
NeMa: Fast Graph Search with Label Similarity

Arijit Khan Yinghui Wu Charu C. Aggarwal Xifeng Yan

Computer Science IBM T. J. Watson Research
University of California, Santa Barbara Hawthorne, NY
{arijitkhan, yinghui, xyan}@cs.ucsb.edu charu@us.ibm.com

ABSTRACT
It is increasingly common to find real-life data representedas net-
works of labeled, heterogeneous entities. To query these networks,
one often needs to identify the matches of a givenquery graphin a
(typically large) network modeled as atarget graph. Due to noise
and the lack of fixed schema in the target graph, the query graph
can substantially differ from its matches in the target graph in both
structure and node labels, thus bringing challenges to the graph
querying tasks. In this paper, we proposeNeMa (Network Match),
a neighborhood-based subgraph matching technique for querying
real-life networks. (1) To measure the quality of the match,we
propose a novel subgraph matching cost metric that aggregates the
costs of matching individual nodes, and unifies both structure and
node label similarities. (2) Based on the metric, we formulate the
minimum cost subgraph matching problem. Given a query graph
and a target graph, the problem is to identify the (top-k) matches of
the query graph with minimum costs in the target graph. We show
that the problem isNP-hard, and also hard to approximate. (3) We
propose a heuristic algorithm for solving the problem basedon an
inference model. In addition, we propose optimization techniques
to improve the efficiency of our method. (4) We empirically verify
thatNeMa is both effective and efficient compared to the keyword
search and various state-of-the-art graph querying techniques.

1. INTRODUCTION
With the advent of the Internet, sources of data have increased

dramatically, including the World-Wide Web, social networks,
genome databases, knowledge graphs, medical and government
records. Such data are often represented asgraphs, where nodes
are labeled entities and edges represent relations among these enti-
ties [14, 43]. Querying and mining of graph data are essential for a
wide range of emerging applications [1, 15, 30].

To query these graphs, one often needs to identify the matches of
a givenquery graphin a (typically large)target graph. Traditional
graph querying models are usually defined in terms ofsubgraph
isomorphismand its extensions (e.g.,edit distance), which identify
subgraphs that are exactly or approximately isomorphic to query
graphs [35, 33, 43]. In addition, a wide range of query models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 3
Copyright 2013 VLDB Endowment 2150-8097/13/01...$ 10.00.

and languages are proposed — such as SPARQL and XDD for the
RDF and XML data — which require a standard schema of queries
and target graphs. Nevertheless, the real-life graphs arecomplex
andnoisy, and often lack standardized schemas [1]. Indeed, (a) the
nodes may be heterogeneous, referring to different entities (e.g.,
persons, companies, documents) [14]. (b) Node labels in a graph
often carry rich semantics,e.g.,id, urls, personal information, logs,
opinions [15]. (c) Worse still, the semantics of entities and their
interconnections in various datasets may be different and unknown
to users [1]. In this context, a match may not necessarily be (even
approximately) isomorphic to the query graph in terms of label and
topological equality. Thus, traditional graph querying techniques
are not able to capture good quality matches. Consider the follow-
ing example over the IMDB movie dataset.

S. Lang

(Actor)

K. Winslet

(Actor)

?

(Movie)

?

(Director)

S. Lang

(Actor)

K. Winslet

(Actor)

?

(Movie)

?

(Director)

?

(Movie)

Lang, S.

(I)

(Actor)

Winslet, K.

(actor)

Titanic

(Movie)

Cameron, J.

(Director)

(a) Query Graph 1 (b) Query Graph 2 (c) Top-1 Match

Figure 1: A Query and Its Match (Example 1.1)

Example 1.1. A user wants to find a movie of actress ‘Kate
Winslet’ that is directed by the same director who also worked with
actor ‘Stephen Lang’. Even if the schema and exact entity labels
of the target network are not available, the user can still come up
with some reasonable graph representation of the query [15,17],
as illustrated in Figure 1(a) and 1(b). Observe that such graphical
representation may not be unique, and there might not be an exact
match of the query graph in the dataset. Indeed, the result inFig-
ure 1(c) (a star-shaped graph) is by no means similar to the query
graphs in Figure 1 (a) and (b) (both chain-shaped graphs) under
traditional graph similarity definitions. Graph edit distance of the
result graph with query graphs1 and 2 are 4 and6, respectively.
The size of the maximum common subgraph is3 in both cases. Nev-
ertheless, ‘Titanic’ is the correct answer of the query; andhence,
the result graphshouldbe considered a good match for both the
query graphs using some novel graph similarity metric.

This motivates us to investigate fast subgraph matching tech-
niques suitable for query answering, which canrelax rigid struc-
tural and label matching constraints of subgraph isomorphism and
other traditional graph similarity measures. Our proposedgraph
similarity metric is based on following observations: (a) if two

181

NeMa BLINKS 1 IsoRank SAGA NESS 1 gStore

Precision 0.91 0.52 0.63 0.75 Filter: 0.17 0.59
(Node) Filter+Verify: 0.80
Recall 0.91 0.52 0.63 0.75 Filter: 0.83 0.59
(Node) Filter+Verify: 0.80

Precision 0.88 0.50 0.40 0.69 Filter: 0.39 0.55
(Graph) Filter+Verify: 0.74
Recall 0.88 0.50 0.40 0.69 Filter: 0.75 0.55

(Graph) Filter+Verify: 0.74

Top-1 Match 0.97 1.92 4882.0 15.95 Filter: 0.59 0.92
Finding Time (sec) Filter+Verify: 56.16

Table 1: NeMa vs. Keyword Search and Graph Querying Methods:The query graphs were extracted from theIMDB graph, and later modified
by adding30% structural noise and50% label noise. We determined the top-1 match for each query graph using various methods, and measured
effectiveness at the level of (a) query nodes, and (b) query graphs. At the node level, precision is defined as the ratio of correctly discovered node
matches over all discovered node matches, while recall is measured as the ratio of correctly discovered node matches over all correct node matches.
Similarly, at the graph level, precision is defined as the ratio of correctly discovered graph matches over all discovered graph matches, and recall is
measured as the ratio of correctly discovered graph matchesover all correct graph matches. A graph match is considered correct if at least70% of its
nodes are matched correctly. Since we consider only the top-1 match, precision and recall have the same value. In addition, we also report precision and
recall ofNESS filtering phase. For details about the query graphs, noise, and evaluation metrics, see Section 7.

nodes are close in a query graph, the corresponding nodes in the
result graph must also be close. However, (b) there may be some
differences in labels of the matched nodes.

While the need for such a graph similarity metric is evident
(e.g.,SAGA [35], IsoRank [33]), there is little work on subgraph
matching in large networks considering both the criteria. Recently,
NESS [20] is proposed for subgraph matching that considers the
proximity among nodes, but resorts to strict node label matching.
The NESS algorithm is based on afiltering-and-verificationap-
proach. In the filtering phase, the less promising candidatenodes
are pruned iteratively, until no more candidates can be pruned. The
output of the filtering phase is a limited number of final candidates
for each query node. Then, it verifies all possible graph matches
formed by these final candidates, in order to find the top-k graph
matches. One can modifyNESS to leverage for node label differ-
ences. However, this modification reduces the effectiveness of its
filtering phase, and results in a large number of final candidates for
each query node (See Appendix for an example). Indeed, in our
experiments, we find a very low precision score forNESS, at the
end of its filtering phase (Table 1). Hence, it becomes quite expen-
sive to determine the top-k graph matches from these large number
of final candidates. In contrast, our proposedNeMa framework
employs an inference algorithm that iteratively boosts thescore of
more promising candidate nodes, considering both label andstruc-
tural similarity; and thereby directly finds the top-k graph matches.

Contributions. In this paper, we proposeNeMa, a novel subgraph
matching framework for querying heterogeneous networks.
(1) We define the query result as the match of a given query graph
in a target graph, in terms of a notion of homomorphism-basedsub-
graph matching. To measure the quality of the matches, we further
define a novel subgraph matching cost metric between the query
graph and its matches (Section 3). In contrast to strict subgraph
isomorphism, our proposed metric aggregates the costs of matching
individual query nodes, which in turn depends on the cost of match-
ing node labels and their neighborhoods within a certain hops.
(2) Based on the cost metric, we propose the minimum cost sub-
graph matching problem (Section 4), which is to identify the
matches of the query graph with minimum costs in the target graph.
We show that the problem isNP-hard and also hard to approximate.
(3) We propose a heuristic method for the minimum cost subgraph
matching problem (Section 5). In a nutshell,NeMa converts the
underlying graph homomorphism problem into an equivalent in-
ference problem in graphical models [29], and thereby allows us

to apply an inference algorithm to heuristically identify the optimal
matches. Our method avoids costly subgraph isomorphism andedit
distance computations. We further propose indexing and optimiza-
tion techniques for our method in Section 6.
(4) We empirically verify the effectiveness and efficiency of NeMa.
Our experimental results on real-world networks in Section7 show
thatNeMa finds better quality results quickly as compared to key-
word search (e.g.BLINKS [16]) and various graph querying tech-
niques (e.g.,IsoRank [33], SAGA [35], NESS [20], gStore [43]).

2. RELATED WORK
Subgraph Matching. Ullmann’s backtracking method [38],VF2
[9], SwiftIndex [32] are used for subgraph isomorphism checking.

The subgraph matching problem identifies all the occurrences
of a query graph in the target network. In bioinformatics, exact
and approximatesubgraph matchinghave been extensively stud-
ied, e.g.,PathBlast [19], SAGA [35],NetAlign [22], IsoRank [33].
Among them, SAGA is close to ours in terms of problem formula-
tion. However, these algorithms target smaller biologicalnetworks.
It is difficult to apply them in large heterogeneous networks.

