
Efficient Bulk Updates on Multiversion B-trees

Daniar Achakeev and Bernhard Seeger
Philipps-Universität Marburg

Marburg, Germany

{achakeye,seeger}@mathematik.uni-marburg.de

ABSTRACT
Partial persistent index structures support efficient access
to current and past versions of objects, while updates are
allowed on the current version. The Multiversion B-Tree
(MVBT) represents a partially persistent index-structure
with both, asymptotic worst-case performance and excellent
performance in real life applications. Updates are performed
tuple-by-tuple with the same asymptotic performance as for
standard B+trees. To the best of our knowledge, there is
no efficient algorithm for bulk loading and bulk update of
MVBT and other partially persistent index structures. In
this paper, we propose the first loading algorithm for MVBT
that meets the lower-bound of external sorting. In addition,
our approach is also applicable to bulk updates. This is
achieved by combining two basic technologies, weight balanc-
ing and buffer tree. Our extensive set of experiments confirm
the theoretical findings: Our loading algorithm runs consid-
erably faster than performing updates tuple-by-tuple.

1. INTRODUCTION
Undoubtedly, the importance of temporal data manage-

ment has grown in recent years. An efficient processing of
historical data enables a wide range of new real world appli-
cations, e.g. fraud detection and complex business analytics.
Organization of historical data is also of great importance
in science [26] and Web applications. The need for tempo-
ral database support has led to the development of so-called
transaction-time database systems offered by many commer-
cial vendors like Oracle [23], IBM [16], Teradata [2] and Mi-
crosoft [21].

Databases with transaction time support are character-
ized as follows: Firstly, they are continuously growing in size,
since updates of data items always preserve the old version,
while deletions are only logically performed. Because linear
scanning historical versions becomes extremely expensive (at
query time), there is an urgent demand for efficient tempo-
ral indexes. In addition to supporting (range) queries on
arbitrary old versions and ranges of versions, these indexes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

must have excellent update performance, in order to cope
with high volumes of continuously arriving updates. The
required update performance cannot be achieved by simply
applying updates one by one. Instead, updates have to be ap-
plied in bulk. Thus, an index on transaction-time databases
have to support bulk updates efficiently. For an initially
empty index, this problem is also termed bulk loading.

The problems of bulk updates and bulk loading have been
adequately addressed for B-trees. Unfortunately, traditional
B-trees are not appropriate for efficiently indexing transaction-
time databases. This has led to the development of many
temporal extensions for B-trees [25]. The multiversion B-
tree (MVBT) [8] is the first partially persistent index-stru-
cture with optimal worst-case guarantees for insertions, up-
dates, deletions and temporal key-range queries. However,
efficient algorithms for bulk loading and bulk updates are
available neither for the MVBT nor for other partially per-
sistent B-trees like e.g. the time-split B-tree [20, 21]. The
design of efficient bulk algorithms for partially persistent B-
trees is still challenging [20, 8].

In this paper, we address bulk update and bulk loading
problem of partially persistent B-trees. Without loss of gen-
erality, we discuss these algorithms in the context of the
MVBT. In contrast to previous results [9], we show that
the original buffer tree technique alone is not appropriate
for loading MVBTs. Updates have to be applied in a cer-
tain order, however, the buffer tree introduces too much
asynchrony within the loading process, leading to a serious
violation of the MVBT invariants. Here, we present the first
asymptotically optimal bulk loading algorithm that meets
the lower bound of external sorting. Our novel approach is
based on a sophisticated combination of the buffer tree [6]
and weight balancing technique [7]. Weight balancing is nec-
essary for controlling the degree of asynchrony. Our loading
algorithm is directly applicable to bulk updates on MVBTs
with only very little changes. The excellent performance of
our algorithms comes at the little price that the generated
index levels are different to the ones of the original counter-
part. However, all asymptotic performance guarantees of the
MVBT are still met. Because of the structural differences,
we decided to use the acronym MVBT+ for the resulting
partial persistent B-tree generated by our bulk loading or
bulk update algorithms. We summarize the contributions of
this paper as follows:

• This work presents the first asymptotically optimal
bulk loading algorithm for partially persistent index-
structures, e.g. MVBT. Bulk loading only requires the
same asymptotic I/O cost as external sorting, while all

1834



other performance guarantees of the original MVBT
are still maintained.

• We show that the loading algorithm can also be used
for efficient bulk updates on the MVBT.

• Our experiments show that our bulk algorithms are not
only of theoretical interest, but also of practical rele-
vance. Then our bulk algorithms provide substantial
performance improvements in comparison to applying
updates one by one (which is the standard method to-
day).

The remaining part of the paper is organized as follows:
In Section 2, we introduce a few preliminaries. We review
related work in Section 3 and discuss the MVBT in detail.
In Section 4, we outline the basic idea of our new bulk load-
ing algorithm. In addition, we show that it is impossible to
use the original buffer tree for loading the MVBT. In Sec-
tion 5, we present the details of our asymptotically optimal
bulk algorithms and introduce MVBT+. We outline the the-
oretical results on runtime in Section 5.3. In Section 6 we
briefly present our algorithm for bulk update. We discuss
our experimental result in Section 7. Section 8 concludes
the paper.

2. PRELIMINARIES
In this paper we tackle the problem of managing records

in a partially persistent file consisting of multiple versions.
A versioned record in the file is given by < k, ts, te, inf >
where k is a key. [ts, te) represents a version interval in
which the key is valid, and inf is the payload. A versioned
record is alive in the most recent version if its te field carries
the special character ”*”. Otherwise the versioned record is
dead. Versioned records can be depicted as intervals in a
two-dimensional space, consisting of a time dimension (X-
axis) and a key dimension (Y-axis). The i-th version of
the partially persistent file consists of all versioned records
< k, ts, te, inf > with i ∈ [ts, te). Update operations are
allowed only on the most recent version, but queries are
supported on any version. Whenever an update operation
(insert, delete) is posed, a new version now is created and
a new record with version interval [now, ∗) is inserted (in
case of insert) or a live record is deleted (in case of delete).
Note that a deletion corresponds to closing the interval of
a live entry by assigning now to the te field. An update
on a versioned record is simply a concatenation of insert
and delete (without incrementing the version number before
delete).

Due to the excellent worst case performance, a partial per-
sistent B-tree, e.g. MVBT [8], is used as underlying struc-
ture for supporting queries on arbitrary version and version
ranges [10]. The leaves of the MVBT consist of versioned
records. In addition, the version concept is also carried over
to the index entries, i.e., an index entry also comprises a
time interval [tsi, tei).

In the following, we consider the bulk loading and bulk
update problem for the MVBT. Let us consider a sequence
of input records ei =< k, inf, ops >, 1 ≤ i ≤ N , where
ops ∈ {insert, delete, update}. For i = 1, . . . , N , the oper-
ation of ei is performed on the most recent version of the
MVBT using tuple < k, inf > as input. For bulk loading
we assume the initial tree to be empty, while the tree al-
ready consists of N ′ live records for the bulk update problem.

Symbol Description

N ′ number of live records
N problem size (in number of operations)
Ni number of entries live at version i
M memory capacity
B block capacity
d minimal live entries per block

Table 1: Important notations

These problems differ from the equivalent ones on ephemeral
indexes, e.g. B-tree and R-trees, in the sense that the partial
persistent semantics requires a strict ordering of the update
operations. In fact, this renders a direct application of tra-
ditional loading techniques impossible.

