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ABSTRACT
eScience and big data analytics applications are facing the
challenge of efficiently evaluating complex queries over vast
amounts of structured text data archived in network storage
solutions. To analyze such data in traditional disk-based
database systems, it needs to be bulk loaded, an operation
whose performance largely depends on the wire speed of the
data source and the speed of the data sink, i.e., the disk.
As the speed of network adapters and disks has stagnated
in the past, loading has become a major bottleneck. The
delays it is causing are now ubiquitous as text formats are
a preferred storage format for reasons of portability.

But the game has changed: Ever increasing main mem-
ory capacities have fostered the development of in-memory
database systems and very fast network infrastructures are
on the verge of becoming economical. While hardware limi-
tations for fast loading have disappeared, current approaches
for main memory databases fail to saturate the now available
wire speeds of tens of Gbit/s. With Instant Loading, we con-
tribute a novel CSV loading approach that allows scalable
bulk loading at wire speed. This is achieved by optimizing all
phases of loading for modern super-scalar multi-core CPUs.
Large main memory capacities and Instant Loading thereby
facilitate a very efficient data staging processing model con-
sisting of instantaneous load-work-unload cycles across data
archives on a single node. Once data is loaded, updates and
queries are efficiently processed with the flexibility, security,
and high performance of relational main memory databases.

1. INTRODUCTION
The volume of data archived in structured text formats

like comma-separated values (CSV) has grown rapidly and
continues to do so at an unprecedented rate. Scientific data
sets such as the Sloan Digital Sky Survey and Pan-STARRS
are stored as image files and, for reasons of portability and
debugability, as multi-terabyte archives of derived CSV files
that are frequently loaded to databases to evaluate complex
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Figure 1: Pushing the envelope: wire speed satura-
tion of current bulk loading vs. Instant Loading.

queries [27, 26]. Other big data analytics and business ap-
plications are equally faced with the need to analyze similar
archives of CSV and CSV-like data [25, 26]. These archives
are usually stored externally from the database server in a
network-attached storage (NAS) or distributed file system
(DFS) or locally in a SSD/RAID storage.

To efficiently analyze CSV archives, traditional databases
can do little to overcome the premise of loading. The cost
of parsing, deserializing, validating, and indexing structured
text data needs to be paid either up front during a bulk load
or lazily during query processing on external tables. The
performance of loading largely depends on the wire speed of
the data source and the speed of the data sink, i.e., the disk.
As the speed of network adapters and disks has stagnated
in the past, loading has become a major bottleneck and the
delays it is causing are now ubiquitous.

But the game has changed: Ever increasing main mem-
ory capacities have fostered the development of in-memory
database systems and modern network infrastructures as
well as faster disks are on the verge of becoming economical.
Servers with 1 TB of main memory and a 10 GbE adapter
(10 Gbit/s ≈ 1.25 GB/s wire speed) already retail for less
than $30,000. On this modern hardware, the loading source
and sink are no longer the bottleneck. Rather, current load-
ing approaches for main memory databases fail to saturate
the now available wire speeds. With Instant Loading, we
contribute a novel CSV loading approach that allows scal-
able bulk loading at wire speed (see Fig. 1). This makes the
delays caused by loading unobtrusive and relational main
memory databases attractive for a very efficient data stag-
ing processing model consisting of instantaneous load-work-
unload cycles across CSV data archives on a single node.
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Figure 2: Instant Loading for data staging process-
ing: load-work-unload cycles across CSV data.

Contributions. To achieve instantaneous loading, we
optimize CSV bulk loading for modern super-scalar multi-
core CPUs by task- and data-parallelizing all phases of load-
ing. In particular, we propose a task-parallel CSV process-
ing pipeline and present generic high-performance parsing,
deserialization, and input validation methods based on SSE
4.2 SIMD instructions. While these already improve load-
ing time significantly, other phases of loading become the
bottleneck. We thus further show how copying deserialized
tuples into the storage backend can be sped up and how in-
dex creation can efficiently be interleaved with parallelized
bulk loading using merge-able index structures (e.g., hash-
ing with chaining and the adaptive radix tree (ART) [20]).

To prove the feasibility of our generic Instant Loading
approach, we integrate it in our main memory database sys-
tem HyPer [19] and evaluate our implementation using the
industry-standard TPC benchmarks. Results show improve-
ments of up to a factor of 10 on a quad-core commodity ma-
chine compared to current CSV bulk loading in main mem-
ory databases like MonetDB [4] and Vectorwise. Our imple-
mentation of the Instant Loading approach aims at highest
performance in an in-memory computation setting where
raw CPU costs dominate. We therefore strive for good code
and data locality and use light-weight synchronization prim-
itives such as atomic instructions. As the proportion of se-
quential code is minimized, we expect our approach to scale
with faster data sources and CPUs with ever more cores.

Instant Loading in action: the (lwu)* data staging
processing model. Servers with 1 TB of main memory and
more offer enough space to facilitate an in-memory analysis
of large sets of structured text data. However, currently the
adoption of databases for such analysis tasks is hindered
by the inefficiency of bulk loading (cf., Sect. 3.1). With
Instant Loading we remove this obstacle and allow a novel
data staging processing model consisting of instantaneous
load-work-unload cycles (lwu)* across windows of interest.

Data staging workflows exist in eScience (e.g., astronomy
and genetics [27, 26]) and other big data analytics appli-
cations. For example, Netflix, a popular on-demand media
streaming service, reported that they are collecting 0.6 TB
of CSV-like log data in a DFS per day [11]. Each hour,
the last hour’s structured log data is loaded to a 50+ node
Hadoop/Hive-based data warehouse, which is used for the
extraction of performance indicators and for ad-hoc queries.
Our vision is to use Instant Loading in a single-node main
memory database for these kinds of recurring load-work-
unload workflows. Fig. 2 illustrates our three-step (lwu)*
approach. 1 : A window of interest of hot CSV files is loaded
from a NAS/DFS or a local high-performance SSD/RAID

1,Africa\n
2,Antarctica\n
3,Asia\n
4,Australia\n
5,Europe\n
6,North America\n
7,South America\n

(a) CSV

id name
1 Africa
2 Antarctica
3 Asia
4 Australia
5 Europe
6 North America
7 South America

(b) relational

1 Africa
2 Antarctica

3 Asia
4 Australia

vector chunk

Partition 1 Partition 2

5 Europe
6 North America

7 South America

(c) physical (chunk-based column-store)

Figure 3: Continent names in three representations:
(a) CSV, (b) relational, and (c) physical.

to a main memory database at wire speed. The window of
interest can even be bigger than the size of the main memory
as selection predicates can be pushed into the loading pro-
cess. Further, data can be compressed at load time. 2 : The
full set of features of a relational main memory database—
including efficient support for queries (OLAP) and transac-
tional updates (OLTP)—can then be used by multiple users
to work on the window of interest. 3 : Prior to loading new
data, the potentially modified data is unloaded in either a
(compressed) binary format or, for portability and debuga-
bility, as CSV. Instant Loading is the essential backbone
that facilitates the (lwu)* approach.

