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ABSTRACT

Dependencies play an important role in databases. We study
order dependencies (ODs)—and unidirectional order depen-
dencies (UODs), a proper sub-class of ODs—which describe
the relationships among lexicographical orderings of sets of
tuples. We consider lexicographical ordering, as by the
order-by operator in SQL, because this is the notion of order
used in SQL and within query optimization. Our main goal
is to investigate the inference problem for ODs, both in the-
ory and in practice. We show the usefulness of ODs in query
optimization. We establish the following theoretical results:
(i) a hierarchy of order dependency classes; (ii) a proof of co-
NP-completeness of the inference problem for the subclass
of UODs (and ODs); (iii) a proof of co-NP-completeness
of the inference problem of functional dependencies (FDs)
from ODs in general, but demonstrate linear time complex-
ity for the inference of FDs from UODs; (iv) a sound and
complete elimination procedure for inference over ODs; and
(v) a sound and complete polynomial inference algorithm for
sets of UODs over restricted domains.

1. INTRODUCTION
Understanding the semantics of data is important for query

optimization. Ordered streams are prevalent in query plans
between operators to provide efficient evaluation. An opti-
mizer must reason extensively over interesting orders while
building query plans [11, 12]. Order for a tuple stream
can be semantically specified via the attributes as by SQL’s
order-by. The order specification order by year desc, name asc
requires that the tuple stream be sorted by year in descend-
ing order and, within each year group, by name in ascending
order. This is a lexicographical ordering, a nested sort.

An order dependency (OD) states a semantic relationship
between two order specyfications. Say that we knew the
OD that id asc orders year asc, name asc. Then we would
be assured that any tuple stream ordered by id asc would
also necessarily be ordered by year asc, name asc. Note the
converse is not necessarily assured: if the stream were or-
dered by year asc, name asc, it still might not be ordered by
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Query 1. Eliminating trimester and quarter.
select D.year, D.trimester, D.quarter,

D.month, D.day, sum(S.sales) as total,
count(*) as quantity

from date_dim D, sales S
where S.date_id = D.date_id and

D.year between 2001 and 2004
group by D.year, D.trimester, D.quarter,

D.month, D.day
order by D.year, D.trimester, D.quarter,

D.month, D.day;

id asc. This is because the tuples within a given partition of
year-name might fail to be ordered by id asc.

The concept of an OD is closely related to that of func-
tional dependency (FD). Indeed, ODs subsume FDs [14]. If
id asc orders year asc, name asc, then the FD that id func-
tionally determines year and name must hold. ODs convey
additional semantic information, of course: that of order.

ODs has been studied before with respect to lexicograph-
ical orders [10, 14, 18], and with respect to other order def-
initions (pointwise) [5, 6]. Our focus is on lexicographical
orders. While lexicographical OD has been studied before,
it has not been well understood. The inference problem is to
answer whether an OD is logically entailed by a set of ODs.
The complexity of the inference problem for (lexicographical)
OD has heretofore not been known. We address this in this
work. Working with (lexicographical) ODs is much more
useful for query optimization than working with (pointwise)
ODs [5, 6], because the sequence of the attributes in order
specifications (interesting orders) [11, 12] as in the order-by
statement matters. Lexicographical ODs are specified with
respect to lists of attributes, whereas (pointwise) ODs are
specified with respect to sets of attributes.

As business-intelligence applications have become more
complex and as data volumes have grown, the analytic que-
ries needed to support these applications have become more
complex too. The increasing complexity raises performance
issues and numerous challenges for query optimization. Tra-
ditional optimization methods often fail to apply when logi-
cal subtleties in database schemas and in queries circumvent
them. Consider the SQL query in Query 1 over a data ware-
house schema. The fact table sales has a foreign key S.date id
which references the dimension table date dim. Date is cap-
tured in a hierarchical manner by attributes year, quarter or
trimester, month, and day. The values of the attribute quar-
ter divide year into four three-month periods, while those of
trimester divide it into three four-month periods. Let there
be a B+ tree index for date dim on year, month, day. The
optimizer may not employ this index to evaluate either the
group-by or the order-by for the query in Query 1, because
their specifications do not match the index’s search key.

Of course, it is clear that month functionally determines
quarter and trimester. So partitioning by year, trimester,
quarter, month, day is the same as just by year, month, day.
In fact, optimizers today would eliminate trimester and quar-
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ter from the group-by via reasoning over the relevant FDs
[12], and then employ the index for the group-by operation.1

The FD that month → quarter, trimester is not logically
sufficient to optimize the order-by operation, however. One
would need the additional semantic information of an OD
that year, month, day orders year, trimester, quarter, month,
day. This and similar subtleties cause the optimizer to miss
opportunities to use indexes and to pipeline operations. Ex-
pensive operations as sort are added to a query plan, even
when the data is already sorted properly. By incorporat-
ing reasoning over ODs into the optimizer—as has already
been done for reasoning over FDs—many new optimizations
would be possible.

In Section 2 (Background), we introduce a theoretical
framework for ODs. The contributions of this paper appear
in Section 2.3 and Sections 3 to 5, as follows

1. Hierarchy of OD classes. (Section 3)
(a) Lexicographical ODs as defined in this paper are

a proper sub-class of pointwise ODs. (Section 3.2)
(The latter is defined in [5].)

(b) UODs are a proper sub-class of ODs, Section 3.3.
(c) FDs are a sub-class of UODs [14]. In Section 3.4

we additionally show that FDs are a proper sub-
class of UODs.

2. Complexity. (Section 4)
(a) The inference problem for UODs is co-NP-complete.

(Section 4.1)
(b) The inference problem of inferring FDs from ODs

is also co-NP-complete, but it is only linear for
the case of FDs over UODs. (Section 4.2)

3. Inference Procedures. (Section 5)
While the explicitly known ODs may sometimes not
be useful in query processing, the dependencies that
logically follow from them might. Thus, an OD infer-
ence procedure inside the optimizer is needed to take
full advantage of the optimization techniques.
(a) In Section 5.1 we present a sound and complete

elimination procedure for inference over ODs.2We
have implemented this elimination procedure in
DB2. Our experiments have shown that the cost
of running the elimination procedure is marginal
for real world business domains. (This improves
over the chase procedure for ODs we presented in
[13], as discussed in Section 5, Footnote 7.)

(b) A restricted domain is introduced, the transitive
domain, which makes reasoning over ODs sim-
pler.3 (Section 5.2)

(c) An efficient, polynomial inference procedure for
ODs over the transitive domain is presented that
is sound and complete. We have implemented it
in DB2. (Section 5.2)

4. Optimizing with ODs.
We demonstrate how ODs can be used effectively in
optimization in Sections 2.3 and 5.3.

1IBM DB2 incorporates such rewrites.
2The complexity for elimination procedure is exponential.
However, the complexity is with respect to the number of
unique attributes in the set of prescribed ODs over relation
(which is usually a small number), though, not with respect
to data complexity. Hence, it can be used in practice.
3A domain is restricted if an additional order property is
guaranteed over the schema.

(a) We incorporate ODs into a canonical form to en-
able reasoning over ODs in the query optimizer.
(Section 2.3) By casting interesting orders into
the canonical form, they can be then matched
with indexes, sort orders, and such. The utility
of this is demonstrated in a case study with ex-
perimental results. (Section 5.3)

(b) Our technique with ODs between columns and
SQL functions has been implemented in DB2. A
suit of real-world IBM customer queries over TPC-
DS schema show a significant performance gain,
with an average 30% improvement over a ten-GB
database (Section 5.3).

In Section 6, we discuss related work. In Section 7, we
conclude and consider future work.

The results enumerated above are entirely new, with the
following clarifications. Point 1c, FD subsumption appears
in [14] (where we presented a sound and complete axioma-
tization for UODs), and is included here for understanding;
Point 3a revises the chase procedure of [13] as an improved
(see Footnote 7) elimination procedure (new in this work).

This work we feel opens exciting venues for future work to
develop a powerful new family of query optimization tech-
niques in database systems.

2. BACKGROUND
First, we establish notational conventions and definitions

for ODs and UODs. Next, we introduce an axiomatization
[14] which is sound and complete for UODs and sound for
ODs which we use in proofs in the paper. Lastly, we discuss
how ODs arise and how they can be used for optimization.

2.1 Framework
We adopt the following notational conventions.
• Relations. R denotes a relation and r denotes a spe-

cific relation instance (table). A, B and C denote at-
tributes. Additionally, s and t denote tuples and tA
denotes the value of attribute A in tuple t.

• Sets. X , Y, and Z denote sets. Also, tX denotes the
projection of tuple t on X . XY is shorthand for X ∪Y.

• Lists. X, Y and Z denote lists. (Note X could rep-
resent the empty list, [ ].) List [A, B, C] denotes an
explicit list. [A |T] denotes a list with head A and tail
T. XY is shorthand for X ◦ Y (X concatenate Y). Set
X denotes the set of elements in list X. Anyplace a set
is expected but a list appears, the list is cast to a set;
e.g., tX denotes tX .