We use the classical I/O model proposed in [1], where stor-
age is partitioned into pages of fixed size. B is the maximum
number of records per page and M denotes the available
memory (in terms of records). Our problem in this paper
are discussed for a centralized setting. An extension to a
distributed setting is possible for the loading problem by
splitting the input in the time dimension into partitions us-
ing optimal splitters [18] and building up a MVBT for each
partition in parallel.

For the MVBT we use the following notation: N is the
number of updates, Ni denotes the number of records live
at version i. Parameter d ∈ Θ(B) denotes the minimum
number of live records in a page. We count tree levels
l = 0, 1, . . . , bottom up starting from the leaf level. Our
notations are summarized in Table 1.

3. RELATED WORK
In this section, we review the problems related to partial-

persistence, corresponding index structures, as well as their
methods for bulk-loading und bulk-updates. In one subsec-
tion, we discuss in detail MVBT that serves as the target
index for our bulk loading and bulk update techniques.

Partial persistence is a well-known concept in algorithm
design [11] and computational geometry [13, 5]. In the field
of databases, the problem of partial persistence is better
known as versioning, transaction-time and system-time [17].
Many commercial vendors like Oracle [23], IBM [16], Tera-
data [2] and Microsoft [21] have developed systems for tran-
saction-time support. Versioning is also an integral part of
key-value stores [3]. Recently, versioning has also played a
key role in developing robust transactional file systems [24].
Event processing system can take benefit from storing tem-
poral data in event stores [12, 15].

In order to support (range) queries for old versions with
the same query performance as an ordinary B+tree on these
versions, special partially persistent B-trees have been pro-
posed [20, 8, 5, 28, 21, 30]. An excellent survey is given
by Salzberg and Tsotras [25]. The MVBT has been the
first partial persistent B-tree with asymptotically optimal
performance. MVBT and other partial persistent B-trees
have significantly influenced index design for moving object
databases [27, 14]. However, the problem of bulk loading
and bulk updates have not been addressed in these papers.

To the best of our knowledge, the first approach to bulk
loading a partial persistent B-tree has been proposed by
Goodrich et al. [13]. They built a persistent B-tree with

1835



branching degree
√

M
B

in I/O complexity of external sort-

ing to solve a geometric off-line problem. Our problem dif-
fers in that we address the loading of an online persistent
B-tree with branching degree B, a problem that is so far
unsolved [13]. Bulk loading of the MVBT was already ad-
dressed by Bercken et al. [9]. The authors used a generic
buffer tree framework [4, 9, 6]. Although this approach is
applicable to loading R-trees, loading of MVBT is only pos-
sible for insertions only. For mixed workloads consisting of
insertions, deletions and updates, this approach cannot be
used. We will show major problems of this approach in Sec-
tion 4. Our new loading algorithm is applicable to arbitrary
workloads while all asymptotic performance guarantees of
the MVBT are fully maintained.

An interesting loading algorithm for R-trees is presented
in [6], using the buffer-tree framework. This algorithm loads
the leaf level and index levels simultaneously. The advantage
is that this approach is not limited to bulk loading only, but
also suitable for bulk update. Unfortunately, the loading ap-
proach cannot be used for partially persistent B-trees. How-
ever, our new bulk loading algorithm also loads all levels
simultaneously. Therefore, our loading algorithm can also
be used for bulk updates as well, with very little changes.

Recently, Zhang et al. [30] presented a memory optimized
tuple-by-tuple on-line loading algorithm for the HV-tree, an
advanced version of the Time-Split B-tree (TSBT) [21]. The
primary goal was to provide fast access to recent data in
memory and to move old data efficiently to secondary stor-
age. In contrast to our problem, the HV-tree assumes that
all live nodes can be kept in memory. This assumption is not
always valid, as the size of databases can still be larger than
the available main memory. As a consequence, no worst-case
performance guarantees are given. In addition, the loading
algorithm still relies on executing one update at a time, while
our approach achieves substantial higher improvements of
the bulk update time from processing updates in batches.

Due to the continuously growing size of a versioned data-
base, distributing this data among multiple nodes is becom-
ing more and more important. In [18], a new method is
presented for determining splitters for a set of versioned
records (represented as intervals in a two-dimensional space).
This method could be easily combined with our loading al-
gorithms to obtain a distributed loading technique. In this
paper, however, we focus on the centralized case and leave
a detailed discussion on distributed techniques for future
work.

3.1 MVBT
MVBT (multiversion B-tree) is an asymptotically opti-

mal partial persistent B+tree. It has O(N) space complex-
ity and supports (key range) queries at version i with the
same asymptotic complexity as an ordinary B+tree that
only stores the i-th version. I/O time for the i-th update
is O(logB Ni). Loading of MVBT is performed update by
update and requires O(N logB N) I/Os in the worst case.
MVBT is actually a direct acyclic graph (DAG), providing
a condensed physical representation of N B+trees (one for
each version) [8]. As proposed by Discroll et al. [11], MVBT
stores pointers to historical roots in a separate (B+tree)
termed root*. The DAG and root∗ of a MVBT are illus-
trated in Figure 1.

The asymptotic bounds on query and update time are
achieved by preserving the so-called weak-version condition:

Figure 1: MVBT structure.

A linear fraction of the capacity d = B
4

in a live node is

reserved for live data. The remaining portion 3B
4

can be
used for historical (dead) entries. For the sake of simplicity,
we use these specific settings throughout the paper without
loss of generality. We refer to [8] for a detailed discussion on
parameter settings.

Reorganization of a live node is triggered if there are not
enough live entries in the node (i.e., the weak version condi-
tion is violated) or the physical capacity B is exceeded. In
order to use only linear space, the so-called strong-version
condition has to be satisfied: the number of live entries is
to be between 3B

8
and 7B

8
for nodes that just have been in-

volved in a reorganization. Therefore, such a node accepts
at least Θ(B) updates (insertions, deletions) until its next
reorganization will be triggered.

We discuss the specific reorganization operations of MVBT
using the four two-dimensional partitionings of the time-key
space shown in Figure 2. Each (leaf) node of MVBT cor-
responds to a rectilinear rectangle. Intervals represent the
versioned records; black and red ones refer to dead and life
entries, respectively. We assume that an update at version ti
triggers a reorganization. Reorganization of a node always
starts with a time split where live entries at version ti are
copied from node v to a new live node vl (see left upper plot
in Figure 2). If the strong version condition is violated for
vl, additional reorganization steps are triggered. If vl has
more than 7B

8
live entries, a key-split is first performed, see

right upper plot in Figure 2. Similar to a split in a B+tree,
entries are evenly distributed among two nodes using a split
value from the key dimension. If vl contains less than 3B

8
live entries, a merge with a live sibling node vn is triggered.
After a time split on vn, live entries from vn are inserted into
vl, as seen in the left lower plot of Figure 2. If the number of
live entries in vl is greater than 7B

8
, an additional key-split

has to be performed on vl. This is illustrated in the right
lower plot of Figure 2. Thus, the two new live nodes sat-
isfy the strong-version condition. Hereafter we use the term
node reorganization to refer to time split, merge or key-split.
Note that at most two new nodes can be created during one
reorganization.

Algorithm 1 describes the insert procedure of MVBT given
a record e =< k, inf > at time ts. The path to a live leaf
node is computed in lines 1-4. In each level chooseSubTree
searches for the matching live index entry using key k. Af-
terwards, the versioned record is inserted in the leaf node. If
either the weak version condition or the capacity constraint
is violated, a reorganization of the leaf node will be triggered
(lines 5-7).

