
Query-Driven Approach to Entity Resolution

Hotham Altwaijry Dmitri V. Kalashnikov Sharad Mehrotra

Department of Computer Science
University of California, Irvine

ABSTRACT
This paper explores “on-the-fly” data cleaning in the context
of a user query. A novel Query-Driven Approach (QDA) is
developed that performs a minimal number of cleaning steps
that are only necessary to answer a given selection query
correctly. The comprehensive empirical evaluation of the
proposed approach demonstrates its significant advantage
in terms of efficiency over traditional techniques for query-
driven applications.

1. INTRODUCTION
The significance of data quality research is motivated by

the observation that the effectiveness of data-driven tech-
nologies such as decision support tools, data exploration,
analysis, and scientific discovery tools is closely tied to the
quality of data to which such techniques are applied. It is
well recognized that the outcome of the analysis is only as
good as the data on which the analysis is performed. That is
why today organizations spend a substantial percentage of
their budgets on cleaning tasks such as removing duplicates,
correcting errors, and filling missing values, to improve data
quality prior to pushing data through the analysis pipeline.

Given the critical importance of the problem, many ef-
forts, in both industry and academia, have explored system-
atic approaches to addressing the cleaning challenges [4,11].
In this paper we focus primarily on the entity resolution
challenge that arises when objects in the real world are re-
ferred to using references or descriptions that are not always
unique identifiers of the objects, leading to ambiguity.

Efficiency, along with quality, has always been key tradi-
tional challenges of entity resolution. Entity resolution can
be computationally expensive, for instance, it may require
O(n2) calls to resolve functions (explained in Sec. 4) per
each cleaning block of size n. A resolve function, in general,
may require complex graph analysis, ontology matching,
database lookup, consulting external data sources, and/or
seeking human input through crowdsourcing [12,21] to com-
pute similarity between two input records and thus can be
very expensive.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

Traditionally, data cleaning is performed as a preprocess-
ing step when creating a data warehouse prior to making
it available to analysis – an approach that works well under
standard settings. Cleaning the entire data warehouse, how-
ever, can require a considerable amount of time and signifi-
cant computing resources. Hence, such an approach is often
suboptimal for many modern query-driven applications that
need to analyze only small portions of the entire dataset and
produce answers “on-the-fly” and in real-time [7, 18].

A query-driven approach is motivated by several key per-
spectives. The primary motivation of this paper is queries
on online data. For example, queries on Google Scholar,
Google Fusion Tables, Yelp, Zagat, Amazon, eBay, exten-
sions to Web People Search, etc. The idea is that of meta-
search technology: a middleware system is able to answer
SQL-like queries, issued by the user, on top of one or mul-
tiple online sources, while de-duplicating results in the pro-
cess. Similar types of entity resolution systems have already
been considered, e.g. in [26], where the system will know
“what to clean” only at query time, thus it cannot clean
data beforehand. The difference between our approach and
the approach in [26] is that our solution considers seman-
tics of the given query and thus can process certain types
of queries much more efficiently. A query-driven approach
is also useful when a small organization is in possession of a
very large dataset, but typically needs to analyze only small
portions of it to answer some analytical queries quickly. In
this case, it would be counterproductive for this organization
to spend their limited computational resources on cleaning
all the data, especially given that most of it is going to
be unnecessary. Another scenario where a query-driven ap-
proach could be useful is in the context of streaming (web)
data, e.g., data from social media such as tweets from Twit-
ter. A storage of such fast data and then cleaning it all as
in a warehouse setting might not be feasible or practical –
as limited computing resources might be dedicated to more
important tasks. Handling of streaming data, however, has
several nuances which are not considered in this paper.

To address these new cleaning challenges, in this paper we
propose a Query-Driven Approach (QDA) to data cleaning.
Currently, the main traditional approach for improving the
efficiency of ER is that of blocking. QDA is an entirely new
complementary paradigm for improving the efficiency: it is
different from blocking and, as we will show, is typically
much more effective in conjunction with blocking. However,
unlike blocking, QDA is not generic as it is meant primarily
for query-driven tasks. QDA exploits the specificity and
semantics of the given SQL selection query to significantly

1846

reduce the cleaning overhead by resolving only those records
that may influence the query’s answer. It computes answers
that are equivalent to those obtained by first using a regular
cleaning algorithm, e.g., [5,11], and then querying on top of
the cleaned data. However, we will see that in many cases
QDA can compute these answers much more efficiently.

A key concept driving the QDA approach is that of vesti-
giality. A cleaning step (i.e., call to the resolve function for
a pair of records) is called vestigial (redundant) if QDA can
guarantee that it can still compute a correct final answer
without knowing the outcome of this resolve. We formal-
ize the concept of vestigiality in the context of a large class
of SQL selection queries and develop techniques to identify
vestigial cleaning steps. Technical challenges arise since ves-
tigiality, as we will show, depends on several factors, includ-
ing the specifics of the cleaning function (e.g., the merge
function used if two objects are indeed duplicate entities),
the predicate associated with the query, and the query an-
swer semantics of what the user expects as the result of the
query. We show that determining vestigiality is NP-hard
and we propose an effective approximate solution to test for
vestigiality that performs very well in practice.

The main contributions of this paper are:

• Introduction of the query-driven ER problem that system-
atically exploits semantics of query predicates to reduce
overhead of data cleaning. We believe ours is the first pa-
per to explore such a concept in a systematic manner in
the context of SQL selection queries (Sec. 3 and 4).
• Introduction of the concept of vestigiality of certain com-

putations in the context of a solution for SQL selection
queries (Sec. 5).
• Development of query-driven techniques that leverage the

concept of vestigiality to reduce computation (Sec. 6).
• Extensive empirical evaluation of QDA. (Sec. 7).

The rest of this paper is organized as follows. Section 2
covers the related work. A motivating example is presented
in Section 3. The problem definition is provided in Section 4.
Section 5 explains the concept of vestigiality. Our solution
is described in Section 6 and tested in Section 7. Finally, we
conclude the paper in Section 8.

2. RELATED WORK
Entity resolution is a well-known problem and it has re-

ceived significant attention in the literature over the past
few decades. A thorough overview of the existing work in
this area can be found in surveys [13]. We classify the ER
techniques into two categories as follow:
Generic ER. A typical ER cycle consists of several phases
of data transformations that include: normalization, block-
ing, similarity computation, clustering, and merging [17],
which can be intermixed.

In the normalization phase, the ER framework standard-
izes the data formats. The next phase is blocking which is
a main traditional mechanism used for improving ER ef-
ficiency [16]. Often blocking partitions records into buck-
ets [19] or canopies [22]. After that, in the similarity com-
putation phase, the ER framework uses a resolve/similarity
function to compute the similarity between the different
real-world entities. Traditional methods analyze the sim-
ilarity of entities to determine if they co-refer [15, 16, 23].
Recently new approaches exploit new information sources
such as analyzing context [4, 9, 29], exploiting relationships

between entities [20], domain/integrity constraints [14], be-
haviors of entities [28], and external knowledge bases such
as ontologies and web search engines [12, 21, 24]. The next
ER phase is clustering where matching records are grouped
together into clusters [5,11]. Finally, the merging phase com-
bines elements of each individual cluster into a single record.
On-the-fly ER. On-the-fly matching techniques have been
proposed in [6, 18, 25]. The approach in [6] answers queries
collectively using a two-phase “expand and resolve” algo-
rithm. It retrieves the related records for a query using two
expansion operators, and then answers the query by only
considering the extracted records. An example of a query is
to retrieve all papers written by author ‘J. Smith’. Unlike
our work, that paper does not consider optimizing for other
types of selection queries such as range queries or queries
where the type of the condition attribute is not a string.

Even though the ER technique in [18] is also “on-the-fly”,
it solves a different problem since it resolves queries under
data uncertainty by connecting ideas of record linkage and
probabilistic databases. The term query refers to a combi-
nation of (attribute-name/value) pairs and each entity re-
turned as an answer is accompanied by a probability that
this entity will be selected amongst all possible worlds.

In [25], the authors handle entity uncertainty at query-
time for OLAP applications. Unlike ours, this work assumes
the existence of a record-to-cluster mapping table and its
goal is to answer group-by OLAP queries by returning re-
sults in the form of strict ranges.

Note that the approaches in [6,18,25] cannot answer generic
selection queries like: select only well-cited (e.g., with cita-
tion count above 45) papers written by ‘J. Smith’ – which
is the primary focus of our paper. That is, none of the
existing solutions consider optimizing generic SQL selection
queries studied in our paper.

3. MOTIVATING EXAMPLE
Before formalizing the notion of vestigiality and develop-

ing QDA, in this section we describe the main idea behind
our query-driven solution using an illustrative example.

