ζ̃ = m × c(e). Thus, E

[
ζ̃
]
=∑

e
1
m c(e) · m = ζ(G), which follows from Claim 3.9.

Like in triangle counting, we boost the accuracy and success
probability of the above estimator by running multiple copies and
taking the average of the estimates. By Chernoff bounds (applied
similarly to Theorem 3.3), we have the following lemma:

Lemma 3.11 Let 0 ≤ δ, ε ≤ 1. There is an algorithm that observes
a graph stream G and returns an (ε, δ)-approximation for ζ(G) using
space O( 1

ε2
m∆
ζ(G) log(1/δ)).

We put these together as follows: Run the triangle counting algo-
rithm simultaneously with the ζ-estimation algorithm. In particular,
run the algorithm from Theorem 3.3 to compute τ′(G), a (ε/3, δ/2)-
approximation of τ(G), and the algorithm from Lemma 3.11 to
compute ζ′(G), a (ε/3, δ/2)-approximation of ζ(G)—and return
κ′(G) = 3τ′(G)/ζ′(G). Note that the total space used by this algo-
rithm is bounded by O( 1

ε2
m∆
ζ(G) log(1/δ)). By our choice of parameters

and an application of union bound it follows that κ′(G) ∈ (1±ε)κ(G).
Thus, we have the following theorem:

Theorem 3.12 Let ε ≤ 1, δ > 0 and r ≥ 1. There is an O(r)-space
(ε, δ)-approximation streaming algorithm for transitivity coefficient,
provided r ≥ K

ε2
m∆
ζ(G) log(1/δ)) for a fixed constant K.

3.6 A Lower Bound
It is natural to ask whether better space bounds are possible for

triangle sampling and counting. In particular, can we meet the space
complexity of O(1+T2(G)/τ(G)), which is the space-complexity of an
algorithm for triangle counting in the incidence stream model [5]?
Here, T2(G) is the number of vertex triples with exactly two edges in
them. We show that this space bound is not possible in the adjacency
stream model, separating it from the incidence stream model:

Theorem 3.13 There exists a graph G∗ and an order of arrival
of edges, such that any randomized streaming algorithm that can
estimate the number of triangles in G∗ with a relative error of better
than 1/2 must have space complexity ω(1 + T2(G)/τ(G)).

PROOF. We use a reduction from the Index problem from com-
munication complexity: Alice is given a bit vector x ∈ {0, 1}n and
Bob is given an index k ∈ {1, 2, . . . , n}; Bob wants to compute xk,
the bit in the k-th position in x. It is known that in the model where
Alice can send exactly one message to Bob, the communication cost
of any (randomized) protocol is Ω(n) bits (see [11, Chapter 4.2]).

LetA be a streaming algorithm that estimates the number of trian-
gles. We can use this algorithm to solve the Index problem as follows.

Given a bit vector x ∈ {0, 1}n, Alice constructs a graph G∗ on 3(n+1)
vertices with the vertex set {a0, · · · , an} ∪ {b0, · · · , bn} ∪ {c0, · · · , cn};
the edges are as follows: she forms a triangle on a0, b0, c0—and
for each i ∈ {1, 2, . . . , n}, she places the edge (ai, bi) if and only if
xi = 1. Alice processes this graph usingA and sends the state of the
algorithm to Bob, who continues the algorithm using the state sent
by Alice, and adds the two edges (bk, ck) and (ck, ak), where k is the
index requested. By querying the number of triangles in this graph
with relative error of smaller than 1/2, Bob can distinguish between
the following cases: (1) G∗ has two triangles, and (2) G∗ has one
triangle. In case (1), xk = 1 and in Case (2), xk = 0, and hence, Bob
has solved the Index problem.

It follows that the memory requirement of the streaming algorithm
an Alice’s end must be Ω(n) bits. Note that the graph G∗ sent
by Alice has no triples with two edges between them, and hence,
O(1 + T2(G∗)/τ(G∗)) = O(1).