Index entries of new live nodes are inserted in the parent
node (lines 8-18). If the live root is reorganized, a new live
root is created (lines 10 - 15) and a corresponding index en-
try is inserted in root∗. In case of an additional key-split,
the height of the live MVBT tree increases (lines 12-13).

1836



Figure 2: MVBT node reorganization operations

Otherwise, the height remains the same and the live root
is replaced by its temporal successor (line 14-15). In order
to support efficient key-range queries over a given time in-
terval, a leaf is linked with its predecessor(s), see line 7 in
Algorithm 1. Every leaf manages up to two backward point-
ers to its temporal predecessor(s). This allows to start the
processing at the right border of the search rectangle and
to traverse backwards through the leaf level. The details for
query processing are given in [10].

Algorithm 1: Insert

Input: Entry e, Time Stamp ts
1 cR ← root;
2 while cR does not point to leaf do
3 node ← GetNode (cR) and push node in Path;
4 cR ← ChooseSubTree (node, e, ts)//search live

index entry;

5 InsertLeaf ( leaf ← GetNode (cR) , e, ts);
6 idx[]← SplitNode ( leaf, ts)// perform reorganization

if needed, if merge or merge-key-split find neighbor;
7 link created successor nodes with leaf;
8 while idx[] is not null do
9 get parent node, logically delete cR, parent ← pop

Path;
10 if parent is null then
11 store cR as historical root ;
12 if was key-split then
13 create new root node and insert new live

successors idx[] in it;

14 else
15 replace root with new created live successor;

16 else
17 insert new live successors idx[] in parent;
18 idx[]← SplitNode ( ParentNode, ts);

4. BASIC IDEAS OF BULK LOADING
In this section, we outline our approach to bulk load-

ing a partial persistent B-tree, which is closely related to
MVBT. Our goal is to provide a loading solution that re-
quires O(N

B
log M

B

N
B

) I/Os. In fact, this is the lower bound

for loading because external sorting and loading of ordinary
B-trees cannot be faster.

Figure 3: Buffer Tree by Arge et al.

In order to design an efficient loading algorithm, we use
two techniques in combination with the MVBT. The one is
the buffer tree technique [6] and the other is weight balanc-
ing [7]. We call this MVBT extension MVBT+ because it
maintains the worst-case performance properties of MVBT
and additionally supports efficient loading in asymptotically
optimal number of I/Os. Each of these two techniques con-
tributes to the efficiency of MVBT+:

1. The buffer tree yields the same I/O time as external
sorting. The key idea of this technique is to transport
data in batches between levels. Figure 3 shows the
general buffer tree architecture with buffers attached
to subtree roots.

2. Weight balancing controls the synchrony of buffer emp-
tying processes. It guarantees that the MVBT+ still
maintains the MVBT invariants without giving up its
worst-case performance.

The buffer tree attaches buffers to the nodes on each
i ·

⌊
logB/4

M
16B

⌋
with i = 1, 2, . . .Θ( logB N/B

logB/4 M/16B
) level, see

Figure 3. The buffer size is limited to M
2B

pages. This allows

to keep all live nodes of a sub-tree of height logB/4
M
16B

in

memory using at most M
2B

I/O. In Section 5.2 we explain the
choice of these parameters in detail. We use the following
terminology hereafter: a leaf (node) is the node on level 0,
an index node is on level l > 0, a buffer node is the node on

levels i ·
⌊
logB/4

M
16B

⌋
with i = 1, . . .. A buffer is associated

to a buffer node.

4.1 The Problems of Buffer Trees
In the following, we show that is not sufficient to use

the buffer tree only for loading a MVBT. In fact, synchro-
nization of buffer emptying is required; As reorganizations
within the MVBT are temporally ordered according to the
time stamps of the updates. If the buffers are emptied only
after they are filled completely, some subtrees will evolve
uncontrolled in time. Moreover, the node reorganizations
of the child nodes can force the parent node also to evolve
in time. This becomes a serious problem when other child
nodes still contain historical data in their buffers. When
these buffers are emptied later in time, the parent node as
well as siblings could already be dead. As a consequence,
an insertion of their index entries in the parent node is not
allowed, and a required merge with a sibling is impossible.
In both cases, the MVBT invariants are violated.

The first problem termed parent-child problem is illus-
trated in Figure 4. Initially, there are one parent node p
and two child nodes u and v. A time-split of u also leads to

1837



a split of parent p. The new parent node p′ is created with
time interval [t8, ∗), while its child v is already vaild at time
t2. Later the buffer emptying of node v creates two nodes v′

and v′′. The time interval of v′ is [t4, t6) which does not fit
to the time interval of parent node p′. Therefore, it would
be required to insert an index entry (referring to v′) into the
dead node p. However, an insertion into a dead node is not
allowed for MVBT.

Figure 4: Parent-Child problem

The second problem termed sibling problem is illustrated
in Figure 5. Initially, there are one parent p and two child
nodes u and v. Further, node u is a key sibling of v. Node
u evolves much faster than its sibling v. This causes a time-
split at t10 and a new node u′ is created with a time interval
[t10, ∗). Later in time, the buffer of node v is emptied. Due
to the historical data in the buffer, a time split is performed
at time t3. Therefore, the interval of v is closed and a new
node v′ with a time interval [t3, ∗) is created. Because v′

contains less than 3B
8

records, a merge is triggered with a
node that is alive at t3. This would be the key sibling node
u, but u is already dead. However, a merge with a dead
node is not allowed for the MVBT.

Figure 5: Sibling problem

4.2 A Case for Weight Balancing
In order to avoid the parent-child problem and the sibling

problem, we applied the weight balancing technique [7]. The
idea is to prevent these problems even without knowing the
precise closing time of an entry time interval. Instead, we
introduce a so-called safe interval where the closing time is
estimated by the lower-bound of the number of operations
required until the next reorganization will happen. Only if
there is no overlap among two safe intervals (belonging either
to siblings or to a parent and child), an additional reorgani-
zation step will be triggered. The larger the safe intervals,
fewer of these forced reorganizations are necessary. Similar

to B-tree, MVBT requires only Θ(B) operations to trigger
the next reorganization after the last was performed. Un-
fortunately, this causes very short safe intervals and many
forced reorganization steps. In contrast, weight balancing
allows much more operations until the next reorganization
step has to be triggered. More precisely, the number of op-
erations is asymptotically equal to the number of records
in the associated subtree. This leads to very long safe in-
tervals and a very low probability that there is no overlap
among safe intervals. Moreover, when a buffer of a subtree
has to be emptied and the time interval of the associated
entry moves to the future, the safe interval of the sibling is
forced to overlap. If necessary, the buffer of the sibling has
to be emptied first.

Similar to [7], weight information has to be maintained for
each node. However, we use two different weight counters
for a node v. The live weight w(v) tracks the live records
in the associated subtree (including its root buffer), whereas
the operation weight t(v) tracks the number of update and
insert operations. The live weight is used to preserve the
MVBT invariants, e.g. weak version condition. The opera-
tion weight t(v) allows to estimate the closing time of the
safe interval.

Both weights capture the temporal progress of a node.
We constrain the ratio of node weights on the same level
by a constant. With each level the weights w(v) and t(v)
increase exponentially. Further, at least O(w(v)) operations
are needed to reorganize node v on level l again.