We model order specification as provided by SQL’s order-
by clause for specifying lexicographical orderings.

Definition 1. (order specification) An order specification
is a list of marked attributes. There are two directionality
operators: asc and desc, indicating ascending and descend-
ing, respectively. Each operator is unary, applies over an
attribute, and is written postfix; e.g., A asc and B desc. As

shorthand, we write
−→
A and

←−
A for A asc and A desc, respec-

tively. In any context an order specification is expected but
a list of (unmarked) attributes appears, the list is cast to
the order specification with each attribute marked as asc;

e.g., [A, B, C] is cast to [
−→
A ,

−→
B ,

−→
C ].4

4Ascending is the default for SQL in order-by for any at-
tributes for which directionality is not explicitly indicated.
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Table 1: Relational instance r.

# A B C D E

s 1 4 4 6 3
t 2 3 4 6 4

The order specification X defines an algebraic relation
‘¹X’. The operator ‘¹X’ defines a weak total order over
any set of tuples.

Definition 2. (algebraic relation ‘¹X’) Let X be a list of
marked attributes. For two tuples r and s (over a schema
containing the attributes in X), r ¹X s iff

• X = [ ]; or

• X = [
−→
A |T] and rA < sA; or

• X = [
←−
A |T] and rA > sA; or

• X = [
−→
A |T] or X = [

←−
A |T], rA = sA, and r ¹T s.

Let r ≺X s iff r ¹X s but s 6¹X r.
We now define order dependencies.
Definition 3. (order dependency) Let X and Y be lists of

marked attributes. X 7→ Y denotes an order dependency
(OD), read as X orders Y. We write X ↔ Y, read as X and
Y are order equivalent, iff X orders Y and Y orders X. Let
R be a relation (over a schema that contains the attributes
that appear in X and Y), and let r be a relation instance of
R. Table r satisfies X 7→ Y (r |= X 7→ Y) iff, for all s, t ∈ r,
r ¹X s implies r ¹Y s. The OD X 7→ Y is said to hold for
R (R |= X 7→ Y) iff, for each admissible relational instance
r of R, table r satisfies X 7→ Y. A dependency X 7→ Y is
trivial iff, for all r, r |= X 7→ Y.

Example 1. Let r be a relation instance over R with
attributes A, B, C, D, and E, as shown in Table 1. Note

r |= [
←−
C ,

←−
A ] 7→ [

−→
B ,

←−
D ,

←−
E ], but r 6|= [

←−
C ,

←−
A ] 7→ [

−→
E ,

−→
B ,

←−
D ].

We introduce one additional order relation, order compat-
ibility, as the concept proves invaluable for reasoning about
ODs. The empty order specification, [ ], is order compatible
with any order specification.

Definition 4. (order compatible) order specifications X and
Y are order compatible, denoted as X ∼ Y, iff XY ↔ YX.

2.2 Unidirectional ODs and Axiomatization
One can consider a simplified version of ODs for which we

remove bidirectionality (asc and desc). UODs are a sub-class
of ODs, by definition.

Definition 5. (UOD) An OD is unidirectional when at-
tributes within it are marked all as asc or all as desc.

In [14], we studied UODs and provided a sound and com-
plete axiomatization for them (Figure 1).

Theorem 1. [14] (sound and complete) The set of the
axioms from Figure 1 is sound and complete over UODs.

Theorem 2. (soundness over ODs) The set of the ax-
ioms from Figure 1 is sound over ODs.
Proof

Given Theorem 1, it is straightforward to show that infer-
ence rules (Figure 1) remain sound over ODs. ✷

2.3 Optimization with ODs
We describe how order, and ODs, can be used for query

optimization. A database administrator who knows well
the semantics of the database can declare ODs as integrity
constraints, the same as for FDs. (Note that primary and
unique keys are usually declared; this provides much FD
information to the optimizer. If the schema is normalized,
most FDs will have been thus captured.)

1. Reflexivity.
XY 7→ X

2. Prefix.
X 7→ Y

ZX 7→ ZY

3. Normalization.
WXYXV ↔ WXYV.

4. Transitivity.
X 7→ Y

Y 7→ Z

X 7→ Z

5. Suffix.
X 7→ Y

X ↔ YX

6. Chain.
X ∼ Y1

∀i∈[1,n−1]Yi ∼ Yi+1

Yn ∼ Z

∀i∈[1,n]YiX ∼ YiZ

X ∼ Z

Figure 1: Axioms for UODs.

However, OD optimization techniques are also applicable
even when the database has no declared ODs. ODs can
be implied by queries’ semantics. For example, if there is a
predicate A = B, then an OD [A] ↔ [B] is satisfied within the
scope of the query. ODs also arise through SQL functions
and algebraic expressions. For instance, UODs [d date] 7→
[year(d date)] and [d date] 7→ [d date + 30 days] hold [16].

Even with the ODs declared for the database and the local
ODs deduced within the scope of the query, the optimizer
might miss opportunities. There may be an OD that log-
ically follows from the declared and local ODs that would
allow for a better plan, while none of the declared or local
ODs match directly. For instance, again assume there is a
predicate A = B in the where clause and an index on B. If
we also knew the declared OD [A] 7→ [Z], within the query’s
scope, OD [B] 7→ [Z] is also satisfied by transitivity (Figure
1) of ODs. Therefore, the optimizer has a need to infer ODs
from others. This is the subject of our work.

We motivate order dependencies in analogy to functional
dependencies. ODs are to order-by as FDs are to group-by.
ODs might be used in query optimization [15, 16] just as
FDs have been before [12]. In [15], we showed how ODs can
provide significant performance improvement by eliminating
joins from query plans in a data warehouse environment.
We built a prototype in IBM DB2 V.9.7 and performed
experiments over the TPC-DS benchmark queries. In this
paper, we show by running experiments over the TPC-DS
schema over IBM customer driven queries how ODs between
columns and SQL functions and algebraic expressions over
columns can bring benefits for queries that involve a sort
operator. (The extended version appears in [16].) This is
illustrated by Query 2 and generalized by Reduce Order OD
algorithm presented below.

Query 2. Substring with group-by.
select substr(s_zip, 1, 2) as area,

count(distinct s_zip) as cnt,
sum(ss_net_profit) as net

from store_sales, store
where ss_store_sk = s_store_sk
group by substr(s_zip, 1, 2);

Let there be an index on s zip in table store. It is obvious
that the column s zip orders the derived column substr(s zip,
1, 2), [s zip] 7→ [substr(s zip, 1, 2)]. We call substr(s zip, 1,
2) a generated attribute (Definition 6, below). Given the
optimizer detects this OD, it can choose to do an index scan
using the index on s zip to accomplish the group-by on-the-
fly (called partial group-by); then no partitioning or sort
operator would be needed in the query plan. Note that a
clever SQL programmer could not rewrite Query 2 manually
with group by s zip to avoid this issue, since the substring
changes the partition of the group-by.
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Table 2: An instance of the table date.

date id date year month day quarter trimester

8300 20100830 2010 08 30 3 2
8301 20100931 2010 09 31 3 3
8302 20110105 2011 01 05 1 1
8304 20110401 2011 04 01 2 1

Definition 6. (generated attribute) A generated attribute
is an attribute computed from other columns using algebraic
expressions and SQL functions.

Example 2. (generated attribute) Let A = year(d date)
*100 + month(d month). Thus, A is a generated attribute.

The following example shows that DB2 provides the ca-
pability to specify generated attributes in a table definition
which can also provide implicit ODs.

Example 3. In DB2, the following definition of a ta-
ble is possible: create table date dim . . . date d date, integer
d year generated always as year(d date), . . . , therefore, the
table date dim includes an implicit OD [d date] 7→ [d year].

Assume that we are aware of an OD X 7→ Y. Therefore, a
query with order by Y can be rewritten with order by X.
Note that the original and rewritten queries are not seman-
tically equivalent, unless X ↔ Y. The rewritten query sat-
isfies the order of the original query, but not necessary vice
versa. That is, order equivalency is not required for correct
query rewrites. Similarly, group by Y can be accomplished
on-the-fly with X (a partial group-by) as described in Query
2. Directional order dependencies (X 7→ Y) are sufficient to
provide a wide variety of query rewrites.

The critical role of interesting orders was recognized quite
early on [11, 12]. Because we are interested in ordered
streams between operators in the query plan (to allow for
pipelining, selecting more efficient procedures, and eliminat-
ing intermediate sort and partitioning steps), the optimizer
needs to track which stream orders are possible to gener-
ate by alternative sub-plans. The ones that the optimizer
tracks during query plan construction are called interest-
ing orders. This is useful for processing order-by, group-by,
distinct, partition-by and join. The authors of [12] designed
and implemented in DB2 the algorithm Reduce Order, which
scans the interesting order list backwards to test if any of the
attributes can be eliminated using FD information. (In their
Reduce Order algorithm, a given set of FDs can be used to
infer other FDs with an inference procedure for FDs [1].)
However, this technique relies on FD information; it does
not incorporate ODs. We extend further the techniques of
[12] by also employing ODs to extend significantly the range
of these optimization techniques. We call this extended al-
gorithm Reduce Order OD. (To take full advantage of our
Reduce Order OD algorithm the optimizer needs an infer-
ence procedure for ODs such we provide in Section 5.)