Comparison to MapReduce approaches. Google’s
MapReduce [5] (MR) and its open-source implementation
Hadoop brought along new analysis approaches for struc-
tured text files. While we focus on analyzing such files on
a single node, these approaches scale jobs out to a clus-
ter of nodes. By working on raw files, MR requires no ex-
plicit loading like relational databases. On the downside,
a comparison of databases and MR [23] has shown that
databases are, in general, much easier to query and sig-
nificantly faster at data analysis. Extensions of MR and
Hadoop like Hive [28] and HAIL [7] try to close this gap
by, e.g., adding support for declarative query languages, in-
dexes, and data preprocessing. As for comparison of MR
with our approach, Instant Loading in its current state aims
at accelerating bulk loading on a single database node—
that could be part of a cluster of servers. We see scaleout of
query and transaction processing as an orthogonal direction
of research. Nevertheless, MR-based systems can as well
profit from the generic high-performance CSV parsing and
deserialization methods proposed in this work.

2. DATA REPRESENTATIONS
An important part of bulk loading is the transformation

and reorganization of data from one format into another.
This paper focuses on the comma separated values (CSV),
relational, and common physical representations in main
memory database systems; Fig. 3 illustrates these three.

CSV representation. CSV is a simple, yet widely used
data format that represents tabular data as a sequence of
characters in a human readable format. It is in many cases
the least common denominator of information exchange. As
such, tera-scale archives of CSV and CSV-like data exist in
eScience and other big data analytics applications [27, 26,
25]. Physically, each character is encoded in one or several
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bytes of a character encoding scheme, commonly ASCII or
UTF-8. ASCII is a subset of UTF-8, where the 128 ASCII
characters correspond to the first 128 UTF-8 characters.
ASCII characters are stored in a single byte where the high
bit is not set. Other characters in UTF-8 are represented by
sequences of up to 6 bytes where for each byte the high bit
is set. Thus, an ASCII byte cannot be part of a multi-byte
sequence that represents a UTF-8 character. Even though
CSV is widely used, it has never been fully standardized. A
first approach in this direction is the RFC 4180 [30] proposal
which closely resembles our understanding of CSV. Data is
structured in records, which are separated by a record delim-
iter (usually ’\n’ or "\r\n"). Each record contains fields,
which are again separated by a field delimiter (e.g., ’,’).
Fields can be quoted, i.e., enclosed by a quotation character
(e.g., ’"’). Inside a quoted field, record and field delimiters
are not treated as such. Quotation characters that are part
of a quoted field have to be escaped by an escape charac-
ter (e.g., ’\’). If the aforementioned special characters are
user-definable, the CSV format is highly portable. Due to
its tabular form, it can naturally represent relations, where
tuples and attribute values are mapped to records and fields.

Physical representations. Databases store relations
in a storage backend that is optimized for efficient update
and query processing. In our HyPer main memory database
system, a relation can be stored in a row- or a column-
store backend. A storage backend is structured in par-
titions, which horizontally split the relation into disjoint
subsets. These partitons store the rows or columns in ei-
ther contiguous blocks of memory or are again horizontally
partitioned into multiple chunks (chunked backend, cf., Fig
3(c)), a technique first proposed by MonetDB/X100 [4]. The
combination of these options gives four possibile types of
storage backends: contiguous memory-based/chunked row-
/column-store. Most, if not all, main memory database sys-
tems, including MonetDB, Vectorwise, and SAP HANA im-
plement similar storage backends. Instant Loading is de-
signed for all of the aforementioned types of storage back-
ends and is therefore a generic approach that can be inte-
grated into various main memory database systems.

This work focuses on bulk loading to uncompressed phys-
ical representations. Dictionary encoding can, however, be
used in the CSV data or created on the fly at load time.

3. INSTANT LOADING
3.1 CSV Bulk Loading Analysis

To better understand how bulk loading of CSV data on
modern hardware can be optimized, we first analyzed why it
currently cannot saturate available wire speeds. The stan-
dard single-threaded implementation of CSV bulk loading
in our HyPer [19] main memory database system achieves a
loading throughput of around 100 MB/s for 10 GB of CSV
data stored in an in-memory file system1. This is compara-
ble to the CSV loading throughput of other state of the art
main memory databases like MonetDB [4] and Vectorwise,
which we also evaluated. The measured loading throughputs
of 100 MB/s, however, do not saturate the available wire
speed of the in-memory file system. In fact, not even a SSD

1For lack of a high-speed network-attached storage or dis-
tributed file system in our lab, we used the in-memory file
system ramfs as the loading source to emulate a CSV source
wire speed of multiple GB/s.

(500 MB/s) or 1 GbE (128 MB/s) can be saturated. A perf

analysis shows that about 50% of CPU cycles are spent on
parsing the input, 20% on deserialization, 10% on inserting
tuples into the relation, and finally 20% on updating indexes.

In our standard approach, parsing is expensive as it is
based on a character at a time comparison of CSV input and
special characters, where each comparison is implemented as
an if-then conditional branch. Due to their pipelined ar-
chitecture, current general purpose CPUs try to predict the
outcome of such branches. Thereby, a mispredicted branch
requires the entire pipeline to be flushed and ever deeper
pipelines in modern CPUs lead to huge branch miss penal-
ties [2]. For CSV parsing, however, the comparison branches
can hardly be predicted, which leads to almost one mispre-
diction per field and record delimiter of the CSV input.

Each value found by the parser needs to be deserialized.
The deserialization method validates the string input and
transforms the string value into its data type representation
in the database. Again, several conditional branches lead to
a significant number of branch miss penalties.

Parsed and deserialized tuples are inserted into the rela-
tion and are indexed in the relation’s indexes. Inserting and
indexing of tuples accounts for 30% of loading time and is
not the bottleneck in our standard loading approach. In-
stead, our experiment revealed that the insertion and in-
dexing speed of HyPer’s partitioned column-store backend
exceeds the speed at which standard parsing and deserial-
ization methods are able to produce new tuples.

3.2 Design of the Instant Loading Pipeline
The aforementioned standard CSV bulk loading approach

follows a single-threaded execution model. To fully exploit
the performance of modern super-scalar multi-core CPUs,
applications need to be highly parallelized [17]. Following
Amdahl’s law the proportion of sequential code needs to be
reduced to a minimum to achieve maximum speedup.

We base our implementation of Instant Loading on the
programming model of the Intel Threading Building Blocks
(TBB) [24] library. In TBB, parallelism is exposed by the
definition of tasks rather than threads. Tasks are dynami-
cally scheduled and executed on available hardware threads
by a run-time engine. The engine implements task stealing
for workload balancing and reuses threads to avoid initial-
ization overhead. Task-based programming allows to expose
parallelism to a great extent.