Weight balancing requires a weight information attributed
to each node and maintained during the loading process.
This results in the following modifications of the original
buffer tree emptying process:

• Weight information is updated during buffer emptying
process.

• Buffer emptying is triggered either if the buffer is full
or the weight conditions of the node are violated.

• Buffer emptying is forced if the node safe intervals do
not overlap. However, as we apply weight balancing,
I/O costs will not asymptotically increase.

• Node reorganization is performed in a top-down man-
ner only. By this, the new entries can be stored in
the parent node without causing any overflow again.
This facilitates the implementation of the buffer tree
(in comparison to its original counterpart).

Due to this top-down node reorganizations and emptying
of buffers, we avoid parent-child problem and the sibling
problem. As a consequence, the loading time of our approach
is asymptotically optimal. The details are given in the next
section.

5. BULK LOADING DETAILS
In this section we explain our MVBT+ bulk loading meth-

ods. We first discuss the loading process using three pro-
cedures Bulkload, ClearBuffer and PushDownEntry (see Al-
gorithms 2, 3 and 4). We also discuss how to apply the
weight-balancing technique to loading. The main theorem
proof is outlined at the end of the section.

1838



Algorithm 2: Bulkload

Input: InputData
1 initialize S, rootBuffer, root points to first leaf node;
2 foreach Entry e in InputData do
3 if rootBuffer size ≥ M

4
then

4 for i = 1 to M
4

do
5 PushDownEntry (dequeue entry, root, null, S,

ts(entry));

6 foreach idx in S do ClearBuffer (idx) ;

7 append e to rootBuffer;

8 ClearAllBuffers ();

5.1 Buffer Tree Loading
Loading starts at the root of a tree (see Algorithm 2).

Data is pushed towards the leaf nodes in batches if either
the root buffer is full or a node weight condition is violated.
MVBT+ points to a buffer of the current live root (see line 1).
The batch size is M

4
(see line 3). Buffer nodes pointers with

buffer sizes greater than M
4

are stored in stack S. Buffers of
the buffer nodes stored in S are emptied right after the root
buffer. Finally, function ClearAllBuffers (line 10) is called to
empty the buffers of all buffer nodes in breadth-first manner
(level-by-level).

For the M
4

entries of the root buffer PushDownEntry is
called, see Algorithm 3. This function has the following
parameters: record to be inserted, root entry of the sub-
tree, its parent node and the pointer to stack S. It routes
the entries to the next buffer nodes or leaf nodes using the
original MVBT routing algorithm (see line 25). Routing

through
⌊
logB/4

M
16B

⌋
levels of the subtree is done in mem-

ory. Note that we consider only live index nodes for routing.
In Lemma 2, we show that the live nodes of a subtree of
height log B

4

M
16B

always fit in memory.

We also update weight information of the nodes in line
16 of Algorithm 3. The weight information is recorded in
the corresponding index entries. Moreover, buffer nodes are
pushed into S if the size of their buffer is greater than M

4
(see lines 17-18).

Before we route a record one level down, the weight con-
ditions of the node are checked (see line 2, Algorithm 3). If
the conditions are violated, node reorganization is triggered
(merge, time-split, key-split or merge-key-split). For buffer
nodes, we empty their buffers first, since we need to enforce
an overlap of the safe intervals. This ensures that there is
no entry in the buffer with a time stamp smaller than that
of the entry to be inserted. Otherwise, some records could
lie outside the lower interval boundaries.

Thereafter, the node is reorganized in a top-down fashion
(see call SplitNode, line 9, Algorithm 3). For the routing,
only the live part of a tree is considered. Logically deleted
nodes are released from memory. Index entries of the newly
created nodes are posted to the parent node ( see function
ExpandParent). It is crucial for our algorithm that this func-
tion does not trigger recursive parent splits towards the root
node due to weight balancing. If we perform a key-split or a
merge-key-split, we adjust the node pointer according to the
key of the entry (line 10, Algorithm 3). The root node split
is handled in line 12 of Algorithm 3 similar to Algorithm 1
lines 10-15.

Algorithm 3: PushDownEntry

Input: Record e, Index Entry idx, Parent Node vp,
Stack S, Time Stamp ts

1 cR ← idx ;
2 if cR violates weight condition then
3 splitType ← ComputeSplitType () ;
4 if cR is not root and has buffer then
5 remove cR from S and ClearBuffer (cR) ;
6 if splitType is merge or merge-key-split then
7 nR ← find neighbor of cR;
8 remove nR from S and ClearBuffer (nR);

9 idx[]← SplitNode ( v ←GetNode (cR) , vp, ts,
splitType) ;

10 if splitType is key-split then
11 reassign cR depending on key split ;

12 if vp is null then
13 new root node handling . . . // see Algorithm 1

lines 10-15 ;

14 else
15 ExpandParent (idx[]);

16 UpdateWeight (cR);

17 if cR has buffer and buffer size ≥ M
4

and not yet in S
then

18 push cR in S ;

19 if cR is not root and has buffer then
20 Enqueue (e, buffer of cR) ;
21 return;

22 if cR points to leaf node then
23 load leaf node and insert entry e into leaf node;
24 return;

25 v ←GetNode (cR) and cR ← ChooseSubTree (v, e) ;
26 PushDownEntry (e, cR, v, S) //recursive call ;

The procedure ClearBuffer (see Algorithm 4) is executed
if either one of the following cases occur. 1. the buffer has
more than M/4 records. 2. the buffer node has to be reor-
ganized (e.g. due to weight violation) or 3. the procedure
ClearAllBuffers is executed (see line 8, Algorithm 2, lines
4-8 Algorithm 3). In case of 2 or 3, buffers are emptied
completely. We push records in two batches of maximal size
M/4. After processing each batch, we clear all child buffers
with more than M/4 (see line 8 and 13, Algorithm 4). In ad-
dition, buffers belonging to the lowest buffer nodes are also
completely emptied (even if they contain more than M/4
records). In all other cases, only the first M/4 records of a
buffer are pushed down to the next buffer node. By this, we
ensure that no buffer will have more than M/2 records and
we avoid cascading buffer emptying processes [6].

5.2 Weight Balancing
Recall that we use two weight counters to track the tem-

poral progress of a node v. Live weight w(v) is used for live
records. t(v) tracks the number of update and insert records
pushed to a node v (or to its buffer) on level l since its cre-
ation. We need this weight counter to properly estimate the
safe interval as execution of the update operation (logical
delete followed by insert) on a leaf node does not change the
number of live entries.

1839



Algorithm 4: ClearBuffer

Input: Index Entry idx
1 buffer ← load buffer of idx ;
2 v ← load the node of idx ;
3 initialize S;

4 for i = 1 to min(M
4

, buffer size) do
5 e← Dequeue (buffer) ;
6 cRoot ← ChooseSubTree (v, e ) ;
7 PushDownEntry (e, cRoot, v, S, ts(e)) ;

8 foreach i in S do ClearBuffer (i) ;

9 if idx has weight violation or level ==
⌊
log B

4
M/16B

⌋
or ClearAllBuffers then

10 foreach e in buffer do
11 cRoot ← ChooseSubTree (v, e) ;
12 PushDownEntry (e, cRoot, v, S, ts(e)) ;

13 foreach i in S do ClearBuffer (i) ;

The original index entries of MVBT are extended with
two weight counters, w and t. MVBT+ maintains w and t
for each live node in its associated live index entry. Both
counters are updated in a top-down fashion (see Algorithm
3 line 21). Every time a record is passed one level down, we
update the node weight information as follows:

w(v) =

 w(v) + 1 if insert
w(v)− 1 if delete
w(v) if update

t(v) =

 t(v) + 1 if insert
t(v) if delete
t(v) + 1 if update

Recall that the original MVBT triggers time splits and
further reorganizations like merges or key-splits only with
respect to the number of physical entries. This occurs if a
node has not enough live entries or the physical bound is
achieved (see Section 3.1). We carry over the same idea to
weight balancing. Thus, we limit live and operation weights
w(v) and t(v) (length of safe interval) for each node. The
allowed ranges exponentially increase with each level. The
ratio of the minimal and the maximal value of w(v) and t(v)
for level l is a constant.