Our changes are for putting ODs into canonical form.5

We extend Reduce Order algorithm by iterating through
the list, additionally checking following.6

5The main body of the Reduce Order algorithm from [12]
are lines 4 and 9−10 in Algorithm 1.
6In [14], we focused on order optimization techniques based
on an axiomatization of ODs. In each iteration through the
list, we had been additionally checking whether any postfix
list with respect to the current attribute—that is, a list of
the attributes to the right of the current—orders the current
attribute. Therefore, the main body was a double-nested
loop. If so, the attribute is dropped from the list. Our

Algorithm 1 Reduce Order OD

Input: ODs M and order list O = [O0, O1, ..., On−1].
Output: The reduced version of O.

1: for i ← 0 to n − 1 do

2: if Oi is generated attribute from G and Oi ↔ G then

3: O = [O0, ..., Oi−1, G, Oi+1, ..., On−1]
4: Rewrite O in terms of each column’s equivalence class head.
5: for i ← n − 1 to 0 do

6: Let B = {O0, ..., Oi−1}
7: if order specification is a single (O = [O0]), generated at-

tribute from G and G 7→ O0 then

8: O = [G]
9: else if B → Oi then

10: Remove Oi from O

11: else if [O0, ..., Oi−1, Oi+1, ..., On−1] 7→ [O0, ..., On−1]
then

12: Remove Oi from O

13: return O

• Whether the currently considered attribute Oi is a
generated attribute from G and Oi ↔ G. If so, the
attribute Oi is replaced by the attribute G in the list,
O = [O0, ..., Oi−1, G, Oi+1, ..., On−1].

• If the order specification is a single, generated attribute
from an attribute G (Call this attribute O0.) and
G 7→ O0, the attribute O0 is replaced by G in the list, O

= [G]. (Detecting monotonicity property for generated
attributes is described in detail in [16].)

• Whether the list without the attribute being currently
considered orders the full list. If so, the attribute is
dropped from the current list.

The algorithm Reduce Order OD is correct because remov-
ing Oi from the list using a FD B → Oi is part of Reduce
Order algorithm described in [12] (Algorithm 1, lines 9–10).
Given an OD X 7→ Y, the clause order by Y, can be rewritten
with order by X, as strengthening the order-by conditions is
allowed as described earlier (Algorithm 1, lines 7–8 and Al-
gorithm 1, lines 11–12). It is also sound to replace order
equivalent attributes (Oi ↔ G, Algorithm 1 lines 2–3).

Time and date (Example 4) are supported in the SQL
standard in a rich manner. The TPC-DS benchmark con-
sists of 99 queries. Of these, 85 involve date operators and
predicates and five involve time operators and predicates.

Example 4. (canonical form) In Table 2 (date) an OD
[year, month, day] 7→ [year, trimester, quarter, month, day]

holds. Based on this OD, Algorithm 1 is able to eliminate
trimester and quarter, simplifying the interesting order list
year, trimester, quarter, month, day to year, month, day. This
is useful for Query 1 as described in Section 1.

Even if the concept of ODs was only applied to date and
time, it could still be of great use for query optimization,
as shown by Query 1. However, ordered domains are not
only limited to date and time. They arise in many other
domains from business semantics, such as sequence numbers,
surrogate keys, measured values such as sales, salaries, stock
prices, and taxes. (See [14] and [16].)

3. A HIERARCHY OF OD CLASSES

Reduce Order OD algorithm here is a single-nested loop.
The algorithm in [14] does not consider generated attributes
based on algebraic expressions and SQL functions. Thus,
Algorithm 1 is more general and efficient.
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One can define classes of ODs. We need to say formally
what it means for one class of dependencies to (strictly)
generalize another.

Definition 7. (Class A generalizes class B.)
Dependency class A generalizes dependency class B iff

there is a semantically preserving mapping of any arbitrary
dependency of class B into a set of dependencies of class A.
Let mapping σ map dependencies from class B into sets of
dependencies in class A. Mapping σ is semantically preserv-
ing iff, for any table r, for any B of class B, t |= B ⇐⇒ t |=∧

σ(B). (Additionally, mapping σ is polynomial iff there is
a polynomial-time algorithm that implements it.) Class A

strictly generalizes class B iff A generalizes B but B does
not generalize A. If A (strictly) generalizes B, we also say
then that B is a (proper) sub-class of A.

In Section 3.1, we characterize the inference problem for
ODs. We then establish a strict hierarchy of classes of ODs,
Sections 3.2–3.4.

3.1 Violations
Table t does not satisfy an OD if there exist a pair of tu-

ples from t that violates (falsifies) the dependency. Since an
ordered pair suffices to represent a violation, one can rewrite
the two tuples with just the values 0 and 1, while preserving
the relative order between columns’s values between the two
tuples, without loss of generality. Thus, to answer a ques-
tion of an inference problem for ODs (Definition 8), it would
suffice to evaluate every pair of tuples composable over 0 and
1. For every such pair, if the pair does not violate any OD in
the prescribed collection, and also does not violate the tar-
get dependency, then the target is logically entailed. This
procedure directly establishes that the inference problem for
ODs is decidable.

Definition 8. (M |= X 7→ Y) The inference problem for
ODs is, given a set of ODs M and an OD X 7→ Y, to decide
whether M |= X 7→ Y.

An OD X 7→ Y can be violated (falsified) in two ways, as
by Theorem 3: by splits and swaps.

Theorem 3. (order dependency) For every instance r of
relation R, X 7→ Y iff X 7→ XY and XY 7→ YX.
Proof

IF: Suppose X 7→ Y. By the Suffix rule X ↔ YX. By Prefix
and Normalization X 7→ XY and XY ↔ YX.
ONLY IF: Assume that X 7→ XY and XY ↔ YX. By Tran-
sitivity, X 7→ YX. Therefore, by Reflexivity and Transitivity,
X 7→ Y. ✷

Definition 9. (split) A split with respect to an OD X 7→
XY is a pair of tuples s and t such that sX = tX but sY 6=
tY . This says that X does not functionally determine Y.

Definition 10. (swap) A swap with respect to an OD XY ↔
YX is a pair of tuples s and t such that s ≺X t, but t ≺Y s;
Thus, the swap falsifies X ∼ Y.

Example 5. (split and swap) There is a split in Table 1

with respect to an OD [
←−
C ,

←−
D ] 7→ [

←−
C ,

←−
D ,

−→
A ,

−→
B ] and a swap

in Table 1 with respect to an OD [
←−
C ,

−→
A ] ∼ [

←−
D ,

−→
B ].

3.2 Pointwise generalizes Lexicographical
The class of pointwise order dependencies was proposed in

the context of database systems in [5]. The type of depen-
dency looks rather different than the lexicographical ODs
we have presented. The pointwise OD X Ã Y holds if the
order over the values of each attribute of X implies order
over the values of each attribute of Y. Both X and Y are

Table 3: Table t.

# A B C

a 0 0 0
b 0 1 1

c 2 2 2
d 3 2 3

e 4 4 4
f 5 5 4

g 6 6 6
h 7 6 6

i 8 8 8
j 8 9 8

# A B C

k 10 10 10
l 10 10 11

m 12 12 13
n 12 13 12

o 14 14 15
p 15 14 14

q 16 17 16
r 17 16 16

Algorithm 2 Translation

Input: Lexicographical OD X 7→ Y, where X = [X0, ..., Xm−1]
and Y = [Y0, ..., Yn−1]
Output: A set of pointwise ODs E semantically equivalent to
lexicographical OD X 7→ Y.

1: E = {A=
0 , ..., A=

m−1 Ã A=
0 , ..., A=

n−1}
2: for i ← 0 to m − 1 do

3: for j ← 0 to n − 1 do

4: if Xi =
−→
A i and Yj =

−→
B j then

5: E = E ∪ {A=
0 , ..., A>

i Ã B=
0 , ..., B

≥
j }

6: else if Xi =
−→
A i and Yj =

←−
B j then

7: E = E ∪ {A=
0 , ..., A>

i Ã B=
0 , ..., B

≤
j }

8: else if Xi =
←−
A i and Yj =

−→
B j then

9: E = E ∪ {A=
0 , ..., A<

i Ã B=
0 , ..., B

≥
j }

10: else if Xi =
←−
A i and Yj =

←−
B j then

11: E = E ∪ {A=
0 , ..., A<

i Ã B=
0 , ..., B

≤
j }

sets. Let us restrict our interest to domains for which val-
ues are comparable. Then, each order condition is a marked
attribute Aop for which op ∈ {<, >,≤,≥, =}. For any table
r, r satisfies X Ã Y iff, for any tuples s, t ∈ r, if, for each
Aop in X , sA op tA, then, for each Bop in Y, sB op tB.