Instant Loading is designed for high scalability and pro-
ceeds in two steps (see Fig. 4). 1 st, CSV input is chunked
and CSV chunks are processed by unsynchronized tasks.
Each task parses and deserializes the tuples in its chunk.
It further determines a tuple’s corresponding partition (see
Sect. 2 for a description of our partitioned storage backend)
and stores tuples that belong to the same partition in a com-
mon buffer which we refer to as a partition buffer. Partition
buffers have the same physical layout (e.g., row or colum-
nar) as the relation partition, such that no further transfor-
mation is necessary when inserting tuples from the buffer
into the relation partition. Additionally, tuples in partition
buffers are indexed according to the indexes defined for the
relation. In a 2 nd step, partition buffers are merged with
the corresponding relation partitions. This includes merg-
ing of tuples and indexes. While CSV chunk processing is
performed in parallel for each CSV chunk, merging with re-
lation partitions is performed in parallel for each partition.
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Figure 4: Schematic overview of Instant Loading: from CSV input to relation partitions.

3.3 Task-Parallelization
To allow synchronization-free task-parallelization of pars-

ing, deserialization, partition classification, and indexing, we
split CSV input into independent CSV chunks that can be
processed in parallel. The choice of the chunk size granu-
larity is challenging and impacts the parallelizability of the
bulk loading process. The smaller the chunk size, the more
chunk processing and merge steps can be interleaved. How-
ever, chunks should not be too small, as otherwise the over-
head of dealing with incomplete tuples at chunk borders
increases. Instant Loading splits the input according to a
size for which it can at least be guaranteed that, assuming
the input is well-formed, one complete tuple fits into a CSV
chunk. Otherwise, parallelized parsing would be hindered.
To identify chunk sizes that allow for high-performance load-
ing, we evaluated our Instant Loading implementation with
varying chunk sizes (see Fig. 13). The evaluation leads us to
the conclusion that on a CPU with a last-level cache of size l
and n hardware threads, the highest loading throughput can
be achieved with a CSV chunk size in the range of 0.25× l/n
to 1.0× l/n. E.g., a good chunk size on a current Intel Ivy
Bridge CPU with a 8 MB L3 cache and 8 hardware threads
is in the range of 256 kB to 1 MB. When loading from a local
I/O device, we use madvise to advise the kernel to prefetch
the CSV chunks.

Chunking CSV input according to a fixed size produces
incomplete tuples at CSV chunk borders. We refer to these
tuples as widows and orphans (cf., Fig. 4):

Definition (Widow and orphan). “An orphan has
no past, a widow has no future” is a famous mnemonic in
typesetting. In typesetting, a widow is a line that ends and
an orphan is a line that opens a paragraph and is separated
from the rest of the paragraph by a page break, respectively.
Chunking CSV input creates a similar effect. A widow of a
CSV chunk is an incomplete tuple at the end of a chunk that
is separated from the part that would make it complete, i.e.,
the orphan, by a chunk border.

Unfortunately, if chunk borders are chosen according to
a fixed size, CSV chunk-processing tasks can no longer dis-
tinguish between real record delimiters and record delim-
iters inside quoted fields, which are allowed in the RFC pro-
posal [30]. It is thus impossible to determine the widow and
orphan of a CSV chunk only by analyzing the data in the
chunk. However, under the restriction that record delim-
iters inside quoted fields need to be escaped, widows and
orphans can again be determined. In fact, as many appli-
cations produce CSV data that escapes the record delimiter
inside quoted fields, we propose two loading options: a fast
and a safe mode. The fast mode is intended for files that
adhere to the restriction and splits the CSV input according

to a fixed chunk size. A CSV chunk-processing task initially
scans for the first unescaped record delimiter in its chunk2

and starts processing the chunk data from there. When the
task reaches the end of its chunk, it continues processing
by reading data from its subsequent chunk until it again
finds an unescaped record delimiter. In safe mode, a serial
task scans the CSV input and splits it into CSV chunks of at
least a certain chunk size. The task keeps track of quotation
scopes and splits the input at record delimiters, such that no
widows and orphans are created. However, the performance
of the safe mode is determined by the speed of the sequential
task. For our implementation, at a multiprogramming level
of 8, the safe mode is 10% slower than the fast mode.

3.4 Vectorization
Parsing, i.e., finding delimiters and other special charac-

ters, and input validation are commonly based on a char-
acter at a time comparison of CSV input with certain spe-
cial characters. These comparisons are usually implemented
as if-then conditional branches. For efficient processing,
current general purpose CPUs need multiple instructions in
their instruction pipeline. To fill this pipeline, the hardware
tries to predict upcoming branches. However, in the case of
parsing and deserialization, this is not efficiently possible,
which leads to a significant number of branch miss penal-
ties [2]. It is thus desirable to reduce the number of control
flow branches in the parsing and deserialization methods.
One such possibility is data-parallelization.

Modern general purpose CPUs are super-scalar multi-core
processors that allow not only parallelization at the task
level but also at the data level—via single instruction multi-
ple data (SIMD) instructions and dedicated execution units.
Data parallelization is also referred to as vectorization where
a single instruction is performed simultaneously on multiple
operands, referred to as a vector. Vectorization in general
benefits performance and energy efficiency [15]. In the past,
SIMD extensions of x86 CPUs like SSE and 3DNow! mostly
targeted multimedia and scientific computing applications.
SSE 4.2 [15] adds additional byte-comparing instructions for
string and text processing.

Programmers can use vectorization instructions manually
via intrinsics. Modern compilers such as GCC also try to
automatically vectorize source code. This is, however, re-
stricted to specific code patterns. To the best of our knowl-
edge, no compiler can (yet) automatically vectorize code us-
ing SSE 4.2 instructions. This is due to the fact that using
these instructions requires non-trivial changes to the design
of algorithms.

2This might require reading data from the preceeding chunk.
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Figure 5: SSE 4.2 comparisons: (a) searching for
special characters and (b) validating characters.

Current x86 CPUs work on 128 bit SSE registers, i.e., 16
8 bit characters per register. While the AVX instruction
set increased SIMD register sizes to 256 bit, the SSE 4.2 in-
structions still work on 128 bit registers. It is of note that we
do not assume 16 byte aligned input for our SSE-optimized
methods. Even though aligned loads to SIMD registers had
been significantly faster than unaligned loads in the past,
current generations of CPUs alleviate this penalty.

SSE 4.2 includes instructions for the comparison of two
16 byte operands of explicit or implicit lengths. We use the
EQUAL ANY and RANGES comparison modes to speed up
parsing and deserialization in Instant Loading: In EQUAL
ANY mode, each character in the second operand is checked
whether it is equal to any character in the first operand. In
the RANGES mode, each character in the second operand
is checked whether it is in the ranges defined in the first
operand. Each range is defined in pairs of two entries where
the first specifies the lower and the second the upper bound
of the range. The result of intrinsics can either be a bitmask
or an index that marks the first position of a hit. Results
can further be negated. Fig. 5 illustrates the two modes. For
presentation purposes we narrowed the register size to 32 bit.