There have been significant studies on inexact subgraph match-
ing in large graphs. Tong et al. [37] proposed the best-effort pattern
matching, which aims to maintain the shape of the query. In con-
trast, we identify the optimal matches in terms of proximityamong
entities rather than the shape of the query graph. Tian et al.[36]
proposed an approximate subgraph matching tool, calledTALE,
with efficient indexing. Mongiovi et. al. introduced a set-cover-
based inexact subgraph matching technique, calledSIGMA [26].
Both these techniques use edge misses to measure the qualityof a
match; and therefore, cannot incorporate the notion of proximity
among entities. There are other works on inexact subgraph match-
ing. An incomplete list (see [13] for surveys) includes homomor-
phism based subgraph matching [12], belief propagation based net
alignment [4], edge-edit-distance based subgraph indexing tech-
nique [41], subgraph matching in billion node graphs [34], regular
expression based graph pattern matching [3], schema [25] and un-
balanced ontology matching [42]. Among them, homomorphism
based subgraph matching [12] is close to ours. However, instead of
identifying the top-k matches, the paper reports all the subgraphs
where the query edges can be mapped to paths of a given maximum

1In this paper, all experimental results withNESS andBLINKS
correspond to their modified versions, where we allow two nodes to
be matched if their label difference is within a predefined threshold.

182

length and the label differences are within a certain threshold.
There are several works on simulation and bisimulation-based

graph pattern matching,e.g., [11, 23], which define subgraph
matching as arelationamong query and target nodes. Compared to
them,NeMa, is more strict, since we define subgraph matching as
a functionfrom query nodes to target nodes.

Label and Concept Propagation. Label propagation has been
widely used in semi-supervised learning,e.g.,labeling of unlabeled
graph nodes [31]. Concept Propagation /Concept Vector, on the
other hand, was originally formulated to measure the semantic sim-
ilarities between terms/concepts in a taxonomy [21]. We note that
the spreading activation theory of memory [2] used a similaridea
of activation propagation.CP/CV and spreading activation have
been effectively used in [7, 20] for approximate structuralmatching
in trees, graphs and also for information retrieval from associated
networks [5]. These works consider only strict node label match-
ing. However, subgraph matching without node labels is a harder
problem than subgraph matching with node labels [40]. Therefore,
instead of strict node label equality, when one allows approximate
node label matching (e.g.,in our current work), it significantly in-
creases the complexity of the search problem.

Querying Semi-structured Data. Lorel and UnQl are among
the preliminary query languages designed for semi-structured data.
Both of them model input data as labeled graphs, while permit-
ting users to write queries without detailed knowledge about the
schema. Later, an underlying query processing system converts
those queries into standard SQL or structural recursion queries, re-
spectively, for retrieving the correct answers. This idea of query
rewriting has been explored in the context of both relational and
semi-structured data,e.g.,[10, 28, 39, 15]. Observe that such query
rewriting techniques alleviate users from the complexity of under-
standing the schema; nevertheless, the underlying query processing
system still requires a fixed schema.

In the realm of RDF,SPARQL is widely used as the query pro-
cessing language. However, writing of aSPARQL query is often
too challenging, because it requires the exact knowledge ofstruc-
ture, node labels and types.gStore [43], which is the first study that
considers a subgraph matching-based query answering technique in
RDF data, allows approximate node label matching, but adheres to
strict structural matches. In contrast, ourNeMa framework permits
both structural and node label mismatches.

Our work is different from the keyword search in graphs [16,
18], as our queries have bothstructureand keywords (node labels).

3. PRELIMINARIES
We start with a few definitions.

3.1 Target Graphs, Queries and Matching
Target graph. A target graph that represents a heterogeneous
network dataset can be defined as a labeled, undirected graph
G = (V,E,L), with the node setV , edge setE, and a label func-
tion L, where (1) eachtarget nodeu ∈ V represents an entity in
the network, (2) each edgee ∈ E denotes the relationship between
two entities, and (3)L is a function that assigns to each nodeu a
labelL(u) from a finite alphabet. In practice, the node labels may
represent the attributes of the entities,e.g.,name, value, etc.

Query graph. A query graphQ = (VQ, EQ, LQ) is an undirected,
labeled graph, with a set ofquery nodesVQ, a set of query edges
EQ, and a label functionLQ, which assigns to each query node
v ∈ VQ a labelLQ(v) from a finite alphabet.

We next define thesubgraph matchingof a (connected) query
graph in a large target network.

Q(VQ, EQ, LQ) query graph
G(V, E,L) target graph
φ : VQ → V subgraph matching function

∆L label difference function
M(v) candidate set of nodev
RG(u) neighborhood vector of nodeu
Nφ(v, u) neighborhood matching cost betweenv andu
Fφ(v, u) individual node matching cost betweenv andu
C(φ) subgraph matching cost function

Table 2: Notations: Target Graphs, Queries and Subgraph Matching

Given a target graphG = (V,E,L) and a query graphQ =
(VQ, EQ, LQ), (1) a nodeu ∈ V is acandidatefor a query node
v ∈ VQ if the difference in their labels (i.e., L(u) andLQ(v),
respectively), determined by a given (polynomial-time computable)
label difference function∆L, is less than or equal to a predefined
thresholdε. We denote asM(v) the candidate set of the query node
v. (2) asubgraph matchingis a many-to-one functionφ : VQ → V ,
such that, for each query nodev ∈ VQ, φ(v) ∈ M(v).

Remarks. (1) The label difference function∆L between two node
labels can be defined by a variety of criteria, such as the Jaccard
similarity, string edit distance, or more sophisticated semantic met-
rics, e.g.,ontology similarity [10]. In this work, we use Jaccard
similarity measure to determine∆L (Section 7).(2) In contrast to
strict one-to-one mapping as in traditional subgraph isomorphism
tests, we consider a more general many-to-one subgraph matching
function. Indeed, two query nodes may have the same match [12,
30]. (3) In practice, the nodes in the target and query graphs may
be annotated with types (e.g.,Figure 1 and [15]), where a query
node can only be matched with target nodes having the same type.
In such cases, our subgraph matching model can be easily adapted
to capture the type constraints by refining candidate sets.

3.2 Subgraph Matching Cost Function
There can be many valid matching functions for a given query

graph and a target graph [13]. As stated earlier, our novel graph
similarity metric must preserve the proximity among node pairs in
the query graph, while the labels of the matched nodes shouldalso
be similar. Taking this as our guideline, we introduce thesubgraph
matching cost functionin NeMa as a metric to measure the good-
ness of a matching. The function adds up the costs of matching
a query node with its candidate, thereby capturing the difference
between labels and neighborhood structures of the two nodes. We
first introduce the notion of a neighborhood vector.

Neighborhood vectorization. Given a nodeu in the target graph
G, we represent the neighborhood ofu with aneighborhood vector
RG(u) = {〈u′, PG(u, u

′)〉}, whereu′ is a node withinh-hops of
u, andPG(u, u

′) denotes theproximityof u′ from u in G.

PG(u, u
′) =

{

αd(u,u′) if d(u, u′) ≤ h;

0 otherwise.
(1)

Here,d(u, u′) is the distance betweenu andu′. Thepropagation
factorα is a parameter between0 and1; andh > 0 is the hop num-
ber (effectively, the radius) of the neighborhood for vectorization.
The neighborhood vector of nodeu encodes the proximity infor-
mation fromu to itsh-hop neighbors. It often suffices to consider
small values ofh (e.g.,h = 2), since the relationship between two
entities becomes irrelevant as their social distance increases [6].

Based on neighborhood vectors, we now proceed to model the
matching cost of the neighborhoods of a query node and a target
node. Let us denote the set of neighboring nodes withinh-hops ofv
asN(v). Given a matching functionφ, the neighborhood matching

183

cost betweenv andu = φ(v), denoted byNφ(v, u), is defined as:

Nφ(v, u) =

∑

v′∈N(v) ∆+ (PQ(v, v
′), PG (u, φ(v′)))

∑

v′∈N(v) PQ(v, v′)
(2)

where∆+(x, y) is a function defined as

∆+(x, y) =

{

x− y, if x > y;

0 otherwise.
(3)

Intuitively, Nφ(v, u) measures the matching cost of the neigh-
borhood vectors ofv andu. Note that (i) the user issues a query
based on hervaguenotion of how the entities are connected in the
target graph. Hence,∆+ avoids penalizing the cases when two
nodes are closer in the target graph, as compared to their corre-
sponding nodes in the query graph. (ii) We normalizeNφ(v, u)
over the neighborhood ofv that incurs more cost when same num-
ber of node misses occurs in a smaller neighborhood.

Recall that we assume the existence of the label difference func-
tion 0 ≤ ∆L ≤ 1. Now, the individual node matching cost for
matching functionφ is defined as a linear combination of the label
difference function and the neighborhood matching cost function.

Fφ(v, u) = λ ·∆L (LQ(v), L(u)) + (1− λ) ·Nφ(v, u), (4)

whereu = φ(v).
This node matching cost combinesboth label matching cost and

neighborhood matching cost via a parameter0 < λ < 1, whose
optimal value lies between0.3 ∼ 0.5 empirically (Section 7).

We are now ready to define our subgraph matching cost function.
Given a matchingφ from the query nodesv ∈ VQ to target nodes
φ(v) ∈ V , the subgraph matching cost function is defined as:

C(φ) =
∑

v∈VQ

Fφ(v, φ(v)) (5)

Intuitively, C(φ) is the matching cost ofφ between the query
graphQ and the target graphG, and the problem is to find a match-
ing function φ that minimizesC(φ). Note that, assuming∆L

is non-negative,Fφ(v, φ(v)) and therefore,C(φ) are both non-
negative, so the minimum value thatC(φ) can take is0.