Setup. Consider a user searching for bibliographic informa-
tion of a researcher named “Alon Halevy” in Google Scholar,
the results of which are shown in Table 11. Let us further
assume that all the publications are written by the same au-
thor, but some of the papers returned could be duplicates.
Such duplicates possibly arise as a result of the method
Google uses to get its information: Google crawls research
publications and then extracts citations. Since the same pa-
per might be referred to differently in different publications,
paper clusters could be split in parts, leading to duplication.
In Table 1, papers {p1, p7}, {p2, p3, p4}, and {p5, p6} are du-
plicates and refer to the same real-world entities. Hence,
they should be clustered into three clusters C1, C2 and C3

by an ER algorithm.
Suppose that the user is actually not interested in all pa-

pers of “Alon Halevy”, but only in well-cited ones, e.g., those
with a citation count above or equal to, say, 45. The follow-
ing query represents the user’s area of interest:

Query 1. SELECT ∗ FROM R WHERE cited ≥ 45

When Query 1 is issued on Table 1 prior to cleaning it,
the results are p1 and p7, corresponding to cluster C1. This

1
This running example is synthetically generated and is only used for

illustration purposes.

1847

p id p title cited venue authors year

p1 Towards efficient entity resolution 65 Very Large Data Bases Alon Halevy 2000
p7 Towards efficient ER 45 VLDB Alon Halevy 2000
p2 Entity Resolution on dynamic data 25 ACM SIGMOD Alon Halevy, Jane Doe 2005
p3 ER on dynamic data 20 Proc of ACM SIGMOD Conf A. Y. Halevy, J. Doe 2005
p4 Entity-Resolution for dynamic data 15 SIGMOD Conf A. Halevy, Jane D. 2005
p5 Entity-Resolution for census data 10 ICDE Conf Alon Halevy 2002
p6 ER on census data 5 Proc of ICDE Conf Alon Y. Halevy 2002

Table 1: Relation R. Some papers are duplicates. C1 = {p1, p7}, C2 = {p2, p3, p4} and C3 = {p5, p6} are 3 clusters.
cluster p id p title cited venue authors year

C1 p1 ⊕ p7 Towards efficient entity resolution 110 Very Large Data Bases Alon Halevy 2000
C2 p2 ⊕ p3 ⊕ p4 Entity-Resolution on dynamic data 60 Proc of ACM SIGMOD Conf Alon Halevy, Jane Doe 2005
C3 p5 ⊕ p6 Entity-Resolution for census data 15 Proc of ICDE Conf Alon Halevy 2002

Table 2: Clustering C: relation R after being clustered using TC.

is incorrect since the second paper cluster C2 has a citation
count equal to 60 ≥ 45 and should also be returned.
Standard Solution. The standard way to answer Query 1
is to first deduplicate relation R to create merged profiles of
each paper and then compute the query over this clustering.
Suppose that we use a variant of the transitive closure (TC)
algorithm for this purpose, similar to [5]. TC uses a pairwise
resolve function to compare records and a pairwise merge
function to consolidate two matching records. It merges two
records pi and pj as soon as resolve returns true to produce
a new combined record pi ⊕ pj , but it does not merge them
when resolve returns false.

Let the order in which the TC algorithm invokes resolve
functions be: <(p1, p7) = t, <(p1 ⊕ p7, p2) = f, <(p1 ⊕
p7, p3) = f, <(p1 ⊕ p7, p4) = f, <(p1 ⊕ p7, p5) = f, <(p1 ⊕
p7, p6) = f, <(p4, p5) = f, <(p2, p3) = t, <(p2 ⊕ p3, p5) = f,
<(p2 ⊕ p3, p6) = f, <(p4, p6) = f, <(p5, p6) = t, <(p2 ⊕
p3, p4) = t, <(p2⊕p3⊕p4, p1⊕p7) = f, <(p2⊕p3⊕p4, p5⊕
p6) = f, <(p5 ⊕ p6, p1 ⊕ p7) = f.

Above, “<(pi, pj) = t/f” refers to the resolve function
and its outcome (i.e., either true or false). Table 2 shows
clustering C = {C1, C2, C3} of relation R after applying TC.
In C the duplicate publication records are merged into clus-
ters, where the notation pi ⊕ pj denotes the merged repre-
sentation of papers pi and pj . The clusters C1, C2, and C3

have citation counts of 110 (= 65 + 45), 60 (= 25 + 20 + 15),
and 15 (= 10 + 5), respectively2.

In the above execution, 16 calls to the (potentially expen-
sive) resolve function are made by TC. Query 1 on Table 2
returns the clusters C1 and C2 corresponding to p1⊕p7 and
p2 ⊕ p3 ⊕ p4, respectively.

Returned Answer Semantics. Before we illustrate how
the knowledge of a query can be exploited to reduce the
number of resolves invoked by the original merge algorithm,
we first need to discuss the guarantees the QDA system
can provide regarding the answer returned to the user. The
system provides a trade-off between the strictness of the
chosen query answer semantics and the efficiency of query
processing, as explained below.

A QDA is said to follow exact semantics if the returned
results match (in terms of both the clusters returned and
their representations) the results returned by first cleaning
the data (using TC) and then querying it (as in the stan-
dard solution above). For instance, when QDA follows ex-

2
Assume that citations are split across different representations of

the same paper and the cleaning algorithm sums them up to get the
correct count.

act semantics it must return p1 ⊕ p7 (representing C1) and
p2 ⊕ p3 ⊕ p4 (representing C2) as the answer for Query 1.
Note that such an answer will not have duplicates since each
returned cluster will have a single representation.

An alternate answer might be p1 ⊕ p7 (representing C1)
and p2⊕ p3 (representing C2). Note that the representation
of C2 is different (e.g., the value of cited is 25 + 20 = 45, in-
stead of 60). Here, the system does not provide the canonical
merged representation as the TC algorithm; it does, how-
ever, return a semantically equivalent answer, since both C1

and C2 are represented in the returned answer. Yet again,
each cluster is returned exactly once without duplication.
In this case, QDA is said to follow distinct semantics.

Another possible returned answer, which provides more
savings in terms of cleaning, is where duplicates are allowed
to appear in the answer. For example, an answer such as:
p1, p7, and p2 ⊕ p3 clearly contains duplicates since p1 and
p7 are returned as separate clusters although they represent
C1. This answer semantics is indeed consistent with the
default SQL semantics of SELECT queries which return a bag
instead of a set to prevent an expensive duplicate elimina-
tion. Similarly, in standard search (e.g., web, video, people,
etc. search) end applications/users are already accustomed
to tolerating duplicates in the answer. In this case, we say
that QDA follows representative semantics.

Note that in all three semantics, the returned answer does
not omit any cluster that is returned by the original ER
algorithm. It also does not return any extra cluster that is
not returned by the original merge algorithm. That is, the
returned answer is always equivalent to an answer generated
by the original TC algorithm. For instance, an answer such
as: p1⊕p7 will not be acceptable since C2 is not represented
in the answer. Also, the answer p1⊕p7, p2⊕p3, and p5 is not
acceptable since p5, which represents C3, is returned while
in fact C3 does not satisfy the query.

As discussed above, the exact semantics is the most re-
strictive, followed by distinct semantics, then the represen-
tative semantics. Thus, and as shown next, the representa-
tive semantics provides the most opportunities for savings,
followed by the distinct semantics, then the exact semantics.

QDA in Action. We next illustrate how QDA exploits
query semantics to reduce the number of resolves. Assume
representative semantics. Before any data cleaning step is
invoked, we observe that both p1 and p7 have citation counts
of 65 and 45, both of which satisfy the citation count criteria
(i.e., ≥ 45), and thus should be present in the answer. As
a result, depending on the order in which resolves are in-

1848

voked, from 6 (e.g., <(p1, p7) and <(p1⊕ p7, pj)) to 11 (e.g.,
<(p1, pj), <(p7, pj), and <(p1, p7)), where j = 2, 3, 4, 5, 6,
calls (to resolve) can be eliminated. They are vestigial, as
cluster C1 will be represented in the answer set by both p1
and p7, regardless of the outcome of these calls. Further-
more, such resolves do not influence whether any additional
clusters satisfy the query.

Suppose that QDA calls the next two resolves <(p4, p5)
and <(p2, p3) with outcomes f and t, respectively, resulting
in p2 ⊕ p3 with citation count 45. Now, the query result
would return answers p1, p7 and p2⊕p3 that represent clus-
ters C1 and C2. Note that at this stage of the execution, all
the remaining resolve function calls can be eliminated. The
reason is that the remaining unresolved papers p4, p5, and
p6, whose citation counts are 15, 10, and 5, respectively, even
if merged together, cannot form a new cluster C3 distinct
from C1 and C2, that satisfies the query predicate (since
15 + 10 + 5 = 30 < 45). Thus, after only two calls to the
resolve function, the QDA algorithm can safely and confi-
dently return the answer p1, p7, and p2 ⊕ p3, as all clusters
matching the query have been found. Note that while the
clusters returned by QDA and the original algorithm are
exactly the same (viz., C1 and C2), their representations,
{p1 ⊕ p7, p2 ⊕ p3 ⊕ p4} versus {p1, p7, p2 ⊕ p3}, are not the
same. Also, note that the answer returned by QDA con-
tains duplicates (p1 and p7), while the answer returned by
TC does not since p1 and p7 are merged into cluster C1.