4. EXPERIMENTS
In this section, we empirically study the accuracy and the runtime

performance of the proposed triangle counting algorithm on real-
world, as well as synthetic, graphs and in comparison to existing
streaming algorithms.

We implemented the version of the algorithm which processes
edges in batches and also the other state-of-the-art algorithms for ad-
jacency streams due to Buriol et al. [5], and Jowhari and Ghodsi [9].
Our bulk-processing algorithm follows the description in Section 3.3,
with the following optimizations: First, we combine Steps 2c and 3
to save a pass through the batch. Second, level-1 maintenance can
be further optimized by noticing that in later stages, the number of
estimators that end up updating their level-1 edges is progressively
smaller. Deciding which estimator gets a new edge boils down to
generating a binary vector where p is the probability that a position
is 1 (as time progresses, p becomes smaller and smaller). We can
generate this by generating a few geometric random variables repre-
senting the gaps between the 1’s in the vector. Since we expect only
a p-th fraction of the estimators to be updated, this is more efficient
than going over all the estimators. Our implementation uses GNU’s
STL implementation of collections, including unordered_map for
hash maps; we have only performed basic code optimization.

4.1 Experimental Setup
Our experiments were performed on a 2.2 Ghz Intel Core i7

laptop machine with 8GB of memory, but our experiments only
used a fraction of the available memory. The machine is running
Mac OS X 10.7.5. All programs were compiled with GNU g++
version 4.2.1 (Darwin) using the flag -O3. We measure and report
wall-clock time using gettimeofday.

We use a collection of popular social media graphs, obtained
from the publicly available data provided by the SNAP project at
Stanford [12]. We present a summary of these datasets in Figure 3.
We remark that while these datasets stem from social media, our
algorithm does not assume any special property about them. Since
these social media graphs tend to be power-law graphs, we comple-
ment the datasets with a randomly-generated synthetic graph (called
“Synthetic ∼ d-regular”) that has about the same number of nodes
and edges as our biggest real dataset (Orkut)—but the nodes have
degrees between 42 and 114.

The algorithms considered are randomized and may behave dif-
ferently on different runs. For robustness, we perform five trials with
different random seeds and report the following statistics: (1) the
mean deviation (relative error) values from the true answer across
the trials, (2) the median wall-clock overall runtime, and (3) the
median I/O time. Mean deviation is a well accepted measure of
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Dataset n m ∆ τ m∆/τ

Amazon 335K 926K 549 667,129 761.9

DBLP 317K 1.0M 343 2,224,385 161.9

Youtube 1.13M 3.0M 28,754 3,056,386 28,107.1

LiveJournal 4.00M 34.7M 14,815 177,820,130 2,889.4

Orkut 3.07M 117.2M 33,313 633,319,568 6164.0

Syn. ∼d-reg 3.07M 121.4M 114 848,519,155 16.3

Amazon DBLP Youtube

LiveJournal Orkut Syn d-Reg

Figure 3: A summary of the datasets used in our experiments: the left panel shows for every dataset the number of nodes (n), the number of
edges (m), the maximum degree (∆), the number of triangles in the graph (τ), and the ratio m∆/τ; the right panel shows for each dataset, a plot
of frequency (vert. axis in log scale) vs. degree (linear scale).

error, which we believe to give an accurate picture of how well
the algorithm performs. For some experiments, we also report the
min/max deviation values for completeness, but we note that as
more trials are performed, the minimum becomes smaller and the
maximum becomes larger, so they are not robust.

4.2 Baseline Study
The state-of-the-art algorithms for adjacency streams are due

to Buriol et al. [5], and Jowhari and Ghodsi [9]; we discuss their
performance in turn.

Our implementation of Buriol et al.’s algorithm follows the de-
scription of the optimized version in their paper, which achieves
roughly O(m+ r) running time for m edges and r estimators through
certain approximations. Even though the algorithm is fast, it fails to
find a triangle most of the time, resulting in low-quality estimates,
or producing no estimates at all—even when using millions of es-
timators on the large graphs that we consider (see Section 3.1 for
a related discussion); this is consistent with Buriol et al.’s findings
about the adjacency stream algorithm [5]. Hence, we do not report
further results on this algorithm.