To improve parsing, we use EQUAL ANY to search for de-
limiters on a 16 byte at a time basis (cf., Fig. 5(a)). Branch-
ing is performed only if a special character is found. The
following pseudocode illustrates our method:
1: procedure nextDelimiter(input,specialChars)
2: while !endOfInput(input) do
3: special= mm set epi8(specialChars)
4: data= mm loadu si128(input)
5: mode = SIDD CMP EQUAL ANY
6: index= mm cmpistri(special,data,mode)
7: if index< 16 then
8: // handle special character
9: input = input+16

For long fields, e.g., strings of variable length, finding the
next delimiter often requires to scan a lot more than 16 char-
acters. To improve parsing of these fields, we adapted the
method shown above to compare 64 characters at a time:
First, 64 byte (typically one cache line) are loaded into four
128 bit SSE registers. For each of the registers a compar-
ison mask is generated using the _mm_cmpistrm intrinsic.
The four masks are interpreted as four 16 bit masks and are
stored consecutively in one 64 bit integer where each bit indi-
cates if a special character is found at the position of the bit.
If the integer is 0, no special character was found. Otherwise,
the position of the first special byte is retrieved by count-
ing the number of trailing zeros. This operation is again
available as a CPU instruction and is thus highly efficient.

To improve deserialization methods, we use the RANGES
mode for input validation (cf., Fig. 5(b)). We again illustrate
our approach in form of pseudocode:

1 Africa

3 Asia
4 Australia

2 Antarctica

insert

Partition

Partition Buffer

4 Australia
3 Asia

(a) insert-based

1 Africa

3 Asia
4 Australia

2 Antarctica

Partition

Partition Buffer

3
4 Australia

Asia

memcpy memcpy

(b) copy-based

Partition

chunks

1 Africa
2 Antarctica

Partition Buffer

3
4 Australia

Asia

add chunk reference

(c) chunk-based

Figure 6: Merging buffers with relation paritions.

1: procedure deserializeIntegerSSE(input,length)
2: if length < 4 then
3: deserializeIntegerNoSSE(input,length)
4: range = mm set epi8(0,...,0,’9’,’0’)
5: data = mm loadu si128(input)
6: mode = SIDD CMP RANGES| SIDD MASKED NEGATIVE POLARITY
7: index = mm cmpestri(range,2,data,length,mode)
8: if index != 16 then
9: throw RuntimeException("invalid character")

Experiments have shown that for string lengths of less
than 4 byte, SSE optimized integer deserialization is slower
than a standard non-SSE variant with current x86 CPUs.
For integer deserialization we thus use a hybrid processing
model where the SSE optimized variant is only used for
strings longer than 3 characters. Deserialization methods
for other data types were optimized analogously.

The evaluation in Sect. 5 shows that our vectorized meth-
ods reduce the number of branch misses significantly, im-
prove energy efficiency, and increase performance by about
50% compared to non-vectorized methods.

3.5 Partition Buffers
CSV chunk-processing tasks store parsed and deserialized

tuples as well as indexes on these tuples in partition buffers.
These buffers have the same physical layout as the relation
partitions in order to avoid further transformations of data
during a merge step. In the following we discuss approaches
to merge the tuples stored in a partition buffer with its cor-
responding relation partition in the storage backend (see
Fig. 6). Merging of indexes is discussed in the next sec-
tion. The insert- and copy-based approaches are viable for
contiguous memory-based as well as chunked storage back-
ends. The chunk-based approach requires a chunked storage
backend (see Sect. 2).

insert-based approach. The insert-based approach con-
stitutes the simplest approach. It iterates over the tuples in
the buffer and inserts the tuples one-by-one into the relation
partition. This approach is obviously very simple to realize
as insertion logic can be reused. However, its performance
is bounded by the insertion speed of the storage backend.

copy-based approach. In contrast to the insert-based
approach, the copy-based approach copies all tuples from the
buffer into the relation partition in one step. It is thereby
faster than the insert-based approach as it largely only de-
pends on the speed of the memcpy system call. We again
task-parallelized memcpying for large buffers to fully lever-
age the available memory bandwidth on modern hardware.
No additional transformations are necessary as the buffer
already uses the physical layout of the relation partition.

chunk-based approach. For chunked storage backends
the memcpy system call can be avoided entirely. A merge
step then only consists of the insertion of a buffer reference
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into a list of chunk references in the backend. While merging
time is minimal, too small and too many chunks negatively
impact table scan and random access performance of the
backend due to caching effects. In general, it is advanta-
geous to have a small list of chunk references. Preferably,
the list should fit in the CPU caches, so that it can be ac-
cessed efficiently. For Instant Loading, we are faced with the
tradeoff between using small CSV chunk sizes for a high de-
gree of task-parallelization (cf., Sect. 3.3) and creating large
storage backend chunks to keep the backend efficient.

One way to meet this challenge is to store the partition
buffer references of CSV chunk processing tasks in thread-
local storage. Partition buffers are then reused as threads
are reused by the TBB library. Hence, the expected mean
size of relation partition chunks is the CSV input size divided
by the number of hardware threads used for loading. Nev-
ertheless, this is no panacea. If partition buffers are reused,
merging of partition buffers with the relation can no longer
be interleaved with CSV chunk processing. Furthermore,
this approach requires CSV input to be of a respective size.
For chunked storage backends it can thus also make sense
to use copy-based merging or a hybrid approach. We intend
to investigate further merge algorithms for various types of
chunked storage backends in future work.

Buffer allocation. Allocation and reallocation of parti-
tion buffers on the heap is costly as, in general, it needs to
be synchronized. Using scalable allocators that provide per-
thread heaps is not an option as these are usually too small
for loading purposes where huge amounts of data are moved.
While an initial allocation of a buffer is unavoidable, reallo-
cations can be saved by initially allocating enough memory
for the tuples in a CSV chunk. The difficulty lies in the
estimation of the number of tuples in a CSV chunk of a cer-
tain size. This is mainly due to nullable attributes and at-
tributes of varying lengths. Our solution is to let CSV chunk
processing tasks atomically update cardinality estimates for
the partition buffers that serve as allocation hints for future
tasks. For our implementation, at a multiprogramming level
of 8, this allocation strategy increases performance by about
5% compared to dynamic allocation.

For hybrid OLTP&OLAP databases like HyPer, it fur-
ther makes sense to allocate partition buffers on huge virtual
memory pages. Huge pages have the advantage they have a
separate section in the memory management unit (MMU) on
most platforms. Hence, loading and mission-critical OLTP
compete less for the transaction lookaside buffer (TLB).

3.6 Bulk Creation of Index Structures
Indexes have a decisive impact on transaction and query

execution performance. However, there is a tradeoff be-
tween time spent on index creation and time saved dur-
ing query and transaction processing. Using standard ap-
proaches, creating indexes during bulk loading can signifi-
cantly slow down the loading throughput. Alternatives to
the creation of indexes at load time such as database crack-
ing [13] and adaptive indexing [14] propose to create indexes
as a by-product of query processing and thereby allow faster
data loading and fast query performance over time. How-
ever, if data is bulk loaded to a mission-critical OLTP or
OLAP system that needs execution time guarantees imme-
diately after loading, delayed index creation is not an option.
This is especially true for our proposed data staging process-
ing model where data is loaded, processed, and unloaded in

cycles. Furthermore, to assure consistency, loading should
at least check for primary key violations. We thus advo-
cate for the creation of primary indexes at load time. With
Instant Loading, it is our goal to achieve this at wire speed.