While lexicographical ODs have been studied since , it has
never been established how they are related with pointwise.

Lemma 1. There exists a semantically preserving, poly-
nomial mapping of a lexicographical OD into a set of point-
wise ODs.
Proof

Algorithm 2 provides a polynomial mapping of an arbitrary
lexicographical OD into a set of E of pointwise ODs. Any
split or swap that violates the lexicographical OD X 7→ Y

violates some pointwise OD in E , and vice versa. ✷

The mapping requires a quadratic number of pointwise
ODs in the size of the lexicographical OD.

Lemma 2. There exists a pointwise OD that cannot be
mapped into a set of lexicographical ODs.
Proof

Consider a table t (Table 3). Pointwise OD A>B>
Ã C> is

satisfied by table t. However, it is straightforward to show
that table t as we constructed consists of all possible splits
(Definition 9, rows a–l) and swaps (Definition 10, rows a–f

and m–r) defined for ODs over marked attributes
←−
A ,

−→
A ,

←−
B ,

−→
B ,

←−
C , and

−→
C are falsified by table t. ✷

Theorem 4. The class of pointwise ODs strictly gener-
alizes the class of lexicographical ODs.
Proof

There exists a semantically preserving, polynomial mapping
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for any set of lexicographical ODs to a set of pointwise ODs,
(Lemma 1). Additionally, the class of pointwise ODs are
more expressive than lexicographical ODs (Lemma 2). ✷

In [5], the authors demonstrated that the inference prob-
lem for pointwise ODs in general is co-NP-complete. By
Theorem 4 and that mapping is polynomial, this sets an
upper bound for the inference problem for lexicographical
ODs. However, the problem for lexicographical ODs is just
as hard, as we prove in Section 4.

3.3 ODs generalize UODs
With bidirectionality, ODs are more expressive than UODs.

Given that UODs are a syntactic sub-class of ODs, it then
follows that the the class of ODs strictly generalize UODs.

Theorem 5. The class of ODs strictly generalizes the
class of UODs.
Proof

An arbitrary UOD is an OD by Definition 5, which estab-
lishes direct mapping. By definition ODs are more expres-
sive than UODs. ✷

3.4 UODs generalize FDs
Any OD implies an FD, modulo lists and sets.
Lemma 3. (relationship) For every instance r of relation

R, if an UOD X 7→ Y holds, then the FD X → Y is true.
Proof

Let rows s and t ∈ r. Assume that sX = tX . Hence, s ¹X t
and t ¹X s. By definition of an OD, s ¹Y t and t ¹Y s.
Therefore, sY = tY holds. ✷

Furthermore, there exists a correspondence between FDs
and UODs.

Theorem 6. (correspondence) For relation R, for every
instance r, X → Y iff X 7→ XY, for any list X over the
attributes of X and any list Y over the attributes of Y.
Proof

IF: Assume an UOD X 7→ XY does not hold. This means,
there exist s and t ∈ r, such that s ¹X t but s 6¹XY t by
Definition 5. Therefore, sX = tX and s ≺Y t. Also s ≺Y t
implies that sY 6= tY . Therefore, X → Y is not satisfied.
ONLY IF: By Lemma 3 if X 7→ XY, then X → XY. The
FD XY → Y holds by Armstrong’s axiom of Reflexivity [1].
Hence by Armstrong’s axiom of Transitivity, X → Y. ✷

Lemma 4. The class of UODs is more expressive than the
class of FDs.
Proof

Consider the table t′ with attributes A and B with the values
the same as in Table 3 in rows a), b), c) and d), respectively.
The UOD [A] ∼ [B] is satisfied in table t′. However, in t′,
all possible non-trivial FDs over A and B are falsified. ✷

Theorem 7. The class of UODs strictly generalizes the
class of FDs.
Proof

Theorem 6 provides a mapping of an arbitrary FD X → Y
into an UOD X 7→ XY. Lemma 4 shows that UODs convey
additional semantic. ✷

4. COMPLEXITY
We show that the inference problem for ODs is co-NP-

complete. More specifically, we show that inference problem
for UODs and the inference problem of FDs from ODs are
co-NP-complete. FD inference from UODs, a restricted case,
is polynomially decidable, however.

4.1 OD Inference
We introduce first the notation which permits us to trans-

late instances of 3-SAT into instances of the decision prob-
lem for inference problem for ODs.

Definition 11. Let P = {p1, . . . , pn} be a set of propo-
sitional variables for an arbitrary finite n, and let P =
{¬p1, . . . ,¬pn}. Let F be a formula written over the propo-
sitional variables in P and their negations in conjunctive
normal form with k clauses, each a disjunction of length
three, for an arbitrary finite k. For i ∈ {1, . . . , k}, let
Vi,1 ∨Vi,2 ∨Vi,3 represent clause i such that Vi,1 ∈ (P ∪P),
Vi,2 ∈ (P ∪ P) − {Vi,1}, and Vi,3 ∈ (P ∪ P) − {Vi,1, Vi,2},
without loss of generality. Call any such F a 3-SAT can-
didate. Call any such 3-SAT candidate F for which there
exists a truth assignment over F ’s P which satisfies F a 3-
SAT instance. 3-SAT is the collection of 3-SAT instances.

Lemma 5. [4] 3-SAT is NP-complete.
Lemma 6. Given a set M of UODs and UOD [A] ∼ [B],

deciding whether M |= [A] ∼ [B] is co-NP-complete.
Proof

Candidate and instance. Given a 3-SAT candidate F (Def-
inition 11), we construct an UODI candidate 〈MF , [T] ∼
[F]〉. Let 〈M,X 7→ Y〉 be an arbitrary pair of a finite set
M of UODs and a target UOD X 7→ Y constructed over the
attributes that appear in M. Call any such 〈M,X 7→ Y〉
an UODI candidate. Call any such 〈M,X 7→ Y〉 for which
M |= X 7→ Y an UODI instance. UODI is the collection of
UODI instances. This is the set-theoretic characterization
of the inference decision problem for UODs.

Reduction from 3-SAT. Construction. MF is constructed
as follows. For each pi, i ∈ {1, . . . , n}, from F , we introduce
four attributes to appear in MF : Pi,t, Pi,f, Qi,t, and Qi,f.
(Our intent is that [Pi,t, Pi,f] will mirror the truth value of
pi from F in a given truth assigment, and [Qi,t, Qi,f] will
mirror the truth value of ¬pi in that truth assigment.) For
i ∈ {1, . . . , n}, add the following order dependencies for Pi,t

and Pi,f to MF :
1. [Pi,t] ∼ [T] 2. [Pi,f] ∼ [F]
3. [Pi,t] ∼ [Pi,f] 4. [Pi,t, Pi,f, T] ∼ [Pi,t, Pi,f, F]

Likewise, for i ∈ {1, . . . , n}, symmetrically add the “same”
order dependencies for Qi,t and Qi,f to MF :

5. [Qi,t] ∼ [T] 6. [Qi,f] ∼ [F]
7. [Qi,t] ∼ [Qi,f] 8. [Qi,t, Qi,f, T] ∼ [Qi,t, Qi,f, F]

For i ∈ {1, . . . , n}, add to MF :
9. [Pi,t, Qi,t, T] ∼ [Pi,t, Qi,t, F]

10. [Pi,f, Qi,f, T] ∼ [Pi,f, Qi,f, F]
Next, we encode the clauses. For each clause, i ∈ {1, . . . , k},
from F , we introduce three attributes: Vi,1, Vi,2, and Vi,3.
For i ∈ {1, . . . , k}, j ∈ {1, . . . , 3}, add one OD to MF as
follows. If Vi,j = pl (for a given l ∈ {1, . . . , n}) in F , add
to MF :

11. [Vi,j ] ∼ [Pl,t, Pl,f]
Else, Vi,j = ¬pl (for a given l ∈ {1, . . . , n}) in F ; add to
MF :

12. [Vi,j ] ∼ [Ql,t, Ql,f]
Finally, for each clause i ∈ {1, . . . , k} in F , we introduce

an attribute Ci, and we add to MF :
13. [Ci] 7→ [T] 14. [Ci] 7→ [Vi,1, Vi,2, Vi,3, F]

Polynomial reduction. The translation procedure above of
a 3-SAT candidate into an UODI candidate is clearly poly-
nomial in the size of F .