Our implementation of Jowhari-Ghodsi’s algorithm follows the
description in their paper, which achieves O(mr) total running time.
It is, however, too slow for extensive experiments on the datasets
in Figure 3. Hence, we use smaller datasets to compare with our
algorithm:

— Syn 3-reg is a 3-regular graph with n = 2, 000 nodes; m = 3, 000
edges, and a max. degree of ∆ = 3, containing τ = 1, 000
triangles.

— Hep-Th is an arXiv Hep-Th collaboration network [12] with
n = 9, 877 nodes; m = 51, 971 edges; ∆ = 130 max. degree with
τ = 90, 649 triangles.

The results are shown in Tables 1 and 2. On the synthetic 3-
regular graph, which has very small m∆/τ = 9, both algorithms give
accurate estimates yielding better than 92% accuracy even with only
r = 1, 000 estimators. Both yield progressively better estimates with
more estimators with JG being more accurate. However, our bulk-
processing algorithm is at least 10x faster. On the Hep-Th graph,
which has m∆/τ = 74.53, neither algorithms is able to produce
a reasonable estimate across 5 runs with r = 1, 000 or 10, 000.
But with r = 100, 000 estimators, our algorithm’s error drops to
below 1% while we see no improvements from JG. Again, the bulk-
processing algorithm is at least 10x faster. Importantly, we note that
for the same value of r (number of estimators), the JG algorithm uses
considerably more space than our algorithm, since our algorithm
uses constant space per estimator while the JG algorithm uses up to
O(∆) space per estimator.

Algorithm
r = 1, 000 r = 10, 000 r = 100, 000

MD Time MD Time MD Time

JG [9] 7.20 0.04 2.08 0.44 0.27 5.26
Ours 4.28 0.004 1.52 0.01 0.93 0.07

Table 1: The accuracy (mean deviation in percentage) and pro-
cessing time (in seconds) of Jowhari-Ghodsi(JG)’s algorithm in
comparison to our algorithm on a synthetic 3-regular graph (Syn.
3-reg) as the number of estimators is varied.

Algorithm
r = 1, 000 r = 10, 000 r = 100, 000

MD Time MD Time MD Time

JG [9] 79.33 0.71 86.86 7.17 86.66 86.02
Ours 92.69 0.05 81.25 0.08 0.68 0.17

Table 2: The accuracy (mean deviation in percentage) and pro-
cessing time (in seconds) of Jowhari-Ghodsi(JG)’s algorithm in
comparison to our algorithm on Hep-Th as the number of estimators
is varied.

These findings suggest that existing algorithms for adjacency
streams can deliver accurate results but require more estimators,
memory, and runtime for obtaining results of similar quality as
our algorithm, and hence are impractical for large graphs. In the
remaining experiments, we directly compare our results with the true
count to assess accuracy and study the scalability of the approach as
the graph size and the number of estimators increase.

4.3 Accuracy, Speed, and Memory Usage
This set of experiments aims to study the accuracy, speed, and

memory usage of our estimates on different datasets. Our theoretical
results predict that as the number of estimators r increases, so does
the accuracy. We are interested in verifying this prediction, as well
as studying the dependence of the accuracy on parameters such
as the number of edges m, maximum degree ∆ and the number of
triangles τ.

