NeMa: Fast Graph Search with Label Similarity

Arijit Khan Yinghui Wu Charu C. Aggarwal

Computer Science

University of California, Santa Barbara
{arijitkhan, yinghui, xyan}@cs.ucsb.edu

ABSTRACT

It is increasingly common to find real-life data represerasdet-
works of labeled, heterogeneous entities. To query thesenies,
one often needs to identify the matches of a gigaary graphin a
(typically large) network modeled astarget graph Due to noise
and the lack of fixed schema in the target graph, the queryhgrap
can substantially differ from its matches in the target grapboth
structure and node labels, thus bringing challenges to thphg
querying tasks. In this paper, we propdéeMa (Network Match),
a neighborhood-based subgraph matching technique foyigger
real-life networks. (1) To measure the quality of the matek,
propose a novel subgraph matching cost metric that aggetfa
costs of matching individual nodes, and unifies both stmecéund
node label similarities. (2) Based on the metric, we forrreutae

minimum cost subgraph matching problem. Given a query graph

and a target graph, the problem is to identify the (k)pratches of
the query graph with minimum costs in the target graph. Wavsho
that the problem isip-hard, and also hard to approximate. (3) We
propose a heuristic algorithm for solving the problem basedn
inference model. In addition, we propose optimization téghes

to improve the efficiency of our method. (4) We empiricallyifye
thatNeMa is both effective and efficient compared to the keyword
search and various state-of-the-art graph querying tgakesi

1. INTRODUCTION

With the advent of the Internet, sources of data have inetkas
dramatically, including the World-Wide Web, social netksyr

genome databases, knowledge graphs, medical and govarnmen

records. Such data are often representegraphs where nodes
are labeled entities and edges represent relations amesg émti-
ties [14, 43]. Querying and mining of graph data are esdefotia
wide range of emerging applications [1, 15, 30].

To query these graphs, one often needs to identify the matfhe
a givenquery graphin a (typically large)arget graph Traditional
graph querying models are usually defined in termsudigraph
isomorphismand its extensions(g.,edit distance), which identify
subgraphs that are exactly or approximately isomorphicutry)
graphs [35, 33, 43]. In addition, a wide range of query models

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. Articles from this volume weretawito present
their results at The 39th International Conference on Vengk Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 3

Copyright 2013 VLDB Endowment 2150-8097/13/0%.10.00.

181

Xifeng Yan

IBM T. J. Watson Research
Hawthorne, NY
charu@us.ibm.com

and languages are proposed — such as SPARQL and XDD for the
RDF and XML data — which require a standard schema of queries
and target graphs. Nevertheless, the real-life graphs@rglex
andnoisy, and often lack standardized schemas [1]. Indeed, (a) the
nodes may be heterogeneous, referring to different entiga.,
persons, companies, documents) [14]. (b) Node labels imphgr
often carry rich semantics,g.,id, urls, personal information, logs,
opinions [15]. (c) Worse still, the semantics of entitiesl dheir
interconnections in various datasets may be different akdawn

to users [1]. In this context, a match may not necessarilyelser(
approximately) isomorphic to the query graph in terms oélamnd
topological equality. Thus, traditional graph queryingheiques

are not able to capture good quality matches. Consider tluvfo

ing example over the IMDB movie dataset.

K. Winslet ?
(Actor) (Movie)

K. Winslet ?
(Movie)

(Actor)
Winslet, K. Titanic

(actor) (Movie)

?

: ?
(Director)

(Director)

. Lang, S.
S. Lang Cameron, J ¢}

(Director) ()
(Actor) S. Lang ” (Actor)
(Actor) (Movie)
(a) Query Graph 1 (b) Query Graph 2 (c) Top-1 Match

Figure 1: A Query and Its Match (Example 1.1)

Example 1.1. A user wants to find a movie of actress ‘Kate
Winslet’ that is directed by the same director who also wdnkth
actor ‘Stephen Lang’. Even if the schema and exact entitgl$ab
of the target network are not available, the user can stitiheoup
with some reasonable graph representation of the query 175,
as illustrated in Figure 1(a) and 1(b). Observe that suchgnaal
representation may not be unique, and there might not be act ex
match of the query graph in the dataset. Indeed, the reswtgn
ure 1(c) (a star-shaped graph) is by no means similar to thergu
graphs in Figure 1 (a) and (b) (both chain-shaped graphs)aind
traditional graph similarity definitions. Graph edit distae of the
result graph with query graphs and 2 are 4 and 6, respectively.
The size of the maximum common subgraghiisboth cases. Nev-
ertheless, ‘Titanic’ is the correct answer of the query; drahce,
the result graphshouldbe considered a good match for both the
query graphs using some novel graph similarity metric.

This motivates us to investigate fast subgraph matching-tec
niques suitable for query answering, which aafax rigid struc-
tural and label matching constraints of subgraph isomerptand
other traditional graph similarity measures. Our propogeabh
similarity metric is based on following observations: (&)wo

| || NeMa | BLINKS T | IsoRank | SAGA | NESS T | gStore |

Precision 0.91 0.52 0.63 0.75 Filter: 0.17 0.59
(Node) Filter+Verify: 0.80
Recall 0.91 0.52 0.63 0.75 Filter: 0.83 0.59
(Node) Filter+Verify: 0.80
Precision 0.88 0.50 0.40 0.69 Filter: 0.39 0.55
(Graph) Filter+Verify: 0.74
Recall 0.88 0.50 0.40 0.69 Filter: 0.75 0.55
(Graph) Filter+Verify: 0.74
Top-1 Match 0.97 1.92 4882.0 | 15.95 Filter: 0.59 0.92
Finding Time (sec) Filter+Verify: 56.16

Table 1: NeMa vs. Keyword Search and Graph Querying Methods:The query graphs were extracted from tMDB graph, and later modified
by adding30% structural noise an80% label noise. We determined the tépmatch for each query graph using various methods, and neshsur
effectiveness at the level of (a) query nodes, and (b) queaphs. At the node level, precision is defined as the raticoafectly discovered node
matches over all discovered node matches, while recall @sored as the ratio of correctly discovered node matchesativeorrect node matches.
Similarly, at the graph level, precision is defined as th@rat correctly discovered graph matches over all discavep@ph matches, and recall is
measured as the ratio of correctly discovered graph matwrexsall correct graph matches. A graph match is consideve®at if at leas70% of its
nodes are matched correctly. Since we consider only thé toptch, precision and recall have the same value. In additieralso report precision and
recall of NESS filtering phase. For details about the query graphs, noigkgegaluation metrics, see Section 7.

nodes are close in a query graph, the corresponding nodég in t to apply an inference algorithm to heuristically identifyetoptimal

result graph must also be close. However, (b) there may be som matches. Our method avoids costly subgraph isomorphisredihd

differences in labels of the matched nodes. distance computations. We further propose indexing anidhiys-
While the need for such a graph similarity metric is evident tion techniques for our method in Section 6.

(e.g.SAGA [35], IsoRank [33]), there is little work on subgraph (4) We empirically verify the effectiveness and efficienéy\NeMa.

matching in large networks considering both the criteriecé&htly, Our experimental results on real-world networks in SecTieghow
NESS [20] is proposed for subgraph matching that considers the thatNeMa finds better quality results quickly as compared to key-
proximity among nodes, but resorts to strict node label hiate word search (e.gBLINKS [16]) and various graph querying tech-
The NESS algorithm is based on #ltering-and-verificationap- niques €.g.JsoRank [33], SAGA [35], NESS [20], gStore [43]).

proach. In the filtering phase, the less promising candidaties
are pruned iteratively, until no more candidates can bequtuithe 2. RELATED WORK
output of the filtering phase is a limited number of final caladés

for each query node. Then, it verifies all possible graph hestc
formed by these final candidates, in order to find the kagraph
matches. One can modifyESS to leverage for node label differ-
ences. However, this modification reduces the effectiveédéts
filtering phase, and results in a large number of final candgifor
each query node (See Appendix for an example). Indeed, in our
experiments, we find a very low precision score R#SS, at the

end of its filtering phase (Table 1). Hence, it becomes quipeie-

sive to determine the top-graph matches from these large number
of final candidates. In contrast, our propodgeMa framework
employs an inference algorithm that iteratively boostssitere of
more promising candidate nodes, considering both labestand-

tural similarity; and thereby directly finds the tdpgraph matches.