Witness. We can build a counter-example for a given
UODI candidate to demonstrate that it is not an UODI in-
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stance, in UODI. A pair of tuples is necessary and sufficient
to falsify [T] ∼ [F]. Therefore, MF 6|= [T] ∼ [F] iff we can
construct a two-tuple table t over the attributes appearing
in MF that falsifies [T] ∼ [F], but that does not falsify any
order dependency in MF (thus satisfies MF ). Between the
two tuples in t, T will have different values, F will have differ-
ent values, and the values of T and F will be anti-monotonic.
Let the two values for T and for F in t be 0 and 1, without
loss of generality. We write the tuples in t in a fixed order in
our discussion such that tT,F = [ 0 1

1 0 ], without loss of gener-
ality. Conceptually, a transition from 0 to 1, as in tT = [ 0

1 ],
encodes true; from 1 to 0, as in tF = [ 1

0 ], represents false.
We can always build a two-tuple table t such that tT,F =

[ 0 1
1 0 ] (which is necessary and sufficient to falsify [T] ∼ [F])

which satisfies ODs 1–13 of MF . Let us construct such a t.
Because of OD 1, tPi,t

= [ 0
0 ] or [ 0

1 ]. (If only a single value
appears in t for an attribute, we can assume that value is
0, without loss of generality.) Because of OD 2, tPi,f

= [ 0
0 ]

or [ 1
0 ]. Because of OD 3, tPi,t,Pi,f

6= [ 0 1
1 0 ]. Because of OD 4,

tPi,t,Pi,f
6= [ 0 0

0 0 ]. (Otherwise, OD 4 would be falsified by t,

since tT,F = [ 0 1
1 0 ].) Therefore, tPi,t,Pi,f

= [ 0 1
0 0 ] or [ 0 0

1 0 ].
From ODs 5–8, it symmetrically follows that tQi,t,Qi,f

=

[ 0 1
0 0 ] or [ 0 0

1 0 ].
From ODs 9–10, it further follows that
tPi,t,Pi,f,Qi,t,Qi,f

= [ 0 0 0 1
1 0 0 0 ] or tPi,t,Pi,f,Qi,t,Qi,f

= [ 0 1 0 0
0 0 1 0 ] .

Thus, t |= [Pi,t, Pi,f] 6∼ [Qi,t, Qi,f].
For any Vi,j such that Vi,j = pl for a given l in F , so OD

11 is in MF for i, we know the following:
• if tPl,t,Pl,f

= [ 0 0
1 0 ], then tVi,j

= [ 0
0 ] or [ 0

1 ];

• else tPl,t,Pl,f
= [ 0 1

0 0 ] and tVi,j
= [ 0

0 ] or [ 1
0 ].

For any Vi,j such that Vi,j = ¬pl for a given l in F instead,
so OD 12 is in MF for i, we know the following:

• if tPl,t,Pl,f
= [ 0 0

1 0 ], then tQl,t,Ql,f
= [ 0 1

0 0 ] and tVi,j
= [ 0

0 ]

or [ 1
0 ];

• else tPl,t,Pl,f
= [ 0 1

0 0 ], tQl,t,Ql,f
= [ 0 0

1 0 ] and tVi,j
= [ 0

0 ]

or [ 0
1 ].

To satisfy ODs 13, for i ∈ {1, . . . , k}, it must be that
tCi

= [ 0
1 ] since tT = [ 0

1 ].
In coNP. It is not always possible further to set values

for the Vi,j ’s in such a way that t also satisfies the ODs
14, for i ∈ {1, . . . , n}, j ∈ {1, . . . , 3}, and so satisfies MF

completely. When we can also set values for the Vi,j ’s so
that t also satisfies the ODs 14 too, then t suffices as a
witness that 〈MF , [T] ∼ [F]〉 6∈ UODI.

Correspondence. F ∈ 3-SAT iff 〈MF , [T] ∼ [F]〉 6∈ UODI.
Consider two-tuple tables t that satisfy the ODs 1–10 and
13 from MF , but that falsify [T] ∼ [F]. There is a one-
to-one mapping between truth assigments over the pi, for
i ∈ {1, . . . , n}, in F and settings for Pi,t in such t. For
i ∈ {1, . . . , n}, if pi = true in the truth assignment, set

tPi,t,Pi,f,Qi,t,Qi,f
= [ 0 0 0 1

1 0 0 0 ] ;

else (pi = false), set
tPi,t,Pi,f,Qi,t,Qi,f

= [ 0 1 0 0
0 0 1 0 ] .

IF: There is some truth assigment over p1, . . . , pn that sat-
isfies F .

We construct a two-tuple table t based on this truth as-
signment that satisfies MF for ODs 1–13, and that falsifies
[T] ∼ [F], as above (in the Witness part). For i ∈ {1, . . . , n},
assign values for Pi,t, Pi,f, Qi,t, and Qi,f according to the
truth assignment mapping above.

To satisfy further ODs 14, we must be able to assign values
to the Vi,j ’s that suffice. For i ∈ {1, . . . , n}, j ∈ {1, . . . , 3},

if Vi,j = true, set tVi,j
= [ 0

1 ]. This satisfies the OD 11 or 12
added to MF for i, given how we assigned Pi,t, Pi,f, Qi,t,
and Qi,f based on pi’s truth value. Otherwise (Vi,j = false),
set tVi,j

= [ 0
0 ]. This satisfies either the OD 11 or 12 for i,

j, vacuously.
Since, for each i ∈ {1, . . . , k}, at least one of Vi,1, Vi,2,

and Vi,3 is true in the truth assignment, at least one of
tVi,1

, tVi,2
, or tVi,3

is [ 0
1 ]. Thus, t as constructed satisfies

ODs 1−14, and so all of MF .
ONLY IF: There is no truth assignment that satisfies F .

For any arbitrary truth assignment, we can build a two-
tuple table t that falsifies [T] ∼ [F] based on the truth as-
signment mapping that satisfies ODs 1–13, as done in the
if part. We next try to assign values to the Vi,j ’s in such a
way that t satisfies ODs 14.

Since the truth assignment does not satisfy F , there is
some clause i such that Vi,1, Vi,2, and Vi,3 are each false.
The OD 14 for i will be falsified. For each Vi,j , as either the
OD 11 or 12 is satisfied accordingly, tVi,j

= [ 0
0 ] or [ 1

0 ].

If, for any Vi,j , tVi,j
= [ 1

0 ], OD 14 is falsified since tCi
=

[ 0
1 ]. If instead, for all Vi,j , tVi,j

= [ 0
0 ], OD 14 is still falsified,

since tF = [ 1
0 ].

No two-tuple table t that falsifies [T] ∼ [F] can be con-
structed that satisfies MF . Any table t therefore either
satisfies [T] ∼ [F] or falsifies MF . ✷

Theorem 8. (single OD) X ∼ Y holds iff XY 7→ Y.
Proof

IF: By Reflexivity axiom, OD YX 7→ Y is true. Therefore,
by Transitivity, XY 7→ Y.
ONLY IF: By Suffix axiom, XY ↔ YXY is true. Therefore,
by Normalization and Transitivity, XY ∼ YX. ✷

Theorem 9. Given a set M of UODs and UOD X 7→ Y,
deciding whether M |= X 7→ Y is co-NP-complete.
Proof

By Theorem 8, order compatible X ∼ Y is equivalent to a
single UOD. Therefore, by Lemma 6, deciding whether M
|= X 7→ Y is co-NP-hard.

Witness. Any counter example for a given OD X 7→ Yis
a pair of tuples (that can be checked in polynomial time).
This is necessary and sufficient to falsify X 7→ Y, by the
definitions of split and swap (Definitions 9 and 10).

Thus, deciding M |= X 7→ Y is co-NP-complete. ✷

4.2 FD inference over ODs
Corollary 10. Given a set M of ODs and OD X 7→ Y,

deciding whether M |= X 7→ Y is co-NP-complete.
Proof

Follows directly from Theorem 9 as a class of UODs is a
proper sub-class of ODs. (Any witness that M 6|= X 7→ Y is
a pair of tuples by definitions of split and swap. ✷

Let the length of the representation of M, the string of
concatenated left-hand and right-hand sides of the ODs, be
denoted by |M|. FD inference for UODs is polynomial.

Theorem 11. (FDs over UODs) Let M be a set of UODs.
Testing whether M |= X 7→ XY (M |= X → Y) can be ac-
complished in O(|M|) time. (This includes finding the clo-
sure for FDs, X+.)
Proof

Assume M′ = {X 7→ XY, XY ↔ YX | X 7→ Y ∈ M}. In
[14], we have shown that F = {X → Y | X 7→ Y ∈ M′} is a
set of FDs which enables one to compute the closure for FDs
X+ over the set of UODs M. Inference problem of a FD
X → Y over a set of prescribed FDs has already been shown
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Table 4: Table template.

# X1 ... Xk attributes(M) − {X1,...,Xk}

s b1 ... bk pk+1 ... pn

t b1 ... bk qk+1 ... qn

(a) Template r0.

# X1 ... Xj−1 Xj attributes(M) − {X1,...,Xj}

s b1 ... bj−1 bj pj+1 ... pn

t b1 ... bj−1 tj qj+1 ... qn

(b) Template rj .

to be linear in [1]. This implies that testing M |= X → Y
can be also accomplished in O(|M|). The same applies to
M |= X 7→ XY by Theorem 6. ✷

This is not the same case, however, for ODs. Both the
inference problems for FDs (embedded within the ODs),
X 7→ XY, and for order compatibility, X ∼ Y, are hard.