To generate a distinct answer we can try a strategy to
“isolate/disconnect” p1 and p7 from the remaining papers
that would result in calls: <(p1, p7) = t, <(p1⊕p7, p2⊕p3) =
f, <(p1 ⊕ p7, p4) = f, <(p1 ⊕ p7, p5) = f, <(p1 ⊕ p7, p6) = f

at which stage we can guarantee that p1 ⊕ p7 and p2 ⊕ p3
are distinct clusters in the answer of the original TC.

Now, to get the exact answer we need to add calls: <(p2⊕
p3, p4) = t, <(p2 ⊕ p3 ⊕ p4, p5) = f, <(p2 ⊕ p3 ⊕ p4, p6) = f.

Note that the original merge algorithm required 16 re-
solves, while QDA with representative semantics – 2 resolves,
distinct semantics – 7 resolves, and exact semantics – 10 re-
solves, leading to savings in all three cases. In our exper-
iments (Section 7), we will show that such a query-driven
solution for all three semantics is significantly better com-
pared to cleaning the whole dataset, especially when the
query predicate is very selective.

4. NOTATION AND PROBLEM DEFINITION
We start this section by introducing common ER notation

in Section 4.1. Then, we discuss new QDA-specific notation
and formally define the problem in Section 4.2.

4.1 Standard Notation
Relation and Clustering. Let R = {r1, r2, . . . , r|R|} be a

relation in the database, where rk represents the kth tuple of
R and |R| is its cardinality. Relation R is considered dirty
if at least two of its records ri and rj represent the same
real-world entity, and hence ri and rj are duplicates. The
attributes in R can be represented as 〈a1, a2, . . . , an〉, where
n is the arity of R. Thus, the kth record in R is defined
as rk = 〈νk1, νk2, . . . , νkn〉, where νk` is the value of the `th

attribute in the kth record (s.t. 1 ≤ k ≤ |R| and 1 ≤ ` ≤ n).
Recall that the goal of traditional ER is to partition records

in R into a set of non-overlapping clusters C = {C1, . . . , C|C|}
such that each cluster corresponds to a single real-world en-
tity. That is, any two records ri and rj from the same cluster

Figure 1: Graph G for R (Table 1) without p7.

should co-refer, and simultaneously, any two records rk and
rl from two distinct clusters Cm and Cn should not co-refer.

Graphical View of the Problem. The clustering prob-
lem can be represented graphically, as in [8,20], where records
in R are encoded as a labeled graph G = (V,E), where V is a
set of nodes interconnected by a set of edges E. Each record
ri ∈ R is represented by a node vi ∈ V , hence |V | = |R|.
Each edge eij = (vi, vj) represents the possibility that ri and
rj may be duplicates. In the simplest case, G is a complete

graph with |E| = |R|(|R|−1)
2

edges. However, as we will ex-
plain in Section 5.3, our QDA approach will create a much
simplified version of this graph. Figure 1 shows the encod-
ing for R from Table 1 without p7 for clarity. The numbers
outside the nodes represent the cited count for each paper.

Resolve Function. A pairwise resolve function <(ri, rj)
operates on any two records ri, rj ∈ R to try to decide
whether they co-refer, that is, refer to the same real-world
entity or not. Resolve is a “black-box” function that may
be cheap or very expensive – e.g., a web query. The algo-
rithms we develop are meant for the cases where the resolve
function is not very cheap and calling resolves is in fact the
bottleneck of an ER approach. The resolve function may
return a classification, a binary answer, or a numeric sim-
ilarity value (confidence). For the purpose of embedding
resolve within an ER algorithm, the outcome of the resolve
function is mapped into the following three decisions:

1. <(ri, rj) = MustMerge, if resolve is highly confident ri
and rj are the same and hence, must be merged,

2. <(ri, rj) = MustSeparate, if resolve is highly confident ri
and rj are different and hence, must be separated,

3. <(ri, rj) = Uncertain, otherwise.

By controlling when (i.e., for which similarity/dissimilarity
levels) a resolve maps to each of these three decisions, the
degree of eagerness can be controlled3. Naturally, the resolve
may output decisions that are incorrect and that could lead
to errors in the entity resolution process.

Merge and Combine Functions. If <(ri, rj) returns
MustMerge, then the two records are declared to be dupli-
cates and a merge function ri ⊕ rj will consolidate them to
produce a new record rm = ri ⊕ rj . To merge two dupli-
cate records ri and rj , a combine function is used for each
attribute a` s.t. 1 ≤ ` ≤ n.

We assume that the WHERE-attribute combine function
νi` ⊕ νj` takes two values of attribute a` and outputs a
single value νm` = νi`⊕νj`. Such combine functions perform
different operations depending on the type of a`.

If a` is a numeric attribute then we consider:

• ADD semantics: νi` ⊕ νj` = νi` + νj`,
• MAX semantics: νi` ⊕ νj` = max(νi`, νj`),

3
For example, conceptually, R-Swoosh [5] merges MustMerge entities

eagerly, but does not actually use MustSeparate – only Uncertain.

1849

• MIN semantics: νi` ⊕ νj` = min(νi`, νj`).

The ADD semantics are used when records are obtained
from the same data source, yet their entities are split in
parts. The number of citations in duplicate publications in
Google Scholar is an example of such a case. In this paper,
ADD semantics are used as the default semantics to illustrate
various examples, unless stated otherwise.
MAX semantics are used, for instance, when records are

retrieved from different data sources where some copies of
the record are obsolete. It is typically applied to attributes
that monotonically increase over time, such as age. MIN

semantics are similar to MAX, except that they are applied
to attributes that monotonically decrease over time, such as
days to expire attribute in a product table.

If a` is a categorical attribute then we consider:

• EXEMPLAR semantics: νi` ⊕ νj` chooses either νi` or νj`
according to some policy,
• UNION semantics: νi` ⊕ νj` = νi` ∪ νj`.

The EXEMPLAR semantics are used when, for example, one
value holds more information than the other value. For in-
stance, in the authors attribute, the value “Alon Halevy”
dominates “A. Halevy”. In contrast, UNION semantics are
utilized when the system needs to retain all possible values
for some attribute, e.g., the application needs to retain all
email addresses for an author.

Note that the afore-mentioned combine functions have the
commutativity and associativity properties defined as:

1. Commutativity: νi` ⊕ νj` = νj` ⊕ νi`
2. Associativity: (νi` ⊕ νj`)⊕ νk` = νi` ⊕ (νj` ⊕ νk`)

Since these properties hold regardless of the merge order,
the representation of the merged cluster will be the same.

4.2 Approach-Specific Notation
Queries. We will consider SQL selection queries. For clarity
of presentation, our discussion will focus on queries with a
single predicate p, with the syntax:

SELECT [DISTINCT|EXACT] ∗ FROM R WHERE a` op t

op is

{
<,≤, >,≥, or = if a` is a numeric attribute;
= if a` is a categorical attribute.

We will discuss the multi-predicate case in Section 5.

Returned Answer Equivalence. Before we formally de-
fine various answer semantics, we need to introduce several
auxiliary concepts. Recall that a cluster C can be viewed as
a set of records C = {r1, r2, . . . , r|C|}. We will say:

Definition 1. Record rk represents cluster C, if rk ∈ C, or
rk = ri ⊕ rj where ri and rj represent C.

Assume an entity resolution algorithm A, such as TC, is
applied to R and generates a clustering CA as its answer.
CA is a set of clusters that partitions R. Let CA,Q denotes
the set of clusters from CA that satisfy query Q. Let CQDA,Q

be the set of clusters returned by QDA as the answer to Q.
To make our definitions formal, we also must account for

the following observation: in general, the same algorithm A
might produce a different clustering C′A of R, where C′A 6=
CA, if A changes the order in which it invokes resolves [27].
Let C̄A denotes the set of all possible output clusterings that
A may produce as a result of changing its resolves order.

Now we can define when CQDA,Q is exactly, distinctly, or
representationally equivalent to an answer of A to query Q:

Definition 2. Answer CQDA,Q generated by QDA for query
Q is exactly equivalent to that of algorithm A iff there exists
CA ∈ C̄A such that: (a) for each cluster Ci ∈ CA,Q there
exists exactly one cluster Cj ∈ CQDA,Q such that Ci ≡ Cj ,
and (b) for each cluster Cj ∈ CQDA,Q there exists exactly
one cluster Ci ∈ CA,Q such that Cj ≡ Ci.

In other words, there is a one-to-one mapping between
clusters in CQDA,Q and CA,Q and the content of clusters in
CQDA,Q is identical to those in CA,Q.

We further define the less restrictive distinct semantics as:

Definition 3. Answer CQDA,Q generated by QDA for query
Q is distinctly equivalent to that of algorithm A iff there
exists CA ∈ C̄A such that: (a) for each cluster Ci ∈ CA,Q

there exists exactly one cluster Cj ∈ CQDA,Q such that Ci ⊇
Cj , and (b) for each cluster Cj ∈ CQDA,Q there exists exactly
one cluster Ci ∈ CA,Q such that Cj ⊆ Ci.

That is, there is still a one-to-one mapping between clus-
ters in CQDA,Q and CA,Q, but now clusters in CQDA,Q are
allowed to be subsets of clusters from CA,Q.