We identified different options regarding how and when to
create indexes during loading. The first option is to always
have a single index for the whole relation that is incremen-
tally updated by inserting keys of new tuples after they have
been added to the relation. The second option is to com-
pletely recreate a new index from scratch. The first option
is limited by the insertion speed of the index structure. The
second option could benefit from index structures that allow
the efficient recreation of an index. However, depending on
the size of the relation, this might impose a huge overhead.
We thus propose a third way: each CSV chunk-processing
task maintains indexes in its partition buffers. These indexes
are then merged with the indexes in the relation partition
during the merge step. We define indexes that allow our
approach as merge-able index structures for bulk loading:

Definition (Merge-able index structures for bulk
loading). Merge-able index structures for bulk loading are
index structures that allow the efficient and parallelized cre-
ation of the set of indexes I = {I1, . . . , In} over a set of keys
K = {k1, . . . , km}, where K is partitioned into n nonempty
disjoint subsets K1, . . . ,Kn and Ij is an index over Kj for
1 ≤ j ≤ n. Further, there exists an efficient parallelized
merge function that, given I, yields a single unified index
over K. The unified index creation time t is the aggregate
of time needed to create I and time needed to merge I. For
merge-able index structures for bulk loading, t proportion-
ally decreases with an increasing number n of key partitions
assuming n available hardware threads.

In the following we show that hash tables with chaining
and the adaptive radix tree (ART) [20] are merge-able in-
dex structures for bulk loading. Our evaluation (see Sect. 5)
further demonstrates that parallelized forms of these indexes
achieve a near-linear speedup with the number of key parti-
tions and hardware threads used for bulk index creation.

3.6.1 Hash table with chaining
Hash tables are a popular in-memory data structure and

are often used for indexes in main memory databases. In-
dexes based on hash tables only allow point queries but
are very fast due to their expected lookup time of O(1).
Hash tables inevitably face the problem of hash collisions.
Strategies for conflict resolution include open addressing and
chaining. Hash tables that use chaining for conflict resolu-
tion are particularly suitable as merge-able indexes for bulk
loading. Our implementation of a merge-able hash table
for bulk loading uses a fixed-sized hash table, where entries
with the same hash value are chained in a linked list. For
a given partitioned key range, equally-sized hash tables us-
ing the same hash function are, in parallel, created for each
partition. These hash tables are then repeatedly merged in
pairs of two by scanning one of the tables and concatenat-
ing each list entry for a specific hash value with the list for
that hash value in the other hash table. The scan operation
can thereby again be parallelized efficiently. It is of note
that a space-time tradeoff is immanent in hash table-based
index approaches. Our merge-able hash table with chaining
allocates a fixed size hash table for each parallel task and is
thus wasting space. In contrast to hash tables, the adaptive
radix tree is highly space-efficient.
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3.6.2 Adaptive Radix Tree (ART)
The adaptive radix tree (ART) [20] is a high performance

and space-efficient general purpose index structure for main
memory databases that is tuned for modern hardware. Com-
pared to hash tables, radix trees, also known as tries, di-
rectly use the digital representation of keys for comparison.
The idea of a radix tree is similar to that of a thumb index of
dictionaries, which indexes its entries according to their first
character prefix. Radix trees use this technique recursively
until a specific entry is found. An example of an ART index
is shown in Fig. 7(a). ART is a byte-wise radix tree that
uses the individual bytes of a key for indexing. As a result,
all operations have a complexity of O(k), where k is the byte
length of the indexed keys. Compared to hash tables, which
are not order-preserving, radix trees store keys in their lex-
icographical order. This allows not only exact lookups but
also range scans, prefix lookups, and top-k queries.

While other radix tree implementations rely on a glob-
ally fixed fanout parameter and thus have to trade off tree
height against space efficiency, ART distinguishes itself from
these implementations by using adaptively sized nodes. In
ART, nodes are represented using four types of efficient and
compact data structures with different sizes of up to 256 en-
tries. The type of a node is chosen dynamically depending
on the number of child nodes, which optimizes space utiliza-
tion and access efficiency at the same time. The evaluation
in [20] shows that ART is the fastest general purpose index
structure for main memory databases optimized for mod-
ern hardware. Its performance is only met by hash tables,
which, however, only support exact key lookups.

In this work we show that ART further belongs to the class
of merge-able index structures for bulk loading by specifying
an efficient parallelized merge algorithm. Fig. 7 illustrates
the merging of two ART indexes. Radix trees in general are
naturally suited for efficient parallelized merging: starting
with the two root nodes, for each pair of nodes, children with
common prefixes in the two trees are recursively merged in
parallel. When all children with common prefixes have been
merged, children of the smaller node that have no match
in the bigger node are inserted into the bigger node. This
bigger node is then used in the merged tree. Ideally, merging
is thus reducible to a single insertion for non-empty trees.
In the worst case, both trees contain only keys with common
prefixes and nodes at maximum depth need to be merged.

In general, merging of two radix trees t1 and t2 needs O(d)
copy operations, where d is the minimum of diff (t1, t2) and
diff (t2, t1), where diff (x, y) is the number of inner nodes
and leaves of y that are not present in x and are children of
a node that does not already count towards this number.

Our parallelized merge algorithm looks as follows:
1: procedure merge(t1,t2,depth)
2: if isLeaf(t1) then insert(t2,t1.keyByte,t1,depth)
3: return t2
4: if isLeaf(t2) then insert(t1,t2.keyByte,t2,depth)
5: return t1
6: // ensure that t1 is the bigger node
7: if t1.count>t2.count then swap(t1,t2)

8: // descend trees in parallel for common key bytes
9: parallel for each entry e in t2 do

10: c = findChildPtr(t1,e.keyByte)
11: if c then c = merge((c,e.child,depth+1))

12: // sequentially insert t2’s unique entries in t1
13: for each entry e in t2 do
14: c = findChildPtr(t1,e.keyByte)
15: if !c then insert(t1,e.keyByte,e.child,depth)

16: return t1

As mentioned before, we insert entries of key bytes of
the smaller node that have no match in the bigger node se-
quentially and after all children with common prefixes have
been merged in parallel. In ART, this separation into par-
allel and sequential phases is particularly due to the fact
that nodes can grow when inserting new entries. For the
biggest node type, which is essentially an array of size 256,
insertions can further be parallelized using lock-free atomic
operations. This kind of insertion parallelization is also ap-
plicable to other radix trees that work with nodes of a fixed
size. It is indeed also feasible to implement a completely
lock-free version of ART, which is, however, out of scope for
this work, as we focused on an efficient merge algorithm.