For each dataset, we run 5 trials of the bulk-processing algorithm
with r = 1024, 131072, and 1048576. The number of estimators
(r) controls the memory requirement for keeping the states. Our
implementation uses 36 bytes per estimator; therefore, regardless of
the datasets, the memory usage for the estimators is as follows:

r = 1K r = 128K r = 1M

Memory 36K 4.5M 36M

In addition, when a batch of edges arrives, the bulk-processing
algorithm needs a working space of about 3x the batch size to
process the batch; this space is thrown away after it completes the
batch. We further discuss the effects of batch size in Section 4.5.
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Dataset
r = 1K r = 128K r = 1M I/O

min/mean/max dev. Time min/mean/max dev. Time min/mean/max dev. Time

Amazon 1.60 / 6.28 / 12.45 0.41 0.11 / 0.84 / 1.52 1.06 0.08 / 0.25 / 0.40 3.72 0.26
DBLP 8.04 / 18.28 / 36.53 0.45 0.08 / 0.50 / 0.97 1.08 0.07 / 0.19 / 0.42 3.90 0.28
Youtube 12.56 / 59.45 / 79.76 1.25 9.37 / 21.46 / 38.49 2.39 1.75 / 4.42 / 10.18 5.26 0.79
LiveJournal 0.24 / 11.53 / 29.76 15.00 1.41 / 2.35 / 4.02 23.10 0.19 / 0.60 / 1.45 33.40 10.00
Orkut 4.61 / 31.93 / 58.93 52.40 2.13 / 4.69 / 12.69 75.20 1.48 / 3.55 / 5.93 103.00 33.40
Syn. ∼d-regular 1.26 / 7.58 / 13.57 53.70 0.00 / 0.37 / 0.81 64.80 0.01 / 0.24 / 0.53 73.00 34.50

Table 3: The accuracy (min/mean/max deviation in percentage), median total running time (in seconds), and I/O time (in seconds) of our
bulk algorithm across five runs as the number of estimators r is varied.
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Figure 4: Average throughput of the streaming algorithm (in mil-
lion edges per second) on different real-world datasets as the num-
ber of estimators is varied.

Table 3 shows the median total running time, accuracy (showing
min., mean, and max. relative errors in percentage), and median I/O
time of our algorithm across five runs as we vary the number of
estimators r. We show the I/O time for each dataset as it makes up of
a non-negligible fraction of the total running time. Several things are
clear from this experiment in terms of accuracy: First, our algorithm
is accurate with only a modest number of estimators. In all but
the Youtube dataset, the algorithm achieves less than 5% mean
deviation using only about 100 thousand estimators. Furthermore,
the accuracy significantly improves as we increase the number of
estimators r to 1M. Second, a high degree graph with few triangles
needs more estimators. Consistent with the theoretical findings,
Youtube and Orkut, which have the largest m∆/τ(G) values, need
more estimators than others to reach the same accuracy. Third, but
perhaps most importantly, in practice, far fewer estimators than
suggested by the pessimistic theoretical bound is necessary to reach
a desired accuracy. For example, on Orkut, using ε = 0.0355,
the expression s(ε, δ)m∆/τ is at least 4.89 million, but we already
get this accuracy using 1 million estimators. Finally, we note that
across the datasets, the mean deviation decreases as we increase the
number of estimators. This is desirable and to be expected; as the
proof suggests, the aggregate becomes progressively sharper as we
increase the number of estimators.
Power-law or not. Our real-world datasets stem from social media,
which tend have a power-law degree distribution. It is natural to
wonder how the scheme performs on non-power-law graphs. For
this, we experimented with a synthetic graph of roughly the same
size as Orkut. The result on the synthetic graph suggests that as
long as m∆/τ is small, our algorithm is capable of producing accu-
rate results—regardless of the power-law nature. In more “regular”

graphs, we believe that m∆/τ will be a better predictor of accuracy
because the degree variance is smaller.

Having discussed the accuracy and memory usage trends, we
now turn to the throughput of the algorithm. Figure 4 shows the
average throughput of our algorithm for different real-world datasets
as the number of estimators is varied. These numbers represent the
throughput we obtain on average for processing a stream of edges
of a particular length. Since the I/O rate is faster than the processing
rate and we factor out the I/O time, these are the highest “sustained”
rate the algorithm can achieve on that stream. As expected, the
throughput decreases as the number of estimators increases (which
yields more accuracy). Furthermore, for a fixed r (and using, say,
w = 8r), the throughput increases with the stream’s length: since the
total time to process a stream of length m is proportional to m+r, the
throughput is proportional to m

m+r =
1

1+r/m , which increases with m.
We focus on r = 128K and r = 1M as these are likely the values one
is likely to use to obtain an accurate estimate. With r = 128K, the
algorithm is capable of handling more than 1 million edges/second—
and with r = 1M, for sufficiently long streams, it can process more
than 1.2 million edges/second.