We define the least restrictive representative semantics as:

Definition 4. Answer CQDA,Q generated by QDA for query
Q is representationally equivalent to that of algorithm A iff
there exists CA ∈ C̄A such that: (a) for each cluster Ci ∈
CA,Q there exists at least one cluster Cj ∈ CQDA,Q such that
Ci ⊇ Cj , and (b) for each cluster Cj ∈ CQDA,Q there exists
exactly one cluster Ci ∈ CA,Q such that Cj ⊆ Ci.

The representative semantics goes one step further on top
of the distinct semantics and does not require the one-to-
one mapping by allowing for duplicates. Namely, it asks for
one-to-many mapping from CA,Q to CQDA,Q and one-to-one
mapping from CQDA,Q to CA,Q.

Problem Definition. Let A be the original entity res-
olution algorithm, e.g., TC, whose query-driven version is
being developed. Then, given a query Q, we can formally
define our problem as an optimization problem as follows:

Minimize: Number of <()
Subject to:

1. ∀C ∈ CQDA,Q, C satisfies Q; // Query satisfaction
2. CQDA,Q ≡ CA,Q; //User-defined equivalence

It can be trivially shown that achieving an optimal solu-
tion that generates the least number of resolves is infeasible
in practice, as it requires an “oracle” that knows which pair
of records to resolve next. Thus, the goal translates into
finding a good solution by developing algorithms which at-
tempt to reduce the number of calls to the resolve function
by exploiting vestigiality, and by implementing a good edge
selection policy, as explained in Section 6.

5. VESTIGIALITY
In this section, we introduce the notion of vestigiality,

which is the key concept in our query-driven solution. Before
we can formally define it, we have to introduce several aux-
iliary concepts. We first define a way to categorize a triple
(p,⊕, a`) (where p is the query predicate, ⊕ is the combine
function defined over a`’s domain) into three categories: in-
preserving, out-preserving, and neither as explained in Sec-
tion 5.1. Then, we discuss how to deal with multi-predicate
selection queries in Section 5.2. The construction of the la-
beled graph is explained in Section 5.3. Finally, we explain
how this categorization as well as the new notions of relevant
clique and minimal clique can be used to test for vestigiality
of an edge in Section 5.4.

1850

⊕, domain a` ≥ t or, a` > t a` ≤ t or, a` < t t1 ≤ a` ≤ t2
ADD, a` ∈ R+ in-preserving out-preserving neither

MAX, a` ∈ R in-preserving out-preserving neither

MIN, a` ∈ R out-preserving in-preserving neither

Table 3: Triple categorization for numerics.
⊕, domain a` = t

EXEMPLAR, a` ∈ enum in-preserving

UNION, a` ∈ enum in-preserving

Table 4: Triple categorization for categoricals.

τi = (pi,⊕i, ai) τj = (pj ,⊕j , aj) τi ∧ τj τi ∨ τj
in-preserving in-preserving in-preserving in-preserving

in-preserving out-preserving neither neither

out-preserving out-preserving out-preserving out-preserving

in-preserving neither neither neither

out-preserving neither neither neither

neither neither neither neither

Table 5: Triples generalization

5.1 Triple (p,⊕, a`) Categorization
QDA exploits the specificity of a query predicate p and

the semantics of a combine function ⊕ defined on attribute
a` to significantly reduce the cleaning overhead by resolv-
ing only those edges that may influence the answer of Q.
For that goal, we will classify any triple (p,⊕, a`) into three
generic categories: in-preserving, out-preserving, and nei-
ther. These broad categories are important as they allow
us to develop generic QDA algorithms instead of developing
specific algorithms for each small case.

Definition 5. Triple (p,⊕, a`) is in-preserving, if for all
possible values νi`, νj` ∈ a`, if p is true for νi`, then p is
also true for all νi` ⊕ νj`.

This property means that once a record is in the answer,
it will remain so, even if it is merged with other records. For
instance, (cited ≥ 45, ADD, cited) is in-preserving, since any
tuple with a citation count above or equal to 45 will continue
to be above or equal to 45 even if merged with other tuples.
In contrast, (cited ≤ 45, ADD, cited) is not in-preserving.

Definition 6. Triple (p,⊕, a`) is out-preserving, if for all
possible values νi`, νj` ∈ a`, if p is false for νi`, then it is
also false for all νi` ⊕ νj`.

This property means that once a record is out of the
answer, it will remain so, even if it is merged with other
records. E.g., (cited ≤ 45, ADD, cited) is out-preserving.

Tables 3 and 4 show a classification of different common
triples for numeric and categorical attributes, respectively.

5.2 Multi-Predicate Selection Queries
Our discussion so far has focused on the case where the

WHERE-clause contains a single predicate. The overall so-
lution, however, applies to more complex selection queries
with multiple predicates connected via logical connectives,
such as AND, OR, and NOT. This is since such combinations of
triples can also be categorized into the same three categories
– based on the categories of the basic triples it is composed
of, as illustrated in Table 5, see [1] for proofs. For instance,
consider the following range query:

Query 2. SELECT ∗ FROMR WHERE cited ≥ 45 AND cited ≤ 65

This range query consists of two basic predicates p1 :
cited ≥ 45 and p2 : cited ≤ 65. Hence, it consists of two

Create-Graph(R,Q,Acur, Vout, Vmaybe,⊕)
1 for each rk ∈ R do
2 vk ← Create-Node(rk)
3 if Is-In-Preserving(p,⊕, a`) and Satisfy-Qry(vk, Q) then
4 Acur ← Acur ∪ {vk}
5 else if Is-Out-Preserving(p,⊕, a`)

and not Satisfy-Qry(vk, Q) then
6 Vout ← Vout ∪ {vk}
7 else Vmaybe ← Vmaybe ∪ {vk}
8 V ← {Acur, Vout, Vmaybe}
9 E ← Create-Edges-with-Blocking(Vmaybe, Vmaybe)

10 E ← E ∪ Create-Edges-with-Blocking(Vout, Vmaybe)
11 return G(V,E)

Figure 2: Create graph function.

triples: an in-preserving triple τ1 = (cited ≥ 45, ADD, cited)
and an out-preserving τ2 = (cited ≤ 65, ADD, cited). From
Table 5, we can see that the resulting combination τ1 ∧ τ2 is
neither in- nor out-preserving. To see why, consider record ri
with cited = 40. Initially ri is out of the answer of Query 2.
If ri merges with another record rj with cited = 10, the
new record ri ⊕ rj will have cited = 40 + 10 = 50 and will
be in the answer. If now ri ⊕ rj can merge again with an-
other record rk with cited = 20, then ri ⊕ rj ⊕ rk will have
cited = 50 + 20 = 70 which clearly does not satisfy Query 2.
Hence, τ1 ∧ τ2 is neither in-preserving nor out-preserving.

5.3 Creating and Labeling the Graph
To formally define vestigiality testing, we need to explain

how QDA builds and labels the graph, see Create-Graph()
function in Figure 2. The main goal of this function is to
avoid creating as many nodes and edges as possible in order
to improve the efficiency. As common for ER techniques,
the function starts by applying blocking and will not create
edges for pairs that cannot be duplicates according to block-
ing. More importantly, on top of blocking, the function will
also remove from consideration nodes and edges that will
not influence further processing of Q, thus improving the
efficiency on top of blocking from the very beginning.

The algorithm starts by iterating over each tuple rk ∈ R
to create the corresponding node vk. It sets label `[vk] of vk
(Lines 1–7) as:

1. `[vk] = in when triple (p,⊕, a`) is in-preserving and vk
satisfies Q. Node vk is added to Acur as it is guaranteed
to be in the final answer.

2. `[vk] = out when triple (p,⊕, a`) is out-preserving and
vk does not satisfy Q. Node vk is added to Vout.

3. `[vk] = maybe, otherwise. Node vk is added to Vmaybe.

The algorithm then creates edges, but only if they can
exist according to blocking and (1) only among nodes in
Vmaybe and (2) for each vi, vj pair where vi ∈ Vout and
vj ∈ Vmaybe (Lines 9–10). This is because nodes in Vmaybe

that merge with Vout nodes cannot be in the answer. For
each edge eij ∈ E, QDA sets labels as:

1. `[eij] = yes, when <(ri, rj) has already been called and
returned MustMerge,

2. `[eij] = no, when <(ri, rj) has already been called and
returned MustSeparate,

3. `[eij] = maybe, when <(ri, rj) has already been called
and returned Uncertain,

4. `[eij] = vestigial, when, Definition 8 holds. Note that
as QDA proceeds forward, some edges that were not ves-
tigial previously may become vestigial. But once they
become vestigial, they remain so,

1851

5. `[eij] = unresolved, otherwise.

It should be noted that edge labeling is a convenient se-
mantic notation useful for explaining various concepts. For
efficiency, however, the algorithm does not utilize yes and
no labels in its actual processing. For example, instead of
labeling edge eij as a no edge, it simply removes this edge
since this simplifies the graph. Similarly, instead of labeling
an edge eij = (vi, vj) as a yes edge, the algorithm merges
nodes vi and vj into a new node vm = vi ⊕ vj . We will say
that the current labeling of the graph determines the cur-
rent state of the resolution process. Now we can define the
concept of the current answer Acur.