We adapt weight balancing as follows: the branching fac-
tor a is set to a = B

4
. The valid live weight of node v on

level l is between:

live-condition: al · B
4
≤ w(v) ≤ al ·B (1)

The valid operation weight t(v) of the node v on level l is
between:

operation-condition: w(v) ≤ t(v) ≤ al ·B (2)

Immediately after node reorganization, the live weight and
operation weight of the newly created node should fulfill the
following Strong-weight-condition: (see Table 2):

al · 3B

8
≤ w(v) ≤ t(v) ≤ al · 7B

8
(3)

Setting Description

a = B
4

branching factor
al · B

4
≤ w(v) ≤ al ·B valid live weight

w(t) ≤ t(v) ≤ al ·B valid operation weight
al · 3B

8
≤ w(v) ≤ t(v) ≤ al · 7B

8
strong weight condition

i ·
⌊
log B

4

M
16B

⌋
, i= 1, . . . buffer levels

M
2

maximal buffer capacity

Table 2: MVBT+ settings

Node reorganization is triggered in two cases: if either

w(v) ≤ al · B
4

or

t(v) ≥ al ·B

These two conditions are checked in line 2 of Algorithm
3. In line 9 of the algorithm function SplitNode is called. It
runs the node reorganization and logically deletes the cur-
rent index entry in the parent node. Each reorganization of
node v on level l starts with a time split. It creates a new
node vt and copies live entries into vt.

The new live weight w(vt) and operation weight t(vt) are
set to value of w(v). If w(vt) violates strong-weight-condition
(see Condition 3) one of the following operations are exe-
cuted: merge, key-split and merge-key-split (see Table 3).
In case of a merge, the live weight wn of siblings have to be
considered to choose the type of reorganization (see Table
3). We release the dead node from memory and use the free
space for a new live node. In case of a merge operation we
update w(vt) and t(vt) as follows w(vt) ← w(vt) + wn and
t(vt)← t(vt) + wn.

The original key-split and merge-key-split of MVBT are
also adapted to weight balancing. Key-splits on leaf nodes
are identical to MVBT key-splits. This is different for index
nodes. For these nodes, we iterate over the sequence of index
entries and sum up their weights until the sum is at least
equal to ( 1

2
· al · 7B

8
) ( 1

2
of the upper bound of strong-weight-

condition). Then, we split at the child entry where the it-
eration stopped. Afterwards, we adjust the weight counters
of the created nodes. Since the maximal weight of this child
is limited by al−1B, we find an almost balanced split. The
branching factor a should be greater than 16. This follows
from the following inequality [7, 8]:

1

2
· (al 7B

8
)− al−1B ≥ al 3B

8
(4)

Hence, this inequality ensures that a balanced split can be
always found.

The lower bound of the live weight is al B
4

. This en-
sures that after merging, the live weight of a new node
is always greater than the lower bound of strong-weight-
condition (since 2 · al B

4
≥ al 3B

8
). The weight constraints

and our reorganization operations guarantee that a mini-

mum of alB
8

operations (inserts, deletes, updates) have to
occur before node v on level l is reorganized again.

In line 15 of Algorithm 3, the newly created index entries
are posted to the parent node (function call ExpandParent).
Recall again that the insertions of these new entries do not
cause a split of the parent node. Let us sum important

1840



w t wn neighbor live weight Operation

al( 3B
8

) < w < al( 7B
8

) t ≥ alB time-split
w ≥ al( 7B

8
) t ≥ alB key-split

w ≤ al( 3B
8

) t ≥ alB wn + w < al( 7B
8

) merge
w ≤ al( 3B

8
) t ≥ alB wn + w ≥ al( 7B

8
) merge-key-split

w ≤ al(B
4

) t < alB wn + w < al( 7B
8

) merge
w ≤ al(B

4
) t < alB wn + w ≥ al( 7B

8
) merge-key-split

Table 3: MVBT+ node reorganization conditions

properties in the following lemata; their proofs can be found
in the appendix.

Lemma 1. For a = B
4

, the number of entries in a MVBT+

node is at most 6B = Θ(B).

According to Lemma 1, index nodes can occupy up to 6
pages in worst case. These pages are simply organized as
a linked list. The function ExpandParent lazily appends
new pages to the index node in at most constant time. At
first glance, this seems to affect the practical performance
of the loading algorithm. However, we did not observe this
worst case of 6 pages in our experiments. In only one of our
experiments we observed a list of two pages. In all other
cases, the index node corresponds to one physical page.

Lemma 2. The number of live entries in the node on level
l > 0 of MVBT+ is between B

16
and B. The number of live

nodes in a subtree of height
⌊
logB/4

M
16B

⌋
is bounded by M

2B
.

Lemma 2 ensures that the live part of a subtree fits always in
memory, since for the routing only live nodes are considered.

This explains also the choice of height
⌊
logB/4

M
16B

⌋
for the

buffer-tree configuration.
Before a node reorganization is executed, we check if the

node has a buffer (see lines 4-8 in Algorithm 3). The buffer
of the buffer nodes is emptied if the weight condition of the
node is violated. The maximum number of entries in the
buffer is limited to M

2
. We call the ClearBuffer function and

if the node should be merged we call also this function for
a neighbor node. Buffers are always emptied before node
reorganization to enforce an overlap of safe intervals (we
synchronize nodes according to the time dimension). This
operation must not happen frequently, since stopping the
process and buffer emptying have worst case O(M/B) I/O
costs per buffer level. At least after each Θ(M) operation,
a weight violation on the buffer nodes occurs.

Lemma 3. MVBT+ nodes on level i ·
⌊
logB/4

M
16B

⌋
with

i = 1, . . . are reorganized again after at least Θ(M) opera-
tions (insertions, deletions, updates).

After the buffer is emptied completely, we continue with
node reorganization. Finally, we assign a new buffer to a
live node and drop buffers of temporal predecessors.

MVBT+ has the same asymptotic I/O bounds on update
and space as a MVBT loaded by tuple-by-tuple method.
The following lemma holds for MVBT+.

Lemma 4. The MVBT+ height loaded with N records is
O(logB N) and its space is O(N).

5.3 Outline Runtime
In this section, we outline the proof of the following theo-

rem:

Theorem 1. The cost for loading N records in an initially
empty MVBT+ is O(N

B
log M

B

N
B

) I/Os.

First, we consider the costs of emptying buffer of node v on

level l = i·
⌊
logB/4

M
16B

⌋
and the node reorganization. There-

after, we discuss the emptying of all buffers after insertions
of N records (see function ClearAllBuffers in Algorithm 2).
Records are pushed down in batches of size M

4
towards leafs

starting from the root node. We consider two cases of buffer
emptying, caused either by buffer overflow or by the node
weight violation.