Subgraph Matching. Ullmann’s backtracking method [38Y/F2
[9], SwiftIndex [32] are used for subgraph isomorphism checking.
The subgraph matching problem identifies all the occurrence
of a query graph in the target network. In bioinformaticsa@x
and approximatesubgraph matchindgiave been extensively stud-
ied, e.g.PathBlast [19], SAGA [35], NetAlign [22], IsoRank [33].
Among them, SAGA is close to ours in terms of problem formula-
tion. However, these algorithms target smaller biologneivorks.
It is difficult to apply them in large heterogeneous networks
There have been significant studies on inexact subgraphmatc
ing in large graphs. Tong et al. [37] proposed the best-gffattern
matching, which aims to maintain the shape of the query. s co
trast, we identify the optimal matches in terms of proxingtgong
entities rather than the shape of the query graph. Tian ¢B86].
Contributions. In this paper, we propod¥eMa, a novel subgraph proposed an approximate subgraph matching tool, caliedE,

matching framework for querying heterogeneous networks. with efficient indexing. Mongiovi et. al. introduced a seiver-
(1) We define the query result as the match of a given quenyhgrap pased inexact subgraph matching technique, c&IEMA [26].
in atarget graph, in terms of a notion of homomorphism-bastd Both these techniques use edge misses to measure the gdiaity

graph matching. To measure the quality of the matches, weefur - match; and therefore, cannot incorporate the notion of ipritk
define a novel subgraph matching cost metric between the/quer among entities. There are other works on inexact subgrapthma

graph and its matches (Section 3). In contrast to strictislg ing. An incomplete list (see [13] for surveys) includes honoo-
isomorphism, our proposed metric aggregates the coststohing phism based subgraph matching [12], belief propagatioadast
individual query nodes, which in turn depends on the costaitin alignment [4], edge-edit-distance based subgraph indeténh-
ing node labels and their neighborhoods within a certairshop nique [41], subgraph matching in billion node graphs [3égular

(2) Based on the cost metric, we propose the minimum cost sub- expression based graph pattern matching [3], schema [25iian
graph matching problem (Section 4), which is to identify the palanced ontology matching [42]. Among them, homomorphism
matches of the query graph with minimum costs in the targgilyr ~ pased subgraph matching [12] is close to ours. Howeveransof
We show that the problem igp-hard and also hard to approximate. dentifying the topk matches, the paper reports all the subgraphs
(3) We propose a heuristic method for the minimum cost syiigra where the query edges can be mapped to paths of a given maximum
matching problem (Section 5). In a nutshélleMa converts the
underlying graph homomorphism problem into an equivalent i *In this paper, all experimental results wiNESS and BLINKS
ference problem in graphical models [29], and thereby allow correspond to their modified versions, where we allow twoasdd
be matched if their label difference is within a predefinegshold.

182

length and the label differences are within a certain trokeksh

There are several works on simulation and bisimulatiorethas
graph pattern matchinge.g., [11, 23], which define subgraph
matching as @elationamong query and target nodes. Compared to
them,NeMa, is more strict, since we define subgraph matching as
afunctionfrom query nodes to target nodes.

Label and Concept Propagation. Label propagation has been
widely used in semi-supervised learniegy.,labeling of unlabeled
graph nodes [31]. Concept Propagation /Concept Vectorhen t
other hand, was originally formulated to measure the seimsint-
ilarities between terms/concepts in a taxonomy [21]. We tioat
the spreading activation theory of memory [2] used a siniilaa
of activation propagationCP/CV and spreading activation have
been effectively used in [7, 20] for approximate structanatching

in trees, graphs and also for information retrieval frompa&sted
networks [5]. These works consider only strict node labeicma
ing. However, subgraph matching without node labels is ddrar
problem than subgraph matching with node labels [40]. These
instead of strict node label equality, when one allows axiprate
node label matchinge(g.,in our current work), it significantly in-
creases the complexity of the search problem.

Querying Semi-structured Data. Lorel and UnQIl are among
the preliminary query languages designed for semi-stradtdata.
Both of them model input data as labeled graphs, while permit
ting users to write queries without detailed knowledge aliba
schema. Later, an underlying query processing system dsnve
those queries into standard SQL or structural recursionegiee-
spectively, for retrieving the correct answers. This idéajwery
rewriting has been explored in the context of both relati@mreal
semi-structured data,g.,[10, 28, 39, 15]. Observe that such query
rewriting techniques alleviate users from the complexftymder-
standing the schema,; nevertheless, the underlying quecggsing
system still requires a fixed schema.

In the realm of RDFSPARQL is widely used as the query pro-
cessing language. However, writing oS&ARQL query is often
too challenging, because it requires the exact knowledgrot-
ture, node labels and typesStore [43], which is the first study that
considers a subgraph matching-based query answeringdeehn
RDF data, allows approximate node label matching, but adhier
strict structural matches. In contrast, digMa framework permits
both structural and node label mismatches.

Our work is different from the keyword search in graphs [16,
18], as our queries have battructureand keywords (node labels).

3. PRELIMINARIES

We start with a few definitions.
3.1 Target Graphs, Queries and Matching

Target graph. A target graph that represents a heterogeneous

network dataset can be defined as a labeled, undirected graph

G = (V, E, L), with the node seV’, edge sefZ, and a label func-
tion L, where (1) eacltarget nodeu € V represents an entity in
the network, (2) each edgec F denotes the relationship between
two entities, and (3) is a function that assigns to each nade
label L(w) from a finite alphabet. In practice, the node labels may
represent the attributes of the entitiegy.,name, value, etc.

Query graph. A query graph? = (Vg, Eq, Lg) is an undirected,
labeled graph, with a set ofuery noded/y, a set of query edges
Eq, and a label function.q, which assigns to each query node
v € Vg alabelLg(v) from a finite alphabet.

We next define thesubgraph matchingf a (connected) query
graph in a large target network.

183

RV, Eq, Lg) query graph
G(V,E, L) target graph
¢p: Vg =V subgraph matching function
Ap label difference function
M(v) candidate set of node
Rg(u) neighborhood vector of node
Ny (v, u) neighborhood matching cost betweeandu
Fy(v,u) individual node matching cost betweerandu
C(¢) subgraph matching cost function

Table 2: Notations: Target Graphs, Queries and Subgraph Matching

Given a target graplty = (V, E, L) and a query graplp) =
(Vo,Eq,Lq), (1) anodeu € V is acandidatefor a query node
v € Vg if the difference in their labelsi.e., L(u) and Lg(v),
respectively), determined by a given (polynomial-time poiable)
label difference functior\ ., is less than or equal to a predefined
thresholde. We denote abl(v) the candidate set of the query node
v. (2) asubgraph matching a many-to-one functios : Vo — V,
such that, for each query nodec Vg, ¢(v) € M(v).

Remarks. (1) The label difference functioi ;, between two node
labels can be defined by a variety of criteria, such as theadacc
similarity, string edit distance, or more sophisticateshartic met-
rics, e.g.,ontology similarity [10]. In this work, we use Jaccard
similarity measure to determin&, (Section 7).(2) In contrast to
strict one-to-one mapping as in traditional subgraph isgimiem
tests, we consider a more general many-to-one subgrapimgtc
function. Indeed, two query nodes may have the same match [12
30]. (3) In practice, the nodes in the target and query graphs may
be annotated with type®.@., Figure 1 and [15]), where a query
node can only be matched with target nodes having the sarae typ
In such cases, our subgraph matching model can be easiljegdap
to capture the type constraints by refining candidate sets.

3.2 Subgraph Matching Cost Function

There can be many valid matching functions for a given query
graph and a target graph [13]. As stated earlier, our noagtgr
similarity metric must preserve the proximity among nod&spia
the query graph, while the labels of the matched nodes slatsritd
be similar. Taking this as our guideline, we introduceshbgraph
matching cost functiom NeMa as a metric to measure the good-
ness of a matching. The function adds up the costs of matching
a query node with its candidate, thereby capturing the rdiffee
between labels and neighborhood structures of the two natfes
first introduce the notion of a neighborhood vector.

Neighborhood vectorization Given a node: in the target graph
G, we represent the neighborhoodwoivith aneighborhood vector
Re(u) = {{(v/, Pa(u,u’))}, whereu' is a node withinh-hops of
u, andPg (u, v") denotes th@roximityof v’ from » in G.

,
ad(u,u)

0

if d(u,u’) < h;
otherwise.

Pg(u,u') = { @

Here,d(u, u') is the distance betweenandu’. Thepropagation
factor « is a parameter betweé@rand1; andh > 0 is the hop num-
ber (effectively, the radius) of the neighborhood for veization.

The neighborhood vector of nodeencodes the proximity infor-
mation fromu to its h-hop neighbors. It often suffices to consider
small values ot (e.g.,h = 2), since the relationship between two
entities becomes irrelevant as their social distance aser[6].

Based on neighborhood vectors, we now proceed to model the
matching cost of the neighborhoods of a query node and attarge
node. Let us denote the set of neighboring nodes witHiops ofv
asN(v). Given a matching functior, the neighborhood matching

cost betweew andu = ¢(v), denoted byVy (v, u), is defined as:
ZU'EN(U) A+ (PQ (U7 UI)’ PG (U’7 ¢(U/)))

Ng(v,u) = 2
¢() Z'L}/EN(u) PQ(’U, vl)
whereA (z,y) is a function defined as
x—y, ifz>y;
A = 3
+@y) {0 otherwise. ®

Intuitively, Ny (v, u) measures the matching cost of the neigh-
borhood vectors of andu. Note that (i) the user issues a query
based on hevaguenotion of how the entities are connected in the
target graph. Hence),; avoids penalizing the cases when two
nodes are closer in the target graph, as compared to the#-cor
sponding nodes in the query graph. (i) We normali¥g(v, u)
over the neighborhood af that incurs more cost when same num-
ber of node misses occurs in a smaller neighborhood.

Recall that we assume the existence of the label differemnue f
tion 0 < Ar < 1. Now, the individual node matching cost for
matching functiony is defined as a linear combination of the label
difference function and the neighborhood matching costtfon.