3.3 Cost Function Properties
The following properties of our subgraph matching cost function

illustrates its connection with subgraph isomorphism.

Property 1. If the query graphQ is subgraph isomorphic (in terms
of structure and node labels equality) to the target graphG, then
there exists a minimum cost matching functionφ withC(φ) = 0.

Property 1 ensures that all the matching functionsφ, which iden-
tifies exact (isomorphic) matches forQ, must have cost0. How-
ever, a matchφ of Q, whereC(φ) = 0, may not necessarily be
isomorphic toQ. We refer to such matches asfalse exact matches.

Example 2.1. Consider a query graphQ, a target graphG (Fig-
ure 2), and a subgraph matching functionφ, whereφ(v1)=u1,
φ(v2)= φ(v4)=u2, andφ(v3)=u3. Assumingh = 1 andα =
0.5, the neighborhood vectors inQ are:RQ(v1)={〈v2, 0.5〉, 〈v3,
0.5〉}, RQ(v2)={〈v1, 0.5〉}, RQ(v3)={〈v1, 0.5〉, 〈v4, 0.5〉}, and
RQ(v4)= {〈v3, 0.5〉}. Similarly, we have the following neighbor-
hood vectors inG: RG(u1) = {〈u2, 0.5〉, 〈u3, 0.5〉}, RG(u2)
={〈u1, 0.5〉, 〈u3, 0.5〉}, andRG(u3) = {〈u1, 0.5〉, 〈u2, 0.5〉}.
Therefore, the individual node matching costsFφ is 0 for all
v ∈ VQ, and the subgraph matching costC(φ) is 0. Observe that
the match identified byφ is not isomorphic toQ.

However, if the matching functionφ is one-to-one, the following
property shows that the false exact matches can be avoided,.

b a
u3u1

u2

v1

v2

v3

v4

MatchQuery Graph Q

b a

c c c

Figure 2: Example of False Exact Match inNeMa

Property 2. If the match identified byφ is not isomorphic to the
query graphQ, andφ is a one-to-one function, thenC(φ) > 0.

PROOF. SinceQ is connected andφ is a one-to-one function,
if the match identified byφ is not isomorphic toQ, one of the
following must hold. (1) There exists some nodev ∈ VQ, s.t.,
∆L

(
LQ(v), L(φ(v))

)
> 0. Then,C(φ) > 0, assumingλ 6= 0 in

Eq. 4.(2) There exists an edge(v, v′) in EQ; but the corresponding
edge(u, u′) is not in graphG. φ(v) = u andφ(v′) = u′. This
impliesPQ(v, v′) = α, butPG(u, u

′) < α, which in turn implies
Nφ(v, u) > 0. Assumingλ 6= 1 in Eq. 4, we getC(φ) > 0.

4. PROBLEM FORMULATION
The subgraph matching cost function favors matches with low

matching costs. Based on the matching cost function, we introduce
the minimum cost subgraph matching problem as follows.

Problem Statement 1. Minimum Cost Subgraph Matching.
Given a target graphG, a query graphQ, and the label noise
thresholdε, find the minimum cost matchingφ,

argmin
φ

C(φ), (6)

s.t. ∆L (LQ(v), L(u)) ≤ ε,∀v ∈ VQ, u = φ(v) (7)

Intuitively, instead of checking subgraph isomorphism, our prob-
lem formulation identifies the optimal match by minimizing node
label differences as well as node pair distances. The identified
matches serve as answers to the query graph.

The problem is, however, nontrivial. The following theorem
shows that the decision version of the problem is intractable, even
when the subgraph matching functionφ is not injective.

Theorem 1. Given a target networkG, a query graphQ, it is NP-
complete to determine whether there exists a matchφ with NeMa

subgraph matching costC(φ) = 0.

PROOF. The problem isNP, since there is a nondeterministic al-
gorithm which guesses a matching functionφ, and verifies whether
its costC(φ) = 0, in polynomial time. We prove theNP-hardness
by reduction from the graph homomorphism problem, which isNP-
complete [8]. A homomorphism from a graphQ′ to a graphG′

(both unlabeled) is a function that preserves node adjacency (i.e.,
each edge inQ′ is mapped to an edge inG′). Given an instance
of the graph homomorphism problem, we construct an instanceof
the minimum cost subgraph matching problem, where all nodesin
the target graphG and query graphQ have identical labels. We
also assume,w.l.o.g., that the depth of vectorizationh = 1. One
may verify that if there exists a homomorphismφ′ from Q′ to G′,
then there exists a corresponding matchingφ from Q to G, s.t.
C(φ) = 0. Conversely, ifφ′ is not a homomorphic matching,
then there exists an edge(v, v′) in EQ, but the corresponding edge
(φ(v), φ(v′)) is not inG. Hence,C(φ) > 0 (λ 6= 1 in Eq. 4).
Therefore, there exists a matching functionφ from Q to G, where
C(φ) = 0, if and only if there is a homomorphic matchingφ′ from
Q′ toG′. This completes the proof.

184

One may want to find a polynomial time approximation algo-
rithm. However, the problem is also hard to approximate.

Theorem 2. The minimum cost subgraph matching is APX-hard.

PROOF. We show that this optimization problem is APX-hard
by performing a reduction(f, g) from the Maximum Graph Ho-
momorphism (MGH) problem without self loops, which is APX-
hard [27]. AnMGH problem identifies a matching which max-
imizes the number of edges of the query graphQ that can be
mapped to edges of the target graphG (both unlabeled). Given
an instanceI of MGH, we construct an instanceI ′ of the mini-
mum cost subgraph matching problem, where all nodes in the tar-
get networkG and query graphQ have identical labels. Letnq

and eq be the total number of nodes and edges, respectively, in
Q. w.l.o.g., assume the depth of vectorizationh = 1, and the
proportionality constantλ = 1 − 1

nq
. We denote by OPT(I) the

value of the optimal solution of problem instanceI , and VAL(I, x)
the value of a feasible solutionx of the problem instanceI . As-
sume OPT(I) = eo and VAL(I, x) = e for some feasible solu-
tion x of instanceI . Clearly, eo ≥ 1. Hence,(1) OPT(I ′) <
1 ≤ eo = OPT(I). Also, given some feasible solutiony of
instanceI ′, one may verify that|OPT(I) − VAL (I, g(y)) | =
eo − e, and |OPT(I ′) − VAL (I ′, y)| ≥ eo−e

2nqeq
. Therefore,(2)

|OPT(I)−VAL (I, g(y)) | ≤ 2nqeq|OPT(I ′)−VAL (I ′, y)|. Thus,
there exists a reduction(f, g) fromMGH to the minimum cost sub-
graph matching problem, and the theorem follows.

5. QUERY PROCESSING ALGORITHM
In this section, we propose a heuristic solution to identifythe

minimum cost matchings. We start by introducing the max-sum
inference problem in graphical models [29], and show how our
graph homomorphism problem underlying theNeMa framework
is equivalent to an inference problem in graphical models.

Max-Sum Inference. In graphical models, the joint probability
distribution functionp(X) of a set of variablesX = {x1, x2, . . .
, xM} can be expressed as a product of the formp(X) =
∏

i
fi(Xi), where eachXi ⊆ X. Alternatively, log p(X) =

∑

i log fi(Xi). TheMax-Suminference problem is to find the val-
ues of the variablesx1, x2, . . . , xM that result in maximump(X).
In other words, we would like to maximizelog p(X) that can be de-
composed as the sum of several functions of the formlog fi(Xi),
each of which depends only on a subset of the original variables.

The objective of the max-sum inference problem is similar to
that of the minimum cost subgraph matching problem, which is
to minimizethe overall subgraph matching costC(φ). Recall that
(1) C(φ) is an aggregation of the individual node matching costs
Fφ(v, φ(v)) of all query nodesv, and (2) the individual node
matching cost of a query nodev depends only on the matches of
v and its neighbors inN(v). In light of this, we propose anit-
erative inferencealgorithm similar to the loopy belief propagation
algorithm [29], used for inferencing in graphical models.

5.1 Iterative Inference Algorithm
In this section, we introduce our inference algorithm, denoted as

NemaInfer and illustrated in Figure 3.

Overview. Given a query graphQ and a target graphG,
NemaInfer first computes the candidate set for each query node
using the node label similarity function∆L (line 1). Next, it ini-
tializes aninference costU0(v, u) by assigning it to the minimum
possible value of individual node matching costsFφ(v, u), over all
possible matching functionsφ, s.t.,φ(v) = u (line 2-3). It then

Algorithm NemaInfer

Input: Target graphG(V, E,L), Query GraphQ(VQ, EQ, LQ).
Output: Minimum cost matching ofQ in G.
1. for each nodev ∈ VQ do computeM(v);
2. i := 0; flag := true;
3. Initiate iterative inferencing with Eq. 8;
4. while flag do
5. i := i+ 1;
6. for each v ∈ VQ do
7. for eachu ∈ M(v) do
8. computeUi(v, u) with Theorem 3;
9. keep track of the current matches of neighborsv′ ∈ N(v);
10. compute optimal matchOi(v) using Eq. 10;
11. if more than a threshold number of

query nodesv satisfyOi(v) = Oi−1(v) then
12. flag := false;
13. constructΦ for all v ∈ VQ (with Eq. 11, 12).
14. return Φ;

Figure 3: Iterative Inference AlgorithmNemaInfer

iteratively computes aninference costfor each query nodev and
its candidates, and selects theoptimal matchof v as its candidate
u with the minimum inference cost.NemaInfer keeps track of the
optimal matches for each query node. The procedure repeats until
it reaches a fixpoint, where the optimal matches for more thana
threshold number of query nodes remain identical in two succes-
sive iterations (lines 4-12). Finally,NemaInfer refines the matches
of each query node and its neighborhood that it “memorizes” via a
memoization technique, and obtains the best match (line 13). The
constructed subgraph matchΦ is then returned (line 14).