We call an attribute a constant if, for any table that sat-
isfies the set of ODs M, it can have only a single value
occurring in the table.

Definition 12. (constant) A marked attribute A is called
a constant with respect to M iff M |= [ ] 7→ A.

Lemma 7. [17] Given a set M of ODs and a FD {} →
A, deciding whether M |= {} → A is co-NP-complete.

Theorem 12. Given a set M of ODs and an FD X→ Y,
deciding whether M |= X→ Y is co-NP-complete.
Proof

By Theorem 6 and Lemma 7 deciding whether M |= X→
Y is co-NP-complete as we can always construct a witness
(that can be checked in polynomial time) that M 6|= X→
Y, by the definition of split (Definition 9). ✷

5. INFERENCE PROCEDURES
A goal in any dependency theory is to develop good algo-

rithms for the inference problem. Such an inference proce-
dure can be used in query optimization. First, we present an
elimination procedure for the inference problem for ODs.7

We next introduce an inference procedure for the inference
problem over a restricted domain for UODs. The additional
order property to be guaranteed over the schema is intuitive,
holds for all real-world business domains that we have en-
countered, and can easily be verified whether it holds for a
given table. We develop an polynomial inference procedure
for UODs which is sound and complete when applied over
a database that satisfies the property. Lastly, we present a
case study for optimization by ODs in Section 5.3.

5.1 Elimination Procedure
We establish a sound and complete elimination procedure

for ODs for the inference problem, for which the complexity
is exponential. This complexity is with respect to number

7In preliminary work [13], we focused on fixing the table
templates with a chase procedure, whereas here, our tech-
nique is based on eliminating with an elimination procedure
the table templates which falsify the set of ODs M. The
complexity of this elimination procedure is O(3n), where n
is the number of unique attributes in the set of prescribed
ODs M over relation. The complexity of chase procedure is
O(3l), where l denotes the number of attributes in relation
R. In most real-world cases, l ≫ n. Therefore, this revised
elimination procedure is simpler and more efficient and can
be used effectively in practice.

of unique attributes in the set of prescribed ODs over rela-
tion, not with respect to data. (Therefore, it can be used in
practice as usually this is small.) We have implemented this
elimination procedure in IBM DB2.

We define a table template over variables with respect to
a given OD. We use these table templates to enumerate
through all the possible cases where the OD can be falsi-
fied by splits and swaps.

Definition 13. (table template) Let M be a set of ODs
with n unique attributes over relation R and m be an OD
X 7→ Y, where X is over attributes X1, ..., Xk. A table tem-
plate for OD m, denoted as rm, is a table consisting of two
tuples s and t, such that it is either r0 (Table 4a) or rj (Ta-
ble 4b), for j in [1, ..., k]. In r0 and rj , symbols pi and qi

represent one of the following three cases, where the ordering
of variables bi and ti is defined as bi < ti:

1. pi = bi and qi = bi;
2. pi = bi and qi = ti; and
3. pi = ti and qi = bi.

Example 6 presents how to apply a mapping (Definition
14) to a table template.

Definition 14. (mapping rm to ϕ(rm)) Let rm be a table
template from Definition 13. A mapping of rm to ϕ(rm)
is any instance with values that satisfy the ordering from
Definition 13.

Example 6. Consider a table template tA,B,C = [ b1 b2 t3
b1 t2 b3 ]

and a table ϕ (tA,B,C) = [ 0 0 1
0 1 0 ] as a possible mapping.

Lemma 8. Let rm be a table template (Definition 13) and
ϕ(rm) be a mapping from rm (Definition 14). Then rm |=
X 7→ Y iff ϕ(rm) |= X 7→ Y.

Proof

By Definition 14, ordering of values in ϕ(rm) corresponds to
the ordering of variables in rm, respectively. ✷

Definition 15. (tableaux Tm) Let m be an OD X 7→ Y.
We define Tm to be the set of all table templates rm, as we
defined in Definition 13.

Note that Tm is a set of table templates, each consisting
of two rows. The elimination of Tm is defined as follows.

Definition 16. (elimination of tableaux Tm) The elimina-
tion of Tm over a set of order dependencies M denoted
as ELIMTm,M is defined by ELIMTm,M = {rm | rm ∈
Tm ∧ rm |= M}. Furthermore, ELIMTm,M satisfies X 7→
Y, denoted by ELIMTm,M |= X 7→ Y, iff, for all rm ∈
ELIMTm,M, rm |= X 7→ Y. ELIMTm,M satisfies the set of
ODs M′, which is denoted as ELIMTm,M |= M′, iff, for all
X 7→ Y ∈ M′, ELIMTm,M |= X 7→ Y.

Theorem 13. Let M be a set of ODs over R and m be an
OD X 7→ Y. Then M |= X 7→ Y iff ELIMTm,M |= X 7→ Y.
Proof

IF: Assume ELIMTm,M 6|= X 7→ Y. By Definition 16, there
exists rm ∈ ELIMTm,M such that rm 6|= X 7→ Y. By Defini-
tion 16, rm |= M. Hence, there is a mapping ϕ to generate
a relation instance ϕ(rm). By Lemma 8, ϕ(rm) |= M, but
in addition ϕ(rm) 6|= X 7→ Y. We have found a relation in-
stance which satisfies M but does not satisfy X 7→ Y, which
implies that M 6|= X 7→ Y.
ONLY IF: Assume ELIMTm,M |= X 7→ Y. Let s and t be
any two tuples in any relation r such that s ¹X t and that
satisfies the set of ODs M. We would like to present that
s ¹Y t. Let rm ∈ Tm. Let rm = {p, q} be the template
relation such that ϕ(p) = s and ϕ(q) = t. It is possible
always to find such a pair of tuples rm since Tm considers
all possibilities of two tuples which satisfy condition s ¹X t.
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Therefore, we have ϕ(rm) = {s, t} and ϕ(rm) |= M. By
Lemma 8, it follows that rm |= M. It follows by Defi-
nition 16 that rm ∈ ELIMTm,M. Since we assumed that
ELIMTm,M |= X 7→ Y, we have rm |= X 7→ Y. This implies
that ϕ(rm) |= X 7→ Y by Lemma 8. Hence, s ¹Y t. ✷

Theorem 14. (sound and complete) The elimination pro-
cedure for ODs is sound and complete.
Proof

The proof follows directly from Theorem 13. ✷

Example 7. Let M = {[A] 7→ [B], [B] 7→ [C]}. Let us test
with elimination procedure if M |= [A] 7→ [BC]. The map-
ping instances (Definition 14) of the table templates (Defini-
tion 13) after elimination which satisfy M (Definition 16),
denoted as riA,B,C= ϕ(riA,B,C) for i = 1..4 are:

1) [ 0 0 0
0 0 0 ] 2) [ 0 0 0

1 0 0 ] 3) [ 0 0 0
1 1 0 ] 4) [ 0 0 0

1 1 1 ]
All of these mapping instances satisfy an OD [A] 7→ [BC].
Therefore, by Theorem 13, M |= [A] 7→ [BC].

Theorem 15. (complexity of elimination) The complex-
ity of elimination procedure is O(3n) (for n being the number
of unique attributes in the set of ODs M over relation).
Proof

By Definition 13, there are 3n−k templates for r0 and 3n−j

templates for each rj . By geometric progression: O(3n). ✷

5.2 InferenceProcedure forTransitiveDomain
Our axiomatization in Section 2 yields us insight into how

to make an inference procedure over a restricted domain of
UODs. We find a property by which we can restrict domains
to make the polynomial inference procedure, but still cover
real-world domains. We observe that a relation satisfying
the OD X ↔ Y satisfies the OD X ∼ Y, but not necessarily
vice versa, as in the following example.

Example 8. The order dependency [month] ∼ [quarter] is
satisfied in table date dim. On the other hand, order depen-
dency [month] ↔ [quarter] is falsified by table date dim.

It is surprising initially that the order-compatibility rela-
tion ‘∼’ (Definition 4) is not transitive as shown in Example
9. (By Transitivity axiom the order relation (‘ 7→’) is.)

Example 9. (not transitive) Let M = {[A] ∼ [C], [C] ∼
[B]}. The Table 1 satisfies the set of UODs M. However, it
falsifies [A] ∼ [B]. This demonstrates the lack transitivity.

If we restrict our domains to have a property that guar-
antees a limited form of transitivity over order-compatibility
(Definition 17), then we can make an efficient inference pro-
cedure for UODs. (We have implemented this inference pro-
cedure in IBM DB2.) The property we prescribe is transi-
tivity of order compatibility over single attributes.

Definition 17. (transitive domain) We call a domain (re-
lation schema) a transitive domain iff it can be guaranteed
that, for each relation R in the schema, for any three at-
tributes A, B, and C where B is not a constant, if [A] ∼ [B]
and [B] ∼ [C], then [A] ∼ [C].