4. INSTANT LOADING IN HYPER

4.1 The HyPer Main Memory Database
We integrated our generic Instant Loading approach in

HyPer [19], our high-performance relational main memory
database system. HyPer belongs to an emerging class of
hybrid databases, which enable real-time business intelli-
gence by evaluating OLAP queries directly in the trans-
actional database. Using a novel snapshotting technique,
HyPer achieves highest performance—compared to state of
the art in-memory databases—for both, OLTP and OLAP
workloads, operating simultaneously on the same database.

OLAP is decoupled from mission-critical OLTP using a
snapshot mechanism with (almost) no synchronization over-
head. The mechanism is based on the POSIX system call
fork(): OLAP queries are executed in a process that is
forked from the OLTP process (see Fig. 8). This is very
efficient as only the virtual page table of the OLTP process
is copied. The operating system uses the processor’s mem-
ory management unit to implement efficient copy-on-update
semantics for snapshotted pages. Whenever the OLTP pro-
cess modifies a snapshotted page for the first time, the page
is replicated in the forked process (see Fig. 8).

Transactions are specified in SQL or in a PL/SQL style
scripting language and are compiled into machine code us-
ing the LLVM compiler framework [22]. Together with the
elimination of ballast caused by buffer management, locking,
and latching, HyPer can process more than 100,000 TPC-C
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transactions per second in a single thread on modern hard-
ware [19]. Similar to the design pioneered by H-Store [18]
and VoltDB, HyPer also implements a partitioned execution
model: The database is partitioned in a way that most trans-
actions only need to access a single partition. Transactions
that each exclusively work on a different partition can thus
be processed in parallel without synchronization. Synchro-
nization is only necessary for partition-crossing transactions.

Like transactions, SQL queries are compiled into LLVM
code [22]. The data-centric compiler aims at good code and
data locality and a predictable branch layout. LLVM code
is then compiled into efficient machine code using LLVM’s
just-in-time compiler. Together with its advanced query op-
timizer, HyPer achieves superior query response times [19]
comparable to those of MonetDB [4] or Vectorwise.

4.2 Instant Loading in HyPer
Instant Loading in HyPer allows (lwu)* workflows but can

indeed also be used for other use cases that require the load-
ing of CSV data. This includes initial loads and incremental
loads for continuous data integration.

The interface of Instant Loading in HyPer is designed in
the style of the PostgreSQL COPY operator. Instant Loading
takes CSV input, the schema it adheres to, and the CSV
special characters as input. Except for "\r\n", which we
allow to be used as a record delimiter, we assume that spe-
cial characters are single ASCII characters. For each rela-
tion that is created or altered, we generate LLVM glue code
functions for the processing of CSV chunks and for partition
buffer merging (cf., the two steps in Fig. 4). Code genera-
tion and compilation of these functions at runtime has the
advantage that the resulting code has good locality and pre-
dictable branching as the relation layout, e.g., the number
of attributes and the attribute types, are known. Searching
for delimiters and the deserialization methods are imple-
mented as generic C++ functions that are not tailored to
the design of HyPer. Just like the LLVM functions HyPer
compiles for transactions and queries [22], the Instant Load-
ing LLVM glue code calls these statically compiled C++
functions. Such LLVM glue code functions can further be
created for other CSV-like formats using the C++ functions
similar to a library. Code generation of the LLVM functions
for CSV data is implemented for the four storage backend
types in HyPer (cf. Sect. 2).

Offline loading. In offline loading mode, loading has ex-
clusive access to the relation, i.e., there are no concurrent
transactions and queries; and loading is not logged. Pro-
cessing of CSV chunks and merge steps are interleaved as
much as possible to reduce overall loading time. If an er-
ror occurs during the loading process, an exception is raised
but the database might be left in a state where it is only
partially loaded. For use cases such as (lwu)* workflows, in-

situ querying, and initial loading this is usually acceptable
as the database can be recreated from scratch.

Online transactional loading. Online transactional
loading supports loading with ACID semantics where only
the merge steps need to be encapsulated in a single merge
transaction. Processing of CSV chunks can happen in par-
allel to transaction processing. There is a tradeoff between
overall loading time and the duration of the merge transac-
tion: To achieve online loading optimized for a short loading
time, chunk processing is interleaved with merge steps. The
duration of the merge transaction starts with the first and
ends with last merge step. No other transactions can be pro-
cessed in that time. To achieve a short merge transaction
duration, first all chunks are processed and then all merge
steps are processed at once.

5. EVALUATION
The evaluation of Instant Loading in HyPer was con-

ducted on a commodity workstation with an Intel Core i7-
3770 CPU and 32 GB dual-channel DDR3-1600 DRAM. The
CPU is based on the Ivy Bridge microarchitecture and sup-
ports the SSE 4.2 string and text instructions, has 4 cores
(8 hardware threads), a 3.4 GHz clock rate, and a 8 MB last-
level shared L3 cache. As operating system we used Linux
3.5 in 64 bit mode. Sources were compiled using GCC 4.7
with -O3 -march=native optimizations. For lack of a high-
speed network-attached storage or distributed file system in
our lab, we used the in-memory file system ramfs as the CSV
source to emulate a wire speed of multiple Gbit/s. Prior to
each measurement we flushed the file system caches.

5.1 Parsing and Deserialization
We first evaluated our task- and data-parallelized parsing

and deserialization methods in isolation from the rest of the
loading process. CSV data was read from ramfs, parsed,
deserialized, and stored in heap-allocated result buffers. We
implemented a variant that is SSE 4.2 optimized (SSE) as
described in Sect. 3.4 and one that is not (non-SSE). As a
contestant for these methods we used a parsing and dese-
rialization implementation based on the Boost Spirit C++
library v2.5.2. In particular, we used Boost Spirit.Qi, which
allows the generation of a recursive descent parser for a given
grammar. We also experimented with an implementation
based on Boost.Tokenizer and Boost.Lexical Cast but its
performance trailed that of the Boost Spirit.Qi variant. Just
like our SSE and non-SSE variants, we task-parallelized our
Boost implementation as described in Sect. 3.3.

As input for the experiment we chose TPC-H CSV data
generated with a scale-factor of 10 (∼10 GB). While the SSE
and non-SSE variants only require schema information at
run-time, the Spirit.Qi parser generator is a set of templated
C++ functions that require schema information at compile-
time. For the Boost Spirit.Qi variant we thus hardcoded the
TPC-H schema information into the source code.

Fig. 9 shows that SSE and non-SSE perform better than
Boost Spirit.Qi at all multiprogramming levels. SSE outper-
forms non-SSE and shows a higher speedup: SSE achieves a
parsing and deserialization throughput of over 1.6 GB/s with
a multiprogramming level of 8 compared to about 1.0 GB/s
with non-SSE, an improvement of 60%. The superior per-
formance of SSE can be explained by (i) the exploitation of
vector execution engines in addition to scalar execution units
across all cores and (ii) by the reduced number of branch
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insert copy chunk

column-store 7841 ms 6939 ms 6092 ms
row-store 6609 ms 6608 ms 6049 ms

Table 1: Loading of TPC-H CSV data (scale-factor
10) to a column- and row-store using insert-, copy-,
and chunk-based partition buffer merging.

misses compared to non-SSE. Performance counters show
that the number of branch misses is reduced from 194/kB
CSV with non-SSE to just 89/kB CSV with SSE, a decrease
of over 50%. Using all execution units of the CPU cores
also allows SSE to profit more from Hyper-Threading. This
comes at no additional cost and improves energy efficiency:
Measuring the Running Average Power Limit energy sensors
available in recent Intel CPUs reveals that SSE used 388 J
compared to 503 J (+23%) with non-SSE and 625 J (+38%)
with Boost Spirit.Qi.