We next introduce several procedures ofNemaInfer in detail.

Inference cost and optimal match(lines 3-12). The algorithm
NemaInfer improves the quality of the matching in each iteration,
based on the notion of aninference costand theoptimal match.

Inference cost. At each iterationi of NemaInfer, the inference cost
Ui(v, u) for eachv ∈ VQ andu ∈ M(v) is defined as follows.

U0(v, u) = min
{φ:φ(v)=u}

Fφ(v, u) (8)

Ui(v, u) = min
{φ:φ(v)=u}

[
Fφ(v, u) +

∑

v′∈N(v)

Ui−1

(
v′, u′)] (9)

We assumei > 0, andu′ = φ(v′) in Equation 9. Intuitively, the
inference cost is the minimum sum of the individual node matching
costFφ(v, u) and the previous iteration’s inference costsUi−1

(
v′,

φ(v′)
)

for all neighborsv′ of v, over all possible matching func-
tionsφ, with the constraintφ(v) = u.

Note that although we consider the minimization over all pos-
sible matching functionsφ, s.t.,φ(v) = u, in Equation 9, it only
depends on the matches of the neighboring nodes inN(v). As dis-
cussed later, inference costs can be computed in polynomialtime.

Optimal match. In every iteration, we also define theoptimal match
of each query node. The optimal match of a query nodev at itera-
tion i, denoted byOi(v), is defined as follows.

Oi(v) = argmin
u∈M(v)

Ui(v, u); i ≥ 0 (10)

Example 4.1.We illustrate the idea of one iteration ofNemaInfer

using Figure 4. Assume we have already determined the candi-
date matchesM(v) for every query nodev using the label sim-
ilarity function ∆L. For example,M(v2) = {u2, u5, u9} and

185

M(v4) = {u7, u10} in Figure 4. Also, considerh = 1. At i = 0,
U0(v2, u5) = U0(v2, u9) = 0. Therefore, we can not distinguish
betweenu5 andu9 in the initialization round, as which one is a bet-
ter match ofv2. However, observe thatU0(v4, u10) < U0(v4, u7).
u10 is a neighbor ofu9, while u7 a neighbor ofu5. Thus, it not
only influences the optimal matchO0(v4) of v4 at iterationi = 0,
but it also makesU1(v2, u9) < U1(v2, u5) at iterationi = 1, via
Eq. 9. Hence, we improve the matches in each iteration and pro-
ceed towards the minimum cost (heuristic) subgraph match.

Invariant . The algorithmNemaInfer posses the following invari-
ant in each of its iteration, which illustrates the connection between
the inference cost and the subgraph matching cost (Section 3).

Invariant 1. If there exists a matching functionφ from the nodes
ofQ to the nodes ofG, such that,C(φ) = 0, thenUi(v, φ(v)) = 0
for all v ∈ VQ andi ≥ 0.

However, the converse is not always true. In fact, based on the
properties of the loopy belief propagation algorithm, there is no
guarantee that our algorithm will converge forall query nodes after
a certain number of iterations. Therefore, we terminate theproce-
dure when more than a threshold number of query nodesv satisfy
the conditionOi(v) = Oi−1(v). We empirically verified in Sec-
tion 7 that our method usually requires about2 to 3 iterations to
terminate — around95% of query nodes converge usingIMDB
dataset, and also performs well in real-life networks.

Matching refinement (line 13). The optimal match of each query
node at the final iteration might not correspond to the subgraph
matching function with the minimum (heuristic) aggregate cost
[29]. This can happen if there are multiple graph matching func-
tions that result in the minimum cost graph matches. Therefore,
we need to refine the optimal node matches from the final round
of NemaInfer to identify one such minimum cost subgraph match-
ing function, sayΦ. We refer to the matches of the query nodes
corresponding toΦ as themost probable matches. To find these
most probable matches, the standardmemoizationtechnique can
be used after the termination of our iterative inference algorithm.
First, a query node, sayv, is selected randomly, and its most prob-
able match, denoted byΦ(v) ∈ M(v), is determined as follows:

Φ(v) = argmin
u∈M(v)

Ui′(v, u) (11)

In Eq. 11, i = i′ denotes the final iteration. For the remaining
nodes, the most probable matches are determined by memoizing
recursively, i.e., we keep track of the matches of the neighboring
nodes that give rise to the most probable match of the currentnode.
For example, the most probable matchesΦ(v′) of all v′ ∈ N(v) are
obtained using the most probable match ofv as follows.

φp = argmin
{φ:φ(v)=Φ(v)}

[
Fφ(v,Φ(v)) +

∑

v′∈N(v)

Ui′−1

(
v′, φ(v′)

)]

Φ(v′) = φp(v
′) (12)

The aforementioned memoization technique is performed until
the most probable matches of all query nodes are computed.

Computation of Inference Costs. A straightforward approach to
determine the inference costUi(v, u) for a query nodev and its
candidateu (Eq. 9) considers all possible combination of matches
for all nodesv′ ∈ N(v), which has exponential time complexity
and might be very expensive. In this section, we propose a tech-
nique to compute the inference cost inpolynomial time.

Partial inference cost. To evaluate the inference costUi(v, u) for
a query nodev and its candidateu at iterationi of the algorithm

a

b

v1

v4

v2

Query Graph Q

c

d

e

v3

v5

a

b

u1 u4

u2

c

u3

u5

a

b c

d

u6

u7

a

b

u8

u10

u9 c

d

eu11

u12

c u13

Target Graph G

Figure 4: Optimal Subgraph Match Finding Algorithm

NemaInfer, we compute apartial inference costfor each nodev′ ∈
N(v), which is denoted byWi(v, u, v

′), and defined below.

Wi(v, u, v
′) = min

{φ:φ(v)=u}

[
β(v) ·∆+

(
PQ(v, v′), PG

(
u, φ(v′)

))

+ Ui−1

(
v′, φ(v′)

)]
(13)

Here, β(v) = [
∑

v′∈N(v) PQ(v, v
′)]−1. To compute

Wi(v, u, v
′), we only need to find the minimum value in Eq. 13

over the candidates inM(v′). Hence, the partial inference cost
Wi(v, u, v

′) can be computed in polynomial time, for each triplet
v, u, v′, whereu ∈ M(v) andv′ ∈ N(v). Next, we show the
relation between the partial inference cost and the inference cost.

Theorem 3. The inference costUi(v, u) is computable in polyno-
mial time via the following formula:

Ui(v, u) = ∆L

(
LQ(v), L(u)

)
+

∑

v′∈N(v)

Wi(v, u, v
′) (14)

PROOF.

Ui(v, u)

= min
{φ:φ(v)=u}

[
∆L(LQ(v),L(u))+β(v)·

∑

v′∈N(v)

∆+(PQ(v,v′),PG(u,φ(v′)))

︸ ︷︷ ︸

Fφ(v,u)

+
∑

v′∈N(v)

Ui−1(v
′,φ(v′))

]

= min
{φ:φ(v)=u}

∑

v′∈N(v)

[
β(v)·∆+(PQ(v,v′),PG(u,φ(v′)))+Ui−1(v

′,φ(v′))
]

+ ∆L(LQ(v),L(u))

= ∑

v′∈N(v)

min
{φ:φ(v)=u}

[
β(v)·∆+(PQ(v,v′),PG(u,φ(v′)))+Ui−1(v

′,φ(v′))
]

︸ ︷︷ ︸

Wi(v,u,v
′)

+ ∆L(LQ(v),L(u))

= ∆L (LQ(v), L(u)) +
∑

v′∈N(v)

Wi(v, u, v
′)

Hence, the theorem.

It follows from Theorem 3 that the inference costUi(v, u) of
nodesv andu can be efficiently computed in polynomial time, by
(1) determining the partial inference costWi(v, u, v

′) for eachv′ ∈
N(v), and (2) aggregating these partial inference costs with∆L(
LQ(v), L(u)

)
. The aforementioned technique also keeps track

of which matches of the neighboring query nodes give rise to the
most probable match of the current query node. This information
is required during matching refinement.

Time complexity. We analyze the time complexity of the algo-
rithm NemaInfer. Let us denote the number of nodes in the tar-
get graphG and the query graphQ as|V | and|VQ|, respectively.
(1) It requiresO(|VQ| · |V |) time to identifyM(v) for each query
nodev ∈ VQ (line 1). (2) We denote the maximum number of

186

candidates per query node asmQ, and the maximum number of
h-hop neighbors of each query node asdQ. The computation of
the optimal matchOt(v) per query nodev has time complexity
O(mQ · dQ) following Theorem 3 (line 10). Therefore, the time
required for each iteration ofNemaInfer is O(|VQ| · mQ · dQ). If
there are totalI iterations, the overall time complexity is given by
O(|VQ| · |V | + I · |VQ| · mQ · dQ). Observe that|VQ|, I , |dQ|
andmQ are typically small. Indeed, as verified in our experiments
(Section 7),I is typically less than4 andmQ is35, for query graphs
with 5 nodes and real life graphs containing12M nodes.

5.2 Generalized Queries
In this section, we extendNemaInfer for three generalized cases,

namely,Top-k matches, unlabeled queries, andlabeled edges.