4.4 Effects of The Number of Estimators
In this set of experiments, we selected two graphs—Youtube and

LiveJournal—to study the algorithm’s behaviors in more detail.
Figure 5 (left) shows the median running time (in seconds) as r

geometrically increases from r = 1024 to r = 4M; the horizontal
axis (x-axis) is in log scale. This translates into the average through-
put curves in the middle panel. As can be seen, the running time
increases with the number of estimators r, as expected. The theory
predicts that the running time is O(m + r); that is, it scales linearly
with r. This is hard to confirm visually since we do not know how
much of it is due to the O(m) term; however, in both cases, we are
able to compute a value t0 such that the running times minus t0 scale
roughly linearly with r, suggesting that the algorithm conforms to
the O(m + r) bound.

We also study the mean deviation as r changes. Figure 5 (right)
shows the mean deviation values for the same two datasets as well as
the error bound indicated by Theorem 3.3 using δ = 1/5. Ignoring
the first several data points where using a small number of estimators
results in low accuracy and high fluctuations, we see that in general—
though not a strict pattern—the error decreases with the number of
estimators. Furthermore, consistent with our earlier observations,
the bound in Theorem 3.3 is conservative; we do better in practice.

4.5 Effects of Batch Size
In this section, we discuss the effects the batch size have on

memory consumption and the processing throughput. When a batch
of edges arrives, the bulk-processing algorithm needs a working
space of about 3x the space for storing the arriving edges to process
the batch this space is thrown away after it completes each batch.
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Figure 6: The throughput of the bulk-processing algorithm on
LiveJournal as the batch size is varied.

As an example, using a batch size of w = 8M and 1M estimators,
the implementation would have a high water mark around 164MB.
Furthermore, we study the effects on the throughput by performing
an experiment on LiveJournal graph with r = 1M, varying the
batch size between 1M and 8M. The results are shown in Figure 6,
suggesting that the throughput increases with the batch size. This
agrees with the running time bound we derived in Theorem 3.5:
the average time to process an edge in a stream of length m is
proportional to 1 + r

m +
w
m +

1
w .

5. EXTENSIONS
In this section, we demonstrate the versatility of the neighborhood

sampling technique by using it to derive a space-efficient streaming
algorithm for counting higher-order cliques, as well as applying it to
the problem of triangle counting in a sliding window model. These
results are mostly of theoretical interest.

5.1 Counting and Sampling Cliques
For ease of presentation, we focus on 4-cliques. Let T4(G) denote

the set of all 4-cliques in G, and τ4(G) the number of 4-cliques
in G. The most crucial ingredient of our triangle counting algo-
rithm is the neighborhood sampling subroutine. Following the same
recipe for estimating 4-cliques, our first step would be to design
a neighborhood sampling algorithm for 4-cliques. Given a proper
neighborhood sampling algorithm, it is easy to obtain an unbiased
estimator, and taking the average of multiple copies of the unbiased
estimator yields a good estimate for the number of 4-cliques.

Extending neighborhood sampling to 4-cliques requires extra
care, however. In the case of triangles, we first sample an edge r1,
and then samples a neighbor from N(r1), and waits for the arrival

of the third edge that completes the triangle. A natural extension
to 4-cliques is to sample an edge r1, sample r2 from N(r1), and
sample r3 from the set of neighbors of r1 and r2 that arrive after
r2—then, wait for the remaining edges to complete the 4-clique.
Unfortunately, this strategy will miss many 4-cliques: Consider a
4-clique κ∗ = { f1, f2, f3, f4, f5, f6} whose edge arrive in that order. If
f1 and f2 do not share a vertex, the above strategy will never sample
κ∗. However, we would like our neighborhood sampling algorithm
to pick each 4-clique with a non-zero probability.