5.2 Partition Buffers
We evaluated Instant Loading for the column- and row-

store storage backend implementations in HyPer (cf., Sect. 2)
and the three partition buffer merging approaches we pro-
posed in Sect. 3.5. For the insert- and copy-based merg-
ing approaches we used storage backends based on contigu-
ous memory, for the chunk-based approach we used chun-
ked storage backends. Table 1 shows the benchmark results
when loading a TPC-H CSV data set with a scale-factor of
10. For the column-store backends, copy was around 12%
faster than insert. The chunk-based approach improved per-
formance by another 12%. For the row-store backend, in-
sert and copy performed similarly; chunk-based merging was
8.5% faster.

5.3 Bulk Index Creation
We evaluated the parallelized creation of hash tables with

chaining (HT) and adaptive radix trees (ART) on key range
partitions and the parallelized merging of these indexes to
create a unified index for the total key range.

Fig. 10 shows the speedup of index creation for a key range
of 10M 32 bit keys. For ordered dense keys, i.e., ordered keys
ranging from 1 to 10M, ART allows a faster creation of the
index than the HT for all multiprogramming levels. Merg-
ing of ART indexes is, in the case of an ordered dense key
range, highly efficient and often only requires a few pointers
to be copied such that the creation time of the unified in-
dex largely only depends on the insertion speed of the ART
indexes that are created in parallel. The lower speedup of

ART (×2.2) compared to HT (×2.6) with a multiprogram-
ming level of 4 is due to caching effects. The performance
of ART heavily depends on the size of the effectively usable
CPU cache per index [20]. In absolute numbers, however,
ART achieves an index creation speed of 130M keys per sec-
ond compared to 27M keys per second with HT. While the
performance of HT does not depend on the distribution of
keys, an ordered dense key range is the best case for ART.
For unordered dense, i.e., randomly permuted dense keys,
and sparse keys, i.e., randomly generated keys for which each
bit is 1 or 0 with equal probability, the performance of ART
drops. The index creation speed is still slightly better than
with HT. For unordered key ranges merging is more costly
than for ordered key ranges because mostly leaf nodes need
to be merged. For a multiprogramming level of 4, merging
accounted for 1% of loading time for ordered dense, 16% for
unordered dense, and 33% for sparse keys.

5.4 Offline Loading
To evaluate the end-to-end application performance of

offline loading we benchmarked a workload that consisted of
(i) bulk loading TPC-H CSV data with a scale-factor of 10
(∼10 GB) from ramfs and (ii) then executing the 22 TPC-H
queries in parallel query streams. We used an unpartitioned
TPC-H database, i.e., only one merge task runs in parallel,
and configure HyPer to use a column-store backend based
on contiguous memory. Partition buffers were merged using
the copy-based approach. We compared Instant Loading
in HyPer to a Hadoop v1.1.1 Hive v0.10 [28] cluster con-
sisting of 4 nodes of the kind described at the beginning
of Sect. 5 (1 GbE interconnect), SQLite v3.7.15 compiled
from source, MySQL v5.5.29, MonetDB [4] v11.13.7 com-
piled from source, and Vectorwise v2.5.2.

Fig. 12 shows our benchmark results. Instant Loading
achieves a superior combined bulk loading and query pro-
cessing performance compared to the contestants. Load-
ing took 6.9 s (HyPer), unloading the database as a LZ4-
compressed binary to ramfs after loading took an additional
4.3 s (HyPer /w unload). The compressed binary has a size
of 4.7 GB (50% the size of the CSV files) and can be loaded
again in 2.6 s (3× faster than loading the CSV files). In
both cases, the queries were evaluated in just under 12 s.
Our unloading and binary loading approaches in HyPer are
again highly parallelized. We further evaluated the I/O sat-
uration when loading from local I/O devices. Fig. 11 shows
that Instant Loading fully saturates the wire speed of a tra-
ditional HDD (160 MB/s) and a SSD (500 MB/s). When the
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memory is used as the source and the sink, only 10% of the
available wire speed are saturated (CPU bound). Fig. 11
further shows that advising the kernel to prefetch data from
the local I/O device (using madvise) is necessary to achieve
a near-100% saturation of local devices.

Hive is a data warehouse solution based on Hadoop. For
our benchmark, we used 4 Hadoop nodes. Hadoop’s dis-
tributed file system (HDFS) and Hive were configured to
store data in ramfs. Other configuration settings were un-
touched, including the default replication count of 3 for
HDFS. This means that each node in the setup had a replica
of the CSV files. We did not include the HDFS loading time
(125.8 s) in our results as we assume that data is ideally
already stored there. To evaluate the query performance,
we used an official implementation of the TPC-H queries in
HiveQL3, Hive’s SQL-like query language. Even though no
explicit loading is required and 4 nodes instead of a sin-
gle one are used, Hive needed 50 minutes to process the
22 queries. We also evaluated Hive with record columnar
files (RCFiles). Loading the CSV files into RCFiles using
the BinaryColumnarSerDe, a transformation pass that de-
serializes strings to binary data type representations, took
173.5 s. Query processing on these RCFiles was, however,
only 5 minutes faster than working on the raw CSV files.

SQLite was started as an in-memory database using the
special filename :memory:. For bulk loading, we locked the
tables in exclusive mode and used the .import command.
Query performance of SQLite is, however, not satisfactory.
Processing of the 22 TPC-H queries took over 1 hour.

For MySQL we ran two benchmarks: one with MySQL’s
memory engine using the LOAD DATA INFILE command for
bulk loading and one with MySQL’s CSV engine that al-
lows query processing directly on external CSV files. Bulk
loading using the memory engine took just under 2 minutes.
Nevertheless, for both, the memory and CSV engine, pro-
cessing of the 22 TPC-H queries took over 1 hour again.

We compiled MonetDB with MonetDB5, MonetDB/SQL,
and extra optimizations enabled. For bulk loading we used
the COPY INTO command with the LOCKED qualifier that tells
MonetDB to skip logging operations. As advised in the doc-
umentation, primary key constraints were added to the ta-
bles after loading. We created the MonetDB database inside
ramfs so that BAT files written by MonetDB were again
stored in memory. To the best of our knowledge MonetDB
has no option to solely bulk load data to memory without
writing the binary representation to BAT files. Bulk loading
in MonetDB is thus best compared to Instant Loading with
binary unloading (HyPer w/ unload). While loading time is
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Figure 13: Throughput as a function of chunk size.

scale-factor loading throughput query time

10 (∼10 GB) 1.14 GB/s (∼9 Gbit/s) 16.6 s
30 (∼30 GB) 1.29 GB/s (∼10 Gbit/s) 57.9 s
100 (∼100 GB) 1.36 GB/s (∼11 Gbit/s) 302.1 s

Table 2: Scaleup of Instant Loading of TPC-H data
sets on a server with 256 GB main memory.

comparable to the MySQL memory engine, queries are pro-
cessed much faster. The combined workload took 133.7 s to
complete.