Definition 7. Based on the given edge labeling, the current
answer Acur to Q is the answer resulting from assuming that
all vestigial and unresolved edges are no edges.

Example 1. Consider relation R in Figure 1 and an in-
preserving triple e.g., (cited ≥ 45, ADD, cited). Initially only
p1 is labeled in, since it is guaranteed to be in the result-set
(Acur = {p1}). Thus, all edges incident to p1, that is e12,
e13, e14, e15, and e16, are vestigial. If the algorithm then
calls <(p2, p3) and <(p4, p5), the corresponding edges will
be assigned labels `[e23] = yes and `[e45] = no.

5.4 Vestigiality Testing Using Cliques
Before introducing the new notions of relevant/minimal

cliques which are used to test for vestigiality of an edge,
let us first define the concept of a vestigial edge. Intu-
itively, an edge is vestigial if its resolution outcome does not
influence the query result. Formally:

Definition 8. Let A be the original entity resolution al-
gorithm. An edge eij ∈ E is vestigial when, regardless of
what the ground truth for eij might be, QDA can guarantee
that by treating eij as a no edge, it can still compute an
equivalent answer to that of A.

Now, we introduce some of the necessary concepts utilized
in our solution. We use the standard definition of a clique
in an undirected graph G = (V,E), which is a subset of
the node set S ⊆ V , such that for every two nodes in S,
there exists an edge in E that connects them. A clique is
an important concept for entity resolution since it identifies
which groups of nodes/records might or might not co-refer:

Lemma 1. Nodes (records) co-refer only if they form a
clique consisting of only yes edges in the ground truth.

Consequently, if a group of nodes is not a clique (e.g.,
some edges are marked no (i.e., removed)), and the algo-
rithm did not make a mistake in removing those edges, then
that group corresponds to at least two distinct entities. Note
that Lemma 1 deals with the ground truth labels and not
the decisions returned by the resolve function.

Let Ccur be the set of clusters in the current answer Acur.
Now, we can define the notions of a relevant clique and a
minimal clique.

Definition 9. A clique S is called relevant to Q, if we
can assign labels to its edges such that this labeling might
change Ccur, by either adding (at least one) new cluster to
Ccur, or removing (at least one) cluster from Ccur.

The concept of relevant cliques provides a mechanism to
test if an edge is vestigial as stated in the next theorem.

Is-Vestigial(eij , G,Q,⊕)
1 if Is-In-Preserving(p,⊕, a`) then
2 return not Is-In-a-Minimal-Clique(eij , G,Q)
3 else return not Is-In-a-Relevant-Clique(eij , G,Q)

Figure 3: Is vestigial function

Theorem 1. Given the current labeled graph G, a selection
queryQ with predicate p on attribute a`, if no relevant clique
exists that includes eij , then eij is vestigial. However, the
reverse does not hold: a vestigial edge could be part of a
relevant clique. Proof is covered in [1].

The next example helps in illustrating the importance of
considering relevant cliques.

Example 2. Consider G shown in Figure 1 after resolving
e23 only and Query 1, p = (cited ≥ 45). Acur = {p1, p2⊕p3}
because both p1 and p2 ⊕ p3 have citation counts ≥ 45 (65
and 45, respectively). As a result, all edges incident to p1
and p2⊕p3 are vestigial. Note that nodes 4, 5, and 6 form a
clique S. The sum up of the cited attribute for these nodes
is 15 + 10 + 5 = 30 6≥ 45. Thus, merging nodes in S cannot
change Acur (no new clusters can be added to it). Hence,
S is not a relevant clique w.r.t. p. Thus, edges e45, e46, and
e56 are not part of any relevant cliques and hence, vestigial.

In fact, when (p,⊕, a`) is in-preserving, we can show that
the edge must not only be part of a relevant clique, but a
minimal clique as defined below:

Definition 10. A relevant clique S is called a minimal
clique, if no subset of nodes in S can form a relevant clique.

Theorem 2. Given a graphG and an in-preserving (p,⊕, a`),
an unresolved edge eij is vestigial if and only if no minimal
clique exists that includes eij . Proof is covered in [1].

The next example shows the concept of minimal cliques.

Example 3. Consider G shown in Figure 1 after resolving
e45 only. Note that the triple (cited ≥ 45, ADD, cited) is
in-preserving. Observe that S = {p2, p3, p4} is a relevant
clique (25 + 20 + 15 = 60 ≥ 45). However, there exists
Smin = {p2, p3} ⊂ S which forms a minimal clique (25 +
20 = 45 ≥ 45). Therefore, edges e24 and e34 are vestigial
since both e24 and e34 do not belong to any minimal clique.

The above two theorems suggest that testing for vestigial-
ity can be implemented by checking for relevant/minimal
cliques as shown in Is-Vestigial() function, see Figure 3.
However, finding such cliques is NP-hard as shown in the
next theorem.

Theorem 3. Testing for vestigiality using Is-Vestigial()
is NP-hard. This can be shown through a straightforward
reduction from the well-known k-clique problem, and hence
is computationally infeasible. Full proof is covered in [1].

Thus, implementing Is-Vestigial() is impractical as the
naive algorithm that calls all the O(n2) resolves is going
to be faster. Consequently, the challenge is to design a
QDA strategy that still performs vestigiality testing, but
does it fast enough to outperform the naive approach. Thus,
in the next section, we will explain how to devise efficient
approximation-based techniques for vestigiality testing.

6. QUERY-DRIVEN SOLUTION
In this section we describe our QDA approach. We be-

gin by presenting an overview of the framework. Next, we
explain the framework components in more detail.

1852

6.1 Overview of The Approach
The main task of the QDA approach is to compute an

answer to query Q very efficiently. The answer should be
equivalent to first applying a standard algorithm, such as
transitive closure (TC) on the whole dataset and then query-
ing the resulting cleaned data with query Q.

Recall that traditional TC operates by iteratively choos-
ing a pair of nodes to resolve next, then applying the resolve
function, merging nodes if the resolve returns a positive an-
swer, and then repeating the process. The QDA approach
is very similar to the original TC with two noticeable dif-
ferences. First, QDA uses its own pair-picking strategy to
select pairs of nodes to resolve next. The goal of this strat-
egy is to minimize the number of calls to resolve to answer
the given query. Second, instead of calling resolve on the
chosen pair, QDA first tries to quickly determine if it can
avoid making this call altogether by checking if the chosen
pair is vestigial.

Conceptually, the QDA approach can be viewed as con-
sisting of the following steps:

1. Creating and Labeling the Graph. The approach starts
by creating and labeling graph G (Section 5.3).

2. Choosing an Edge to Resolve. Based on its edge-picking
policy, the approach selects edge eij to resolve. Intu-
itively, such a policy should select eij in a way that re-
solving it would allow QDA to either quickly add some
cluster-representative to the result-set, or would break
many relevant cliques. We have experimented with many
different policies. The one that has demonstrated the
best results is based on picking edges according to their
weight, where weight wij for edge eij is computed by com-
bining the values of its incident nodes: wij = νi` ⊕ νj`.
The edge-picking policy is not our focus in this paper.

3. Lazy Edge Removal. We have implemented many opti-
mizations in QDA, here we briefly describe one of them.
In this step the algorithm checks if the chosen edge eij
still exists. If it does not, then the algorithm will go back
to Step 2 to pick another edge. Note that eij can dis-
appear as the result of merging of two nodes vk and vl.
Observe that after merging vk and vl, only edges that are
common to both of them must remain in G. But checking
for common edges and then aggressively removing them
from auxiliary data structures at the time of the merge is
an O(|R|) operation in general for each merge operation.
To reduce this cost, QDA does not remove the edges at
the time of the merge, but removes them lazily in this
step. It does so in O(1) time by checking if vi (or vj)
of edge eij has been merged with some other node vk
by the algorithm on a prior iteration, and hence (1) vi
(or vj) was removed from Vmaybe, or (2) vi is not in vj ’s
neighborhood or vice versa.

4. Vestigiality Testing. The algorithm, in this step, tries
to avoid calling resolve on edge eij by checking if it is
vestigial (Section 6.2).

5. Stopping Condition. If there exists an edge eij ∈ E that
is neither resolved nor vestigial, then the algorithm
iterates by going to Step 2.

6. Computing the Answer. Finally, the algorithm computes
the query’s final answer using the required answer seman-
tics S (Section 6.3).

Thus, our goal translates into designing algorithms that
implement the above steps. Such algorithms should min-

Vestigiality-Testing(eij , G,Q,⊕)
1 if Is-In-Preserving(p,⊕, a`)

and Might-Change-Answer(∅, vi ⊕ vj , Q) then
2 res← <(vi, vj)
3 if res = MustMerge then
4 Acur ← Acur ∪ {vi ⊕ vj}
5 Vmaybe ← Vmaybe − {vi, vj}
6 else if res = MustSeparate then
7 E ← E − {eij}
8 else `[eij] = maybe
9 else if Check-Potential-Clique(eij , G,Q) then

10 res← <(vi, vj)
11 if res = MustMerge then
12 vi ← vi ⊕ vj
13 N [vi] = N [vi] ∩N [vj]
14 Vmaybe ← Vmaybe − {vj}
15 else if res = MustSeparate then
16 E ← E − {eij}
17 else `[eij] = maybe
18 else E ← E − {eij} // this edge is vestigial

Figure 4: Vestigiality testing function

imize the number of invocations of the expensive resolve
function, and be able to correctly and efficiently find an an-
swer to a given query. In addition, the chosen algorithms
must themselves be very efficient, otherwise their cost will
dominate the cost of calling the resolve function, and a sim-
ple strategy such as resolving all O(n2) edges in random
order might be more efficient.

