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ABSTRACT
Bloom filters are a great technique to test whether a key is not in a
set of keys. This paper presents a novel data structure called ARF.
In a nutshell, ARFs are for range queries what Bloom filters are
for point queries. That is, an ARF can determine whether a set of
keys does not contain any keys that are part of a specific range.
This paper describes the principles and methods for efficient im-
plementation of ARFs and presents the results of comprehensive
experiments that assess the precision, space, and latency of ARFs.
Furthermore, this paper shows how ARFs can be applied to a com-
mercial database system that partitions data into hot and cold re-
gions to optimize queries that involve only hot data.

1. INTRODUCTION
Bloom filters [5] are a powerful technique with many applica-

tions. They have been successfully deployed for processing joins
in distributed systems, to detect duplicates in data archives, and to
speed-up lookups in the Squid cache. Bloom filters have a number
of advantages. They are compact and can be implemented effi-
ciently both in space and time. Furthermore, they degrade grace-
fully; even small Bloom filters are useful and the effectiveness of a
Bloom filter increases with its size.

One limitation of Bloom filters is that they only work for point
queries. In some applications, this limitation is acceptable, but in
many other applications support for range queries is important.
Consider, for instance, a Map-Reduce job that analyzes customer
behavior over a specific time period. To do this efficiently, it would
be useful to have range filters that quickly detect files that poten-
tially have relevant events for the specified time period.

The main contribution of this paper is the description of a new
trie-based data structure called ARF which is short for Adaptive
Range Filter. In a nutshell, an ARF is a Bloom filter for range
queries. That is, an ARF can be used to index any ordered domain
(e.g., dates, salaries, etc.) and it can be probed to find out whether
there are any potential matches for any range query over that do-
main. Just like Bloom filters, ARFs are fast, compact (i.e., space
efficient), and degrade gracefully.
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One particular feature of ARFs is that they are adaptive. That is,
ARFs dynamically learn the query and data distribution and adjust
their shape accordingly. It is possible to start with an empty ARF at
the beginning. As more and more queries are processed, the ARFs
self-tune in a fine-grained way based on the query feedback (false
positives). Specifically, ARFs self-tune by indexing important re-
gions of the domain in a fine-grained way (e.g., hot and choppy
regions) and less important regions in a coarse-grained way. If the
workload or data distribution changes, ARFs adjust, too.

This paper summarizes the results of experiments carried out
with ARFs thereby varying the data distribution, the query distribu-
tion, and updates among others. The results show that ARFs are in-
deed robust and adaptive. Furthermore, the experiments show that
ARFs are fast, compact, and degrade gracefully. To the best of our
knowledge, no other comparable data structures for filtering range
queries have been proposed in the literature. To get a feeling for
the effectiveness of ARFs, we compare ARFs with Bloom filters
even though ARFs and Bloom filters were designed for different
purposes. It turns out that ARFs can outperform Bloom filters even
for point queries if there is skew in the workload or data.

The remainder of this paper is organized as follows: Section 2
gives an overview of Project Siberia which is the project that mo-
tivated this work. Section 3 describes the ARF data structure. Sec-
tion 4 explains how ARFs learn and adapt to the workload. Section
5 presents the results of experiments. Section 6 gives a qualita-
tive analysis of ARFs. Section 7 discusses related work. Section 8
contains conclusions and possible avenues for future work.

2. APPLICATION EXAMPLE

2.1 Project Siberia
To illustrate the usefulness of ARFs, this section shows how

we envision to use them as part of Project Siberia at Microsoft
Research. Project Siberia is investigating techniques for manag-
ing cold data in Hekaton. Hekaton is a high-performance, main-
memory database engine that is part of the Microsoft SQL Server
product suite. Hekaton was specifically designed to manage and
process hot data that is frequently accessed and has particularly
low latency requirements. Obviously, not all data is hot and it is not
economical to keep all data in main memory. The goal of Project
Siberia is to have the system automatically and transparently mi-
grate cold data to cheaper external storage, retain the hot data in
main memory, and to provide the right mechanisms to process any
kind of query. The expectation is that the great majority of queries
involve hot data only. However, the few queries that involve cold
data must be processed correctly, too.

This paper is not about Project Siberia or Hekaton. Both sys-
tems have been described in other papers; e.g., [17] describes how
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Figure 1: Query Processing in Project Siberia

Project Siberia determines which data is hot and cold; [10] gives an
overview of Hekaton. Furthermore, there are many more use cases
for ARFs such as quickly eliminating files and directories contain-
ing no relevant data when processing a Map Reduce job. We illus-
trate the use of ARFs in Project Siberia because it is a particularly
intuitive use case.

Figure 1 shows how queries and updates are processed in Project
Siberia. There is a hot store (i.e., Hekaton) for hot data and a cold
store (e.g., standard SQL Server tables) for cold data. Clients are
unaware of where data is stored and issue SQL queries and update
statements just like in any other relational database system. Log-
ically, every query must be computed over the union of the data
stored in the hot and cold stores. For instance, a query that asks for
the number of orders of a specific customer to be shipped within
the next week, needs to retrieve all relevant orders from both stores
and then compute the aggregate. Note that migrating data to the hot
store is more effective than caching data in main memory because
the hot store fully indexes all its data.

The focus of this paper is on the design of the filter component
shown in Figure 1. This filter tries to avoid unnecessary accesses to
the cold store. Access to the cold store is assumed to be expensive
even if it is only to find out that the cold store contains no relevant
information. Given a query, the filter returns true if the cold store
possibly contains records that match the query. It returns false if
the cold store is guaranteed to contain no relevant information for
the query: In this case (the most frequent case), the query can be
processed without accessing the cold store.

Again, Project Siberia includes several approaches to decide which
data to place into the hot store and which data to place into the cold
store. An important requirement is that the partitioning of the data-
base is transparent to the application developers. That is, we cannot
assume that the developer specifies whether the query involves only
hot data. That is why we need filters. Furthermore, the partitioning
can change at any point in time; there might be a continuous migra-
tion of records between the hot and cold stores. This observation
makes it necessary to devise adaptive techniques.

2.2 Requirements
We now summarize the requirements that guided our design of

ARFs. While these requirements are motivated by the use of ARFs
in Project Siberia, we believe that they apply more generally to
other applications of ARFs.

• Correctness: There must be no false negatives. That is, if the
filter returns false for a query or update, then it is guaranteed
that the cold store contains no relevant records.

• Precision: The number of false positives should be mini-
mized. A false positive is a query or update for which the
filter returns true even though the cold store contains no rel-
evant records. False positives do not jeopardize the correct-
ness of the system, but they hurt performance.

• Space efficient: The filter must live in main memory to guar-
antee efficient access to the filter. As main-memory space
is expensive, minimizing the space occupied by the filter is
critical to be cost effective.

• Graceful degradation: A direct consequence of the space-
efficiency requirement is that the precision of a filter should
grow and degrade with its space budget. Even a tiny filter
should be useful and filter out the most common queries.