Buffer-Overflow : I/O costs of loading a subtree of height⌊
logB/4

M
16B

⌋
in memory is O(M/2B) I/Os (see Lemma 2).

The overall split costs are limited by O(M/B) I/O between
two buffer levels, since the weight of the subtree root is
not violated (see Lemma 2). Thus, M

4
entries routed one

level down causing O(M
B

) I/Os. The I/O cost per entry is

O( 1
B

). Entries pass O(logB N/B) nodes before they are in-
serted in the leaf nodes. Yet, we pay I/Os only on each

l = i
⌊
· logB/4

M
16B

⌋
level. Thus, the overall I/O cost per

entry is O( 1
B
· logB/4 Ni/B

logB
4

M
16B

) = O( 1
B
· log M

B
N/B).

Weight-Violation: Reorganization of a buffer node stops
the buffer emptying process and triggers up to two buffer
emptying processes. In case of merge or merge-key-split we
also empty the buffer of the sibling node. In the worst case,
we write dirty subtree nodes to the disk using at most O( M

2B
)

I/Os (see Lemma 2). The buffers of both nodes contains
up to M

2
entries each, since we push data in portions of M

4

records. For emptying both buffers we pay up to O(M
B

) I/Os.

Total I/O costs are bounded by O(M
B

). In worst case, we
pay O(M/B) I/O for buffer node reorganization after each
Θ(M) operations (see Lemma 3). The total worst case costs
of lower buffer nodes splits are O(N/B). The costs for all re-

main buffer levels are: N ·
∑O(logM/B N/B)

i=1

O(M
B

)

(B
4
)
i·logB/4 M/16B ·B

8

≤ O(N
B

logM/B
N
B

).

Thus, after insertion of N entries in an empty MVBT+

we pay O(N
B

log M
B

N
B

) for emptying full buffers and buffer

node reorganizations.
Finally, we show that the emptying of all buffers after in-

sertion of N operation entries is bounded by O(N
B

log M
B

N
B

)

I/Os. As shown above, costs for emptying full buffers and for
emptying due to weight violation is bounded by O(N

B
log M

B

N
B

)

I/Os. The costs of emptying the remaining non-full buffers
is bounded by O(N/B). Since the lowest buffer node level is

1841



l =
⌊
log B

4
M/16B

⌋
, the number of buffer nodes after inser-

tion of N operation entries is limited by O(N
B
/(M/B)). The

worst-case-cost of the buffer emptying process is O(M/B).
Therefore, on each O(N

B
/(M/B)) we pay O(M/B) I/O re-

sulting the O(N/B) bound. Combining this result with
buffer emptying caused by buffer overflow and weight vio-
lations before ClearAllBuffers yields the desired asymptotic
bounds.

6. BULK UPDATE
In this section, we briefly describe how to insert a sequence

of records efficiently into a non-empty MVBT+ whose buffers
are entirely empty. To implement a bulk update, we follow
the ideas presented in [6] with a minor modification of algo-
rithm 2: we use the current live root and its buffer instead
of a pointer to an empty leaf node. Bulk update appends
records to a current root buffer and if applicable pushes en-
tries towards leaf nodes. We call function ClearAllBuffers
by the end of procedure. Since we load records into existing
MVBT+, the records are routed only through the live nodes.
By this, we obtain the following I/O cost for a bulk update:

Theorem 2. The cost for a bulk update of N records on
an existing MVBT+ with N ′ live records and empty buffers

is O(N
B

log M
B

N+N′

B
+ N′

B
) I/Os.

Analogous to the proof of Theorem 1, we obtain the I/O
bound.

7. EXPERIMENTS
In this section, we report the main results of our algo-

rithms for bulk loading and bulk update. We discuss the
MVBT+ and MVBT query performance and compare the
results to those of a bulk-loaded R-trees.

7.1 Workload Generation
Workloads used in our experiments are designed similarly

to other experimental studies with versioned databases [21,
22, 30]. We consider two different types of workloads: one
for index loading and the other for queries. We investigate
I/O loading performance and space utilization as a function
of number of update and delete operations.

Our loading workload consists of six files: d50, u0, u25,
u50, u75, u100. Each of them contains 10′000′000 opera-
tions. Larger workloads were not considered, because the
experiments for tuple by tuple loading took already almost
two days.

For all data sets, the first 1′000′000 operations are inser-
tions (10% of the data set). The remaining 90% of the
file consists of a mix of insertions, deletions and updates.
Data sets are named after these specific operations. For ex-
ample the file d50 consists of 1′000′000 insertions followed
by a mix of insertions (4′500′000) and deletions (4′500′000).
File u75 consists of 1′000′000 initial insertions followed by
a mix of insertions (2′250′000) and updates (6′750′000). In-
serted record keys are obtained from a permutation of 1, ..., k,
where k denotes the total number of insertions in the par-
ticular workload. Deletions and updates randomly select
one from all live records. In the following, we use the term
update to refer to all of these operations.

For each file from the loading workload we consider three
query files qr1, qr2, qr3. Each query file contains two-dimen-
sional range queries (key range and time range) of the same

MVBT+ MVBT-LRU
B leaf B index B leaf B index

4KB 97 97 97 121
8KB 197 197 197 245
16KB 397 397 397 493

Table 4: Node capacity

absolute selectivity. qr1 consist of 10′000 queries with 100
answers. qr2 consists of 1′000 queries with 1′000 answers
and qr3 contains 1′000 queries with 10′000 answers. Queries
are uniformly distributed in the two-dimensional space.

7.2 Experimental Setup
All algorithms are implemented in Java using the XXL

library [29]. MVBT+ is implemented on top of the existing
MVBT by associating two additional weight counters w and
t to an index entry.

We conducted our experiments on a system running Win-
dows 7 equipped with an Intel I7 CPU, 8GB of main memory,
a magnetic disk (WD Caviar Black 1002FAEX, 1TB) and a
SSD (Corsair Force 3 SSD, 120 GB). To avoid an impact of
the operating system on our experiments, we used only the
raw device interface.

We ran our experiments with pages of different sizes: 4KB,
8KB and 16KB. Table 4 reports the page capacities in the
number of tuples. Each page contains header information
that occupies 102 bytes (like the level, number of entries, and
pointers to temporal predecessors). The size of a versioned
record in a leaf occupies 41 bytes (17 bytes for the time
interval, 8 bytes for the key and 16 bytes for the payload).
The size of an MVBT index entry is 33 bytes (8 bytes for
the node pointer, 8 bytes for the key, 17 bytes for a time
interval), whereas the size of a MVBT+ index entry is 41
bytes (because of the additional weight counters w and t).

The available main memory varied from 0.8 MB up to 16
MB. These numbers sound very small, however the size of
the memory has only a marginal impact (base in the log-
factor) on the loading performance. We assigned buffers to

each i · max
{⌊

logB/4(M/16B)
⌋
, 1
}

MVBT+ level. Thus,

one buffer is assigned to each internal live node. Buffer size
varied from 200 KB up to 4MB because it equals to 1

4
of the

available memory.
Wall clock time and number of I/Os were employed to

measure loading performance. The query performance was
measured by the number of I/Os and the number of leaf
accesses.