Example 10. (transitivity) ODs [quarter] ∼ [month] and
[month] ∼ [trimester] are satisfied Also, so is [quarter] ∼
[trimester] Hence, the transitivity property holds.

All of the real-world business domains we have explored
including the TPC-DS schema, IBM clients schemas, and
the examples which are used in this paper are transitive.
One can argue that breaking the underlying property in data
can be only done by contrivance. Domains can be tested if
they are transitive in a straightforward way, by enumeration.

We first present the key elements of the algorithm for in-
ference problem for transitive domains of UODs and then

we establish it is sound and complete in Theorem 16. The
algorithm OrderDependency (Algorithm 3) implements an
inference procedure for transitive domains of UODs. It in-
vokes algorithms FunctionalDependency and OrderCompat-
ible (Algorithm 4). Algorithm FunctionalDependency per-
forms a test whether M |= X 7→ XY which by Theorem 6
implies an FD, M |= X → Y. Algorithm OrderCompatible
tests whether M |= XY ↔ YX (M |= X ∼ Y). These parts
combine to complete the proof of soundness and complete-
ness of our inference procedure since by Theorem 3 X 7→ Y

holds iff X 7→ XY and XY ↔ YX.

Algorithm 3 OrderDependecy

Input: a set M of n unidirectional order dependencies on at-
tributes {A0, ..., Am−1} and an UOD X 7→ Y

Output: “true” if M |= X 7→ Y; “false” otherwise
Global data structures:

a. Attributes are integers between 0 and m-1.
b. UODs in M are integers between 0 and n-1.
c. LS[0:n−1], RS[0:n−1] are arrays of lists, containing the at-

tributes in the left and right side of each UOD.
d. DEPEND[0:m−1] is an array of attributes found to be func-

tionally dependent on given set of attributes.
e. OC[0:n−1; 0:1] is a two dimensional array of order compat-

ible dependencies with single attribute on the left and right
side.

f. LX and LY are lists of attributes represented by integers,
corresponding to X and Y respectively.

1: DEPEND ← FunctionalDependency(M, X )
2: if exists i in LY such that DEPEND[i] = “false” then

3: return “false”
4: else

5: return OrderCompatible

Theorem 11 states that testing whether X 7→ XY (X →
Y), can be achieved in linear time. Notice that we assume
there is a linear algorithm FunctionalDependency which finds
a closure of a given set of attributes X , as in [1]. Testing
if X ∼ Y is more involved and complex. We observe that
M 6|= X ∼ Y iff we are able to construct a table t that sat-
isfies set of UODs M and consists of two rows which have
a swap (Definition 10) with respect to X ∼ Y. In the table
t that we construct, we shall use integer values for the cells,
without lost of generality. We test if X ∼ Y in the algorithm
OrderCompatible. For each pair of attributes A in X and B
in Y, we test in an algorithm SingleOrderCompatible (Algo-
rithm 5) whether we can construct a table t described above
with a swap with respect to [A] ∼ [B] with attributes pre-
fixing A and B, in lists X and Y, respectively, being constants
(Definition 12) within table t, such that table t satisfies the
set of ODs M′. (Let P be the concatenated attributes pre-
fixing A and B. We consider M′ = M∪{[ ] 7→ P}.) [ ] 7→ P

is a way of forcing each attribute C in list P to be a constant.
Once we find a swap, we halt in Algorithm 4.

Algorithm 4 OrderCompatible

Output: result stating if X ∼ Y

1: for i ← 0 to |X| − 1 do

2: for j ← 0 to |Y| − 1 do

3: if !SingleOrderCompatible(i, j) then

4: return “false”
5: return “true”

Based on Definition 17, order compatibility for single at-
tributes (over the attributes which are non-constant) is tran-
sitive for transitive domains. Therefore, we test if there is a
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path between A and B in a graph consisting of the first non-
constant attributes from the left-hand side and a right-hand
side of each UOD from M′. We assume we find this graph
in Algorithm FindOrderCompatibleGraph. Finding a path
by the transitivity property over order-compatibility means
that [A] ∼ [B] holds. We assume Algorithm ExistPath which
tests if there exists a path between two nodes. The problem
of testing if there exists a path is simple. One can track the
visited edges during the process of traversing the nodes. We
can guarantee that each edge is visited only once. Hence,
we can check the existence of the path in linear time. Note
there is an edge per OD in M′, so the number of edges (plus
number of nodes) is O(|M|).

Algorithm 5 SingleOrderCompatible

Input: attributes indexes i and j

Output: resulting stating if LX[i] ∼ LY[j]

1: if LX[i] = LY[j] then

2: return “true”
3: else

4: M′ ← M ∪ {[ ] 7→ P}, list P is a concatenation of lists
LX.subList(0, i − 1) and LY.subList(0, j − 1)

5: DEPEND ← FunctionalDependency([ ], M′)
6: if DEPEND[LX[i]] ‖ DEPEND[LY[j]] then

7: return “true”
8: else

9: OC ← FindOrderCompatibleGraph
10: return ExistPath(LX[i], LY[j], OC)

Theorem 16. [17] Algorithm 3 for inference problem M |=
X 7→ Y for transitive domains of UODs is sound and com-
plete with complexity O(|X||Y||M|).

5.3 Case Study
Most queries in a data warehouse are over fact tables.

In TPC-DS, surrogate keys (sequential numbers) are used
in the dimension tables, and so for the foreign keys in its
fact tables. However, a query plan often uses surrogate date
values in its predicates (for example, a) d date ≥ cast(’1999-
02-22’ as date) and d date ≤ (cast(’1999-02-22’ as date) + 30
days) or b) d year = 2000). This requires a potentially ex-
pensive join between the fact and the date dimension table.

In [15], we demonstrated that dramatic gains in query
performance can be had in queries by recognizing ordering
correspondences between attributes. The surrogate (date)
keys in the date dim dimension table order natural date val-
ues. So there is a known order dependency between them.
Thus, as [d date sk] 7→ [d date] (and [d date sk] 7→ [d year]),
two probes can be made into the dimension table to calcu-
late the range of the surrogate keys in the fact table, find-
ing the min date sk and max date sk surrogate keys. These
minimum and maximum surrogate values then replace the
predicate in the where clause with the natural date values,
so no join with the date dimension table is needed.

However, in [15], we considered queries only with a binary
relationship predicate in the query rewrite phase during op-
timization, where the relational operator in the predicate is
one of {=, <,≤, >,≥}. Many more than 13 of the 99 queries
in TPC-DS for which we benefitted with an average perfor-
mance gain of 48% involve date predicates. We know that
we can extend our rewrite rules to cover many more of the
queries seen in the TPC-DS; for instance, to cover the case
of the queries with an in predicate. In Query 3, the values
of d year in the predicate are consecutive.

Query 3. With “in” predicate (TPC-DS Query 29).
select ...
from catalog_sales, item ..., date_dim
where ... cs_sold_date_sk = d_date_sk and

d_year
in (1998,1998+1, 1998+2) ...;

Hence, as the values are consecutive, we can select two
probes and eliminate a join, since [d date sk] 7→ [d year].
The rewritten query is presented below (Query 4).

Query 4. Rewrite of Query 3 with consecutive values.
select ...,

(select min(d_date_sk) as min_date_sk
from date_dim
where d_year = 1998)
as A,

(select max(d_date_sk) as max_date_sk
from date_dim
where d_year = (1998+2))
as Z

from catalog_sales, ..., date_dim
where cs_sold_date_sk between

A.min_date_sk and Z.max_date_sk ...;

Consider a modification of Query 3 with values of the
d year being not consecutive; e.g., d year in (1998, 1998+2).
With an OD [d date sk] 7→ [d year], the predicate can now
be applied directly on the d date sk attribute by selecting
two fast probes too. Deriving an additional predicate on
the d date sk is useful even though it does not eliminate
join, as it enables an efficient processing technique using
partitioning to access qualifying tuples. For range parti-
tioning, the predicate derivation results in partition elimi-
nation and reduction of processing overhead. (In TPC-DS,
tables catalog sales and d date are partitioned based on the
cs sold date sk and d date sk primary keys, respectively.)

Query 5. Rewrite of Query 3 with not consecutive values.
select ...,
from catalog_sales, ..., date_dim
where ... cs_sold_date_sk = d_date_sk and

cs_sold_date_sk between
A.min_date_sk and Z.max_date_sk and

d_year
in (1998, 1998+2) ...;

Above, we had assumed that an OD [d date sk] 7→ [d year]
was declared implicitly as an integrity constraint. Assume
instead we have the following ODs prescribed:

M = {[d date sk] 7→ [d year, d month, d day],
[d year, d month, d day] 7→ [d date]}.