• Fast: Filtering must be much faster than access to the cold
store. The filtering cost must be in the same order as process-
ing a query in the hot store: Most queries are expected to be
hot-only queries and almost all queries (except for primary
key lookups in the hot store) involve a filtering step. That is
why the filter lives in main memory.

• Robustness: Both the data and the query distribution are typ-
ically heavily skewed. The filter should be designed to work
well in such situations. Furthermore, the filter must adapt
whenever the workload changes and/or data is migrated back
and forth from the cold to the hot store.

• Generality: The filter must not make any assumptions about
the partitioning scheme used to classify records as hot or
cold. It must support partitioning at the record level, the
finest possible granularity. Furthermore, the filter should
support both point and range queries.

3. ADAPTIVE RANGE FILTERS
This section describes the main ideas of the ARF technique. It

shows how ARFs filter range queries, how they are implemented in
a space-efficient way, and how an ARF can be integrated into the
B-tree of a hot store. The next section then shows how ARFs adapt
to skew in the data and query distribution.

3.1 Overview
Figure 2 gives an example of an ARF. It shows the keys of records

stored in the cold store (e.g., shipping dates of orders) and one pos-
sible ARF built for this bag of keys. In most workloads, several
ARFs exist for a table: one for each attribute that is frequently in-
volved in predicates of queries and updates. This paper focuses
on one-dimensional ARFs; [2] studies multi-dimensional ARFs us-
ing space-filling curves and bounding rectangles in intermedediate
nodes of the index.

An ARF is a binary tree whose leaves represent ranges and in-
dicate whether the cold store contains any records whose keys are
contained in the range. To this end, each leaf node keeps an occu-
pied bit. The ARF of Figure 2, for instance, indicates that the cold
store might have records with keys in the ranges [0,7] and [11,11]:
the occupied bits of these two leaves are set to true. Furthermore,
the ARF of Figure 2 indicates that the cold store has no records
with keys in the ranges [8,9], [10,10], and [12,15].

The intermediate nodes of an ARF help to navigate the ARF in
order to find the right leaves for a given query. Each intermediate
node represents a range and has two children: the left child repre-
sents the left half of the range of its parent; the right child represents
the right half of the range. The root represents the whole domain of
the indexed attribute (e.g., [0,15] in the toy example of Figure 2).
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Figure 2: Example ARF

Using an ARF, a range query, [l,r], is processed as follows:
Starting at the root, the system navigates to the leaf node that con-
tains l, the left boundary of the range query. If the occupied bit
of that leaf is set to true, the filter returns true, thereby indicating
that the cold store needs to be accessed for this query. If the oc-
cupied bit of that leaf is set to false, then the right sibling of that
leaf is inspected until the leaf covering r has been inspected. For
instance, the range Query [8,12] would navigate first to the Leaf
[8,9], then visit the Leaf [10,10] and then [11,11]. At this point, it
would return true indicating that the cold store needs to be visited.

Revisiting the requirements for filters listed in Section 2.2, the
ARF structure is correct if the occupied bit of a leaf is set to false
only if the cold store indeed contains no records whose keys match
the range of that leaf. Therefore, these occupied bits need to be
maintained whenever new records are migrated to the cold store or
records are updated in the cold store (Section 4.4). False positives
may arise in a number of situations. Most importantly, an ARF
cannot precisely represent all the keys of the cold store if there is a
limited space budget. For instance, the ARF of Figure 2 does not
capture the fact that the cold store contains no record for 4 because
doing so would require to grow the ARF much deeper. As a result,
the ARF of Figure 2 results in a false positive for the query [4,4].
How to make best use of the space budget and adapt to a given data
and query distribution is the subject of Section 4.

3.2 Encoding
One of the main advantages of the ARF structure is that it can

be implemented in a space-efficient way. Because the children of
every node always partition a region in half, the nodes need not
store the delimiters of their ranges: these ranges are implicit. More
precisely, an ARF is a trie and every level of the trie represents
information for the next significant “bit” of the domain. So, all that
is needed to represent an ARF is to encode the whole domain, the
shape of the tree, and the occupied bits of the leaves.

To be concrete, every intermediate (non-leaf) node can be repre-
sented using two bits. These two bits encode whether the node has
0, 1, or two children. The following four situations can arise:

• 00: Both of the children of the intermediate node are leaves;
e.g., Node [10, 11] in Figure 2.

• 01: The left child is a leaf; the right child is not a leaf; e.g.,
Nodes [0, 15] and [8, 11] in Figure 2.

Figure 3: Integrating ARFs into a B-tree

• 10: The right child is a leaf; the left child is not a leaf; e.g.,
Node [8, 15] in Figure 2.

• 11: None of the children are leaves.

The shape of a whole ARF is encoded by serializing the interme-
diate nodes in a breadth-first traversal. For example, the shape of
the ARF of Figure 2 is represented by the following bit sequence:
01 10 01 00. No pointers are needed! These 8 bits are all that is
needed to determine the ranges of all four intermediate nodes.

In addition to the bit sequence that encodes the intermediate
(non-leaf) nodes, an ARF maintains the occupied bits of the leaves.
Continuing the example of Figure 2, the bit sequence that repre-
sents the five leaves is: 10010.

Putting shape and occupied bits together, the ARF of Figure 2
is represented using 13 bits. In general, an ARF with n nodes is
encoded using 1.5 ∗ n bits: 2 ∗ n/2 bits for the intermediate nodes
plus n/2 + 1 bits for the leaves.

A breadth-first encoding (as opposed to depth-first) of the ARF
is used because it supports a more efficient navigation through the
ARF. The exact algorithms and optimizations that make probing
and maintaining ARFs fast on modern hardware are given in the
appendix of the electronic version of this paper. Since ARFs are
not balanced, the running time complexity to probe an ARF is lin-
ear with the size of the ARF in the worst case. As shown in Sec-
tion 5.5, ARFs are nevertheless fast up to a certain size because
of their compact encoding and an efficient low-level implementa-
tion on modern hardware. To implement fast search in a very large
ARF, we propose to partition the ARF and embed each partition
into a balanced data structure. Project Siberia, for instance, em-
beds ARFs into B-trees as described in the next sub-section.

3.3 ARF Forests
We recommend using many small ARFs that each cover a spe-

cific sub-range instead of one big ARF that covers the whole do-
main. One reason is lookup performance. Another reason is space
efficiency. A third reason is that ARFs can nicely be embedded into
existing index structures such as B-trees.

Figure 3 shows how ARFs can be embedded into a B-tree in the
hot store. The upper part of Figure 3 shows a normal, traditional
B-tree which indexes the data in the hot store. For simplicity, this
example B-tree is shown as having only one entry in each node. To
find data in the hot store, our system navigates this B-tree just like
any other B-tree. There is nothing special here.

What makes the B-tree of Figure 3 special is that any node (leaves
and intermediate node) can have a reference to an ARF. For in-
stance, the leaf node of the B-tree that contains the Key 9 has a
reference to the ARF that corresponds to the Range [8,11]. Like-
wise, the intermediate node 3 of the B-tree points to the ARF that
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(a) Before Escalation

(b) Split of Node [0,15] (c) Complete Escalation

Figure 4: Escalating an ARF

corresponds to the Range [0,7]. Processing a query now involves
navigating the B-tree to find all relevant hot records and following
the pointers to ARFs in order to find out whether the system needs
to access the cold store.