Top-k Matches. In many applications, the query graph is not sub-
graph isomorphic to the target network; and hence, we are inter-
ested in identifying the top-k matches rather than only the best
match. Given the target networkG and the query graphQ, the
top-k subgraph matchingproblem is to identify the top-k matches
for aselected query nodev ∈ VQ.

The algorithmNemaInfer can be readily adapted for this prob-
lem. (1) The algorithm computes the inference costs and terminates
at line 12. (2) We identify the top-k most probable matches ofv
(Eq. 11). (3) For each of these top-k most probable matches ofv,
we apply the recursive memoizing technique (Eq. 12) to determine
the corresponding most probable matches for other query nodes.

Matching Query with Unlabeled Nodes. A query graph may
have nodes with unknown labels,e.g., query graphs constructed
from RDF queries.NeMa can be adapted to evaluate such queries.
First, we identify all the nodes from the target network thatcan be
matched with some labeled query node based on label similarity.
Next, we find the subgraph induced by all those matched nodes
from the target network along with their neighbors withinh-hops.
All nodes in this subgraph are considered as the candidates for the
unlabeled query nodes. The algorithmNemaInfer is then invoked
to identify the matches. In addition, if the unlabeled querynodes
contain type information, the candidate sets can further berefined.

NeMa with Edge Labels.TheNeMa cost function can be adapted
to consider the edge labels. Specifically, we concatenate the edge
labels along the shortest path between a pair of nodes, and then
update the neighborhood matching cost (Equation 2) as follows.

Nφ(v, u)

=

∑

v′∈N(v)

[∆+ (PQ(v, v
′), PG (u, u′))) +∆L(s(v, v

′), s(u, u′)))]

∑

v′∈N(v)

[PQ(v, v′) + 1]

Here,u = φ(v), u′ = φ(v′), ands(v, v′) concatenates the edge
labels along the shortest path betweenv andv′. Since, we consider
the edge labels along the shortest path between a pair of nodes, the
asymptotical time complexity ofNeMaInfer remains the same.

6. INDEXING AND OPTIMIZATION
In this section, we discuss indexing and optimization techniques

to improve the efficiency of our network matching algorithm.

6.1 Candidate Selection
The candidate set of a query node is defined in terms of the label

similarity function (see Section 3), which may include candidate
nodes that do not match the query node due to neighborhood mis-
match. We introduce optimization techniques to efficientlyfilter
such candidate nodes as much as possible, and thereby improving

the performance of our inference algorithmNemaInfer. We first
introduce the notion ofisolated candidates.

Isolated Candidates. Given a query nodev and its candidate set
M(v), a nodeu ∈ M(v) is anisolated candidateof v, if

{u′ : u′ ∈ M(v′), v′ ∈ N(v)} ∩ {u′′ : u′′ ∈ N(u)} = ∅ (15)

Intuitively, the nodeu is an isolated candidate of a query node
v if none of the candidates withinh-hop neighbors ofv are in the
h-hop neighborhood ofu; otherwise, it is a non-isolated candidate
of v. Thus, an isolated candidateu of v can not be matched withv.

To efficiently find the non-isolated candidates, we propose an op-
timization problem, based onverification costandcandidate cover.

Verification Cost. The verification cost associated with a query
nodev is defined as the time complexity to verify all nodes in its
candidate setM(v), whether they are non-isolated candidates. Note
that the complexity of verifying whether some nodeu ∈ M(v) is a
non-isolated candidate isO

(
|N(u)|+

∑

v′∈N(v) |M (v′)|
)
.

Candidate Cover. There exists dependencies between two non-
isolated candidates: ifu is a non-isolated candidate ofv, then there
must exist a nodeu′ ∈ N(u), such that,u′ ∈ M(v′) for some
v′ ∈ N(v). Clearly,u′ is a non-isolated candidate ofv′. If we
verified all candidates{u′ : u′ ∈ M(v′), v′ ∈ N(v)}, there is no
need to verify the candidates inM(v) again. Thus, one may reduce
redundant verifications using a notion of candidate cover.

We definecandidate coverC(Q) as a set of query nodesv, such
that, for allv′ ∈ VQ, eitherv′ ∈ C(Q), or v′ ∈ N(v).

C(Q) = {v : ∀v′(v′ ∈ C(Q) ∨ v′ ∈ N(v))} (16)

All non-isolated candidate nodes can be identified by verifying
only the query nodes inC(Q). We define the verification cost of a
candidate cover as the sum of the verification costs of its constituent
query nodes. Next, we introduce the candidate cover problem.

Problem Statement 2. Candidate Cover.Given a query graph
Q, find the candidate cover with the minimum verification cost.

The following result shows that the candidate cover problemis
intractable, but approximable within a factor2 in polynomial time.

Theorem 4. The candidate cover problem is (1)NP-hard, and (2)
2-approximable.

PROOF. We show that this problem isNP-hard by reduction
from NP-complete weighted minimum vertex cover problem [8].
Given a decision version of the weighted minimum vertex cover
problem, we construct an instance of the candidate cover problem,
where the vertex weights are considered as the corresponding ver-
ification costs. Assumingh = 1, the minimum weighted vertex
cover will be our candidate cover. One can apply linear program-
ming to solve this problem with2-approximation [8].

6.2 Indexing
We introduce indexing technique to improve the efficiency of

the inference algorithm. (1) During the off-line indexing phase,
it computes the neighborhood vectorsR(u) for all nodesu in the
target networkG, and stores the vectors in the index. (2) During the
on-line network matching technique, ifu is selected as a candidate
of v, it applies Eq. 15 to verify whetheru is an isolated candidate
of v. If so,u is eliminated from the candidate set ofv.

Our index structure has space and time complexityO(ndhG),
where|V | = n, dG = average node degree inG, andh =depth of

187

 0.6

 0.7

 0.8

 0.9

 1

 0 0.3 0.5 0.7 1

F
1-

M
E

A
S

U
R

E

λ

IMDB
YAGO

DBpedia

(a) Effectiveness

 0.02
 0.1
 0.3

 1

 100

 1000

 10000

IMDB YAGO DBpedia

T
IM

E
 (

S
E

C
)

 INDEX
 MATCH (TOP-1)
 MATCH (TOP-3)
 MATCH (TOP-5)

(b) Efficiency

Figure 5: Query Performance

vectorization. ForNeMa with edge labels (Section 5.2), the asymp-
totical time and space complexity of indexing remains the same,
since we consider edge labels along the shortest paths.

Dynamic maintenance of the index.Our indexing methods can
efficiently accommodate dynamic updates in the target network. If
a nodeu (and the edges attached to it) is added or deleted, only the
indexes ofu’s h-hop neighbors need to be updated. If a single edge
(u, u′) is added or deleted, only theh− 1 hop neighbors of bothu
andu′ are updated, thus reducing the redundant computation.

6.3 Optimization for top-k matching
The inference algorithmNemaInfer can be adapted to identify

the top-k matches. For small values ofk, it is possible to prune
candidate nodes by setting a cost threshold. The cost threshold εc
is initially set to a small valueε0. If Ui(v, u) > εc for someu ∈
M(v) at iterationi of the inference algorithm, thenu is eliminated
from the candidate setM(v) for the subsequent iterations. After
termination, if the top-k matches cannot be identified, we increase
εc by a small value, and repeat the steps above. The correctnessof
this method is ensured by Theorem 5.

Theorem 5. If Ui(v, u) > εc at the i-th round of inference al-
gorithm, then for allj > i, Uj(v, u) > εc at the j-th round of
inference algorithm.

PROOF. It follows directly from Eq. 9 and the fact thatUi(v, u)
≥ 0 for all i ≥ 0, over all pairsv, u, whereu ∈ M(v).

Hence, we can eliminateu from M(v), wheneverUi(v, u) > εc
occurs for the first time at some iterationi of NemaInfer.

7. EXPERIMENTAL RESULTS
We present three sets of empirical results over three real-life

datasets to evaluate (1) the effectiveness and efficiency (Sec-
tion 7.2), (2) scalability (Section 7.3), and (3) optimization tech-
niques (Section 7.4) underlying theNeMa framework.

7.1 Experimental Setup

Graph Data Sets. We used the following three real life datasets,
each represents a target graph. (1)IMDB Network3. The Inter-
net Movie Database (IMDB)consists of the entities of movies, TV
series, actors, directors, producers, among others, as well as their
relationships. (2)YAGO Entity Relationship Graph 4. YAGOis
a knowledge base with information harvested from the Wikipedia,
WordNet and GeoNames. It contains about20 million RDF triples.
(3) DBpedia Knowledge Base5. DBpedia extracts information
from the Wikipedia. We considered22 million RDF triples from
DBpediaarticle categories, infobox properties, and person data.

3http://www.imdb.com/interfaces#plain
4http://www.mpi-inf.mpg.de/yago-naga/yago/
5http://dbpedia.org/About

 0.6

 0.7

 0.8

 0.9

 1

0 35 50

F
1-

M
E

A
S

U
R

E

LABEL NOISE (%)

 LABEL NOISE TH.=35%
 LABEL NOISE TH.=50%

(a) Effectiveness(DBpedia)

 0.005

 0.01

 0.02

 0.03

0 35 50

T
IM

E
 (

S
E

C
)

LABEL NOISE (%)

 LABEL NOISE TH.=35%
 LABEL NOISE TH.=50%

(b) Match Time(DBpedia)

Figure 6: Performance against Label Noise

Dataset # Nodes # Edges

IMDB 2,932,657 11,040,263
YAGO 12,811,149 18,282,215

DBpedia 5,177,018 20,835,327

Table 3: Dataset Sizes

The nodes inYAGO and DBpedia are annotated with labels,
while the nodes inIMDB are annotated with both types and labels.
Hence, we used the type information associated with the nodes, in
addition to their labels, while querying theIMDB network.