We overcome this difficulty by partitioning the set of 4-cliques
into two classes—Type I and Type II—and design two neighbor-
hood sampling algorithms to estimate their numbers separately. The
type of a 4-clique is determined by the order its edges appear in
the stream. Let f1, . . . , f6 be the edges of a 4-clique κ∗ arriving
in that order. We say that κ∗ is a Type I clique if f2 and f1 share
a common vertex; otherwise κ∗ is a Type II clique. Thus, every
clique is, by definition, either Type I or Type II. Let T 1

4 (G) be the
set of Type I cliques in G and T 2

4 (G) be the set of Type II cliques;
let τ1

4(G) and τ2
4(G) denote the corresponding sizes.

For sampling purposes, the basic distinction between Type I and
Type II cliques is as follows: Let f1, . . . , f6 be the edges of a 4-
clique κ∗ arriving in that order. If κ∗ is a Type I clique, since f1 and
f2 share a vertex, three of the first four edges ( f1, f2 and one of f3

or f4) determine all four vertices of the clique. If κ∗ is a Type II
clique then the first two edges ( f1, f2) determine all four vertices of
the clique.

5.1.1 Neighborhood Sampling for 4-Cliques
Let f1 and f2 be two edges of S, where f2 arrives after f1. Let F

be the set of edges adjacent to both f1 and f2 (possibly empty). The
neighborhood of f1 and f2, denoted by N( f1, f2), is

N( f1, f2) = {e ∈ N( f1) | e comes after f2} ∪ N( f2) − F,

and let c( f1, f2) denote the size of N( f1, f2).
Neighborhood sampling for Type I cliques. As mentioned earlier,
we need three edges to determine all vertices of a Type I clique.
Thus, our sampling algorithm maintains a sample of three edges
over four vertices and looks for edges that complete the 4-clique.
Our algorithm maintains following states:
— level-1 edge r1, level-2 edge r2, level-3 edge r3—r1 is uniformly

sampled from all the edges seen so far; r2 is drawn at random
from N(r1); r3 is drawn at random from N(r1, r2).

— counters c1 and c2—c1 tracks the size of N(r1) and c2 tracks the
size of N(r1, r2).

— potential clique κ1—edges of a potential clique that can be
formed using edges r1, r2, and r3.

We use the standard reservoir sampling technique to pick r1, r2

and r3. We present a more detailed description in Algorithm 4.
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Algorithm 4: NSAMP-Type I
Initialization: Set r1, r2, r3, κ1 to ∅, and c1, c2 to 0.
Edge ei arrives;
if coin(1/i) = “head” then

r1 = ei; c1 = 0; κ1 = {r1};
else

if ei is adjacent to r1 then
Increment c1

if coin(1/c1) = “head” then
r2 = ei; c2 = 0; κ1 = {r1, r2};

else
if ei, r1, and r2 form a triangle then

κ1 = κ1 ∪ {ei};
else

if ei is adjacent to r1 or r2 then
c2 = c2 + 1;
if coin(1/c2) = “head” then

r3 = ei; κ1 = κ1 ∪ {r3}

else
If ei is an edge connecting two end
points of r1, r2 or r3, then add ei to κ1.

Lemma 5.1 Consider a Type I clique κ∗ and let f1, . . . , f6 be its
edges in the order they appeared in the stream. After Algorithm 4
has processed the entire graph, the probability that κ1 equals κ∗ is

1
m·c( f1)·c( f1 , f2) .

PROOF. Since κ∗ is Type I, f1 and f2 are adjacent to each other,
and they together fix 3 vertices of the clique. The edge f3 is adjacent
to either one or both of f1 and f2. Consider the case when f3 is
adjacent to only one of f1 or f2, but not both; the other case can be
handled similarly. Note that κ equals κ∗ if the following events all
hold: (1) E1: f1 equals r1, (2) E2: f2 equals r2, (3) E3: f3 equals r3.