Comparing Figures 2 and 3, one way to interpret the forest of
ARFs is to think of a big ARF with its top chopped off. For in-
stance, the forest of ARFs depicted in Figure 3 emerged from the
ARF of Figure 2 by removing nodes [0,15] and [8,15] and con-
necting the resulting three subtrees to the appropriate places in the
B-tree. This approach saves space because the domain and the top-
level nodes of the ARF are not stored. Furthermore, this approach
saves time to navigate the first levels of the ARF: While traversing
the B-tree, we implicitly also traverse the top levels of the ARF.

4. LEARNING AND ADAPTATION
One of the nice features of the ARF structure is that it can adapt

to the data and query distribution. For instance, large regions that
contain no data such as [12,15] in Figure 2 can be represented in
a compact way. Likewise, large regions that are densely packed
such as [0,7] in Figure 2 can be represented in a compact way. This
way, an ARF can invest most of its bits into regions that are queried
frequently and are modestly populated such as [8,11] in Figure 2.
This section shows how to construct and evolve an ARF, thereby
adapting to the data and query distribution and to data movement
from and to the cold store. First, we describe the basic primitives
of splitting and merging nodes of an ARF. Then, we present spe-
cific adaptation and learning techniques. Throughout this section,
we will show examples for a “single big ARF” approach. All the
techniques apply naturally to a forest of ARFs (Section 3.3).

4.1 Escalation (Split)
Technically, an ARF grows and shrinks just like any other tree: It

grows by splitting leaves and it shrinks by merging leaves. Figure 4
shows how the ARF of Figure 2 could have evolved. At the begin-
ning, an ARF just contains a single node that represents the whole
range and indicates that the cold store needs to be accessed for ev-
ery query or update operation. Figure 4a shows this minimal ARF
for the example of Figure 2. Figure 4b shows the next incarnation
created by splitting this single node. Again, a split always parti-
tions the range of its parents in half. Figure 4c shows the resulting
ARF after splitting Node [8,15].

Unlike most other trees, splitting (and merging) of nodes is not
initiated by updates to the database. B-tree nodes, for instance, are
split as a result of inserting a new key. In contrast, an ARF grows
(and shrinks) as a result of learning and adapting to the data and

query distribution. Algorithm 1 gives the pseudo-code of the esca-
lation process. When a query, q, is processed, it is checked whether
the query is a false positive. If it was, then the ARF escalates so that
processing the same query again does not result in a false positive
again. As shown in Algorithm 1, this escalation is done iteratively
by splitting the leaf that contains the left and right bounds of the
query (denoted by q.left and q.right in Algorithm 1) until the left
bound of the query is the left boundary of a leaf and the right bound
of the query is the right boundary of a leaf. This splitting is only
done if the query bounds are contained in leaves whose occupied
bit is set to true. As a final step, the MarkEmpty method is called
in order to make sure that the occupied bits of all the leaves that are
contained by the query are set to false.

Algorithm 1 ARF Escalation
procedure PROCESS(Query q)

. . .
if (q is false positive) then

node← NAVIGATE(q.left)
while (node.left <> q.left) & node.occupied do

SPLIT(node)
node← NAVIGATE(q.left)

end while
node← NAVIGATE(q.right)
while (node.right <> q.right) & node.occupied do

SPLIT(node)
node← NAVIGATE(q.right)

end while
MARKEMPTY(q.left, q.right)

end if
. . .

end procedure

The post condition of executing the code snippet of Algorithm 1
is that the ARF accurately captures that the cold store contains no
value in the range, q. Furthermore, Algorithm 1 does not change
the status of any other values so that if the ARF was correct and
did not allow any false negatives before executing the code snippet
of Algorithm 1, then the ARF is also correct after the execution of
Algorithm 1. As a result of the splits, the size of the ARF grew. If
space is limited, then the ARF de-escalates, thereby gaining space
and losing precision. The next sub-section describes this process.

4.2 De-escalation (Merge)
The ultimate goal is to minimize the number of false positives

with a given (small) space budget. As a result of the escalation that
improves precision as described in the previous sub-section, it is
possible that the size of the ARF grows beyond its space limits. In
such a situation, we need to shrink the ARF so that it fits within the
space budget. Shrinking is done by merging nodes in the ARF. We
call this process de-escalation.

In the same way as escalation increases the precision of an ARF,
de-escalation reduces the precision of an ARF. So, it is critical
to decide which nodes of the ARF to merge; the goal is to merge
nodes that are not likely to overlap future queries in order to make
sure that this de-escalation does not result in false positives in the
immediate future. To decide which nodes of an ARF to merge,
we propose to make use of a replacement policy. In principle, any
replacement policy known from buffer management can be used
(e.g., LFU, LRU, or LRU-k). Section 6 gives a better intuition of
the analogy of replacement of nodes in an ARF and replacment of
objects in a cache. We propose to use a clock replacement policy
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(a) Before De-escalation (b) After De-escalation

Figure 5: ARF Replacement

for ARFs because its statistics are small (i.e., a single bit) and space
efficiency is particularly important for ARFs.

Figure 5 demonstrates how de-escalation with a clock policy
works using the running example. Figure 5a shows the example
ARF from Figure 2; this time with a used bit for each leaf node.
The used bit of a leaf is set whenever a query hits that leaf. For
instance, the processing of Query [13,14] sets the used bit of Leaf
[12,15], thereby indicating that this leaf is useful and not a good
candidate for replacement. Furthermore, Figure 5a shows the clock
pointer which points to Leaf [8,9] in this example. If the ARF has
grown beyond its space budget, then the replacement policy looks
for a victim. In this example, the clock strategy first checks Leaf
[8,9]: Since its used bit is set, the clock strategy advances the clock
pointer to the next leaf and unsets the used bit of [8,9]. In this
example, the clock replacement policy selects [10,10] as a victim
because its used bit is not set.

Figure 5b shows the ARF after replacing [10,10]. Technically,
such a de-escalation works by merging the victim with its sibling—
[11,11] in this example. Actually, it is only possible to de-escalate
if the sibling is also a leaf. If not, the clock strategy continues to
look for victims until two leaves are found.

Merges cascade if the occupied bits of two leaves have the same
value. In general, two sibling leaves that have their occupied bits
set to the same value do not carry any information, thus they can
be merged. In the example of Figure 5b, Nodes [8,9] and [10,11]
have different values for their occupied bits so that the merge cas-
cade stops at this point. If the occupied bit of Node [8,9] had been
set to true, then these two nodes would have been merged, too.
Algorithm 2 shows pseudocode for the whole de-escalation pro-
cess. This pseudocode is executed immediately after possible esca-
lations. The FindVictim function implicitly advances the clock
and unsets used bits. The Sibling function determines the sib-
ling of a leaf node, and the Merge function implicitly cascades if
the occupied bits of two siblings have the same value.