Query graphs. We generated the query graphs by extracting sub-
graphs from the target graphs, and then introducednoiseto each
query graph. Specifically, the query generation was controlled by:

• node number and diameter, denoted by|VQ| andDQ, respec-
tively, where thequery diameteris the maximum distance
between any two nodes in the query graphQ.

• structural noise, the ratio of the number of edge updates (ran-
dom insertion and deletion of edges) inQ to the number of
edges in the extracted subgraph; and

• label noise, measured by the Jaccard similarity between the
labels of nodes in the extracted subgraph and their updated
counterparts inQ, where the updated labels were obtained by
inserting randomly generated words to the query node labels.

We used Jaccard similarity as the label similarity measure.
Specifically, given a query nodev and a target nodeu, the label
difference∆L (LQ(v), L(u)) is defined as1 − |wv∩wu|

|wv∪wu|
, where

wv andwu are the set of words in their labelLQ(v) andL(u), re-
spectively. Recall that we allowed some noise in the node labels
by varying the label matching cost thresholdε in our matching al-
gorithm (Problem Statement 1). A nodeu in the target network
is considered a candidate to match with a query nodev if their la-
bel difference∆L (LQ(v), L(u)) is less than the predefined cost
thresholdε, referred to as thelabel noise threshold.

Evaluation metrics. Since the query graphs were extracted from
target graphs, one already has the correct node matches. Now, the
effectiveness ofNeMa is measured as follows.Precision(P) is the
ratio of the correctly discovered node matches over all discovered
node matches.Recall (R) is the ratio of the correctly discovered
node matches over all correct node matches.F1-Measurecombines
the results of precision and recall,i.e.,

F1 =
2

(1/R + 1/P)
(17)

We considered the top-1 match to evaluate precision, recall, and
F1-measure. Thus, we obtained the same values for them. How-
ever, precision and recall will be useful while analyzingNESS.

Comparing Methods. We comparedNeMa with keyword search
(BLINKS [16]) and various graph querying methods:SAGA [35],
IsoRank [33], NESS [20], andNeMags - a variation ofNeMa fol-
lowing gStore [43]. All these methods were implemented in C++.

188

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 10 20 30 40

F
1-

M
E

A
S

U
R

E

STRUCTURAL NOISE (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0 10 20 30 40

M
A

T
C

H
 T

IM
E

 (
S

E
C

)

STRUCTURAL NOISE (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(b)

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 25 35 50 80

F
1-

M
E

A
S

U
R

E

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(c)

 0.3

 0.5

 1

 2

 3

0 25 35 50 80

M
A

T
C

H
 T

IM
E

 (
S

E
C

)

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(d)

Figure 7: Query Performance vs. Noise(IMDB); nQ: Query Nodes,DQ: Query Diameter

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40

F
1-

M
E

A
S

U
R

E

STRUCTURAL NOISE (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(a)

 0.1

 0.15

 0.2

 0.25

0 10 20 30 40

M
A

T
C

H
 T

IM
E

 (
S

E
C

)

STRUCTURAL NOISE (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(b)

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

0 25 35 50 80

F
1-

M
E

A
S

U
R

E

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(c)

 0.1

 0.4

 0.7

 1

 1.3

0 25 35 50 80

M
A

T
C

H
 T

IM
E

 (
S

E
C

)

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(d)

Figure 8: Query Performance vs. Noise(YAGO); nQ: Query Nodes,DQ: Query Diameter

 1

 2

 5

 10

 20
 30
 50

 100

0 25 35 50 80#
C

A
N

D
ID

A
T

E
 P

E
R

 Q
U

E
R

Y
 N

O
D

E

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(a) IMDB

 1

 2

 5

 10

 20
 30
 50

 120

0 25 35 50 80#
C

A
N

D
ID

A
T

E
 P

E
R

 Q
U

E
R

Y
 N

O
D

E

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(b) YAGO

Figure 9: # Candidates vs. Label Noise

 1.7

 2

 2.4

 2.8

 3.2

0 25 35 50 80

IT

E
R

A
T

IO
N

S

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(a) IMDB

 1.7

 2

 2.2

 2.4

0 25 35 50 80

IT

E
R

A
T

IO
N

S

LABEL NOISE THRESHOLD (%)

 nQ=3, DQ=1
 nQ=5, DQ=2
 nQ=7, DQ=3

(b) YAGO

Figure 10: # Iterations vs. Label Noise

In our experiments, (1) propagation factorα and depth of vec-
torizationh (Section 3) were set as0.5 and2, respectively [20],
(2) the optimal values of the proportionality constantλ (Eq. 4) for
different datasets were obtained empirically (Figure 5(a)), (3) the
indexes were stored in the hard disk. All the experiments were run
using a single core in a100GB, 2.5GHz Xeon server.

7.2 Effectiveness and Efficiency
7.2.1 Performance over Real-life Data Sets

In these experiments, we evaluated the performance of ofNeMa

over three real-life graphs, averaged over100 queries (Figure 5).
For each target graph, we randomly generated100 query graphs
with |VQ| = 7 andDQ = 3. We fixed the structural noise as30%,
label noise as50%, and label noise threshold as50%.

Figure 5(a) shows the effectiveness ofNeMa over various
datasets, and with different values of the proportionalityconstantλ.
For all the three datasets, our algorithmalwayscorrectly identifies
more than76% of the query nodes. Specifically, the F1-measure
is 0.94 for IMDB, with λ = 0.3, even when we introduced30%
structural noise and50% label noise. The effectiveness is higher
over IMDB due to the type constraint posed with the query nodes.
Besides, the optimal value ofλ lies between0.3 ∼ 0.5 in these
datasets.

 0.8

 0.85

 0.9

 0.95

 1

0 1 2

F
1-

M
E

A
S

U
R

E

UNLABELED QUERY NODE

 nQ=5, DQ=2
 nQ=7, DQ=3

(a) Effectiveness(IMDB)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2

F
1-

M
E

A
S

U
R

E

UNLABELED QUERY NODE

 nQ=5, DQ=2
 nQ=7, DQ=3

(b) Effectiveness(YAGO)

Figure 11: Effectiveness with Unlabeled Query Nodes

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0 10 20 30 40

F
1-

M
E

A
S

U
R

E

STRUCTURAL NOISE (%)

 W/O EDGE LABEL
 W/ EDGE LABEL

(a) Effectiveness

 0.25

 0.35

 0.45

 0.55

 0.65

0 10 20 30 40

M
A

T
C

H
 T

IM
E

 (
S

E
C

)
STRUCTURAL NOISE (%)

 W/ EDGE LABEL
 W/O EDGE LABEL

(b) Efficiency

Figure 12: Performance with Edge Labels(IMDB)

Figure 5(b) reports the efficiency ofNeMa using the same set-
ting as in Figure 5(a), including the running time of off-line index
construction (INDEX) and online query evaluation (MATCH). We
observed the following. (a)NeMa identifies the best match in less
than0.2 seconds, over all three datasets6. (b) The top-k match
finding time does not vary significantly, over differentk, since our
inferencing method is always executed once. (c) The time required
for indexing is modest (e.g.,9862 sec for theYAGOdataset with
13M nodes and18M edges). (d) The indexing and querying times
are longer overIMDB, due to its higher density.

7.2.2 Performance against Noise
In this set of experiments, we investigated the impact of varying

noises on the performance ofNeMa. Three sets of query graphs
were generated by setting (i)|VQ| = 3, DQ = 1, (ii) |VQ| = 5,
DQ = 2, and (iii) |VQ| = 7, DQ = 3. Under each query set,100
query graphs were generated.

Varying label noise. Fixing the structural noise as30%, we varied
the label noise from0% to 50%, and investigated the effectiveness
of NeMa, when the label noise threshold was set as35% and50%,

6our indexing and matching algorithm can be parallelized forev-
ery node. Hence, one may implementNeMa in a PREGEL [24]
platform, for larger graphs.

189

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 30 40

F
1-

M
E

A
S

U
R

E
, P

, R

STRUCTURAL NOISE (%)

IsoRank (F1)
SAGA (F1)
NESS (P)
NESS (R)

NESS (F1)
NeMags (F1)
BLINKS (F1)

NeMa (F1)

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 25 35 50 80

F
1-

M
E

A
S

U
R

E
, P

, R

LABEL NOISE (%)

IsoRank (F1)
SAGA (F1)
NESS (P)
NESS (R)

NESS (F1)
NeMags (F1)
BLINKS (F1)

NeMa (F1)

(b)

 0.1
 0.4
 1.5

 500

 4000

0 25 35 50 80

M
A

T
C

H
 T

IM
E

 (
S

E
C

)

LABEL NOISE (%)

IsoRank
SAGA
NESS

NeMags
BLINKS

NeMa

(c)

Figure 13: Comparison Results (IMDB): NESS, BLINKS Modified for Approximate Label Match.NESS Results Correspond to itsFiltering Phase.

respectively. As shown in Figure 6(a) overDBpedia, (1) the F1-
measure decreases as the label noise increases, since the candidate
set of each query node may contain more candidates that are not
true matches, which in turn reduces the effectiveness, (2) the F1-
measure is higher when the label noise threshold is higher, since
the candidate sets are more likely to include the correct matches.
Observe that the F1-measure is always above0.60.