Fy(v,u) =X-Arp (Lo(v), L(w)) + (1 — A) - Ng(v,u), (4)

whereu = ¢(v).

This node matching cost combinksthlabel matching cost and
neighborhood matching cost via a paraméter. A < 1, whose
optimal value lies betwee3 ~ 0.5 empirically (Section 7).

We are now ready to define our subgraph matching cost function
Given a matching from the query nodes € V(, to target nodes
¢(v) € V, the subgraph matching cost function is defined as:

Clg) = > Fy(v,6(v)) (5)

veVg

Intuitively, C(¢) is the matching cost op between the query
graph@ and the target grap@, and the problem is to find a match-
ing function ¢ that minimizesC(¢). Note that, assuming\r,
is non-negative Fy (v, ¢(v)) and thereforeC(¢) are both non-
negative, so the minimum value th@{¢) can take i$.

3.3 Cost Function Properties

The following properties of our subgraph matching cost fiamc
illustrates its connection with subgraph isomorphism.

Property 1. If the query graphQ is subgraph isomorphic (in terms
of structure and node labels equality) to the target graphthen
there exists a minimum cost matching functfowith C'(¢) = 0.

Property 1 ensures that all the matching functign&hich iden-
tifies exact (isomorphic) matches f@, must have cosd. How-
ever, a matchp of @, whereC(¢) = 0, may not necessarily be
isomorphic toQ. We refer to such matches fase exact matches

Example 2.1. Consider a query grap®, a target graptz (Fig-
ure 2), and a subgraph matching functign where ¢(v1)=u1,
@(v2)= ¢(va)=u2, and ¢(vs)=us. Assumingh = 1 anda =
0.5, the neighborhood vectors i@ are: Rg (v1)={(v2, 0.5), (vs,
0.5)}, Ro(v2)={{v1, 0.5)}, Rg (vs)={(v1, 0.5), (v4, 0.5)}, and
R (va)= {(vs, 0.5)}. Similarly, we have the following neighbor-
hood vectors inG: Rea(u1) = {(uz, 0.5), (us, 0.5)}, Ra(us2)
={{u1, 0.5), (us, 0.5)}, andRg(us) = {(u1,0.5), (u2, 0.5)}.
Therefore, the individual node matching codfs is 0 for all
v € Vg, and the subgraph matching c@st¢) is 0. Observe that
the match identified by is not isomorphic ta.

However, if the matching functios is one-to-onethe following
property shows that the false exact matches can be avoided,.

184

u;

KHONOR. ()

Vv a V3

Query Graph Q

Figure 2: Example of False Exact Match MeMa

Match

Property 2. If the match identified by is not isomorphic to the
query graphQ®, and¢ is a one-to-one function, theti(¢) > 0.

PROOF. Since(Q is connected ang is a one-to-one function,
if the match identified byp is not isomorphic toQ, one of the
following must hold. (1) There exists some node € Vg, s.t.,
AL (Lg(v), L(¢(v))) > 0. Then,C(¢) > 0, assuming\ # 0 in
Eqg. 4.(2) There exists an edde, v") in Eq; but the corresponding
edge(u,w’) is not in graphG. ¢(v) = v andé(v') = «'. This
implies Pg (v,v") = «, but Pg(u, u’) < «, which in turn implies
Ny(v,u) > 0. Assuming\ # 1in Eq. 4, we geC(¢) > 0. O

4. PROBLEM FORMULATION

The subgraph matching cost function favors matches with low
matching costs. Based on the matching cost function, wedote
the minimum cost subgraph matching problem as follows.

Problem Statement 1. Minimum Cost Subgraph Matching.
Given a target graph’, a query graphQ@, and the label noise
thresholde, find the minimum cost matching

argmin C(¢), (6)
¢

st. Arp(Lgo(w),L(u)) <eVve Vg,u=¢(v) (7)

Intuitively, instead of checking subgraph isomorphisnr, meb-
lem formulation identifies the optimal match by minimizingde
label differences as well as node pair distances. The fikhti
matches serve as answers to the query graph.

The problem is, however, nontrivial. The following theorem
shows that the decision version of the problem is intraetaden
when the subgraph matching functigns not injective.

Theorem 1. Given a target network?, a query graphQ, it is NP-
complete to determine whether there exists a matetith NeMa
subgraph matching cost(¢) = 0.

PROOF The problem isup, since there is a nondeterministic al-
gorithm which guesses a matching functiprand verifies whether
its costC'(¢) = 0, in polynomial time. We prove thep-hardness
by reduction from the graph homomorphism problem, whiatrs
complete [8]. A homomorphism from a gra@)l to a graphG’
(both unlabeled) is a function that preserves node adjgcgrec,
each edge i)’ is mapped to an edge i@’). Given an instance
of the graph homomorphism problem, we construct an instafce
the minimum cost subgraph matching problem, where all nodes
the target graplG and query grapl) have identical labels. We
also assumey.l.o.g, that the depth of vectorizatiolh = 1. One
may verify that if there exists a homomorphisthfrom @’ to G”,
then there exists a corresponding matchingrom Q to G, s.t.
C(¢) = 0. Conversely, if¢’ is not a homomorphic matching,
then there exists an edge, v') in Eq, but the corresponding edge
(¢p(v), #(v")) is not in G. Hence,C(¢) > 0 (A # 1in Eq. 4).
Therefore, there exists a matching functigpfrom Q to G, where
C(¢) = 0, if and only if there is a homomorphic matchiggfrom
Q' to G’. This completes the proof. O

One may want to find a polynomial time approximation algo-
rithm. However, the problem is also hard to approximate.

Theorem 2. The minimum cost subgraph matching is APX-hard.

PROOF We show that this optimization problem is APX-hard
by performing a reductiorif, g) from the Maximum Graph Ho-
momorphism MGH) problem without self loops, which is APX-
hard [27]. AnMGH problem identifies a matching which max-
imizes the number of edges of the query graphthat can be
mapped to edges of the target gragh(both unlabeled). Given
an instancel of MGH, we construct an instancE of the mini-
mum cost subgraph matching problem, where all nodes in the ta
get networkG and query grapl) have identical labels. Let,

and e, be the total number of nodes and edges, respectively, in

Q. w.l.o.g, assume the depth of vectorizatibn= 1, and the
proportionality constanh = 1 — % We denote by OP(T) the

value of the optimal solution of problem instanteand VAL(I, z)
the value of a feasible solutian of the problem instancé. As-
sume OPTI) = e, and VAL(I,z) = e for some feasible solu-
tion x of instancel. Clearly,e, > 1. Hence,(1) OPT(I') <
1 < e, = OPT(I). Also, given some feasible solutiopn of
instancel’, one may verify thajOPT(I) — VAL (I,g(y))| =

e, — e, and |OPT(I") — VAL (I',y)| > 5e——. Therefore,(2)
[OPT(I)—VAL (I,9(y))| < 2nqeq|OPT(I")—VAL (I',y)|. Thus,
there exists a reductiqfy, g) from MGH to the minimum cost sub-
graph matching problem, and the theorem follows. a

5. QUERY PROCESSING ALGORITHM

In this section, we propose a heuristic solution to identifg
minimum cost matchings. We start by introducing the max-sum
inference problem in graphical models [29], and show how our
graph homomorphism problem underlying tNeMa framework
is equivalent to an inference problem in graphical models.

Max-Sum Inference. In graphical models, the joint probability
distribution functionp(X) of a set of variablesX = {1, z2, ...
,xm} can be expressed as a product of the fop(X)
I1, fi(Xi), where eachX; C X. Alternatively, logp(X)
> log fi(X:). TheMax-Suminference problem is to find the val-
ues of the variables:, z2, ...,z that result in maximunp(X).
In other words, we would like to maximizeg p(X) that can be de-
composed as the sum of several functions of the florgnf; (X;),
each of which depends only on a subset of the original vaabl
The objective of the max-sum inference problem is similar to
that of the minimum cost subgraph matching problem, which is
to minimizethe overall subgraph matching ca@s{¢). Recall that
(1) C(9) is an aggregation of the individual node matching costs
Fy(v,¢(v)) of all query nodesv, and (2) the individual node
matching cost of a query nodedepends only on the matches of
v and its neighbors ilN(v). In light of this, we propose ait-
erative inferencelgorithm similar to the loopy belief propagation
algorithm [29], used for inferencing in graphical models.

5.1 Iterative Inference Algorithm

In this section, we introduce our inference algorithm, dedas
Nemalnfer and illustrated in Figure 3.