An interesting observation is that used bits (or more generally,
usage statistics for a replacement policy) are only needed for leaf
nodes whose occupied bits are set to false. Only these leaves carry
useful information and only these leaves need to be protected from
replacement. Putting it differently, it never hurts to merge a leaf
with occupied bit set to true with its sibling if that sibling is not
useful for any queries. By applying the replacement policy only
to leaves whose occupied bit is set to false, half of the space for
keeping usage statistics is saved. Again, space economy is also
the reason why we suggest using a clock strategy as a replacement

Algorithm 2 ARF De-escalation
procedure PROCESS(Query q)

. . . . Escalation as in Algorithm 1
while (size > budget) do

node1← FINDVICTIM
node2← SIBLING(node1)
MERGE(node1, node2)

end while
end procedure

policy. Overall, on average, only half a bit per leaf node is required.

4.3 Speeding-up Learning
Section 4.1 showed how an ARF learns from false positive queries:

It escalates, thereby making sure that it does not make the same
mistake twice. In fact, the ARF can also learn from true positive
queries. True positives are queries for which the ARF indicated that
the cold store needs to be accessed (the occupied bit of one of the
relevant leaves was set to true) and for which indeed the cold store
returned a non-empty result. The results of these queries are useful
to train the ARF because the gaps between two results are empty.

To give an example, let the result of Query [5,15] be {7, 9}.
If the query involves no other predicates on other dimensions, we
can now infer that the cold store has no records that match keys
in the ranges [5,6], [8,8] and [10,15]. Correspondingly, we could
set the occupied bit of a leaf node, say, [12,15] to false if it is still
set to true from its initialization because no other information was
available at that point in time. We use such information from true
positive queries to set the occupied bits of existing bits to the right
value; however, we do not suggest to escalate the ARF and only
trigger escalation for false positives. The reason is that escalation
always comes at a cost (de-escalation of the ARF at another region)
and a true positive query does not justify this cost.

Learning from such true positives speeds up learning dramat-
ically and comes at virtually no cost. Another way to speed up
learning at little incremental cost is to ask slightly bigger queries to
the cold store whenever the cold store is visited. For instance, if the
query is [13,14] and the relevant leaf node of the ARF is [12,15]
and its occupied bit is set to true from its initialization, then we
could forward the Query [12,15] to the cold store and filter the re-
sults returned by the cold store. The reason is that if [13,14] is a
false positive and, actually, the whole range [12,15] is empty, then
we do not need to escalate the ARF to process this false positive.
And, even if [12,15] is not entirely empty, then we possibly would
not have to escalate the sub-tree rooted in [12,15] as deeply as we
would have to if we only knew that [13,14] was empty.

We implemented both these learning techniques for the prototype
used in the experiments reported in Section 5.

4.4 Updates
An important requirement of Project Siberia is that records can

freely move at any point in time between the hot and cold stores.
If a record is moved from the hot store into the cold store, then all
ARFs constructed for the table of that record need to be updated in
order to avoid false negatives. In Figure 2, for instance, the occu-
pied bit for Node [12,15] must be set to true, if, say, a record with
Key 14 is inserted into the cold store. Actually, there are several al-
ternative approaches to avoid false negatives in this situation; e.g.,
escalating Node [12,15] or conditionally escalating Node [12,15] if
its used bit is set. We did not experiment with these variants and
implemented the simple variant that sets the occupied bit to true
because that variant worked well in all our experiments.
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If a record is removed from the cold store, the ARF is not changed.
In Figure 2, for instance, we cannot set the occupied bit of Node
[11,11] to false, even if we knew that one or several records with
Key 11 have been removed from the cold store. Fortunately, un-
like insertions, deletions in the cold store cannot result in incorrect
ARFs: the worst that can happen is that they result in inefficien-
cies caused by false positives. As shown in Section 5.6, however,
the escalation mechanism of Section 4.1 that adapts an ARF after
a false positive is quite effective so that an ARF adjusts quickly to
changes in the data distribution caused by excessive migration of
records between the hot and cold stores.

4.5 Training ARFs
In addition to its ability to adapt to changes in the data distribu-

tion in a fine-grained way, one main feature of ARFs is that they
learn on the fly: It is always safe to start with a trivial ARF with
only one node such as the ARF of Figure 4a and build it up in a
pay-as-you-go manner as part of processing queries and updates. If
a dedicated training phase is affordable, such a training phase can
be used to initialize ARFs so that the ARFs perform well from the
very beginning. We propose to train ARFs in the following way:

• Explore the Data: Scan the table in the cold store. From
the results, construct a perfect ARF which accurately models
all gaps in the cold store. That is, we escalate the ARF as
proposed in Algorithm 1, but we would not de-escalate the
ARF as shown in Algorithm 2. This way, the ARF is likely
to exceed the space budget, but we tolerate that in the training
phase.

• Explore the Workload: Run a series of example queries and
updates which are representative for the query and update
workload. The purpose of this step is to make sure that the
ARF learns the query/update distribution. As part of this
step, the used bits of leaves are set. In fact, we propose to
use usage counters (instead of used bits) to distinguish be-
tween leaves that are used more frequently than others.

• Meet Space Constraints: Trim the ARF by running the code
snippet of Algorithm 2 so that the space budget is met. If
usage counters were used in Step 2, discard those and keep
used bits only for the regular operation of the ARF.

This training algorithm can be applied simultaneously to all ARFs
of a table.

4.6 Summary and Variants
This section presented a series of techniques to train and adapt

an ARF. The ultimate goal is to converge to an ARF that is small
and whose shape reflects both the data and query distribution and
has, thus, high precision with few false positives. The rule of thumb
is that an ARF should be coarse-grained (i.e., have leaves that cover
large ranges) for empty and densely-populated regions or regions
that are infrequently queried; in contrast, an ARF should invest its
bits and be fine-grained for regions that are frequently queried and
have many gaps.

Given the basic techniques presented in this section, there is a
large design space of possible variants. We studied many of these
variants as part of our experiments and present the most interesting
results in Section 5. Here, we want to briefly sketch and summarize
the most important dimensions of this design space:
To adapt or not to adapt? Adaptation can be harmful. For in-
stance, an ARF might escalate as part of processing a query that
will never be asked again. After this escalation, the ARF might
have to de-escalate to fit the space budget, thereby removing leaves

which are needed for the next query. In particular, adaptation is
often not needed if the ARF was trained using the algorithm of
Section 4.5.
When to adapt? If the answer to the first question is yes, then it
is worth asking whether escalation should be carried out for every
false positive or whether we should selectively escalate as a result
of a false positive query. For instance, we could maintain used bits
for leaves with their occupied bit set to true, too, and only escalate
those leaves if their used bit is set. That is, rather than avoiding
making the same mistake twice, we would avoid making the same
mistake three times.
What is the best replacement policy? We chose the clock strat-
egy to find victims in Section 4.2 because it is space-efficient and
easy to implement. In Section 5, we will show that a random re-
placement policy that maintains no statistics does even better if the
workload is not skewed. Section 6 reiterates this question.
When to adapt from a systems perspective? A more systems-
related question involves decoupling the decision when to adapt
from the actual process of implementing the escalation and de-
escalation processes. For instance, we could find out during query
processing that we need to escalate the ARF, but then carry out
the actual escalation asynchronously, thereby retrieving more pre-
cise information from the cold store. An extreme variant would be
to keep statistics about false positives for the whole ARF and to
completely reconstruct the ARF using the algorithm of Section 4.5
whenever the statistics indicate that it is worth doing so.