The following sections elaborate all of these steps in detail.

6.2 Vestigiality Testing
Given an edge eij selected by the edge-picking strategy,

the main task of vestigiality testing is to determine if eij
is vestigial and thus calling resolve on it can be avoided.
However, from Section 5, we know that testing for the ex-
act vestigiality via clique-checking is an NP-hard problem.
Hence, QDA employs a highly efficient approximate solution
instead of the exact check. Namely, QDA tests for vestigial-
ity by using an inexact-but-fast check to determine if eij can
potentially be part of any relevant clique at all.

The vestigiality testing function, provided in Figure 4, can
conceptually be viewed as consisting of the following steps:

1. Edge Minclique Check Optimization. This is another
optimization which the algorithm employs (Lines 1–8).
Here, a check for a special case allows the algorithm to
remove two nodes from the graph instead of one in case
of a merge, leading to extra savings. Namely, this special
case exists when triple (p,⊕, a`) is in-preserving and edge
eij by itself can change the current answer to Q. If so,
then eij is not vestigial and the algorithm calls resolve on
it. Now, if resolve returns MustMerge, then the algorithm
adds the merged node (vi ⊕ vj) to the answer set and
then removes vi and vj nodes from G. The algorithm can
perform this optimization because vi and vj are already
represented by their merged representation in Acur.

2. Check for Potential Clique. If Step 1 does not apply,
then the function calls the Check-Potential-Clique()
procedure to test if eij can potentially be part of any
relevant clique at all. If the call returns true, then the
function calls resolve function on eij and labels G accord-
ingly (Lines 10–17). If the call returns false, then the
function marks eij as vestigial (Line 18).

The key intuition behind the Check-Potential-Clique()
function is to quickly check if an edge eij can potentially be

1853

Check-Potential-Clique(eij , G,Q)
1 vnew ← vi ⊕ vj
2 if Might-Change-Answer(∅, vnew, Q) then
3 return true
4 Vintersect ← N [vi] ∩N [vj]
5 for each vk ∈ Vintersect do
6 vold ← vnew

7 vnew ← vold ⊕ vk
8 if Might-Change-Answer(vold, vnew, Q) then
9 return true

10 return false

Figure 5: Check potential clique function

Compute-Answer(Acur, Vmaybe, Q, S)
1 for each vi ∈ Vmaybe do
2 if Satisfy-Qry(vi, Q) then
3 Acur ← Acur ∪ vi
4 if S = Distinct then
5 for each vi ∈ Acur do
6 for each vj 6= vi ∈ Acur do
7 if <(vi, vj) = MustMerge then
8 vi ← vi ⊕ vj
9 Acur ← Acur − {vj}

10 else if S = Exact then
11 for each vi ∈ Acur do
12 for each vj 6= vi ∈ Acur ∪ Vmaybe do
13 if <(vi, vj) = MustMerge then
14 vi ← vi ⊕ vj
15 if vj ∈ Acur then
16 Acur ← Acur − {vj}

Figure 6: Compute answer function

involved in a relevant/minimal clique at all, see Figure 5. It
is a safe approximate function: it returns false only when
eij is guaranteed not to be a part of any relevant/minimal
clique (i.e., vestigial). In contrast, it returns true when
eij might be a part of some relevant clique and thus, the
algorithm cannot guarantee it is vestigial. For efficiency,
the algorithm treats it as non-vestigial without performing
any further costly checks.

The idea of this function can be illustrated with the fol-
lowing example. Assume two nodes vi and vj with citation
counts of 10 and 10, and further assume that they have only
two common neighbors whose citation counts are 15 and 20.
Then edge eij cannot be part of any clique with combined
citation count above 10 + 10 + 15 + 20 = 55. Also note
that while this (vi, vj) edge might be a part of a clique with
cited = 55, the algorithm cannot guarantee that without
checking the existence of the edge between 15 and 20.

The function that utilizes this intuition is illustrated in
Figure 5. It begins by merging nodes vi and vj and then
checking if their merge might change Q’s answer. If it does
not, then the function computes the intersection of vi and vj
neighborhoods (Line 4) and then, tries to find the smallest
potential clique from their common neighbors which might
change Q’s answer. The function will keep expanding the
size of such clique until no common neighbors are left. Once
the function succeeds in finding a potential clique that might
change Q’s answer then it will return true (Lines 5-9). Oth-
erwise, it returns false (Line 10).

6.3 Computing Answer of Given Semantics
After the algorithm is done processing edges, it computes

its final answer Acur to query Q based on the answer seman-
tics S the user requested. For that, it uses the Compute-
Answer() function illustrated in Figure 6. The function

starts by adding nodes from Vmaybe which satisfy Q to Acur

(Lines 1–3). At this stage Acur satisfies representative an-
swer semantics. As such, Acur might contain duplicates
and/or it might not be equivalent to the canonical merged
representation produced by the original TC algorithm.

If the user requests stricter distinct or exact answer se-
mantics, then the algorithm continues building the corre-
sponding answers based on the current Acur. The algorithm
implements distinct semantics by cleaning the (small) rep-
resentative answers in Acur by using the original TC algo-
rithm. That is, duplicates are removed by resolving all pairs
of nodes in Acur (Lines 4–9). Thus, the additional cost of
cleaning this small result-set is O(|Acur|2) resolves in the
worst case, where |Acur| is the size of the result-set.

To generate an answer that satisfies exact semantics, the
algorithm proceeds by comparing clusters in the result-set
with clusters that are not in the result-set. That is, it com-
pares all nodes in Acur with all nodes in Acur ∪ Vmaybe

(Lines 10–16). Therefore, the extra cost of cleaning leads
to O(|Acur||R|) additional resolves in the worst case.

Note that to produce distinct or exact answer, edges pre-
viously labeled vestigial are considered unresolved edges.

6.4 Answer Correctness
From a theoretical perspective, it could be useful to an-

alyze the properties of our QDA algorithm with respect to
answer correctness. Note that if the resolve function is al-
ways accurate, then TC will compute clustering C that is
identical to the ground-truth clustering Cgt. Consequently,
the following lemma holds trivially:

Lemma 2. If the resolve function is always accurate, then
QDA will compute answers that are: representationally, dis-
tinctly, or exactly equivalent to those in Cgt.

Lemma 2 essentially states a theoretical result: the QDA
algorithm is guaranteed to compute the correct answer, pro-
vided that the resolve function is accurate. Naturally, re-
solve functions are not always accurate, and hence no ER
technique can guarantee the correctness of its answer. We
also do not assume that resolve is always accurate.

6.5 Discussion
In this paper we have laid out the foundations of the

generic query-driven entity resolution framework. While we
have considered a broad class of SQL selection queries, we
have not yet considered all SQL queries, e.g., joins. The lat-
ter are future directions of our work. We have covered very
generic algorithms that apply to a broad class of cases that
are based on categorizing triples into in-/out-preserving and
neither. However, various optimizations of these algorithms
are possible when considering each specific case separately.
Namely, we have studied different implementations of equal-
ity and range style queries in [1]. The idea is to use two-stage
processing. In the first stage an edge is resolved only if it is
part of a relevant clique and thus it can result in a new node
that should be in the answer. Thus, all nodes that must be
in the answer will be in Acur, but Acur is a superset of nodes,
as it may contain wrong nodes that should not be there. To
remove the wrong nodes from Acur, the second stage of the
algorithm resolves edges only if an edge is a part of a clique
that includes at least one node in Acur and that clique can
change the answer for that node from being in Acur to being
out of Acur. This two-stage strategy leads to a noticeable

1854

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 4 16 64 128 256 1024 4096

A
v
g
.
R

u
n
n
in

g
 T

im
e
 (

s
e
c
)

Query Threshold

QDA
TC

Figure 7: QDA vs. TC [Time]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 4 16 64 128 256 1024 4096

A
v
g
.
N

o
.
R

e
s
o
lv

e
s

Query Threshold

QDA
TC

Figure 8: QDA vs. TC [#<()]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 4 16 64 128 256 1024 4096

A
v
g
.
R

u
n
n
in

g
 T

im
e
 (

s
e
c
)

QDA [Dis]
QDA [Ex]

TC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 4 16 64 128 256 1024 4096

A
v
g
.
N

o
.
R

e
s
o
lv

e
s

Query Threshold

Figure 9: Answer semantics

 1

 2

 4

 16

 100

GTE LTE EQ Range Categorical

S
p
e
e
d
 U

p
 O

v
e
r

T
C

Query Type

t=1
t=64

t=256
t=1024

Figure 10: QDA speed up

improvement in processing range queries. Also note that, in
this paper, we have presented QDA in the context of tran-
sitive closure-like algorithms, but similar techniques apply
to some other types of clustering algorithms. Specifically,
we show how to develop QDA for the very complex case of
correlation clustering in [1].