Overview. Given a query graphl and a target graplG,
Nemalnfer first computes the candidate set for each query node
using the node label similarity functioA, (line 1). Next, it ini-
tializes aninference cost, (v, u) by assigning it to the minimum
possible value of individual node matching coBtg v, u), over all
possible matching functiong, s.t.,¢(v) = w (line 2-3). It then

185

Algorithm Nemalnfer
Input: Target graptiG(V, E, L), Query GraptQ (Vg, Eqg, Lg).
Output: Minimum cost matching of? in G.
1. for eachnodev € Vi, do computeM(v);
2. i:=0;flag :=true;
Initiate iterative inferencing with Eqg. 8;
while flag do
ii=1+1;
for eachv € Vi, do
for eachu € M(v) do
computel; (v, u) with Theorem 3;
keep track of the current matches of neighhdrs N(v);
0. compute optimal mata®; (v) using Eq. 10;
1. if more than a threshold number of
query node satisfyO;(v) = O;_1(v) then
flag := false;
. construct for all v € Vg (with Eq. 11, 12).
14. return ®;

Figure 3: lterative Inference AlgorithnNemalnfer

iteratively computes arinference cosfor each query node and
its candidates, and selects thgtimal matchof v as its candidate
u with the minimum inference cosiNemalnfer keeps track of the
optimal matches for each query node. The procedure repetls u
it reaches a fixpoint, where the optimal matches for more than
threshold number of query nodes remain identical in two esicc
sive iterations (lines 4-12). Finall)Nemalnfer refines the matches
of each query node and its neighborhood that it “memorizésav
memoization technique, and obtains the best match (line T3
constructed subgraph matehis then returned (line 14).

We next introduce several procedures\einalnfer in detail.

Inference cost and optimal match(lines 3-12). The algorithm
Nemalnfer improves the quality of the matching in each iteration,
based on the notion of anference cosand theoptimal match

Inference costAt each iteration of Nemalnfer, the inference cost
Ui(v,u) for eachv € Vi andu € M(v) is defined as follows.

U v, U m n F, v, u 8
l/i v, u min F v, U E I/»L 7_) U 9
() {$:6(v) ‘u} (b o/ EN(v) ! } ()

We assume > 0, andu’ = ¢(v) in Equation 9. Intuitively, the
inference cost is the minimum sum of the individual node iatg
costFy (v, u) and the previous iteration’s inference costs 1 (v/,
¢(v’)) for all neighborsv’” of v, over all possible matching func-
tions ¢, with the constraing(v) = w.

Note that although we consider the minimization over all-pos
sible matching functions, s.t.,¢(v) = w, in Equation 9, it only
depends on the matches of the neighboring nod&gin. As dis-
cussed later, inference costs can be computed in polynaimiel

Optimal match In every iteration, we also define thptimal match
of each query node. The optimal match of a query nod¢itera-
tion ¢, denoted byO; (v), is defined as follows.

O;(v) = argmin U; (v, u);

ueM(v)

i>0 (10)

Example 4.1.We illustrate the idea of one iteration Nemalnfer
using Figure 4. Assume we have already determined the candi-
date matched/(v) for every query node» using the label sim-
ilarity function Ay. For exampleM(v2) = {u2,us,u9} and

M(va) = {uz,u10} in Figure 4. Also, considek = 1. Ati = 0,
Uo(v2,us) = Uo(v2,u9) = 0. Therefore, we can not distinguish
betweenus andug in the initialization round, as which one is a bet-
ter match ofvo. However, observe théfy (va, ui0) < Uo(va, uz).

u10 IS a neighbor ofug, while u7 a neighbor ofus. Thus, it not
only influences the optimal mateby (v4) of v4 at iteration: = 0,

but it also maked/; (v2, ug) < Ui(vz,us) at iteration: = 1, via

Eqg. 9. Hence, we improve the matches in each iteration and pro
ceed towards the minimum cost (heuristic) subgraph match.

Invariant . The algorithmNemalnfer posses the following invari-
ant in each of its iteration, which illustrates the conmnactietween
the inference cost and the subgraph matching cost (Sedtion 3

Invariant 1. If there exists a matching functiah from the nodes
of @ to the nodes of7, such thatC'(¢) = 0, thenU; (v, ¢(v)) =0
forall v € Vi andi > 0.

However, the converse is not always true. In fact, based en th
properties of the loopy belief propagation algorithm, ¢hé no
guarantee that our algorithm will converge &f query nodes after
a certain number of iterations. Therefore, we terminateptioee-
dure when more than a threshold number of query nodgstisfy
the conditionO;(v) = O;—1(v). We empirically verified in Sec-
tion 7 that our method usually requires abauto 3 iterations to
terminate — around5% of query nodes converge usinyiDB
dataset, and also performs well in real-life networks.

Matching refinement (line 13). The optimal match of each query
node at the final iteration might not correspond to the suyiigra
matching function with the minimum (heuristic) aggregatsstc
[29]. This can happen if there are multiple graph matchingefu
tions that result in the minimum cost graph matches. Theeefo
we need to refine the optimal node matches from the final round
of Nemalnfer to identify one such minimum cost subgraph match-
ing function, say®. We refer to the matches of the query nodes
corresponding t@ as themost probable matchesTo find these
most probable matches, the standardmoizatiortechnique can
be used after the termination of our iterative inferencetigm.
First, a query node, say;, is selected randomly, and its most prob-
able match, denoted by(v) € M(v), is determined as follows:

®(v) = argmin Uy (v, u) (11)
uweM(v)

In Eq. 11,4 i/ denotes the final iteration. For the remaining

nodes, the most probable matches are determined by meigoizin

recursively, i.e., we keep track of the matches of the neighb

nodes that give rise to the most probable match of the cunite.

For example, the most probable matchés’) of all v’ € N(v) are

obtained using the most probable match afs follows.

o

argmin
{9:0(v)=2(v)}

2(v') = ¢p(v) (12)

The aforementioned memoization technique is performed unt
the most probable matches of all query nodes are computed.

[F¢(v,§>(v))+ Z Uir 1 (v',¢(v/))}

v/ €N(v)

Computation of Inference Costs A straightforward approach to
determine the inference cost (v,) for a query nodev and its
candidateu (Eq. 9) considers all possible combination of matches
for all nodesv’ € N(v), which has exponential time complexity
and might be very expensive. In this section, we proposela tec
nigue to compute the inference costpiolynomial time

Partial inference cost To evaluate the inference cdsi(v, u) for
a query nodev and its candidate: at iteration: of the algorithm

186

Vi

() (s
Vy o
V5

Query Graph Q

Target Graph G

Figure 4: Optimal Subgraph Match Finding Algorithm

Nemalnfer, we compute artial inference costor each node’ €
N(v), which is denoted byV; (v, u, v"), and defined below.

Wi(v7 U, vl) = {(b(%%l:u} I:/B(U) : A+ (PQ (1)71)/)7 PG (uv d)(vl)))
+Uio1 (v, 0(0v"))] (13)
Here, 8(v) = [X,enw Polv,v)]™". To compute

Wi(v,u,v"), we only need to find the minimum value in Eq. 13
over the candidates iI(v"). Hence, the partial inference cost
Wi;(v,u,v") can be computed in polynomial time, for each triplet
v, u, v’, whereu € M(v) andv’ € N(v). Next, we show the
relation between the partial inference cost and the infereost.

Theorem 3. The inference cod¥; (v, u) is computable in polyno-
mial time via the following formula:

Ui(v,u) = Ap(Lo(v), L(w) + > Wi(v,u,v') (14)
v’ €N(v)
PROOFR
Ui(v,u)
= e [AL(LQ(v>,L(u>)+ﬁ(v>-u/EzN(v)A+(PQ(v,v):Pa (u:6(v')))

Fy(v,u)

+ X Ui e0)]

v/ EN(v)

[B()-A 4 (Pg (v,0"), Pa (w6 (v) +U; 1 (0 6("))]

= min
{¢:¢(U):u}ulezN:(v)

+ AL (Lo®),L(w)

[B(v)-A1(Po(v,v)),Pa (u,é (v) +U; 1 (v/,6(v))]

= min
v/gEN(l,) {¢p:d(v)=u}

Wi (v,u,0’)
+ ap(Lg®),L(w))
= AL (Lo(), L(w) + Y Wi(v,u,v')

v’ eN(v)

Hence, the theorem. O

It follows from Theorem 3 that the inference cdst(v,u) of
nodesv andu can be efficiently computed in polynomial time, by
(1) determining the partial inference cé8t (v, u, v") for eachv’ €
N(v), and (2) aggregating these partial inference costs with
(Lq(v), L(u)). The aforementioned technique also keeps track
of which matches of the neighboring query nodes give riséa¢o t
most probable match of the current query node. This infaonat
is required during matching refinement.

Time complexity. We analyze the time complexity of the algo-
rithm Nemalnfer. Let us denote the number of nodes in the tar-
get graphG and the query grap® as|V| and|Vqg|, respectively.
(1) It requiresO(|Vg| - |V]) time to identifyM(v) for each query
nodev € Vg (line 1). (2) We denote the maximum number of

candidates per query node agy, and the maximum number of
h-hop neighbors of each query nodedgs. The computation of
the optimal matchO,(v) per query nodes has time complexity
O(mg - dg) following Theorem 3 (line 10). Therefore, the time
required for each iteration dlemalnfer is O(|Vg| - mq - dg). If
there are total iterations, the overall time complexity is given by
O(|Vgl| - V| +1I-|Vg|-mgq -dq). Observe thatVy|, I, |dqg|
andmg are typically small. Indeed, as verified in our experiments
(Section 7) [is typically less thad andm, is 35, for query graphs
with 5 nodes and real life graphs containit@M nodes.