5. EXPERIMENTS AND RESULTS
This section presents the results of extensive experiments that we

conducted with a prototype implementation of ARFs, a synthetic
benchmark and a real workload from an Xbox Live server. The
experiments study the precision, space and time efficiency, robust-
ness, and graceful degradation of several ARF variants for various
different workloads and database configurations. Specifically, this
section presents the results of the following three ARF variants:

• ARF no-adapt: The ARF is trained once (as described in
Section 4.5) and then never changed.

• ARF adapt-1bit: The ARF is trained at the beginning (as
described in Section 4.5) and then adapted with every false
positive as described in Section 4.1. After every escalation,
the ARF is de-escalated to fit its space budget as described in
Section 4.2, thereby using a clock replacement policy.

• ARF adapt-0bit: Same as “ARF adapt-1bit” with the only
difference that we use a clock strategy without used bits.
This way, the replacements are somewhat random, but the
additional space can be used to construct ARFs that more
accurately model the data.

If not stated otherwise, this section presents the results obtained
using a single “big ARF” rather than a forest of ARFs. As stated
in Section 3.3, forests of ARFs have a number of advantages. In-
deed, forests of ARFs showed higher precision in all experiments
for being more space efficient, but the effects were small so we
only show the precision results for a single, big ARF. In terms of
latency, forests of ARFs showed significant improvements so we
included these results in Section 5.5.

We are not aware of any comparable technique for filtering range
queries. To get a feeling for the effectiveness of ARFs, we use
Bloom filters as a baseline in all experiments, even though Bloom
filters were designed to filter point queries only. We apply Bloom
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Database Parameters
Distribution Uniform or Zipf
Distinct Keys Vary
Domain Size 224

Query Workload
Location (l) Uniform, Zipf1, or Zipf2
µ, Mean Range Size (r − l) Point (µ = 0) or

Range (µ = 1 . . . 300)
Updates

Deletes Uniform
Inserts Zipf or Uniform
Number of Updates Vary

Table 1: Benchmark Parameters

filters to range queries by probing each value of the range and ap-
plying short-circuiting. We also include experiments with range-
based Bloom filters for which every entry of a Bloom filter covers
a range of values. In the literature, a number of Bloom filter vari-
ants have been proposed (Section 7). We implemented the classic
variant [5] because it is typically used in practice. A comparison of
alternative Bloom filter variants for point queries is not the purpose
of this paper and can be found in the literature (Section 7).

5.1 Benchmark Environment
To study ARFs, we ran a series of synthetic workloads using the

three ARF variants and Bloom filters. Table 1 lists the parameters
of our benchmark database and workload. We studied two different
kinds of benchmark databases: Zipf and Uniform. Using a Zipf dis-
tribution, the keys of the records stored in the cold store were highly
skewed. Using a Uniform, the keys were evenly distributed in the
domain. In practice, we expect a Zipf distribution; for instance, the
cold store may contain all orders with a past shipping date and only
a few orders with a shipping date in the future. We also studied an
Xbox gaming workload; that workload is also skewed.

We varied the number of distinct keys of records in the cold store
from 1000 to 1 Million. If not stated otherwise, this value was set
to 100,000 distinct keys.

We studied a number of different synthetic query workloads with
point and range queries. All queries were executed sequentially and
generated using a random query generator. Each query has the form
[l, r]. The left boundary, l, was generated using either a Zipf dis-
tribution or a Uniform distribution. We studied two different kinds
of Zipf distributions. In the first variant, called Zipf1, some regions
of the domain were queried more frequently than other regions and
these hot regions were sprinkled randomly (using a Uniform dis-
tribution) across the whole domain. In the second variant, called
Zipf2, the hot regions were clustered. With a Zipf database and a
Zipf2 query workload, the queries were clustered so that the query
location was different from the location of the data. We expect this
situation to be a typical scenario for Project Siberia. Using the “or-
der” example again, most of the orders in the cold store are old
orders and most of the queries ask for present or future orders.

The second parameter that determined the query workload is the
mean range size of range queries; i.e., r − l. This parameter is
referred to as µ in Table 1. We studied two kinds of queries: point
queries and range queries. For point queries, l = r (i.e., µ = 0).
For range queries, r − l was generated using a normal distribution
with mean µ. We varied the mean of this normal distribution from
µ = 1 to µ = 300. The standard deviation was set to σ = µ/3.

We also studied how quickly ARFs adapt to migrations between
the hot and cold store. In these experiments, we ran a workload mix
of queries, inserts (inserting new records into the cold store) and

deletes (moving records from the cold store to the hot store). All
deletes removed all records with a certain key (e.g., all orders with
a certain shipping date) from the cold store; the key was selected
using a Uniform distribution. All inserts inserted records with a
key that did not yet exist in the cold store: The value of the new
key was selected using either a Uniform or a Zipf distribution. We
report on these results in Section 5.6. Furthermore, we studied how
ARFs adapt to changes in the workload (Section 5.7).

All experiments were carried out in the same way. First, the
ARFs and Bloom filters were trained; the ARFs were trained using
the algorithm of Section 4.5. After that, we ran 300,000 randomly
generated queries and measured the false-positive rate, lookup la-
tency, and the time it took for escalate and de-escalate operations.
The false-positive rate was defined as the number of false positives
divided by the total number of hot-only queries.

5.2 Software and Hardware Used
We ran all experiments on a machine with four dual-core Intel

processors (2.67 GHz) and 4 GB of main memory. The machine
ran Ubuntu Version 11.10. We implemented ARFs and Bloom fil-
ters using C++. We measured running times using the gettimeof-
day() function and CPU cycles using the RDTSCP instruction of
the processor.

We implemented ARFs as described in Sections 3 and 4. We
implemented Bloom filters using multiplicative hash functions, as
proposed in [16]. Furthermore, we optimized the number of hash
functions of the Bloom filters according to the size of the Bloom
filter. For instance, we used five hash functions if there were 8 bits
per key available. This way, we were able to reproduce all common
results on Bloom filters.

5.3 Experiment 1: False Positives

5.3.1 Point Queries: Synthetic Workload
Figures 6a to 6f study the false positive rate of the three alter-

native ARF variants and Bloom filters for point queries and for the
different query and database distributions. In these experiments,
we varied the size of the filters from 100 KBits (i.e., 1 bit per dis-
tinct key) to 1 MBits (i.e., 10 bits per distinct key). As a rule of
thumb, Bloom filters are at their best for 8 bits per key and Figures
6a to 6f confirm this result.