Figure 6(b) shows thatNeMa efficiency is insensitive to label
noise, but more sensitive to label noise threshold. This is because it
takesNeMa more time to process the larger candidate sets for the
query graph as the label noise threshold increases.

Varying structural noise. Fixing the label noise threshold as35%
and label noise as35%, we varied the structural noise from0%
to 40% in Figure 7(a) and 7(b). It can be observed that (a) both
effectiveness and efficiency decrease as we increase the structural
noise, and (b) with the increase of the query size, both effectiveness
and efficiency increase. The reason is that (1) larger queries have
more constraints in the neighborhood of a query node, which bene-
fit the identification of correct matches, and (2) it takes longer time
for NeMa to compare the matching cost for larger queries. More-
over, the F1-measure is always above0.93, and the running time is
always less than0.1 seconds, even with40% structural noise.

Varying label noise threshold. Fixing the structural noise as30%
and the label noise as35%, we investigated the effect of varying
the label noise threshold on the query performance.

The effectiveness and efficiency ofNeMa over IMDB are illus-
trated in Figures 7(c) and 7(d), respectively. We observed the fol-
lowing. (1) The F1-measure initially increases while we increase
the label noise threshold. This is because the query node labels are
updated by adding random words. Hence, the higher is the label
noise threshold, there is more chance that the correct matchof a
query node will be selected in its candidate set. (2) When thelabel
noise threshold is more than35%, the F1-measure does not im-
prove significantly. Therefore, the optimal value of the label noise
threshold can be determined empirically based on the query and tar-
get graphs. On the other hand, the running time ofNeMa increases
with the increase of the label noise threshold. This is because (a)
the candidate matches per query node increases (see Figure 9), and
(b) the number of iterations required for the convergence ofour net-
work matching algorithm also increases (see Figure 10). Hence, it
takes more time forNeMa to find the matches.

7.2.3 Effectiveness with Unlabeled Query Node
We next verified the effectiveness ofNeMa in the presence ofun-

labeled nodesin query graphs. These experiments simulate RDF
query answering (see Section 5.2). For these experiments, we
randomly selected two sets of100 query graphs each, where (i)
|VQ| = 7, DQ = 3, and (ii) |VQ| = 5, DQ = 2, respectively.
Fixing the structural noise as30%, label noise as35%, and label
noise threshold as35%, we varied the number of unlabeled query

nodes from0 to 2. As shown in Figure 11, (1) the F1-measure
decreases over both datasets while the number of the unlabeled
nodes increases, because the unlabeled nodes introduce more can-
didates, which in turn reduces the effectiveness, (2) the effective-
ness is higher overIMDB due to the type constraints, and (3) over
all the cases, the F1-measure is always above0.50.

7.2.4 Performance with Propagation Depth
In these experiments, we analyzed the effect of propagation

depthh in our query performance. We randomly selected100
query graphs fromYAGO, with |VQ| = 7, DQ = 3, structural
noise30%, label noise50% and label noise threshold50%. Ta-
ble 4 shows that the efficiency ofNeMa decreases with increasing
h, especially the index time increases exponentially withh. How-
ever, forh = 2, we obtained an acceptable F1-measure of0.86.

h = 1 h = 2 h = 3

Index Time (sec) 265 9862 236553
Match Time (sec) 0.58 0.92 2.76

F1-Measure 0.61 0.86 0.87

Table 4: Query Performance with Varyingh (YAGO)

7.2.5 Performance with Edge Labels
We verified the query performance in the presence of edge labels

(Section 5.2). We randomly selected100 query graphs fromIMDB,
with with |VQ| = 7, DQ = 3, label noise50% and label noise
threshold50%. We varied the structural noise from0% to 40%.
The labels of the newly inserted edges in the query graphs were
assigned by generating random strings. Figure 12 shows that, (1)
when no structural noise is added, the F1-measure remains same for
both the cases of labeled and unlabeled edges. (2) However, with
the addition of structural noise, the F1-measure decreasesslightly
for the case of labeled edges, since there are more noises in the
query graphs due to the labels of newly inserted edges. (3) The
running time is higher for the case of labeled edges because addi-
tional time is required to measure edge label similarities.

7.2.6 Comparison with Existing Algorithms
We compared the performance ofNeMa with IsoRank [33],

SAGA [35], NESS [20], gStore [43], and BLINKS [16]. (1)
IsoRank and SAGA find optimal graph matches in smaller bio-
logical networks considering structure and node label similarities.
(2) NESS finds the top-k graph matches from a large network,
but with strict node label equality. Hence, we modifiedNESS
by allowing two nodes to be matched if their label differenceis
within the label noise threshold. (3) We considered a variation of
NeMa, namely,NeMags, which allows label difference but resorts
to strict isomorphic matching. Thus,NeMags essentially follows
the same principle asgStore, which is a subgraph isomorphism-
based SPARQL query evaluation method with node label differ-
ences. (4)BLINKS [16], a keyword search method, supports only

190

 0.005

 0.1

 1

 100

 1000

 10000

1.0M 1.5M 2.0M 2.5M 3.0M

T
IM

E
 (

S
E

C
)

NODES

 INDEX MATCH

(a) IMDB

 0.01

 0.1

 1

 100

 1000

 10000

1M 4M 8M 12M

T
IM

E
 (

S
E

C
)

NODES

 INDEX MATCH

(b) YAGO

Figure 14: Scalability

structural mismatches. Hence, we also modifiedBLINKS by al-
lowing node label differences within the label noise threshold.

All these methods, exceptNESS, find the top-1 graph match
directly. Hence, we considered the top-1 match corresponding to
each query node to evaluate precision, recall, and F1-measure; and
thereby obtained the same score for them. In contrast,NESS em-
ploys afiltering-and-verificationapproach, where its filtering phase
reports a set of high-quality final candidate nodes for each query
node. Then, it verifies all possible graph matches formed by these
final candidate nodes, in order to find the top-1 graph match. There-
fore, we report precision, recall and F1-measure of its filtering
phase, which is the most important step inNESS. For fairness, we
reported only the running time of its filtering phase in Figure 13(c).

For these experiments, we randomly selected100 query graphs,
where|VQ| = 7 andDQ = 3, using theIMDB dataset. In each query
graph, one node wasunlabeledand the labels of the remaining
nodes were updated by randomly inserting new words. We varied
structural noise in Figure 13(a), and fixed both label noise and la-
bel noise threshold as50%. Observe that, with no structural noise,
NeMa andNeMags have F1-measure about0.94; but with the in-
crease in structural noise,NeMa (F1-measure0.9) outperforms the
other methods (F1-measure0.1 ∼ 0.7)

We varied label noise and label noise threshold in Figures 13(b)
and 13(c), and fixed structural noise as30%. The label noise
threshold had the same value as label noise in these figures. With no
label noise,NeMa has F1-measure0.93, whereasNESS, IsoRank,
SAGA, andBLINKS have F1-measures about0.8. However, as we
increase label noise,NeMa (F1-measure0.9) outperforms the other
methods (F1-measure0.1 ∼ 0.7) by a large margin.

NeMa finds the best match in less than1 sec, whileIsoRank
takes5000 sec. SAGA requires15 sec and546 sec, with label
noise50% and80%, respectively.

7.3 Scalability
In this section, we analyzed the scalability ofNeMa by varying

the number of nodes in theYAGOand IMDB networks. We used
100 randomly selected query graphs, where|VQ| = 7, dQ = 3, and
fixed the structural noise as30%, label noise as35%, and label
noise threshold as35%. Figure 14 shows thatNeMa scales well
with the size of the target graphs. Specifically, the off-line indexing
time increases polynomially, and the online query evaluation time
linearly with the increase of the size of the target networks.

7.4 Optimization techniques
In these experiments, we investigated the performance of the op-

timization techniques ofNeMa. We randomly selected100 query
graphs, where|VQ| = 7 andDQ = 3, and fixed the structural noise
as30% and both label noise and label noise threshold as35%. In
each query graph, the number ofunlabeledquery nodes is varied
from 0 to 2. Figure 15(a) shows that the indexing and optimization
techniques significantly improve the efficiency ofNeMa, specifi-
cally by a factor of15 in the presence of2 unlabeled query nodes.

We also compared the index construction time withdynamic up-
dateagainst the cost of rebuilding the whole index. In these experi-

 0.08

 0.2

 0.8

 3

 7

0 1 2

M
A

T
C

H
 T

IM
E

 (
S

E
C

)

UNLABELED QUERY NODE

 W/ INDEX
 W/O INDEX

(a) Search Time (IMDB)

 1000

 2000

 5000

 10000
 15000
 20000

5 10 15 20

T
IM

E
 (

S
E

C
)

% NODE DELETION

DYNAMIC UPDATE
RE-INDEX

(b) Dynamic Updates (YAGO)

Figure 15: Index Performance

ments, we considered only deletion of nodes (and thereby, deletion
of the incident edges) from the original network as a method of
dynamic updates. Figure 15(b) shows that, for a wide range ofup-
dates in the target graph, it is more efficient to update the index
structure rather than re-indexing the graph.

8. CONCLUSIONS
In this paper, we have introducedNeMa, a novel graph querying

framework via subgraph matching that allows for ambiguity in both
structure and node labels. We convert the neighborhood of each
node into a multi-dimensional vector, and then apply an inference
algorithm to identify the optimal graph matches. We furtherinvesti-
gate howNeMa can be extended to various graph query-processing
applications, such as RDF query answering, graph matching with
edge labels, and finding top-k approximate matches. Our exper-
imental results over real-life datasets show thatNeMa efficiently
finds high-quality matches, as compared to state-of-the-art graph
querying methods. In future work, one may consider approximate
subgraph matching over graph streams, and also more sophisticated
label similarity metrics,e.g.,ontology and semantic similarity.