5.2 Generalized Queries

In this section, we extendemalnfer for three generalized cases,
namely, Top-k matchesunlabeled queriesandlabeled edges

Top-k Matches. In many applications, the query graph is not sub-
graph isomorphic to the target network; and hence, we agg-int
ested in identifying the tog- matches rather than only the best
match. Given the target netwoik and the query grapky, the
top-k subgraph matchingroblem is to identify the top matches
for aselected query node € V.

The algorithmNemalnfer can be readily adapted for this prob-
lem. (1) The algorithm computes the inference costs andnetes
at line 12. (2) We identify the top-most probable matches of
(Eg. 11). (3) For each of these tépmost probable matches of
we apply the recursive memoizing technique (Eq. 12) to dater
the corresponding most probable matches for other quergsnod

Matching Query with Unlabeled Nodes. A query graph may
have nodes with unknown labels,g., query graphs constructed
from RDF queriesNeMa can be adapted to evaluate such queries.
First, we identify all the nodes from the target network tban be
matched with some labeled query node based on label sityilari

the performance of our inference algoritidemalnfer. We first
introduce the notion ofolated candidates

Isolated Candidates Given a query node and its candidate set
M(v), a nodeu € M(v) is anisolated candidatef v, if

{u v e M@, v e N(w)} N {u” v € N(u)} =0

Intuitively, the nodeu is an isolated candidate of a query node
v if none of the candidates withil-hop neighbors of are in the
h-hop neighborhood of; otherwise, it is a non-isolated candidate
of v. Thus, an isolated candidateof v can not be matched with

To efficiently find the non-isolated candidates, we proposea
timization problem, based arerification cosandcandidate cover

Verification Cost. The verification cost associated with a query
nodew is defined as the time complexity to verify all nodes in its
candidate sé¥I(v), whether they are non-isolated candidates. Note
that the complexity of verifying whether some nade M(v) is a
non-isolated candidate &(|N(u)| + 3=,/ ¢y M (v)]).

Candidate Cover. There exists dependencies between two non-
isolated candidates: if is a non-isolated candidate ofthen there
must exist a node/’ € N(u), such thatu’ € M(v') for some
v" € N(v). Clearly,’ is a non-isolated candidate of. If we
verified all candidategu’ : v’ € M(v'),v" € N(v)}, there is no
need to verify the candidatesivi(v) again. Thus, one may reduce
redundant verifications using a notion of candidate cover.

We definecandidate covefC(Q) as a set of query nodes such
that, for allv’ € Vo, eitherv’ € C(Q), orv’ € N(v).

(15)

CQ) ={v: W €C@Q) Vv €N@)} (16)

Next, we find the subgraph induced by all those matched nodes |l non-isolated candidate nodes can be identified by viify

from the target network along with their neighbors withithops.
All nodes in this subgraph are considered as the candidateld
unlabeled query nodes. The algoritiiamalnfer is then invoked
to identify the matches. In addition, if the unlabeled queogles
contain type information, the candidate sets can furtheefieed.

NeMa with Edge Labels. TheNeMa cost function can be adapted
to consider the edge labels. Specifically, we concatenatediye
labels along the shortest path between a pair of nodes, @md th
update the neighborhood matching cost (Equation 2) asaisllo

N¢(v,u)
/ ’ezN:()[AJr (PQ(U>U,)7 Pq (u> u,))) + AL(S(%U,)v 5(u7 u/)))]
B > [Polv,v) +1]
v’ eN(v)

Here,u = ¢(v), v’ = ¢(v"), ands(v,v’) concatenates the edge
labels along the shortest path betweeandv’. Since, we consider
the edge labels along the shortest path between a pair o nitae
asymptotical time complexity dfleMalnfer remains the same.

6. INDEXING AND OPTIMIZATION

In this section, we discuss indexing and optimization tépies
to improve the efficiency of our network matching algorithm.
6.1 Candidate Selection

The candidate set of a query node is defined in terms of thé labe
similarity function (see Section 3), which may include calate

only the query nodes it (Q). We define the verification cost of a
candidate cover as the sum of the verification costs of itstitoent
query nodes. Next, we introduce the candidate cover prablem

Problem Statement 2. Candidate Cover.Given a query graph
Q), find the candidate cover with the minimum verification cost.

The following result shows that the candidate cover prohiem
intractable, but approximable within a factdim polynomial time.

Theorem 4. The candidate cover problem is (p-hard, and (2)
2-approximable.

PROOF We show that this problem isp-hard by reduction
from NP-complete weighted minimum vertex cover problem [8].
Given a decision version of the weighted minimum vertex cove
problem, we construct an instance of the candidate covéigrg
where the vertex weights are considered as the corresgprdin
ification costs. Assuming = 1, the minimum weighted vertex
cover will be our candidate cover. One can apply linear @ogr
ming to solve this problem witB-approximation [8]. a

6.2 Indexing

We introduce indexing technique to improve the efficiency of
the inference algorithm. (1) During the off-line indexinggse,
it computes the neighborhood vectdéu) for all nodesu in the
target networkG, and stores the vectors in the index. (2) During the
on-line network matching techniqueuifis selected as a candidate
of v, it applies Eq. 15 to verify whether is an isolated candidate

nodes that do not match the query node due to neighborhocd mis of v. If so, u is eliminated from the candidate setwof

match. We introduce optimization techniques to efficieffiltgr
such candidate nodes as much as possible, and thereby imgprov

187

Our index structure has space and time complegiyd),
where|V| = n, dg¢ = average node degree @, andh =depth of

INDEX ——
MATCH (TOP-1) ==
MATCH (TOP-3) mmmm
MATCH (TOP-5)

YAGO
DBpedia

1

0.9

0.8

F1-MEASURE

TIME (SEC)

0.7

0.6

0 03 05 07

IMDB YAGO DBpedia

(b) Efficiency

A
(a) Effectiveness

Figure 5: Query Performance

vectorization. FoNeMa with edge labels (Section 5.2), the asymp-
totical time and space complexity of indexing remains theesa
since we consider edge labels along the shortest paths.

Dynamic maintenance of the index.Our indexing methods can
efficiently accommodate dynamic updates in the target nétwb

a nodeu (and the edges attached to it) is added or deleted, only the
indexes ofu’s h-hop neighbors need to be updated. If a single edge
(u,u") is added or deleted, only title— 1 hop neighbors of both
andv’ are updated, thus reducing the redundant computation.

6.3 Optimization for top-x matching

The inference algorithnNemalnfer can be adapted to identify
the top%x matches. For small values &f it is possible to prune
candidate nodes by setting a cost threshold. The cost thicesh
is initially set to a small valueo. If U;(v,u) > e. for someu €
M(v) at iteration: of the inference algorithm, themis eliminated
from the candidate sétl(v) for the subsequent iterations. After
termination, if the topt matches cannot be identified, we increase
e. by a small value, and repeat the steps above. The correathess
this method is ensured by Theorem 5.

Theorem 5. If U;(v,u) > e. at thei-th round of inference al-
gorithm, then for allj > 4, U;(v,u) > e. at thej-th round of
inference algorithm.

ProoF It follows directly from Eg. 9 and the fact thak; (v, u)
> 0foralli > 0, over all pairsv, u, whereu € M(v). O

Hence, we can eliminate from M(v), whenevel; (v, u) > e,
occurs for the first time at some iterationf Nemalnfer.

7. EXPERIMENTAL RESULTS

We present three sets of empirical results over three ifeal-I
datasets to evaluate (1) the effectiveness and efficieneg- (S
tion 7.2), (2) scalability (Section 7.3), and (3) optiminat tech-
niques (Section 7.4) underlying tieMa framework.

7.1 Experimental Setup

Graph Data Sets We used the following three real life datasets,
each represents a target graph. I(4DB Network®. The Inter-
net Movie Database (IMDBjonsists of the entities of movies, TV
series, actors, directors, producers, among others, aasvéteir
relationships. (2)YAGO Entity Relationship Graph*. YAGOis

a knowledge base with information harvested from the Witipe
WordNet and GeoNames. It contains ab2wimillion RDF triples.
(3) DBpedia Knowledge Basé. DBpediaextracts information
from the Wikipedia. We considerez million RDF triples from
DBpediaarticle categories, infobox properties, and person data.

Shttp://ww. i mdb. conli nt er f aces#pl ai n
*http://ww. npi - i nf. npg. de/ yago- naga/ yago/
Shtt p: // dbpedi a. or g/ About

188

LABEL NOISE TH.=35% ——
LABEL NOISE TH.=50% ——

B

0 35 50
LABEL NOISE (%)

(a) Effectivenes¢DBpedia)

LABEL NOISE TH.=35% ——
LABEL NOISE TH.=50% ——

H

0 35 50
LABEL NOISE (%)

(b) Match Time(DBpedia)

1

0.9

0.8

F1-MEASURE
TIME (SEC)

0.7

0.6

0.005

Figure 6: Performance against Label Noise

| Dataset | #Nodes | #Edges |
IMDB 2,932,657 | 11,040,263
YAGO 12,811,149 18,282,215
DBpedia || 5,177,018 | 20,835,327

Table 3: Dataset Sizes

The nodes inYAGO and DBpediaare annotated with labels,
while the nodes ilMDB are annotated with both types and labels.
Hence, we used the type information associated with theqyade
addition to their labels, while querying th€IDB network.