The results presented in Figures 6a to 6f give insight into three
important requirements of filters (Section 2): precision, graceful
degradation, and exploitation of skew in the data and query work-
load. Precision is directly reflected in the false-positive rate metric;
the lower the false-positive rate, the higher the precision. Graceful
degradation is reflected in the shape of the graphs; the flatter the
curve, the more resilient the filter is towards space constraints. Ex-
ploitation of skew can be observed by comparing the results of the
different figures: It is good if the false-positive rate improves for a
Zipf data or query distribution.

Turning to Figure 6a, it can be seen that Bloom filters are the
clear winner for point queries and no skew in the data and query
distribution (i.e., Uniform data and query distribution). This result
is no surprise because that is exactly the scenario for which Bloom
filters were designed and have proven successful. The precision
of the ARF variants improves with a growing size, but even for a
fairly large size of 10 bits per distinct key, none of the ARF variants
are competitive with Bloom filters which are almost perfect at this
point.

Comparing the three ARF variants in Figure 6a, it can be seen
that the “ARF no-adapt” variant is the winner, the “ARF adapt-
0bit” variant comes in second place, and the “ARF adapt-1bit” is
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Figure 6: Exp. 1 (Point Queries), Precision: Vary DB, Vary Workload, No Updates, Vary Size, 100K Distinct Keys
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Figure 7: Xbox Workload

the worst variant in this experiment. However, the differences are
small. The “ARF adapt-1bit” is worst because investing space for
used bits is not worthwhile if the query workload is Uniform: There
is no skew and the space is better invested to create a deeper ARF.
The “ARF no-adapt” variant beats the “ARF adapt-0bit” variant be-
cause adaptation is actually harmful here: Escalating the ARF to
handle one false positive in a small region might result in the de-
escalation of a large region. But, again, the effects are small. The
conclusion is that ARFs are not good for workloads with only point
queries and no skew. For such workloads, Bloom filters continue
to be the best choice.

Turning to Figures 6b to 6f, it can be seen that all three ARF
variants benefit significantly from skew in the data or query distri-
bution. In the presence of skew, all three ARF variants outperform
Bloom filters. These results are encouraging because a data struc-
ture that does not do well for point queries is unlikely to do well
for range queries. Again, the differences between the three ARF
variants are small.

5.3.2 Xbox Workload

Figure 7 shows the results of experiments with an Xbox gam-
ing workload. This workload is composed of 27 billion requests
from approximately 250,000 Xbox Live users who access different
objects of games. This workload is also skewed as some players
play more often than other players and, thus, access their objects
more frequently. Figure 7 varies along the x-axis the percentage
of objects that are kept in the hot store. Furthermore, it shows the
results for Bloom filters and ARFs with 4 bits per key and 8 bits
per key. In the extreme, all approaches behave in the same way
and have no false positives. If all objects are stored in the hot store
(x = 0%), there are no false positives because the cold store is
empty. Likewise, if the hot store is empty (x = 100%), there are
no false positives because all queries are true positives. In the mid-
dle, however, ARFs clearly outperform Bloom filters because the
ARFs take advantage of the skew in this workload. This experi-
ment resembles the “Uniform DB / Zipf1 Workload” experiment of
Figure 6b, albeit with a different kind of skew which was imposed
by the behavior of gamers.

5.3.3 Range Queries
Figure 8a shows the results of the three ARF variants and Bloom

filters for range queries with a mean range size of µ = 30 (σ = 10)
with a Uniform database and workload distribution. In the shipping
date / order example, a query with a key range of 30 corresponds to
asking for the orders of a specific month. In our adoption of Bloom
filters for range queries, we probed each day of the range until we
found a match or until all keys of the range had been probed.

Comparing Figures 6a and 8a, it can be seen that all three ARF
variants performed almost identically for point and range queries.
Figure 8b shows the results for range queries with a Uniform data-
base and a Zipf1 query workload. Comparing Figures 6b and Fig-
ures 8b, we can again observe that ARFs show almost the same
performance for range as for point queries. The same is true for
all other combinations of database and workload distributions (not
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Figure 9: Range-based Bloom Filters: Vary Block Size
Uniform Database, Zipf1 Workload, 100K Keys, 8 Bits/Key

shown for brevity). Figure 8c shows the results with a varying mean
query range size, µ, and a Uniform database and Uniform work-
load distribution. Again, the curves for all three ARF variants are
flat which demonstrates the robustness of ARFs: ARFs are good
for any kind of range query, independent of the size of the range.

In all these experiments, Bloom filters performed poorly, even
for fairly small µ. This is no surprise because Bloom filters were
not designed for range queries.

5.3.4 Range-based Bloom Filters
Figure 9 shows the false positive rate of a range-based Bloom

filter for a Uniform database and Zipf1 query workload with range
queries (µ = 30). In such a range-based Bloom filter, each cell
represents a whole range of values, rather than a single value in
a classic Bloom filter. Range-based Bloom filters, thus, take an
additional parameter, r, which determines the granularity (or size
of the range). For r = 1, range-based and classic Bloom filters are
the same. Figure 9 shows the results for two databases that were
randomly generated with different seeds.

As shown in Figure 9, it is virtually impossible to set the r pa-
rameter correctly. Depending on the query workload and the data-
base, a different setting of r is needed and even minimal changes to
the optimum setting can have dramatic impact on the performance.

In general, setting the r parameter of such a coarse-grained, range-
based Bloom filters exhibits a fundamental trade-off that is impos-
sible to predict. With a growing r, the number of false positives
caused by collisions of the hash functions decrease. However, with
a growing r, the number of false positives caused by a the coarse
granularity increases. With a “Uniform database / Uniform work-
load”, the graph is less bumpy, albeit still with a high sensitivity to
the right setting of r. As soon as the database or workload exhibits
any kind of skew, we observed the bumpiness shown in Figure 9 in
all our experiments.

5.4 Experiment 2: Scale Database
Experiment 1 studied the precision of ARFs and Bloom filters for

point queries, range queries and various different scenarios of skew
in the distribution of keys in the cold store and in the workload. We
now turn to presenting the results of experiments that assessed the
quality of filters with a varying number of distinct keys in the cold
store. We know from experience with Bloom filters that Bloom
filters are at their best if the filter has about 8 bits per key: More
bits per key do not significantly improve precision and fewer bits
per key hurt precision.