9. ACKNOWLEDGEMENTS
The first author was supported by an IBM Ph.D. Fellowship.

This research was also supported by the U.S. National Science
Foundation under grant IIS-0954125 and by the Army Research
Laboratory under cooperative agreement W911NF-09-2-0053(NS-
CTA). The authors would like to thank Doug Bradley from UC
Santa Barbara and Shibamouli Lahiri from University of N. Texas
for their valuable comments. The views and conclusions contained
herein are those of the authors and should not be interpretedas
representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright noticeherein.

10. REFERENCES
[1] S. Abiteboul. Querying Semi-Structured Data.ICDT, 1997.
[2] J. R. Anderson. A Spreading Activation Theory of Memory.J. Verbal

Learning and Verbal Behavior, 1983.
[3] P. Barceló, L. Libkin, and J. L. Reutter. Querying GraphPatterns.

PODS, 2011.
[4] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang.

Algorithms for Large, Sparse Network Alignment Problems.ICDM,
2009.

[5] H. Berger, M. Dittenbach, and D. Merkl. An Adaptive Information
Retrieval System based on Associative Networks.APCCM, 2004.

[6] N. Buchan and R. Croson. The Boundaries of Trust: Own and
Others’ Actions in US and China.J. Econ. Behav. and Org., 2004.

[7] V. S. Cherukuri and K. S. Candan. Propagation-Vectors for Trees
(PVT): Concise yet Effective Summaries for Hierarchical Data and
Trees.LSDS-IR, 2008.

[8] S. Cook. The Complexity of Theorem Proving Procedures.STOC,
1971.

191

[9] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph
Isomorphism Algorithm for Matching Large Graphs.IEEE Tran.
Pattern Anal. and Machine Int., 2004.

[10] S. Das, E. I. Chong, G. Eadon, and J. Srinivasan. Supporting
Ontology-Based Semantic Matching in RDBMS.VLDB, 2004.

[11] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph Pattern
Matching: From Intractable to Polynomial Time.PVLDB, 2010.

[12] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph Homomorphism
Revisited for Graph Matching.PVLDB, 2010.

[13] B. Gallagher. Matching Structure and Semantics: A Survey on
Graph-Based Pattern Matching.AAAI FS., 2006.

[14] J. Han. Mining Heterogeneous Information Networks by Exploring
the Power of Links.ALT, 2009.

[15] L. Han, T. Finin, and A. Joshi. GoRelations: An Intuitive Query
System for DBpedia.LNCS, 2011.

[16] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked Keyword
Searches on Graphs.SIGMOD, 2007.

[17] J. Liu and X. Dong and A. Halevy. Answering Structured Queries on
Unstructured Data.WebDB, 2006.

[18] M. Kargar and A. An. Keyword Search in Graphs: Finding r-cliques.
PVLDB, 2011.

[19] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and
T. Ideker. PathBLAST: A Tool for Alignment of Protein Interaction
Networks.Nucleic Acids Res, 2004.

[20] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao.
Neighborhood Based Fast Graph Search in Large Networks.
SIGMOD, 2011.

[21] J. W. Kim and K. S. Candan. CP/CV: Concept Similarity Mining
without Frequency Information from Domain Describing
Taxonomies.CIKM, 2006.

[22] Z. Liang, M. Xu, M. Teng, and L. Niu. NetAlign: A Web-based Tool
for Comparison of Protein Interaction Networks.Bioinfo., 2006.

[23] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing Topology in
Graph Pattern Matching.PVLDB, 2012.

[24] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I.Horn,
N. Leiser, and G. Czajkowski. PREGEL: A System for Large-Scale
Graph Processing.SIGMOD, 2010.

[25] S. Melnik, H. G.-Molina, and E. Rahm. Similarity Flooding: A
Versatile Graph Matching Algorithm and its Application to Schema
Matching.ICDE, 2002.

[26] M. Mongiovı̀, R. D. Natale, R. Giugno, A. Pulvirenti, A.Ferro, and
R. Sharan. SIGMA: A Set-Cover-Based Inexact Graph Matching
Algorithm. J. Bioinfo. and Comp. Bio., 2010.

[27] C. Papadimitriou and M. Yannakakis. Optimization, Approximation,
and Complexity Classes.J. Comp. and Sys. Sc., 1991.

[28] Y. Papakonstantinou and V. Vassalos. Query Rewriting for
Semistructured Data.SIGMOD, 1999.

[29] J. Pearl. Reverend Bayes on inference engines: A distributed
Hierarchical Approach.American Association of AI Conf., 1982.

[30] K. Sambhoos, R. Nagi, M. Sudit, and A. Stotz. Enhancements to
High Level Data Fusion using Graph Matching and State Space
Search.Inf. Fusion, 2010.

[31] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher,and
T. Eliassi-Rad. Collective Classification in Network Data.AI
Magazine, 2008.

[32] H. Shang, Y. Zhang, X. Lin, and J. Yu. Taming VerificationHardness:
An Efficient Algorithm for Testing Subgraph Isomorphism.PVLDB,
2008.

[33] R. Singh, J. Xu, and B. Berger. Global Alignment of Multiple Protein
Interaction Networks with Application to Functional Orthology
Detection.PNAS, 2008.

[34] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient Subgraph
Matching on Billion Node Graphs.PVLDB, 2012.

[35] Y. Tian, R. McEachin, C. Santos, D. States, and J. Patel.SAGA: A
Subgraph Matching Tool for Biological Graphs.Bioinfo., 2006.

[36] Y. Tian and J. M. Patel. TALE: A Tool for Approximate Large Graph
Matching.ICDE, 2008.

[37] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
Best-Effort Pattern Matching in Large Attributed Graphs.KDD,
2007.

[38] J. R. Ullmann. An Algorithm for Subgraph Isomorphism.J. ACM,
1976.

[39] J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword Query Reformulation
on Structured Data.ICDE, 2012.

[40] S. Zampelli, Y. Deville, C. Solnon, S. Sorlin, and P. Dupont. Filtering
for Subgraph Isomorphism.CP, 2007.

[41] S. Zhang, J. Yang, and W. Jin. SAPPER: Subgraph Indexingand
Approximate Matching in Large Graphs.PVLDB, 2010.

[42] Q. Zhong, H. Li, J. Li, G. Xie, J. Tang, L. Zhou, and Y. Pan.A Gauss
Function Based Approach for Unbalanced Ontology Matching.
SIGMOD, 2009.

[43] L. Zou, J. Mo, L. Chen, M. T.̈Ozsu, and D. Zhao. gStore: Answering
SPARQL Queries via Subgraph Matching.VLDB, 2011.

11. APPENDIX
11.1 NeMa vsNESS

To leverage for node label mismatches, one can modifyNESS

by allowing two nodes to be matched when their label difference
is within a predefined cost threshold. However, such modification
reduces the pruning capability ofNESS, and generates a large num-
ber of final candidate nodes at the end of its filtering step. Hence,
finding the top-k graph matches by verifying all possible graph
matches formed by this large set of final candidate nodes becomes
expensive.

Example 10.1. In Figure 16, labela can be matched witha1, a2;
and labelb with b1, b2, b3. Now, consider a matching functionφ
between the query graphQ and matchM1, whereφ(v1) = u1,
φ(v2) = u2, φ(v3) = u3, φ(v4) = u5, φ(v5) = u6, andφ(v6) =
u7. Assumingh = 1 andα = 0.5, the label-based neighborhood
vectors, as defined inNESS, are as follows.RQ(v4) = {〈a, 1〉}
due to nodesv3 andv5 in the1-hop neighborhood ofv4. Similarly,
Rφ(u5) = {〈a1, 0.5〉 〈a2, 0.5〉}, due to nodesu6 andu7 in the
1-hop neighborhood ofu5. Hence, the label-based neighborhood
matching costNφ(v4, u5) = 1−(0.5+0.5) = 0. Thus, individual
node matching costFφ(v4, u5) = ∆L(b, b2).

Next, consider another matchingφ′ betweenQ and matchM2,
whereφ′(v1) = u8, φ′(v2) = u9, φ′(v3) = u10, φ′(v4) = u11,
φ′(v5) = u12, andφ′(v6) = u13. As before,Fφ′(v4, u11) =
∆L(b, b2). In fact, one may verify thatC(φ) = C(φ′), using
NESS; althoughφ′ is a better match thanφ. This happens because
NESS cannot ensure that the matching of the underlying nodes are
preserved when we match the neighborhood vectors based on their
label distributions. Hence, the label based neighborhood matching
in NESS is weak, and its pruning capacity further reduces when we
allow node matching with slightly different labels.

a

b

b

b

a

av1

v2

v3 v4

v5

v6

Query Graph Q

a1

b1

b1

b2b3

a2

a1

u3

u1

u2

u4

u5

u6

u7

Match M1

a1

b1

b1

b2

a2

a1u8

u9

u10

Match M2

u11

u12

u13

Figure 16: Problem inNESS (Label Based Neighborhood Match)

In contrast,NeMa has improved performance due to two rea-
sons. (1)NeMa computes the neighborhood similarity by directly
comparing the neighboring nodes (Eq. 2). This makes the sub-
graph matching inNeMa more strict as compared toNESS. In-
deed,C(φ) > C(φ′), usingNeMa (Figure 16). (2) Unlike the
filtering-and-verification approach inNESS, our proposedNeMa

framework directly finds the top-k graph matches, considering both
label and structural similarity. As verified in Section 7,NeMa out-
performsNESS in identifying reasonable matches when the same
entity can have different labels in query and target graph.

192