From this set of ODs, [d date sk] 7→ [d date] and [d date sk] 7→
[d year] can be concluded. Hence, the optimizer needs the
means to discover ODs that logically follow from known ODs
to benefit most from our techniques. The complexity of our
elimination procedure is exponential. However, this com-
plexity is with respect to the number of unique attributes in
the set of prescribed ODs over relation, not with respect to
data (or size of the schema). We implemented the inference
procedures presented above in DB2. Our experiments have
shown that the cost of running the elimination procedure is
not expensive for real world business domains. Our elimi-
nation procedure is able to infer ODs for relations with the
number of unique attributes in prescribed ODs from 5 to
12 attributes in marginal time. For instance, for the time
dimension from the TPC-DS schema, the number of unique
attributes in the prescribed ODs is 6 out of 10 attributes in
the table and, for the date dimension from TPC-DS schema,
it is 10 out of 28 attributes in the table. Our experiments
have shown that the cost of running inference procedure for
transitive domains is marginal, even for large domains.
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Figure 2: Performance results. (See Footnote 8.)

With Reduce Order OD, we can optimize queries such
as Query 1 (or Query 2 with substr SQL function). Our
inference procedures infer from the declared ODs the OD

[year, month, day] 7→ [year, trimester, quarter, month, day].
Then, the order-by clause can be reduced by removing quar-
ter and trimester. When sorting is required, the reduced
version of an interesting order provides a smaller number of
sorting columns, which reduces cost. It may also happen
that, due to the reduced version, an index can be matched,
eliminating the need for a sort operator altogether. Essen-
tially, ODs can further exploit interesting orders which are
generated during the order scan. Ordering of the data is
useful for processing order-by, group-by, distinct and join.
Hence, ODs can be used to eliminate or simplify potentially
expensive operators (such as sorts) in the query plan.

The usefulness of ODs can be extended further by the
handling of nearly-sorted streams. Say that we need an out-
put stream sorted on A, B and that the input is sorted on
A. If it is known all partitions of A are suitably small, each
partition of A could be sorted on B in the main memory
“on-the-fly”. No external sort would need to be applied to
achieve A, B. Current optimizers such as IBM DB2’s recog-
nize near-sortedness and apply this optimization. ODs, of
course, can extend the usefulness of near-sortedness. Con-
sider the input is known to be sorted on C and we know
[C] 7→ [A]. Then the output is near sorted for A, B if the
partitions of A are known to be small. Each partition of A
then can be sorted on B once buffered in main memory.

As an example, consider Query 6. The inference algo-
rithm is triggered due to the order-by statement. It detects
that [d date] 7→ [d year]. Therefore, the optimizer can then
take advantage of the index on d date, simplifying the sort
operator in the plan, to accomplish the order-by. Given
the optimizer infers this OD, it can choose to do an index
scan using the index on d date to speed up evaluation of the
group-by on-the-fly too.

Query 6. TPC-DS Query 3.
select d_year, i_brand_id brand_id, i_brand,

sum(ss_ext_sales_price) sum_agg
from date_dim, store_sales, item
where d_date_sk = ss_sold_date_sk ...
group by d_year, i_brand, i_brand_id
order by d_year, sum_agg desc, brand_id;

Similarly, ODs and near-sortedness can be used when us-
ing SQL functions such as year(). In Query 7 the mono-
tonicity detection algorithm is triggered due to the order-
by and group-by statements. It detects that [d date] 7→
[year(d date)]. Therefore, the optimizer can then take ad-
vantage of the index on d date, speeding up the sort operator

in the plan, to accomplish the order-by and group-by.

Query 7. Query with year(d date).
select year(d_date), sm_type,

ws_web_name, ...
from web_sales, warehouse, ship_mode,

web_site, date_dim
where ws_ship_date_sk = d_date_sk and ...
group by year(d_date), sm_type, ws_web_name
order by year(d_date), sm_type, ws_web_name;

Furthermore, the monotonicity property can be used to
optimize queries with case expressions. There is an OD in
the scope of Query 8 between d date and the output of the
case statement. When this relationship is discovered, the in-
dex on customer id can be used, resulting in a more efficient
plan. Based on our experience with IBM customers, we ob-
serve that these kind of subtleties are common in customer
queries created by business-intelligence reporting tools such
as Cognos which auto-generates the SQL queries.

Query 8. Query with case expression.
select ..., sum(quantity),

(case
when customer_id between 1 and 10

then 1
...

when customer_id between 91 and 100
then 10

...
end)

from sales S, ... where ...
group by (case customer_id between...)
order by (case customer_id between ...);

Our techniques, as in queries above eliminate or simplify
expensive operations such as sort (which is super-linear)
which begins to dominate the execution costs as the database
size increases. Our experiments over TPC-DS schema have
shown that the performance improvement by eliminating or
simplifying the sort operators appearing in plans is, on av-
erage, 30% over the elapsed time [16]. Our prototype imple-
mentation in IBM DB2 V10 covers ODs between columns
and functions over columns (SQL functions and algebraic
expressions). The optimizer automatically infers the associ-
ated OD information and uses it to produce improved query
plans. We evaluated these techniques on a ten-GB TPC-
DS benchmark database and nine IBM customer inspired
queries.8 The experiments were performed on a performance
testing machine with the operating system AIX 6.1 TL6 SP5
with four processors (Intel(R) Xeon(R) CPU) and 1GB of
memory. For Query 7 (Query A12 from [16]) the reduction
is from 6.35 to 3.34 seconds (47%) and for Query 2 (Query
A6 from [16]) from 13.92 seconds to 10.88 seconds (22%).

6. RELATEDWORK
Sorting is at the heart of many database operations: sort-

merge join, index generation, duplicate elimination, ordering
the output through the SQL order-by operator, etc. The im-
portance of sorted sets for query optimization and processing
had been recognized very early on. Right from the start, the
query optimizer of System R [11] paid particular attention
to interesting orders by keeping track of all such ordered
sets throughout the process of query optimization. In [12],

8 The performance results are conducted over a suit of nine
IBM customers driven queries with generated attributes,
presented in [16]. We label them with a letter “A” as prefix
to distinguish the numbering of queries in this paper. Two
queries from [16] are presented in this paper. (Queries 2 and
7, correspond to Queries A6 and A12, respectively.)
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the authors consider how to use FD information to extend
matching for interesting orders. A practical application of
dependencies for improved index design was presented in
[3]. In [7], the authors explored the use of sorted sets for
executing nested queries. The importance of sorted sets has
prompted researchers to look beyond the sets that have been
explicitly generated. Thus, [8] showed how to use (but with-
out performing an experimental study) sorted sets created
as generated columns in predicates. We showed in [15] how
to use relationships between sorted attributes discovered by
reasoning over the physical schema.

In [5], a sound and complete set of inference rules for
pointwise ODs is presented. The authors prove the infer-
ence problem for pointwise order dependencies is co-NP-
complete. However, the problem for lexicographical ODs is
just as hard (lower bound), as we prove in Section 4. Depen-
dencies defined over lexicographically ordered domains were
introduced in [9] under the name lexicographically ordered
functional dependencies. (We called these UODs.) The
same author in [10] developed a theory behind both lexi-
cographical as well as pointwise dependencies. (The latter
were simpler than the dependencies defined in [5].) Only a
chase procedure was defined for the lexicographical depen-
dencies, for which the order dependencies are defined as here
(UODs). Interestingly, the axiomatization and the complex-
ity of the inference problem for ODs had not been studied.
In [14], we presented a sound and complete axiomatization
for UODs. UODs do not consider bidirectionality (a mix of
asc and desc) as do ODs, which we introduced in [13].

In [9], a restricted domain of UODs is presented. The au-
thors call these temporal functional dependencies (TFDs). A
TFD X → Y means that ∀ A ∈ Y. X 7→ [A]. The domain is
too restricted, unfortunately, to be of use to us. It effectively
restricts ODs to the form with just a single attribute on the
right-hand side (e.g., X 7→ [A]). Furthermore, no inference
procedure for TFDs was defined (just an axiomatization).
We took the same tactic, however, to find a property (tran-
sitive domains) by which we can restrict domains.

An interesting study of establishing whether a given stream
is sufficiently nearly-sorted was described in [2]. A novel
integrity constraint for ordered data, sequential dependen-
cies (SDs), was introduced in [6]. For example, an SD se-
quence idÃ[5,6] time means that time gaps between consec-
utive sequence numbers are between 5 and 6. The authors
present a framework for discovering which data obey SDs.

7. CONCLUSIONS
Ordering permeates databases, to such an extent that we

take it for granted. We expect it to be exploited wisely in
query plans. It is requested by many queries but is rela-
tively expensive to perform. Our empirical studies show the
usefulness of ODs for query optimization. To use ODs effec-
tively in optimization requires one to reason over them. We
have established the complexity of this inference problem,
and presented practical inference procedures.

There remain some other problems to address. Lack of
transitivity property over the order-compatibility is at the
heart of the complexity (co-NP-completeness). That is why
the Chain axiom is necessary for a complete axiomatization
of UODs. We would like to investigate if there is a poly-
nomial algorithm for reasoning over the first five axioms,
excluding Chain (Figure 1). Such an inference procedure
would be an alternative approach to the transitive domain.
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