Figures 10a and 10b show the precision of the three ARF vari-
ants and Bloom filters with a constant size of 8000 bits while vary-
ing the number of distinct keys from 100,000 to 1 million, thereby
changing the “bits per key” ratio from 8 to 0.8. Not surprisingly

Point Queries (µ = 0) Range Queries (µ = 30)
1Kbits 3Kbits 1Kbits 3Kbits

ARF-1 900 (± 362) 2536 (± 1004) 1500 (± 1360) 3798 (± 3605)
ARF-64 137 (± 180) 200 (± 100) 478 (± 603) 670 (± 900)
Bloom 178 (± 178) 219 (± 52) 273 (± 300) 696 (± 300)

Table 2: Lookup Time (Cycles): Unif. DB, Unif. Workl.
Vary Queries, No Updates, Vary Size, 1000 Distinct Keys

and confirming all previous studies with Bloom filters, the preci-
sion of Bloom filters got worse (i.e., increasing false-positive rate)
as the “bits per key” ratio dropped. Figure 10a shows the results
for a Uniform database and Uniform workload; Figure 10b shows
the results for a Uniform database and a Zipf1 workload, but the re-
sults for Bloom filters were almost the same because the precision
of Bloom filters does not depend on skew. In these experiments and
all other experiments, we manually tuned the Bloom filters so that
the optimal number of hash functions was used for each “bits per
key” ratio. Figure 10c shows that the precision of Bloom filters is
constant if the “bits per key” ratio is constant. In this experiment,
we increased the size of the Bloom filter with the size of the data-
base to achieve a constant “bits per key” ratio. Figure 10c shows
the results for 4 and 8 bits per key. In both cases, the false positive
rate is constant, independ of the number of distinct keys.

Predictability and robustness is one of the strengths of Bloom
filters. It turns out that ARFs have the same features. Just like
Bloom filters, ARFs get worse if the “bits per key” ratio drops.
This effect is shown in Figures 10a and 10b. Likewise, ARFs have
constant precision if the “bits per key” ratio is constant. This effect
is shown in Figure 10c. In this figure, the ARF lines are just as
flat as the lines for the Bloom filters. Figures 10a to 10c show
these effects for range queries and two specific database / workload
distributions, but the same effects can be observed for point queries
and all other distributions.

5.5 Experiment 3: Latency
In addition to precision, graceful-degradation, space efficiency,

robustness, and generality which were all studied as part of Experi-
ments 1 and 2, speed is another important requirement for a filter in
Project Siberia. Table 2 presents the lookup times for Bloom filters
and two different kinds of ARFs: (a) a single, big ARF such as the
one shown in Figure 2 and as used in all other experiments reported
in this paper (referred to as ARF-1), and (b) a forest of 64 ARFs
such as the one shown in Figure 3 (referred to as ARF-64). Lookup
times do not vary significantly between the different ARF variants
so that we only present the results for “ARF no-adapt” here. Table 2
reports on the mean lookup times (and standard deviation) in cycles
measured over 20,000 queries. On a machine with cores clocked at
2.66 GHz, 2666 cycles take 1 µsec.

Looking at Table 2, the first observations is that Bloom filters
were faster than ARFs. Bloom filters involve executing a few hash
functions and lookups in a Boolean vector. These operations are
cheaper than navigating through an ARF. The complexity of Bloom
filters only mildly increased with the size of the filter (one hash
function for 1KBit filters and two hashes for 3KBit filters). Also,
it only mildly increased with the size of the range because of short
circuiting. Furthermore, Bloom filters have a low deviation.

ARFs were more expensive and had a higher standard deviation
because they are not balanced. Queries that hit the leftmost part
of the filter were much quicker to answer than queries that hit the
rightmost part due to the breadth-first traversal. Furthermore, the
ARFs were more sensitive to the filter and range sizes. In theory, all
operations on an ARF haveO(n) complexity with n the size of the
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Figure 8: Exp. 1 (Range Queries), Precision: Uniform DB, Vary Workload, No Updates, Vary Size, Vary µ, 100K Distinct Keys
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Escalate De-escalate
1Kbits 3Kbits 1Kbits 3Kbits

ARF-1 32788 (± 30330) 91847 (± 55905) 59974 (± 322307) 166972 (± 247141)
ARF-64 6449 (± 2937) 7609 (± 3207) 24357 (± 6710) 25134 (± 6697)

Table 3: Maintenance Time (Cycles): Unif. DB, Unif. Workl.
Point Queries, No Updates, Vary Size, 1000 Distinct Keys

ARF. Nevertheless, ARFs were competitive in all our experiments
with ARFs of a few thousand bits and it never took more than a few
µsecs to carry out a lookup. Large ARFs must be partitioned and
embedded into a balanced search structure; either into an existing
B-tree or into one that is dedicated for this purpose (Section 3).

Comparing the ARF-1 and ARF-64 results, embedding an ARF
into a B-tree and thereby saving the cost of navigating the first
layers of an ARF improved performance dramatically. In the best
cases, a (small) ARF can even outperform a Bloom filter in terms
of lookup times.

Table 3 shows the mean clock cycles (and standard deviation)
needed to escalate and de-escalate an ARF for the “ARF adapt-0bit”
variant. These operations are significantly more expensive in our
implementation, mainly because modification of the shape of the
ARF is needed, but they are still below 100 µsecs in all cases. Our
implementation of ARFs is not tuned for escalation/de-escalation
latency because such operations are rare. They only occur in the
event of false positives and in such cases latency is high anyway
because of accesses to the cold store. Again, embedding the ARF
into a B-tree helped significantly to improve performance.

5.6 Experiment 4: Adapt to Data Changes
One important requirement of Project Siberia is that data can

move from the hot to the cold store and vice versa at any point in
time. We believe that a similar requirement to maintain a filter in
the presence of updates is also important for other applications of
ARFs. To study the effectiveness of ARFs in such scenarios, we
carried out the following experiment:

1. Create an initial cold database and train the ARFs and Bloom
filters (just as in all previous experiments).

2. Run queries, thereby measuring the false-positive rate and
possibly adapting the ARFs for every false positive.

3. Delete the records of a random key from the cold store.

4. Insert the records of a random key into the cold store.

5. Goto Step 2.

Figure 11a shows the false-positive rate as a function of the number
of updates (i.e., iterations of the loop above) of point queries with
a Uniform workload. In this case, the original database containing
100,000 distinct keys was created using a Uniform distribution and
the keys of all Inserts in Step 4 were also generated using a Uni-
form distribution. Figure 11b shows the false-positive rate for point
queries if the data and update distribution is Zipf.

Both figures show that the false-positive rate of Bloom filters
and “ARF no-adapt” increased over time as more and more up-
dates were carried out. If queries repeatedly asked for keys and
the corresponding records had been deleted from the cold store (as
part of Step 3), then these approaches repeatedly resulted in a false
positive for these queries. In other words, once constructed, these
approaches are not able to adapt and therefore deteriorated over
time. In contrast, the adaptive ARF variants did not deteriorate:
They self-repair with every false positive and, therefore, adjust to
changes in the database.

1723



Figure 12: Example False Positive

5.7 Experiment 5: Adapt to Workload Changes
Figure 11c shows how ARFs adapt to changes in the workload.

In this experiment, the ARFs were trained according to a Zipf1
workload. Then, we ran 300,000 queries according to the same
Zipf1 workload. After that, we changed the Zipf1 workload so that
other regions became hot and previously hot regions cooled down.
As shown in Figure 11c, the adaptive ARF variants were able to
quickly adjust to the workload change and performed equally well
throughout the whole spectrum of queries. The performance of the
non-adaptive ARF variant, in contrast, got significantly worse after
the workload change. Bloom filters are also not able to adapt to
workload changes and we are not aware of any dynamic Bloom
filter variants. Figure 11c does not show this deficiency of Bloom
filters because in this experiment, Bloom filters had poor precision
even without a change in the workload. (This effect did show in
experiments with point queries.)