Query graphs. We generated the query graphs by extracting sub-
graphs from the target graphs, and then introduseideto each
query graph. Specifically, the query generation was cdetidly:

e node number and diameter, denotedWdy| and D¢, respec-
tively, where thequery diameteiis the maximum distance
between any two nodes in the query gr@ph

structural noisethe ratio of the number of edge updates (ran-
dom insertion and deletion of edges)@nto the number of
edges in the extracted subgraph; and

label noise measured by the Jaccard similarity between the
labels of nodes in the extracted subgraph and their updated
counterparts i), where the updated labels were obtained by
inserting randomly generated words to the query node labels

We used Jaccard similarity as the label similarity measure.
Specifically, given a query node and a target node, the label
difference Ar (Lo (v), L(u)) is defined asl — % where
w, andw, are the set of words in their lab&l, (v) and L(u), re-
spectively. Recall that we allowed some noise in the nodelsab
by varying the label matching cost threshelth our matching al-
gorithm (Problem Statement 1). A nodein the target network
is considered a candidate to match with a query noddheir la-
bel differenceAr (Lg(v), L(u)) is less than the predefined cost
thresholde, referred to as thiabel noise threshold

Evaluation metrics. Since the query graphs were extracted from
target graphs, one already has the correct node matches.tiNow
effectiveness oNeMa is measured as follow®recision(P) is the
ratio of the correctly discovered node matches over alladised
node matchesRecall(R) is the ratio of the correctly discovered
node matches over all correct node matctedsMeasurecombines
the results of precision and recalk.,

2
(1/R+1/P)
We considered the top-match to evaluate precision, recall, and

F1l-measure. Thus, we obtained the same values for them. How-
ever, precision and recall will be useful while analyzMBSS.

F1= 17)

Comparing Methods. We comparedNeMa with keyword search
(BLINKS [16]) and various graph querying metho®AGA [35],
IsoRank [33], NESS [20], andNeMag;s - a variation ofNeMa fol-
lowing gStore [43]. All these methods were implemented in C++.

i]

ng=5, Dg=2 ===
ng=7, D=3 —=

0.12

0.1
0.08
0.06
0.04
0.02

0.98
0.96
0.94
0.92

0.9

F1-MEASURE
MATCH TIME (SEC)

0 10 20 30 40 0 10 20 30 40
STRUCTURAL NOISE (%) STRUCTURAL NOISE (%)
@)

Figure 7: Query Performance vs. NoigeMDB);

ng=5, Dg=2 ===
ng=7,. D=3 —=

o
N
a

F1-MEASURE
o
N

MATCH TIME (SEC)

o
e
@

o
B

0 10 20 30 40 0 10 20 30 40
STRUCTURAL NOISE (%) STRUCTURAL NOISE (%)

@)

Figure 8: Query Performance vs. Noi$¥AGO);

CANDIDATE PER QUERY NODE
CANDIDATE PER QUERY NODE

0 25 35 50 80

0 25 35 50 80
LABEL NOISE THRESHOLD (%)

(b) YAGO

LABEL NOISE THRESHOLD (%)

(a) IMDB

Figure 9: # Candidates vs. Label Noise

ng=3,Dp=1 ——
ng=5, D5=2
Q=5 Do=

ng=7.D=3 —=

3.2

2.8

ITERATIONS
ITERATIONS

2.4

0 25 35 50 80 ’ 0 25 35 50 80
LABEL NOISE THRESHOLD (%) LABEL NOISE THRESHOLD (%)
(a) IMDB (b) YAGO
Figure 10: # Iterations vs. Label Noise

In our experiments, (1) propagation facterand depth of vec-
torization (Section 3) were set a&5 and 2, respectively [20],
(2) the optimal values of the proportionality constanfEq. 4) for
different datasets were obtained empirically (Figure () the
indexes were stored in the hard disk. All the experimentswan
using a single core in 800GB, 2.5GHz Xeon server.

7.2 Effectiveness and Efficiency

7.2.1 Performance over Real-life Data Sets

In these experiments, we evaluated the performance [gébfa
over three real-life graphs, averaged ove0 queries (Figure 5).
For each target graph, we randomly generated query graphs
with |Vo| = 7 and Dg = 3. We fixed the structural noise 86%,
label noise a50%, and label noise threshold 88%.

Figure 5(a) shows the effectiveness NEMa over various
datasets, and with different values of the proportionaidystant\.

For all the three datasets, our algoritlabaayscorrectly identifies
more than76% of the query nodes. Specifically, the F1-measure
is 0.94 for IMDB, with A = 0.3, even when we introducegD%
structural noise an@0% label noise. The effectiveness is higher
over IMDB due to the type constraint posed with the query nodes.
Besides, the optimal value of lies betweerD.3 ~ 0.5 in these
datasets.

189

F1-MEASURE

F1-MEASURE

nQ:3, DQZI — 3
ng=5, Dg=2 ===
ng=7, D=3 —=

0.98
0.96
0.94
0.92

0.9

MATCH TIME (SEC)
=

o
@

o
w

0 25 35 50 80 0 25 35 50 80
LABEL NOISE THRESHOLD (%) LABEL NOISE THRESHOLD (%)
(©

: Query NodesDg: Query Diameter

ng=3,Dp=1 ——
nQ:S, D=2 [
ng=7, D=3 —=

MATCH TIME (SEC)

0 25 35 50 80 ’ 0 25 35 50 80
LABEL NOISE THRESHOLD (%) LABEL NOISE THRESHOLD (%)

(©

: Query NodesDq: Query Diameter

Ng=5, Do=2 mmmm
ng=7,bg=3 ——

F1-MEASURE
F1-MEASURE

0 1 2 ’ 0 1 2
UNLABELED QUERY NODE # UNLABELED QUERY NODE

(a) Effectivenes¢l MDB) (b) EffectivenesgYAGO)
Figure 11: Effectiveness with Unlabeled Query Nodes

W/O EDGE LABEL ——
W/ EDGE LABEL ===

W/ EDGE LABEL ——
W/O EDGE LABEL ===

0.98
0.96
0.94
0.92

0.9

F1-MEASURE
MATCH TIME (SEC)

0 10 20 30 40 0 10 20 30 40
STRUCTURAL NOISE (%) STRUCTURAL NOISE (%)

(a) Effectiveness (b) Efficiency

Figure 12: Performance with Edge LabglEMDB)

Figure 5(b) reports the efficiency d&feMa using the same set-
ting as in Figure 5(a), including the running time of offdiindex
construction NDEX) and online query evaluatioATCH). We
observed the following. (d)leMa identifies the best match in less
than0.2 seconds, over all three dataséts(b) The topk match
finding time does not vary significantly, over differéntsince our
inferencing method is always executed once. (c) The timeired
for indexing is modestd.g.,9862 sec for theYAGOdataset with
13M nodes andl8M edges). (d) The indexing and querying times
are longer ovelMDB, due to its higher density.

7.2.2 Performance against Noise

In this set of experiments, we investigated the impact ofivar
noises on the performance BeMa. Three sets of query graphs
were generated by setting (Yo| = 3, Do = 1, (i) |Vo| = 5,
D¢ = 2, and (iii) [Vg| = 7, Do = 3. Under each query setp0
query graphs were generated.

Varying label noise Fixing the structural noise &9%, we varied
the label noise frond% to 50%, and investigated the effectiveness
of NeMa, when the label noise threshold was se$%& and50%,

Sour indexing and matching algorithm can be parallelizedefor
ery node. Hence, one may implemét¢Ma in a PREGEL [24]
platform, for larger graphs.

1L

4000

0.8 %.
065
04 o

500

F1-MEASURE, P, R
F1-MEASURE, P, R

0

0 20 30

STRUCTURAL NOISE (%)

40 0 25 35

IsoRank (F1) «=we=w- NESS EFlg IsoRank (F1) «=we=--
SAGA (F1) NeMa g (F1) e SAGA (F1)
NESS (P) s BLINKS (F1) —=— NESS (P) -t
NESS (R) —+ NeMa (F1) - NESS (R) -+

(@) (b)

LABEL NOISE (%)

MATCH TIME (SEC)

cor
= o

50 80

0 25

LABEL NOISE (%)

35 50 80

NESS EFlg
NeMa, (F1 IsoRank C— NeMa,,
BLINKS (F1) —a— SAGA = BLINKS ===
NeMa (F1) - NESS mmm NeMa ——
(c)

Figure 13: Comparison ResultsNIDB): NESS, BLINKS Modified for Approximate Label MatchNESS Results Correspond to itsltering Phase.

respectively. As shown in Figure 6(a) oveBpedia (1) the F1-
measure decreases as the label noise increases, sincaddat

nodes from0 to 2. As shown in Figure 11, (1) the F1-measure
decreases over both datasets while the number of the uathbel

set of each query node may contain more candidates that &ire nonodes increases, because the unlabeled nodes introdueecaror

true matches, which in turn reduces the effectivenessh@ .-
measure is higher when the label noise threshold is highere s
the candidate sets are more likely to include the correctinest
Observe that the F1-measure is always atibge.

Figure 6(b) shows thaileMa efficiency is insensitive to label
noise, but more sensitive to label noise threshold. Thiecabse it
takesNeMa more time to process the larger candidate sets for the
query graph as the label noise threshold increases.