Figure 6: Loading performance (logarithmic scale)
of MVBT-LRU and MVBT+ (page size = 8 KB,
memory size = 1.6 MB)

7.3 Bulk Loading Results

1842



Figure 7: I/O Ratio of MVBT-LRU and MVBT+ as
a function of the memory size(page size = 8KB)

Figure 8: I/O ratio as a function of the page size
(u50 data set, memory size m = M/B = 400)

In this section, we compare the performance of our new
bulk loading method to iterative MVBT loading (update by
update). MVBT-LRU and MVBT refer to iterative loading
with and without a LRU-Buffer, respectively. MVBT-LRU
and MVBT+ always received an equal amount of memory.

Figure 6 reports the total number of I/Os required for
loading MVBT+ and MVBT for each workload file. We
used a page size of 8 KB and a fixed memory size of 1.6 MB.
Results (number of I/Os) are given on a logarithmic scale.
MVBT+ clearly outperforms MVBT by a factor between 18
and 40.

Figure 7 depicts the ratio of I/Os required to load MVBT-
LRU and MVBT+ as a function of memory size. The best
results for MVBT+ are achieved for 200 pages. For larger
memory sizes, I/O performance of MVBT-LRU improves
slightly faster than the one of MVBT+. The (relative) num-
ber of I/Os of MVBT+ also increases with a growing number
of updates. Due to a smaller number of live versions, the
buffer of MVBT-LRU becomes more effective. For updates
only (file u100), the LRU buffer contains all internal MVBT
nodes, while a lot of reorganization steps are triggered for
MVBT+. Thus, the MVBT+ performance improvements
are only a factor of 15.

In Figure 8, the I/O ratio is depicted as a function of the
page size for loading the data set u50. The memory capacity
is set to 400 pages in total. The lower curve displays the
ratio between I/Os required for loading MVBT-LRU and
the ones required for loading MVBT+. As expected from
our theoretical results, we observe a linear improvement of
the I/O performance with an increasing page size. For 16
KB pages, MVBT+ runs faster than MVBT by a factor of
58. The upper curve illustrates the worst-case for MVBT
when no LRU buffer is used. The curve shows the relative
performance gains of MVBT in comparison to MVBT+.

Figure 9 a and 9 b depict loading time in minutes, us-
ing either magnetic disk or SSD for all workload files. For
the magnetic disk, loading MVBT+ takes between 30 and
60 minutes, while MVBT-LRU requires between 30 and 40

Figure 9: Loading times (logarithmic scale) of
MVBT-LRU and MVBT+ (page size = 8KB, mem-
ory size = 1.6 MB) a) magnetic disk, b) SSD

File d50 u0 u25 u50 u75 u100

MVBT+ 629 1157 1241 1253 1261 1239
MVBT 605 1153 1215 1223 1235 1196

Table 5: Storage utilization of MVBT+ and MVBT

hours. Greater performance improvements (in comparison
to the pure I/O numbers) are due to MVBT+ uses a larger
number of sequential I/Os than MVBT-LRU. For SSD, load-
ing times of MVBT+ are between 3 and 5 minutes, while
MVBT-LRU requires between 64 and 82 minutes.

Figure 10 depicts the average space utilization of index
and leaf nodes. The leaf node utilization of MVBT+ does
not differ from the original MVBT. According to Lemma 1
the utilization of an index node is limited by O(B). More
precisely, an index node of MVBT+ contains at most 6 · B
and at least B

16
entries. In our experiments, we observed that

on average there are B/2 entries in one index node. This is
less than for the original MVBT. We did not observe more
than B per index node except very rarely for data set u100.

Table 5 shows space consumption of the resulting trees.
The total space required for MVBT+ increases only slightly
in comparison to MVBT. This is due to the larger index
entries in which the weight counters w and t have to be
kept. Moreover, weight balancing results in a lower storage
utilization in the index nodes as shown in Figure 10 b.

7.4 Bulk Update Results
In addition to loading, we also conducted a series of exper-

iments to measure the I/O efficiency of bulk updates on a
given MVBT+ and MVBT-LRU, respectively. For each data
set we first executed 5′000′000 updates (50% of the total up-
dates). Thereafter, we processed the remaining updates with
a sequence of bulk updates (with a given batch size). Bulk
updates on MVBT-LRU are again implemented by calling
the update function one by one. Figure 11 depicts the I/O
ratio of MVBT-LRU and MVBT+ as a function of batch size.
The memory size was set to 200 pages. MVBT-LRU required
slightly less I/Os than MVBT+ for batch sizes with less than
10′000 updates. The reason is that after the updates of the
entire batch are performed many buffers contains only one
or very few update operation. However, these buffers are
forced to be emptied because this has to be performed after
the batch. Note that these results are still in agreement with
the asymptotically optimal worst-case bounds of Theorem 2.

1843



Figure 10: Average storage utilization of leaf and in-
dex nodes (MVBT+, 8KB pages B=197=100%) a)
leaf storage utilization, b) index node storage utiliza-
tion

Figure 11: Bulk update, I/O Ratio MVBT-LRU /
MVBT+ 8 KB pages

For batch sizes with more than 10′000 updates, the situation
is different and MVBT+ is still superior. For a batch size
of 400K , for example, the MVBT+ improvements over the
MVBT-LRU are again between 9 (for file u0) and 18 (for
file d50).

7.5 Query Workload Results
We conducted a series of experiments running the query

workloads on each data file. As expected, we observed al-
most the same number of leaf accesses for MVBT+ and
MVBT. There are marginal differences, as merging of leaves
might differ for MVBT and MVBT+. Due to different split
strategies for index nodes, the original sibling of a leaf might
belong to a different parent node in case of MVBT+. The
number of accesses to index nodes is higher for MVBT+ in
comparison to MVBT (Table 6). The average number of
I/Os per query are reported for the three query files on data
file u50. However, only for small queries (qr1) the increase
in the number of I/Os for MVBT+ over MVBT is close to
10%.

Workload file u50 qr1 qr2 qr3

MVBT+ I/O 4.75 11.98 85.23
leafs 1.78 8.88 80.62

MVBT-LRU
I/O 4.18 11.33 83.74
leafs 1.79 8.89 80.8

R-TREE
I/O 116.3 124.92 197.34
leafs 104.2 112.8 184.8

Table 6: I/Os and leaf accesses for query workload
qr1, qr2, qr3 and for MVBT+, MVBT and R-tree

Additionally, we also report the query performance of an
R-tree in Table 6. We built the R-tree using STR bulk
loading algorithm [19], a popular loading method that is
also utilized in commercial systems. Our results clearly show
that the R-tree query performance is inferior to the MVBT
performance. The reason is simply the high overlap among
the nodes of the R-tree. This is particularly noticeable for
small queries.

8. CONCLUSIONS
In this paper we presented MVBT+, which is the first

partially persistent B+tree that supports bulk loading in
an asymptotically optimal number of I/Os and maintains
all worst-case performance guarantees of the multiversion
B-tree (MVBT). The results of our experimental studies
showed that excellent loading times can also be achieved for
various storage devices (magnetic disks, SSD, main memory).
In comparison to previous loading approaches, i.e., loading
by iterative updates, MVBT+ loading is substantial faster
by a factor linear to the page capacity. As MVBT+ uses
a weight balancing technique, fill degree of non-leaf nodes
is slightly lower than for the original MVBT, but this leads
to only a slight deterioration of the MVBT+ query perfor-
mance.

In our future work, we plan to carry over our loading
approach to those many partial persistent index-structures
that have been derived from the MVBT.