7. EXPERIMENTAL EVALUATION
In this section we empirically evaluate the efficiency of our

QDA approach on real data. We study QDA for different
query types (GTE, LTE, etc.) and compare it to TC in
terms of, both, the end-to-end running time and the num-
ber of calls to resolve. The experiments will show how the
chosen answer semantics affect the efficiency of QDA. We
also study the impact of vestigiality testing as the cost of
resolve functions is varied. We will demonstrate the result of
using/not-using blocking on both QDA and TC. Finally, we
analyze the effectiveness of our greedy edge-picking strategy.

7.1 Experimental Setup
Google Scholar Dataset. We ran our tests on a real
bibliographic dataset collected from Google Scholar. The
dataset represents publications of the top 50 computer sci-
ence researchers each having h-index of 60 or higher [3]. The
dataset schema is similar to that of Table 1. The dataset
consists of 16, 396 records where 14.3% are duplicates.
Resolve Function. We have implemented a highly-accurate
pairwise resolve function which operates on two records
ri, rj ∈ R to decide whether they refer to the same real-
world entity. The resolve function utilizes Soft-TF-IDF [10]
to compare titles and the Jaro-Winkler distance to compare
author names. If the similarity is sufficient (above thresh-
old) and there are min(|Ai|, |Aj |) authors in common (|Ai|
and |Aj | are the number of authors), then resolve returns
MustMerge and ri, rj are considered to be duplicates.
Blocking Technique. Both TC and QDA use the same
blocking procedure. Namely, we use two blocking functions
to cluster records that might be duplicates together. The
first function partitions records (i.e., papers) into buckets
based on the first two letters of their titles. Similarly, the
second one partitions them based on the last two letters.
That is, if two papers match in either their first two letters
or their last two letters then they are put in the same block.

7.2 Experiments
Experiment 1 (QDA vs. TC). Figures 7 to 9 use a set
of GTE (≥) queries to show the effects of vestigially test-
ing by comparing our QDA algorithm (using representative,
distinct, and exact answer semantics) with TC. These algo-
rithms are compared in terms of their end-to-end running
time and the number of resolves called.

Figure 7 plots the actual end-to-end execution time of
QDA (for representative answer semantics) and TC for dif-
ferent values of the GTE query threshold t. Figure 8 is sim-
ilar but plots the number of calls to resolve instead of the
execution time. These are log-lin scale plots, where t’s range
is chosen to show the entire spectrum of QDA’s behavior.
Note that the curves in Figures 7 and 8 are similar, thus
demonstrating the fact that the calls to resolve are indeed
the bottleneck of QDA and TC.

As expected, for all the threshold values and all the an-
swer semantics, QDA is both faster (than TC) and issues
fewer resolves (than TC). This is since the query-awareness
gives QDA the ability to exploit the in-preserving predicate
property to add some records to the result-set without the
need to resolve their corresponding edges.

In Figure 7, QDA takes only 0.004 seconds when t = 1 and
all records satisfy the query threshold, whereas TC takes
0.52 seconds. This large saving happens because for t = 1
QDA will label all nodes as in and will not issue any calls
to resolve. However, for difficult thresholds, e.g., t = 128,
most nodes are labeled maybe and there are many poten-
tial cliques that can be added up to 128, which need to be
resolved. Thus, QDA resolves 1770 edges and spends 0.2
seconds to answer the query, while TC takes 0.52 seconds.
Note that the number of resolves issued (and thus the time
spent) is related to the the number of potential cliques that
may satisfy the query. That is, whenever the number of
potential cliques that may satisfy the query decreases, the
number of calls to resolve (and obviously the time) will de-
crease and vice versa.

Figure 9 presents the end-to-end running time and the
number of resolves called by QDA using (more strict) dis-
tinct and exact answer semantics. QDA computes distinct
semantics by first computing the initial result set RS using
QDA with representative semantics, then it de-duplicates
RS. The larger the cardinality of RS, the higher the ex-
tra cost is. For instance, when RS is large (e.g., t ≥ 1) the
number of resolve calls is also large. QDA with the exact se-
mantics goes one step further and resolves all edges between
the records in RS and the remaining records and thus it is
more expensive than QDA for distinct semantics.

Finally, note that techniques like [6], discussed in Sec-
tion 2, are not meant and not designed to optimize for
queries with numeric attributes. Unlike QDA, they cannot
avoid calling resolves and hence will not be able to outper-
form TC (and thus QDA).

Experiment 2 (QDA Speed Up). Figure 10 plots the
speed up of QDA (using representative semantics) over TC
for 5 different query types using 4 different threshold values.
The QDA’s speed up over TC is calculated as the end-to-end
running time of TC divided by that of QDA.

1855

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Edit-Distance Soft-TF-IDF Hard-TF-IDF

T
o
ta

l
T

im
e
 (

s
e
c
o
n
d
s
)

Resolve Function

QDA (t >=16)
QDA (t >=128)

TC

Figure 11: <() cost

 1

 2

 4

 16

 100

 1200

 1 4 16 64 128 256 1024 4096

S
p
e
e
d
 U

p
 O

v
e
r

T
C

Query Threshold

QDA [No Blocking]
QDA [With Blocking]

Figure 12: Blocking [Time]

 0

 20

 40

 60

 80

 100

 1 4 16 64 128 256 1024 4096

R
e
s
o
lv

e
s
 S

a
v
e
d
 %

Query Threshold

QDA [No Blocking]
QDA [With Blocking]

Figure 13: Blocking [%<()]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 32 64 96 128 160 192 224 256

R
u
n
n
in

g
 T

im
e
 (

s
e
c
) QDA [Greedy]

QDA [Random]
QDA [Enum]

 0

 100

 200

 300

 400

 500

 600

 700

 1 32 64 96 128 160 192 224 256

N
o
.
R

e
s
o
lv

e
s

Query Threshold

Figure 14: Edge picking

Note that QDA (for all queries and thresholds) is always
faster than TC since QDA exploits the query to avoid calling
some resolves while TC resolves each edge it picks. Depend-
ing on the query type and the threshold value, QDA can be
from 1.2 to 100 times faster than TC.

As discussed in Experiment 1, the cost of calling resolve is
the dominant factor of the overall execution time. Thus, the
end-to-end execution time of QDA depends on the number
of potential cliques which may satisfy the query since these
potential cliques must be resolved.

For instance, QDA for LTE (≤) takes slightly more time
compared to QDA for GTE (yet, still 1.5 to 6 times faster
than TC) because QDA using LTE can not exploit the in-
preserving property to add records that satisfy the query
threshold to the answer set. However, it now exploits the
out-preserving property to remove records from the result-
set. In this case, some of the edges connected to these dis-
carded nodes need to be resolved because they might remove
records from the result-set if they are declared duplicates.

The EQ (=) predicate is very selective and the number of
relevant cliques that may satisfy the query is much smaller
than that for GTE and LTE cases. In the EQ case, a relevant
clique is either a clique that adds up to the value of the query
threshold t or a clique that contains a sub-clique which adds
up to t and at least one more node with a value greater than
0. However, this is the well-known NP-hard Subset Sum
Problem and thus we implemented a 3

4
linear approximation

algorithm to find an approximate subset sum (' t). This
approximation lead to some unnecessary calls to resolve, and
thus more time, causing QDA for EQ to be slightly more
expensive compared to QDA for GTE. QDA for EQ is 1.5
to 6 times faster than TC.

In Figure 10, range queries are tested using the predicate
p : t− 50 ≤ cited ≤ t. Recall that range queries are neither
in- nor out-preserving (see Table 5). QDA for range queries
is 1.2 to 6 times faster than TC. It takes a bit more time
compared to QDA using LTE since the number of poten-
tial cliques which may change the query answer in QDA for
range queries is slightly higher because one potential clique
may put a record (say ri) in the answer and then another
potential clique may remove ri from it.

Finally, in Figure 10 the predicate utilized to test cat-
egorical queries is p : cited ≥ t ∧ venue = ‘VLDB’. The
number of potential cliques which satisfy the query in this
case is much smaller when compared to all previous cases
(viz., GTE, LTE, EQ, and Range) because p is very selec-
tive. On the other hand, QDA spends more time checking
for such cliques since they involve a categorical attribute.
QDA for categorical queries is 7 to 10 times faster than TC.

Experiment 3 (Resolve Cost). Figure 11 demonstrates
the importance of minimizing the number of calls to resolve,

especially when the resolve function is not cheap. This ex-
periment uses a smaller dataset of 448 publications written
by a prolific CS professor and tests 3 different resolve func-
tions of various costs. Function one is the least expensive
and uses a normalized edit-distance function to compare ti-
tles and authors. The second function is more expensive
and calculates Soft-TF-IDF for the titles and Jaro-Winkler
distance between the authors. The third one is the most
expensive: it computes TF-IDF for the abstracts of the pa-
pers. Note that in general, modern resolve functions can
be even more expensive, e.g. involving ontology matching,
web queries, etc. Figure 11 demonstrates that the gap be-
tween QDA and TC increases when the cost of <() increases.
Thus, minimizing the number of resolves is very important
specifically for non-cheap resolve functions.