Varying structural noise. Fixing the label noise threshold a5%

and label noise a85%, we varied the structural noise frof¥%

to 40% in Figure 7(a) and 7(b). It can be observed that (a) both
effectiveness and efficiency decrease as we increase tlutusal
noise, and (b) with the increase of the query size, both &ffatess
and efficiency increase. The reason is that (1) larger québage
more constraints in the neighborhood of a query node, wtecteb

fit the identification of correct matches, and (2) it takegemntime

for NeMa to compare the matching cost for larger queries. More-
over, the F1-measure is always ab6v&3, and the running time is
always less thafi.1 seconds, even with0% structural noise.

Varying label noise threshold Fixing the structural noise &9%
and the label noise &5%, we investigated the effect of varying
the label noise threshold on the query performance.

The effectiveness and efficiency NEMa over IMDB are illus-
trated in Figures 7(c) and 7(d), respectively. We obsertiedl-
lowing. (1) The F1-measure initially increases while wergase
the label noise threshold. This is because the query noééslabe
updated by adding random words. Hence, the higher is thé labe
noise threshold, there is more chance that the correct noditah
query node will be selected in its candidate set. (2) Wheathel
noise threshold is more tha&d%%, the F1-measure does not im-
prove significantly. Therefore, the optimal value of thedlahoise
threshold can be determined empirically based on the qunetyea-
get graphs. On the other hand, the running timNefa increases
with the increase of the label noise threshold. This is beedg)
the candidate matches per query node increases (see Fjgarel9
(b) the number of iterations required for the convergencaiohet-
work matching algorithm also increases (see Figure 10).ckleih
takes more time foNeMa to find the matches.

7.2.3 Effectiveness with Unlabeled Query Node

We next verified the effectiveness®éMa in the presence afn-
labeled nodesn query graphs. These experiments simulate RDF
query answering (see Section 5.2). For these experimerds, w
randomly selected two sets @00 query graphs each, where (i)
[Vo| = 7, Do = 3, and (ii) [Vo| = 5, Dg = 2, respectively.
Fixing the structural noise &%, label noise a85%, and label
noise threshold a35%, we varied the number of unlabeled query

190

didates, which in turn reduces the effectiveness, (2) tfectfe-
ness is higher ovdiMDB due to the type constraints, and (3) over
all the cases, the F1-measure is always alioye.

7.2.4 Performance with Propagation Depth

In these experiments, we analyzed the effect of propagation
depth i in our query performance. We randomly selectdd
query graphs fronYAGQ with |Vg| = 7, Do = 3, structural
noise30%, label noise50% and label noise threshokD%. Ta-
ble 4 shows that the efficiency dfeMa decreases with increasing
h, especially the index time increases exponentially WithHow-
ever, forh = 2, we obtained an acceptable F1-measure.&d.

| [A=T[h=2]h=3]

Index Time (sec) 265 9862 | 236553
Match Time (sec)|| 0.58 0.92 2.76
F1-Measure 0.61 0.86 0.87

Table 4: Query Performance with Varying (YAGO)

7.2.5 Performance with Edge Labels

We verified the query performance in the presence of edgéslabe
(Section 5.2). We randomly select&@D query graphs froniMIDB,
with with |Vo| = 7, Dg = 3, label noise50% and label noise
threshold50%. We varied the structural noise fro¥% to 40%.
The labels of the newly inserted edges in the query graphe wer
assigned by generating random strings. Figure 12 shows(th)at
when no structural noise is added, the F1-measure remaiesfsa
both the cases of labeled and unlabeled edges. (2) Howeitar, w
the addition of structural noise, the F1-measure decresiggsly
for the case of labeled edges, since there are more noiség in t
query graphs due to the labels of newly inserted edges. (8) Th
running time is higher for the case of labeled edges becaldie a
tional time is required to measure edge label similarities.

7.2.6 Comparison with Existing Algorithms

We compared the performance NeMa with IsoRank [33],
SAGA [35], NESS [20], gStore [43], and BLINKS [16]. (1)
IsoRank and SAGA find optimal graph matches in smaller bio-
logical networks considering structure and node labellanities.

(2) NESS finds the topk graph matches from a large network,
but with strict node label equality. Hence, we modifil&SS

by allowing two nodes to be matched if their label differense
within the label noise threshold. (3) We considered a viarabf
NeMa, namely,NeMa,s, which allows label difference but resorts
to strict isomorphic matching. ThudleMags essentially follows
the same principle agStore, which is a subgraph isomorphism-
based SPARQL query evaluation method with node label differ
ences. (4BLINKS [16], a keyword search method, supports only

10000
1000
100

10000
1000

=
o
S

TIME (SEC)
=

TIME (SEC)

o
e

0.1
0.01

0.005
1.0M 1.5M 2.0M 2.5M 3.0M

NODES
INDEX —— MATCH ===

(a) IMDB

™M 4am 8M 12M

NODES
INDEX ——— MATCH ===

(b) YAGO
Figure 14: Scalability

structural mismatches. Hence, we also modifddNKS by al-
lowing node label differences within the label noise theddh

All these methods, excefMESS, find the topi graph match
directly. Hence, we considered the tbpnatch corresponding to
each query node to evaluate precision, recall, and F1-mesaand
thereby obtained the same score for them. In conthNEg§S em-
ploys afiltering-and-verificatiorapproach, where its filtering phase
reports a set of high-quality final candidate nodes for eadryg
node. Then, it verifies all possible graph matches formedbgd
final candidate nodes, in order to find the tbgraph match. There-
fore, we report precision, recall and F1-measure of itsriiilte
phase, which is the most important stepNBSS. For fairness, we
reported only the running time of its filtering phase in FeyaB(c).

For these experiments, we randomly seledi@@ query graphs,
where|Vg| =7andDg = 3, using thdMDB dataset. In each query
graph, one node wasnlabeledand the labels of the remaining
nodes were updated by randomly inserting new words. Wed/arie
structural noise in Figure 13(a), and fixed both label norse la-
bel noise threshold &#%. Observe that, with no structural noise,
NeMa andNeMags have F1-measure abo@it94; but with the in-
crease in structural noiseMa (F1-measur®.9) outperforms the
other methods (F1-measubel ~ 0.7)

We varied label noise and label noise threshold in Figurg®)13
and 13(c), and fixed structural noise 28%. The label noise
threshold had the same value as label noise in these figuigsndV
label noiseNeMa has F1-measur@93, wheread\NESS, IsoRank,
SAGA, andBLINKS have F1-measures abdu8. However, as we
increase label noiséleMa (F1-measuré.9) outperforms the other
methods (F1-measufel ~ 0.7) by a large margin.

NeMa finds the best match in less thansec, whilelsoRank
takes5000 sec. SAGA requiresl5 sec and546 sec, with label
noise50% and80%, respectively.

7.3 Scalability

In this section, we analyzed the scalabilityMéMa by varying
the number of nodes in théAGOandIMDB networks. We used
100 randomly selected query graphs, whérg| =7, do = 3, and
fixed the structural noise &%, label noise as$5%, and label
noise threshold a85%. Figure 14 shows thdfleMa scales well
with the size of the target graphs. Specifically, the ofélindexing
time increases polynomially, and the online query evatuatime
linearly with the increase of the size of the target networks

7.4 Optimization techniques

In these experiments, we investigated the performancesadjh
timization techniques oleMa. We randomly selecteti00 query
graphs, wheréVg| = 7 and Dg = 3, and fixed the structural noise
as30% and both label noise and label noise threshol@#s. In
each query graph, the number wilabeledquery nodes is varied
from 0 to 2. Figure 15(a) shows that the indexing and optimization
techniques significantly improve the efficiency MéMa, specifi-
cally by a factor ofl5 in the presence df unlabeled query nodes.

We also compared the index construction time veiginamic up-
dateagainst the cost of rebuilding the whole index. In these gxpe

191

20000
15000

10000

W/ INDEX ——
W/O INDEX ===

w o~

5000

TIME (SEC)

o
@

2000

MATCH TIME (SEC)

1000

o
N

5 10 15 20
% NODE DELETION

DYNAMIC UPDATE
RE-INDEX ——1

(b) Dynamic UpdatesYAGO)

0.08

UNLABELED QUERY NODE

(a) Search Timel(MDB)
Figure 15: Index Performance

ments, we considered only deletion of nodes (and therelstiole

of the incident edges) from the original network as a methbd o
dynamic updates. Figure 15(b) shows that, for a wide ranggp-of
dates in the target graph, it is more efficient to update tldexn
structure rather than re-indexing the graph.

8. CONCLUSIONS

In this paper, we have introduc&®Ma, a novel graph querying
framework via subgraph matching that allows for ambiguitpoth
structure and node labels. We convert the neighborhood aif ea
node into a multi-dimensional vector, and then apply anreriee
algorithm to identify the optimal graph matches. We furtiheesti-
gate howNeMa can be extended to various graph query-processing
applications, such as RDF query answering, graph matchitig w
edge labels, and finding tdp-approximate matches. Our exper-
imental results over real-life datasets show tNaMa efficiently
finds high-quality matches, as compared to state-of-thgraph
querying methods. In future work, one may consider appreiém
subgraph matching over graph streams, and also more sSoptest
label similarity metricse.g.,ontology and semantic similarity.