Since r1 is chosen uniformly at random among all possible m
edges, the probability of E1 is 1/m. Since r2 is an edge that is
chosen uniformly at random from N(r1), Pr[E2 | E1] = 1

c( f1) . Finally,
note that r3 is chosen uniformly at random from N(r1, r2). Thus,
Pr[E3 | E1,E2] = 1

c( f1 , f2) . Thus, the probability that κ equals κ∗ is
1
m ·

1
c( f1) ·

1
c( f1 , f2) , as desired.

Neighborhood sampling for Type II cliques. Remember that to
determine the vertices of a Type II clique we only need two edges.
The neighborhood sampling algorithm randomly chooses two edges
r1 and r2 so that V(r1) ∩ V(r2) = ∅ and looks for remaining edges
that can form a clique using r1 and r2. In the interest of space, we
omit the formal description of the algorithm, which mirrors that of
Type I algorithm, and prove the following lemma:

Lemma 5.2 There is a neighborhood sampling algorithm, that
maintains a state named κ2, with the following property: For ev-
ery Type II clique κ∗, after neighborhood sampling algorithm has
processed the entire graph, the probability Pr[κ2 = κ

∗] = 1
m2 .

PROOF. Suppose that the edges of κ∗ in the stream order were
f1, f2, . . . , f6 respectively. It is easy to see that κ2 = κ

∗ if and only
if at the end of observation, r1 = f1 and r2 = f2. Then, since
the events r1 = f1 and r2 = f2 are independent and each has a
probability of 1/m of being true, the probability Pr[κ2 = κ

∗] = 1/m2,
as claimed.

5.1.2 Estimating 4-cliques
Using these two neighborhood sampling algorithms, we can de-

rive unbiased estimators for τ1
4(G) and τ2

4(G), as follows:

Lemma 5.3 Let c1, c2 and κ1 be the values that Algorithm 4 main-
tains after observing m edges. Define a random variable X to be
c1 · c2 · m if κ1 is a 4-clique, and 0 otherwise. Then, E[X] = τ1

4(G).

PROOF. First, we observe that X is nonzero only when κ1 is a
Type I clique. For a Type I clique κ∗, let f1, f2, f3, f4, f5, f6 be the
edges in the order of arrival. Now note that if κ = κ∗, it must be true
that c1 = c( f1) and c2 = c( f1, f2). Hence,

E[X] =
∑

κ∗∈T 1
4 (G)

E[X | κ = κ∗] · Pr[κ = κ∗] =
∑

κ∗∈T 1
4 (G)

Pr[κ = κ∗] · mc1c2

=
∑

κ∗∈T 1
4 (G)

Pr[κ = κ∗] · m · c( f1) · c( f1, f2) = τ1
4(G),

where we have used Lemma 5.1 to establish that Pr[κ = κ∗] =
(m · c( f1) · c( f1, f2))−1.

By a similar argument, Lemma 5.2 implies the following lemma:

Lemma 5.4 Let κ2 be the value that the Type II neighborhood
sampling algorithm keeps after observing m edges. Define a random
variable Y to be m2 if κ2 is a 4-clique, and 0 otherwise. Then,
E[Y] = τ2

4(G).

Let η = max{m∆2,m2} and recall that s(ε, δ) = 1
ε2 log(1/δ).

Putting these ingredients together, we have the following theorem:

Theorem 5.5 There is an O(r)-space bounded streaming algorithm
that observes a graph stream G and returns an (ε, δ)-approximation
of the number of 4-cliques in G, provided that r ≥ K · s(ε, δ) η

τ4(G)
for a fixed constant K > 0.

PROOF. Let X be the average of r independent unbiased estima-
tors from Lemma 5.3 and Y be the average of r independent unbiased
estimators from Lemma 5.4. Our algorithm returns X + Y as an esti-
mate for the number of 4-cliques. The correctness of the algorithm,
space and accuracy bounds follow from Lemma 5.3 and Lemma 5.4
and applying a Chernoff bound (similarly to Theorem 3.3) on the
resulting estimates. We omit details.