6. QUALITATIVE ANALYSIS
Section 5 showed empirically that ARFs are precise, fast, space-

efficient, and degrade gracefully for a wide range of possible data-
bases and workloads. This section analyzes more formally the ef-
fectiveness of ARFs. Specifically, this section answers the follow-
ing question: Given a database, workload, and fixed space budget,
do ARFs minimize the number of false positives?

Unfortunately, the answer to this question is no, independent of
which ARF variant is used. The reason is that finding an optimum
range filter is NP-hard. What ARFs do is they approximate a so-
lution. The remainder of this section discusses these two observa-
tions. For space reasons, we only sketch the proofs.

6.1 Optimal Range Filters
The first step in showing that finding optimal range filters is NP-

hard is to show that an optimal range filter must maximize the re-
gion that is covered by leaves of the ARFs with their occupied bit
set to false.

Figure 12 depicts how a false positive can occur in an ARF for a
query that spans multiple leaves of an ARF. The figure shows that
false positives occur if the query overlaps with one or two leaves
whose occupied bit is true, yet the cold store does not contain any
data for the overlapping region(s). Figure 12 shows that this over-
lap, the region of uncertainty, is at most the size of the ranges of
two leaves with which the query overlaps. In general, the proba-
bility of a false positive is in the order of the average size of a leaf
whose occupied bit is set to true. The important observation is that
the probability of a false positive is independent of the size of the
query! This observation allows us to reason about optimal ARFs
without considering the size of queries.

For optimality, the query distribution does play a role. However,
given the observation of the last paragraph, it is easy to show that
finding an optimal ARF is NP-hard (in fact, NP-complete) for a
Uniform workload. If it is NP-hard for a Uniform workload, it
is NP-hard in the general case, too. The proof goes by reduction

to the knapsack problem which is known to be NP-complete: The
size of the knapsack is mapped to the space budget. The weights
of items to be packed into the knapsack are mapped to the size of
gaps between two distinct values in the cold store.

6.2 Practical Range Filters
What ARFs do is to approximate the knapsack problem. They

do so by trying to incrementally improve the allocation of leaves
whenever a false positive occurs. The best strategy depends on
the data and workload distribution. If these are not known, any
practical system needs to rely on estimates and heuristics.

Incidently, buffer replacement policies try to solve exactly the
same problem as ARFs: They also try to approximate the knapsack
problem by keeping those objects in a cache that are likely to be
used with the highest probability next. That is why all the work on
replacement policies for buffer management (e.g., [1]) is directly
applicable to the design of adaptive range filters like ARFs. Using
a clock replacement policy as proposed in Section 4, for instance,
approximates a “least frequently used” policy (LFU) which in turn
tries to simulate the A0 algorithm which was shown to be optimal
in cases in which all objects have the same size and replacement
cost [1]. Just as for buffer management, there are many scenarios
in which the clock strategy is not optimal for ARFs. As explained
in Section 4.2, we use the clock strategy in the absence of any fur-
ther knowledge because it is space-efficient. The results presented
in Section 5 show that it indeed works well for a wide range of data
and workload distributions; in particular, it worked well for real ap-
plications such as the Xbox workload. Studying more sophisticated
policies is left for future work, but it is encouraging to see that good
results can already be achieved with a simple policy like clock.

7. RELATED WORK
The closest related work to ARFs are Bloom filters [5]. Bloom

filters were designed for the same purpose of quickly testing whether
a query matches a set of keys. Bloom filters were designed for
queries with equality predicates and are still the best known tech-
nique for such queries. Theoretically, Bloom filters are also appli-
cable to range queries by rolling out a range query into a series of
point queries, but our experiments showed that this approach is not
competitive even for fairly small ranges. There has been some pre-
vious work on special kinds of Bloom filters for range queries [3].
Unfortunately, that work is not competitive because it requires a
considerable amount of space per key.

One of the main features of ARFs is that they take advantage of
skew in the data and query distributions. Weighted Bloom Filters
have been developed to take advantage of workload skew [7, 18].
Weighted Bloom filters, however, come at a high cost in both space
and time to keep track of the hot keys. Furthermore, we are not
aware of any Bloom filter variant that exploits skew in the data
distribution. Another feature of ARFs is its adaptivity with regard
to updates and workload changes. Counting Bloom Filters are a
way to adapt to updates [6, 13]. Just like Weighted Bloom Filters,
Counting Bloom Filters come at a high price in terms of space. Fur-
thermore, we are not aware of any work on Bloom filters that adapt
to workload changes. With ARFs, the adaptivity comes naturally
and is inherent to the data structure.

There has been extensive work on histograms [14] and other
summarization techniques in the database community [4]. There
has also been work on self-adapting histograms and database statis-
tics (e.g., [8]), one of the prominent features of ARFs. Like ARFs
(and Bloom filters), all these techniques serve the purpose to pro-
vide a compact data structure that allows to get approximate an-
swers to queries. Indeed, each leaf node of an ARF can be regarded
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Figure 11: Exp. 4 & 5: Adaptation to Changes in the Database (Exp. 4) and Workload (Exp. 5)

as a bucket of a histogram: Instead of a counter (or value distribu-
tion), an ARF keeps only a simple occupied bit. What makes ARFs
special is that they are allowed to err on the high side (i.e., false
positives) but never on the low side (i.e., false negatives).

An interesting piece of related work is work carried out in the
Mid 1990s on predicate-based caching and semantic caching [9,
15]. While [9, 15] propose index structures to describe the con-
tents of such a query cache, their approaches are not as highly op-
timized and tuned as ARFs. We believe that ARFs are applicable
to improve the performance of semantic caching techniques and
studying this application of ARFs is an interesting avenue for fu-
ture work.

Another interesting area in which ARFs may be applicable are
data stream processing systems; e.g., LeSubscribe [12]. These sys-
tems involve filters to find out for which continuous queries an
event might be relevant. Again, studying how ARFs can be applied
to such systems is left for future work.

We adopted the idea of escalating and de-escalating hierarchi-
cal data structures to improve / degrade the precision of an index
from [11]. [11] proposes a variant of Skip lists to trade lookup per-
formance for maintenance effort in context-aware stream process-
ing systems.

8. CONCLUSION
This paper presented ARFs, a versatile data structure to filter

range queries. ARFs have a number of features. Most importantly,
they are self-adaptive and exploit skew in the data and query/update
distribution. Furthermore, they are space-efficient and have afford-
able latency. Extensive experiments demonstrated the effectiveness
of ARFs for different data distributions and workloads. Overall, we
believe that ARFs are for range queries what Bloom filters are for
point queries.

There are a number of areas for future work. Most importantly,
we plan to expand the analysis (Section 6) and develop a mathemat-
ical framework for optimizing ARFs along the lines of the frame-
work that has been developed for Bloom filters. As ARFs exploit
skew and adapt dynamically to the workload and data distribution,
developing such a framework is more challenging than for Bloom
filters.
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