9. ACKNOWLEDGMENTS
The authors would like to thank Anne Sophie Knöller,

Marc Seidemann, and the anonymous referees for their in-
sightful and helpful feedback that led to a great improvement
of the paper.

10. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output

complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988.

[2] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam,
J. Chimanchode, and S. P. Pakala. Temporal query
processing in teradata. In EDBT, pages 573–578, 2013.

[3] Apache:. Apache hbase. http://hbase.apache.org/.

[4] L. Arge. The buffer tree: A technique for designing
batched external data structures. Algorithmica,
37(1):1–24, 2003.

[5] L. Arge, A. Danner, and S.-M. Teh. I/o-efficient point
location using persistent b-trees. In ALENEX, pages
82–92, 2003.

[6] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter.
Efficient bulk operations on dynamic r-trees.
Algorithmica, 33(1):104–128, 2002.

[7] L. Arge and J. S. Vitter. Optimal dynamic interval
management in external memory. In FOCS, pages
560–, Washington, DC, USA, 1996. IEEE Computer
Society.

[8] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
b-tree. VLDB J., 5(4):264–275, 1996.

[9] J. V. d. Bercken, B. Seeger, and P. Widmayer. A
generic approach to bulk loading multidimensional
index structures. In VLDB ’97, pages 406–415, 1997.

1844



[10] J. V. den Bercken and B. Seeger. Query processing
techniques for multiversion access methods. In VLDB,
pages 168–179, 1996.

[11] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. J. Comput.
Syst. Sci., 38(1):86–124, 1989.

[12] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk.
Stream warehousing with datadepot. In SIGMOD,
pages 847–854, 2009.

[13] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry
(preliminary version). In FOCS, pages 714–723, 1993.

[14] M. Hadjieleftheriou, G. Kollios, J. Tsotras, and
D. Gunopulos. Indexing spatiotemporal archives. The
VLDB Journal, 15(2):143–164, June 2006.

[15] B. Hoßbach and B. Seeger. Anomaly management
using complex event processing: extending data base
technology paper. In EDBT, pages 149–154, 2013.

[16] IBM:. A Matter
of Time: Temporal Data Management in DB2 for z/OS.
http://www.ibm.com/developerworks/data/library/tech-
article/dm-1204db2temporaldata/.

[17] K. Kulkarni and J.-E. Michels. Temporal features in
sql:2011. SIGMOD Rec., 41(3):34–43, Oct. 2012.

[18] W. Le, F. Li, Y. Tao, and R. Christensen. Optimal
splitters for temporal and multi-version databases. In
SIGMOD, 2013.

[19] S. Leutenegger, M. A. Lopez, and J. Edgington. Str:
A simple and efficient algorithm for r-tree packing. In
ICDE, pages 497–506, 1997.

[20] D. Lomet and B. Salzberg. Access methods for
multiversion data. In SIGMOD, pages 315–324, 1989.

[21] D. B. Lomet, M. Hong, R. V. Nehme, and R. Zhang.
Transaction time indexing with version compression.
PVLDB, 1(1):870–881, 2008.

[22] D. B. Lomet and F. Li. Improving transaction-time
dbms performance and functionality. In ICDE, pages
581–591, 2009.

[23] Oracle:. Total Recall.
http://www.oracle.com/technetwork/database/application-
development/total-recall-1667156.html.

[24] O. Rodeh. B-trees, shadowing, and clones. TOS, 3(4),
2008.

[25] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Comput. Surv.,
31(2):158–221, June 1999.

[26] A. Seering, P. Cudré-Mauroux, S. Madden, and
M. Stonebraker. Efficient versioning for scientific array
databases. In ICDE, pages 1013–1024, 2012.

[27] Y. Tao and D. Papadias. Mv3r-tree: A
spatio-temporal access method for timestamp and
interval queries. In VLDB, pages 431–440, 2001.

[28] P. J. Varman and R. M. Verma. An efficient
multiversion access structure. IEEE Trans. Knowl.
Data Eng., 9(3):391–409, 1997.

[29] XXL:. Xxl-java-libary. xxl.googlecode.com.

[30] R. Zhang and M. Stradling. The hv-tree: a memory
hierarchy aware version index. PVLDB, 3(1):397–408,
2010.

APPENDIX
Here we outline the proofs of lemmas.

Proof. of Lemma 1: For l = 0 we have the same settings
as MVBT leafs. Let v be node on level l > 0. To proof the
lemma we compute the maximal number of entries that can
be pushed before next reorganization. Since the minimal live
weight of the node is al · 3B

8
(see equations 3) we can perform

up to al · 5B
8

inserts (Operation-condition) and al · 6B
8

deletes
(Live-condition) on this node. In total we can push up to
al · 11B

8
operations until t(v) overflows or the minimal bound

of w(v) is achieved. According to the weight constraints, a
child node of the node v is reorganized after at least al−1 · B

8
operations. After each child split we produce 2 new entries in

worst. Thus, after al · 11B
8

operations we create:
2·al· 11B

8

al−1·B
8

=

22a new entries. The maximal number of entries stored
in the node with weight al · 3B

8
before inserting al · 11B

8
is

al· 3B
8

al−1 B
4

= 3a
2

. Thus, total number of entries stored in the

node is 22a + 3a
2
≤ 24a = 6B for a = B

4
.

Proof. of Lemma 2: (the proof is similar to weight prop-
erty [7]) We consider node v on level l. The maximal live
weight is alB. The minimal weight of the live child is al−1 B

4
.

Thus, the maximal number of live entries is alB/al−1 B
4

= 4a.

Since a = B
4

we get the bound. The minimal live weight of

the node is al B
4

(also operation weight t(v), since w(t) ≤
t(w)). The maximal live weight of the child is al−1B. Thus,
the minimal number of entries is al B

4
/al−1B = a/4 = B/16.

We consider a sub-tree T of height i ·
⌊
logB/4

M
16B

⌋
on level i.

Without loss of generality, we assume that logB/4
M
16B

is an

integer value. The maximal live weight of T is ai·logB/4
M

16B ·
B. Since the minimal weight of the tree on level (i − 1) ·
logB/4

M
16B

is a(i−1)·logB/4
M

16B · B/4 . Using the same argu-
ment as above, we obtain maximal number of buffer nodes
M
4B

, referenced by T . Thus, the overall number of live nodes

is bounded by 2 · M
4B

.

Proof. of Lemma 3: We consider the lowest buffer node
v. The lowest level is

⌊
logB/4

M
16B

⌋
. According to weight

conditions the minimal number of entries needed for next
reorganization is al B

8
. Thus, the node v is reorganized after

alogB/4
M

16B B
8

operations. Since a = B
4

we get M
16B
· B

8
=

M
128

= Θ(M).

Proof. of Lemma 4:
A sub tree with a root node on level l references O(al ·B)

live elements in the live leaf nodes. After insertion of N
operation entries at most N entries are alive. The minimal
live weight of the live root node is at least N ≥ 2 · al−1 · B

4
.

Since a = B
4

level of the root node is O(logB N).
A leaf node (level = 0) is reorganized at least after per-

forming B
8

operations. In worst we create two new leaf nodes.

Node v node on level l is reorganized after at least al B
8

op-
erations. In worst we create also two new nodes. Thus,

after N operations we create up to: 2 · N
∑loga N

l=0
1

B
8
·al ≤

16 · N/B
∑∞

l=0
1
al nodes. Since a ≥ 16 and the node capac-

ity is O(B) according to lemma 1 we obtain the result of
O(N) space.

1845