Experiment 4 (Applying Blocking). Figure 12 and 13
study the effects of using/not-using blocking on both QDA
and TC. Figure 12 plots the speed up of QDA over TC and
Figure 13 shows the percentage of resolves saved by using
QDA instead of TC. Note that when no blocking is applied,
all publications of an author are put in one block.

As expected, QDA outperforms TC according in both
comparison criteria, for all threshold values – even when
no blocking is applied. However, QDA’s performance with
blocking is better than its performance without blocking.
This is since blocking removes some edges from consider-
ation, thus causing the number of potential cliques which
satisfy t to decrease dramatically.

An interesting case is when t = 1 and thus all records sat-
isfy the query threshold. In that case, QDA without block-
ing is 1200 times faster than TC without blocking; whereas
QDA with blocking is 100 times faster than TC with block-
ing. This is because, for t = 1, QDA with blocking take com-
parable amount of time to QDA without blocking, whereas
TC with blocking is much faster than TC without blocking.

Experiment 5 (Edge Picking Strategy). Figure 14
studies the effectiveness of our edge-picking strategy. It com-
pares three different strategies in terms of their end-to-end
execution time and the number of calls to resolve: (1) our
greedy policy, which chooses edges with higher weights first,
(2) a random policy, which selects edges randomly, (3) an
enumeration policy that enumerates all minimal cliques and
chooses the edge involved in the maximum number of such
cliques. Since the third approach is computationally very
expensive, we had to conduct this test on a smaller dataset
of 177 papers, written by the same author, to make sure
that the test terminates in a reasonable amount of time.

As expected and shown in Figure 14, the third strategy
tends to be very competitive in terms of the number of re-
solves called, as it quickly reduces the edge-search space.
However, it is by far the worst strategy in terms of the

1856

end-to-end execution time. This is because enumerating all
minimal cliques is computationally very expensive. In other
words, this policy finds good edges, but it spends way too
much time to find them.

Thus, our proposed greedy policy surpasses all other tech-
niques: it not only finds good edges that are able to quickly
reduce the edge-search space, it also finds them very quickly.

7.3 Discussion
Here we summarize a few other interesting experiments;

their full versions are not included due to the page limit.
Analysis of QDA+(≥/ADD). QDA+ is a QDA approach
for TC+, instead of TC. TC+ is a version of TC which
treats MustSeparate softly. That is, when <(pi, pj) returns
MustSeparate, pi and pj are not merged at the moment due
to a lack of evidence supporting a merge, but clusters con-
taining pi and pj may be merged later due to transitivity.

Let us consider the performance of QDA+, by looking
at few cases. For the triple (cited ≥ 64, ADD, cited), the
percentage of resolves saved by QDA+ over TC+ is 46.4%
whereas QDA saves 69.46% of resolves over TC. For p : t ≥
128, the savings percentage for QDA+ is 30.07% while it is
65.04% for QDA. This lower achieved gain is expected, since
QDA can merge (or partition) the graph by exploiting the
yes/no edges, whereas QDA+ can only merge nodes.
Test of MAX semantics. This experiment tests the MAX

combine function for GTE queries. Note that this case is
trivial, as for all threshold values no node is labeled maybe.
That is, a node either satisfies t and hence is labeled in;
or does not satisfy t and thus is labeled out. There are no
two nodes which can be combined to change the result-set.
Thus, QDA answers such queries very efficiently, without
making a single call to resolve.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the Query-Driven Entity

Resolution problem in which data is cleaned “on-the-fly” in
the context of a query. We have developed a query-driven
entity resolution framework which efficiently issues the min-
imal number of cleaning steps solely needed to accurately
answer the given selection query. We formalized the prob-
lem of query-driven ER and showed empirically how certain
cleaning steps can be avoided based on the nature of the
query. This research opens several interesting directions for
future investigation. While selection queries (as studied in
this paper) are an important class of queries on their own,
developing QDA techniques for other types of queries (e.g.,
joins) is an interesting direction for future work. Another
direction is developing solutions for efficient maintenance of
a database state for subsequent querying.

9. ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CNS-

1118114, CNS-1059436, CNS-1063596. It is part of NSF
supported project Sherlock @ UCI [2]. Hotham Altwaijry
was supported by KACST’s Graduate Studies Scholarship.

10. REFERENCES
[1] http://ics.uci.edu/~haltwaij/QDA.pdf.
[2] http://sherlock.ics.uci.edu.

[3] http://cs.ucla.edu/~palsberg/h-number.html.

[4] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In VLDB,
pp. 586–597, 2002.

[5] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach
to entity resolution. VLDB J., pp. 255–276, 2008.

[6] I. Bhattacharya and L. Getoor. Query-time entity
resolution. JAIR, pp. 621–657, 2007.

[7] M. Bilenko, S. Basil, and M. Sahami. Adaptive product
normalization: Using online learning for record linkage in
comparison shopping. In DMKD, pp. 8–pp, 2005.

[8] S. Chen, D. V. Kalashnikov, and S. Mehrotra. Adaptive
graph- ical approach to entity resolution. In JCDL, pp.
204–213, 2007.

[9] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting
context analysis for combining multiple entity resolution
systems. In SIGMOD, pp. 207–218, 2009.

[10] W. W. Cohen, P. Ravikumar, S. E. Fienberg, et al. A
comparison of string distance metrics for name-matching
tasks. In IIWeb, pp. 73–78, 2003.

[11] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In SIGMOD,
pp. 85–96, 2005.

[12] E. Elmacioglu, M.-Y. Kan, D. Lee, and Y. Zhang. Web
based linkage. In WIDM, pp. 121–128, 2007.

[13] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate
record detection: A survey. In KDE, pp. 1-16, 2007.

[14] W. Fan, X. Jia, J. Lo, and S. Ma. Reasoning about record
matching rules. In VLDB, pp. 407-418, 2009.

[15] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
In JASA, pp. 1183-1210, 1969.

[16] M. Hernandez and S. Stolfo. The merge/purge problem for
large databases. In SIGMOD, pp. 127–138, 1995.

[17] T. Herzog, F. Scheuren, and W. Winkler. Data quality and
record linkage techniques. In Springer Verlag, 2007.

[18] E. Ioannou, W. Nejdl, C. Niederée, and Y. Velegrakis.
On-the-fly entity-aware query processing in the presence of
linkage. In VLDB End., pp. 429–438, 2010.

[19] M. Jaro. Advances in record-linkage methodology as
applied to matching the 1985 census of tampa, florida. In
JASA, pp. 414–420, 1989.

[20] D. V. Kalashnikov and S. Mehrotra. Domain-independent
data cleaning via analysis of entity-relationship graph. In
TODS, pp. 716–767, 2006.

[21] P. Kanani, A. McCallum, and C. Pal. Improving author
coreference by resource-bounded information gathering
from the web. In IJCAI, pp. 429–434, 2007.

[22] A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In SIGKDD, pp. 169–178, 2000.

[23] H. Newcombe, J. Kennedy, S. Axford, and A. James.
Automatic linkage of vital records. In Science, 1959.

[24] R. Nuray-Turan, D. V. Kalashnikov, and S. Mehrotra.
Exploiting web querying for web people search. TODS, pp.
7–pp, 2012.

[25] Y. Sismanis, L. Wang, A. Fuxman, P. J. Haas, and
B. Reinwald. Resolution-aware query answering for
business intelligence. In ICDE, pp. 976–987, 2009.

[26] W. Su, J. Wang, and F. H. Lochovsky. Record matching
over query results from multiple web databases. In KDE,
pp. 578–589, 2010.

[27] S. E. Whang and H. Garcia-Molina. Entity resolution with
evolving rules. In PVLDB, pp. 1326–1337, 2010.

[28] M. Yakout, A. K. Elmagarmid, H. Elmelegy, M. Ouzzani,
and A. Qi. Behavior based record linkage. In VLDB, pp.
439–448, 2010.

[29] L. Zhang, D. V. Kalashnikov, and S. Mehrotra. A unified
framework for context assisted face clustering. In ICMR,
pp. 9–16, 2013.

1857

http://ics.uci.edu/~haltwaij/QDA.pdf
http://sherlock.ics.uci.edu
http://cs.ucla.edu/~palsberg/h-number.html

	Introduction
	Related Work
	Motivating Example
	Notation and Problem Definition
	Standard Notation
	Approach-Specific Notation

	Vestigiality
	Triple (p,, a) Categorization
	Multi-Predicate Selection Queries
	Creating and Labeling the Graph
	Vestigiality Testing Using Cliques

	Query-Driven Solution
	Overview of The Approach
	Vestigiality Testing
	Computing Answer of Given Semantics
	Answer Correctness
	Discussion

	Experimental Evaluation
	Experimental Setup
	Experiments
	Discussion

	Conclusions and Future Work
	Acknowledgements
	References