9. ACKNOWLEDGEMENTS

The first author was supported by an IBM Ph.D. Fellowship.
This research was also supported by the U.S. National Szienc
Foundation under grant 11S-0954125 and by the Army Research
Laboratory under cooperative agreement W911NF-09-2-0053
CTA). The authors would like to thank Doug Bradley from UC
Santa Barbara and Shibamouli Lahiri from University of Nxd
for their valuable comments. The views and conclusionsainet!
herein are those of the authors and should not be interpested
representing the official policies, either expressed orligdp of
the Army Research Laboratory or the U.S. Government. The U.S
Government is authorized to reproduce and distribute mepfor
Government purposes notwithstanding any copyright nbtézein.

10. REFERENCES

[1] S. Abiteboul. Querying Semi-Structured Dat@DT, 1997.

[2] J. R. Anderson. A Spreading Activation Theory of MemaiyVerbal
Learning and Verbal Behavipd983.
P. Barcelo, L. Libkin, and J. L. Reutter. Querying Grdpdtterns.
PODS 2011.
M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. ki¢ga
Algorithms for Large, Sparse Network Alignment Probleh@DM,
2009.
H. Berger, M. Dittenbach, and D. Merkl. An Adaptive Infoation
Retrieval System based on Associative NetwoABCCM 2004.
N. Buchan and R. Croson. The Boundaries of Trust: Own and
Others’ Actions in US and Chind. Econ. Behav. and Org2004.
[7] V. S. Cherukuri and K. S. Candan. Propagation-Vectorslfees
(PVT): Concise yet Effective Summaries for Hierarchicakdand
TreesLSDS-IR 2008.
S. Cook. The Complexity of Theorem Proving Procedu&BOC
1971.

(3]
(4

(5]
(6]

(8]

9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]

[32]

(33]

[34]
[35]
[36]

[37]

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A gtph
Isomorphism Algorithm for Matching Large GrapHEEE Tran.
Pattern Anal. and Machine Int2004.

S. Das, E. I. Chong, G. Eadon, and J. Srinivasan. Suipgort
Ontology-Based Semantic Matching in RDBMA.DB, 2004.

W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph Patter
Matching: From Intractable to Polynomial TinfeVLDB, 2010.

W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph Homomorphis
Revisited for Graph Matchind?VLDB, 2010.

B. Gallagher. Matching Structure and Semantics: A Syn
Graph-Based Pattern MatchilyAAI FS, 2006.

J. Han. Mining Heterogeneous Information Networks xplgring
the Power of LinksALT, 2009.

L. Han, T. Finin, and A. Joshi. GoRelations: An Intué@iQuery
System for DBpediaLNCS 2011.

H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked Keyavo
Searches on GraphSIGMOD, 2007.

J. Liu and X. Dong and A. Halevy. Answering Structurede@ies on
Unstructured DataNebDB 2006.

M. Kargar and A. An. Keyword Search in Graphs: Findingiques.
PVLDB, 2011.

B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Steell, and
T. Ideker. PathBLAST: A Tool for Alignment of Protein Intetion
Networks.Nucleic Acids Re2004.

A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao
Neighborhood Based Fast Graph Search in Large Networks.
SIGMOD, 2011.

J. W. Kim and K. S. Candan. CP/CV: Concept Similarity Min
without Frequency Information from Domain Describing
TaxonomiesCIKM, 2006.

Z. Liang, M. Xu, M. Teng, and L. Niu. NetAlign: A Web-bag&ool
for Comparison of Protein Interaction Networl&ioinfo., 2006.

S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing Toggl;m
Graph Pattern Matching?VLDB, 2012.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. DehnertHorn,

N. Leiser, and G. Czajkowski. PREGEL: A System for LargetSca
Graph ProcessingIGMOD, 2010.

S. Melnik, H. G.-Molina, and E. Rahm. Similarity Floodj: A
Versatile Graph Matching Algorithm and its Application tof@ma
Matching.ICDE, 2002.

M. Mongiovi, R. D. Natale, R. Giugno, A. Pulvirenti, &erro, and
R. Sharan. SIGMA: A Set-Cover-Based Inexact Graph Matching
Algorithm. J. Bioinfo. and Comp. Bip2010.

C. Papadimitriou and M. Yannakakis. Optimization, A@gmation,
and Complexity Classed. Comp. and Sys. $4.991.

Y. Papakonstantinou and V. Vassalos. Query Rewritorg f
Semistructured Dat&IGMOD, 1999.

J. Pearl. Reverend Bayes on inference engines: A lliséadl
Hierarchical ApproachAmerican Association of Al Confl982.

K. Sambhoos, R. Nagi, M. Sudit, and A. Stotz. Enhancemtn
High Level Data Fusion using Graph Matching and State Space
Searchlnf. Fusion 2010.

P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallaghamd

T. Eliassi-Rad. Collective Classification in Network Dad.
Magazine 2008.

H. Shang, Y. Zhang, X. Lin, and J. Yu. Taming Verificatidiardness:
An Efficient Algorithm for Testing Subgraph IsomorphisRVLDB,
2008.

R. Singh, J. Xu, and B. Berger. Global Alignment of Mplé Protein
Interaction Networks with Application to Functional Ortbgy
Detection.PNAS 2008.

Z.Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient Sapb
Matching on Billion Node Graph$2VLDB, 2012.

Y. Tian, R. McEachin, C. Santos, D. States, and J. PS&GA: A
Subgraph Matching Tool for Biological GrapHgioinfo., 2006.

Y. Tian and J. M. Patel. TALE: A Tool for Approximate Ladsraph
Matching.ICDE, 2008.

H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rzabt
Best-Effort Pattern Matching in Large Attributed GrapK&D,
2007.

192

[38] J. R. Ullmann. An Algorithm for Subgraph Isomorphisin ACM
1976.

[39] J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword Query Refatation
on Structured DatdCDE, 2012.

[40] S. Zampelli, Y. Deville, C. Solnon, S. Sorlin, and P. mp. Filtering
for Subgraph Isomorphisn€P, 2007.

[41] S. Zhang, J. Yang, and W. Jin. SAPPER: Subgraph Indeximg
Approximate Matching in Large Graph8VLDB, 2010.

[42] Q. Zhong, H. Li, J. Li, G. Xie, J. Tang, L. Zhou, and Y. P@nGauss
Function Based Approach for Unbalanced Ontology Matching.
SIGMOD, 2009.

[43] L. Zou, J. Mo, L. Chen, M. TOzsu, and D. Zhao. gStore: Answering
SPARQL Queries via Subgraph Matching.DB, 2011.

11. APPENDIX

11.1 NeMa VSNESS

To leverage for node label mismatches, one can mddEgS
by allowing two nodes to be matched when their label diffeeen
is within a predefined cost threshold. However, such moditina
reduces the pruning capability NESS, and generates a large num-
ber of final candidate nodes at the end of its filtering stepdde
finding the topk graph matches by verifying all possible graph
matches formed by this large set of final candidate nodesnbeso
expensive.

Example 10.1.In Figure 16, labek can be matched with,, a2;
and labelb with b1, b2, bs. Now, consider a matching functiah
between the query grapR and matchM, where¢(v1) = wua,
P(v2) = uz2, ¢(vs) = us, p(va) = us, P(vs) = ug, ande(vs)
ur. Assumingh = 1 anda = 0.5, the label-based neighborhood
vectors, as defined INESS, are as follows.Rqg (v4) = {{a, 1)}

due to nodess andvs in the 1-hop neighborhood af4. Similarly,

Ry (us) = {(a1,0.5) (a2,0.5)}, due to nodesis andur in the
1-hop neighborhood ofis. Hence, the label-based neighborhood
matching costVy (v4, us) = 1—(0.540.5) = 0. Thus, individual
node matching costy (va, us) = Ar(b, b2).

Next, consider another matchirg between) and matchiM,,
whered’ (vi) = us, ¢'(v2) = ug, ¢'(v3) = w10, ¢'(va) = w11,
¢,(U5) = U1i2, and¢’(v6) = u13. As befOfe,F¢/(U4,U11) =
Ap(b,b2). In fact, one may verify thaC(¢) = C(¢'), using
NESS; although¢' is a better match thap. This happens because
NESS cannot ensure that the matching of the underlying nodes are
preserved when we match the neighborhood vectors baseeion th
label distributions. Hence, the label based neighborhoattining
in NESS is weak, and its pruning capacity further reduces when we
allow node matching with slightly different labels.

V3 ° \Z um @ U

OO us

Query Graph Q

usz Us

ujs

Match M,

Match M,

Figure 16: Problem inNESS (Label Based Neighborhood Match)

In contrast,NeMa has improved performance due to two rea-
sons. (1)NeMa computes the neighborhood similarity by directly
comparing the neighboring nodes (Eqg. 2). This makes the sub-
graph matching ifNeMa more strict as compared 9ESS. In-
deed,C(¢) > C(¢'), usingNeMa (Figure 16). (2) Unlike the
filtering-and-verification approach iINESS, our proposedNeMa
framework directly finds the tog-graph matches, considering both
label and structural similarity. As verified in SectionNeMa out-
performsNESS in identifying reasonable matches when the same
entity can have different labels in query and target graph.