Higher-order cliques: We can further generalize our algorithm to
estimate the number of `-cliques.

Theorem 5.6 There is a O(r)-space bounded algorithm that returns
an (ε, δ) approximation of the number of `-cliques in a stream, where
η` = max∪b`/2cα=1 {m

α∆`−2α}, provided that r ≥ K · s(ε, δ) η`
τ`(G) for a

fixed constant K > 0.

Similar ideas also lead to the following results for sampling
higher-order cliques:

Theorem 5.7 Assume that ` is a constant and τ`(G) > 0. There is
an O

(
η`
τ`

log(1/δ)
)
-space bounded algorithm that observes a graph

G and returns a random `-clique of G with probability at least 1− δ,
where η` = max∪b`/2cα=1 {m

α∆`−2α}.

5.2 Sliding Windows
We extend the basic triangle counting algorithm to the setting

of sequence-based sliding windows. Here, the graph of interest
is restricted to the most recent w edges and we want to estimate
the number of triangles in this graph. We show how to implement
neighborhood sampling in a sliding-window setting. Recall that
the neighborhood sampling algorithm maintains two edges r1—a
randomly chosen edge, and r2—a randomly chosen edge from N(r1).
In a sliding-window model, one has to ensure that r1 is an edge
chosen uniformly at random from the most recent w edges. This can
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be done using any algorithm that sampled an element from a sliding
window (for instance, using [2]). At time t, let et−w+1, . . . , et−1, et

denote the last w edges seen. For each edge ei, we pick a random
number ρ(i) chosen uniformly between 0 and 1. We maintain a chain
of samples S = {e`1 , e`2 · · · , e`k } from the current window. The first
edge e`1 is the edge such that ρ(`1) = min{ρ(t −w + 1), · · · ρ(t)}. For
2 ≤ i ≤ k, e`i is the edge such that ρ(`i) = min{ρ(`i−1 + 1), · · · ρ(t)}.
For each e`i ∈ S , we also maintain a random adjacent neighbor ri

2
from N(e`i ). Note that the second edge can be chosen using standard
reservoir sampling, because, if e`i lies in the current window, any
neighbor that arrives after it will also be in the current window. Thus,
all of ri

2s also belong to the current window. We chose r1 to be e`1

and r2 to r1
2 . When r1 falls out of window, we remove it from S ,

and update r1 to e`2 and r2 to r2
2 , and so on. This will ensure that r1

is always a random edge in the current window and r2 is a random
neighbor of r1 from the current window, and the rest of the analysis
follows. Therefore, the expected size of the set S is Θ(log w) [2].
Thus, the total expected space used by the algorithm increases by a
factor of O(log w). We arrive at the following theorem:

Theorem 5.8 (Sliding Window) Let γ(G) denote the tangle coef-
ficient of a graph G. Let 0 < δ, ε ≤ 1, r ≥ 1, and w ≥ 1. In the
sequence-based sliding window model with window size w, there
is a streaming algorithm using O(r log w) space that on a sliding-
window stream of any graph G, returns an (ε, δ)-approximation to
the triangle count in G, provided that r ≥ 48

ε2
mγ(G)
τ(G) log

(
1
δ

)
.

6. CONCLUSION
In this paper, we presented a new space-efficient algorithm for

approximately counting and sampling triangles, and more generally,
constant-sized cliques. We showed significant improvements in
the space and time complexity over previous work for these funda-
mental problems. The experimental findings show that even with
our improvements, maintaining an approximate triangle count in
a graph stream remains compute-intensive: the experiments were
CPU-bound even when we were streaming from a laptop’s hard
drive. It is therefore natural to wonder if our scheme can be paral-
lelized to achieve a higher throughput. In a follow-up work, we show
that neighborhood sampling is amendable to parallelization. We
have implemented a (provably) cache-efficient multicore parallel al-
gorithm for approximate triangle counting where arbitrarily-ordered
edges arrive in bulk [20].
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