For Vectorwise, we bulk loaded the files using the vwload

utility with rollback on failure turned off. Loading time is
comparable to MonetDB while queries are processed slightly
faster. TPC-H query 5 could not be processed without the
prior generation of statistics using optimizedb. We did not
include the creation of statistics in our benchmark results
as it took several minutes in our experiments.

We would have liked to further compare Instant Loading
to MonetDB’s CSV vault [16] but couldn’t get it running in
the current version of MonetDB. We would have also liked to
evaluate the NoDB implementation PostgresRaw [3] in the
context of high-performance I/O devices and main memory
databases, but its implementation is not (yet) available.

Optimal chunk size. Fig. 13 shows Instant Loading
throughput of a TPC-H data set as a function of chunk
size. Highest throughputs were measured between 256 kB
and 1 MB, which equals a range of 0.25–1.0 times the L3
cache size divided by the number of hardware threads used.

Scaleup of Instant Loading. We evaluated the scaleup
of Instant Loading on a server machine with an 8 core In-
tel Xeon X7560 CPU and 256 GB of DDR3-1066 DRAM
and bulk loaded TPC-H CSV data with scale-factors of 10
(∼10 GB), 30 (∼30 GB), and 100 (∼100 GB). We then again
executed the 22 TPC-H queries in parallel query streams. As
shown in Table 2, Instant Loading achieves a linear scaleup.

perf analysis of Instant Loading. A perf analysis of
Instant Loading of a TPC-H scale-factor 10 lineitem CSV
file shows that 37% of CPU cycles are used to find delim-
iters, 11.2% to deserialize numerics, 9.1% to deserialize
dates, 6.5% to deserialize integers, 5.5% in the LLVM glue
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Figure 14: Chunk-parallel and single-threaded (ST)
online CSV Instant Loading (IL) of 1M item and 4M
stock entries and single-threaded (ST) and multi-
threaded (MT) TPC-C transaction processing.

code that processes CSV chunks, and 5% in the LLVM glue
code that merges partition buffers. The remaining cycles are
mostly spent inside the kernel. In more detail, the costs of
deserialization methods and the method to find delimiters
are dominated by the instructions that load data to the SSE
registers and the SSE comparison instructions.

5.5 Online Transactional Loading
Finally, we evaluated Instant Loading in the context of on-

line transactional loading with ACID semantics. In partic-
ular, we benchmarked the partitioned execution of TPC-C
transactions in a TPC-C database partitioned by warehouse
with 4 warehouses. In parallel to transaction processing, we
bulk loaded a new product catalog with 1M new items into
the item table. In addition to the 1M items, for each ware-
house, 1M stock entries were inserted into the stock table.
The storage backend was a chunked row-store and we used
chunk-based partition buffer merging. Fig. 14 shows the
TPC-C throughput with online bulk loading of the afore-
mentioned data set (∼1.3 GB), which was stored as CSV
files in ramfs. In our benchmark, loading started after 1 sec-
ond. We measured transaction throughput in four scenarios:
single- (ST) and multi-threaded (MT) transaction process-
ing combined with single-threaded and CSV chunk-parallel
Instant Loading. In case of ST transaction processing, a
throughput of 200,000 transactions per second was sustained
with ST Instant Loading; with chunk-parallel Instant Load-
ing throughput shortly dropped to 100,000 transactions per
second. Loading took around 3.5 s with ST Instant Load-
ing and 1.2 s with chunk-parallel Instant Loading. Merge
transactions took 250 ms. In case of MT transaction process-
ing, transaction processing and Instant Loading compete for
hardware resources and throughput decreased considerably
from 600,000 to 250,000 transactions per second. With ST
Instant Loading, the additional load on the system is lower
and transaction throughput barely decreases. With chunk-
parallel Instant Loading, loading took 4.6 s; with ST Instant
Loading 7.0 s. Merge transactions took 250 ms again.

To the best of our knowledge, none of our contestants sup-
ports online transactional loading yet. We still compared
our approach to the MySQL memory engine, which, how-
ever, has no support for transactions. We thus executed the
TPC-C transactions sequentially. MySQL achieved a trans-
action throughput of 36 transactions per second. Loading
took 19.70 s; no transactions were processed during loading.

6. RELATED WORK
Due to Amdahl’s law, emerging multi-core CPUs can only

be efficiently utilized by highly parallelized applications [17].
Instant Loading highly parallelizes CSV bulk loading and re-
duces the proportion of sequential code to a minimum.

SIMD instructions have been used to accelerate a variety
of database operators [31, 29]. Vectorized processing and the
reduction of branching often enabled superlinear speedups.
Compilers such as GCC and the LLVM JIT compiler [22] try
to use SIMD instructions automatically. However, often sub-
tle tricks, which can hardly be reproduced by compilers, are
required to leverage SIMD instructions. To the best of our
knowledge no compiler can yet automatically apply SSE 4.2
string and text instructions. To achieve highest speedups,
algorithms need to be redesigned from scratch.

Already in 2005, Gray et al. [10] called for a synthesis of
file systems and databases. Back then, scientists complained
that loading structured text data to a database doesn’t seem
worth it and that once it is loaded, it can no longer be manip-
ulated using standard application programs. Recent works
addressed these objections [12, 3, 16]. NoDB [3] describes
systems that “do not require data loading while still main-
taining the whole feature set of a modern database system”.
NoDB directly works on files and populates positional maps,
i.e., index structures on files, and caches as a by-product of
query processing. Even though the NoDB reference imple-
mentation PostgresRaw has shown that queries can be pro-
cessed without loading and query processing profits from
the positional maps and caches, major issues are not solved.
These, in our opinion, mainly include the efficient support of
transactions, the scalability and efficiency of query process-
ing, and the adaptability of the paradigm for main memory
databases. Instant Loading is a different and novel approach
that does not face these issues: Instead of eliminating data
loading and adding the overhead of an additional layer of
indirection, our approach focusses on making loading and
unloading as unobtrusive as possible.

Extensions of MapReduce, e.g., Hive [28], added support
for declarative query languages to the paradigm. To im-
prove query performance, some approaches, e.g., HAIL [7],
propose using binary representations of text files for query
processing. The conversion of text data into these binary
representations is very similar to bulk loading in traditional
databases. HadoopDB [1] is designed as a hybrid of tra-
ditional databases and Hadoop-based approaches. It inter-
connects relational single-node databases using a communi-
cation layer based on Hadoop. Loading of the single-node
databases has been identified as one of the obstacles of the
approach. With Instant Loading, this obstacle can be re-
moved. Polybase [6], a feature of the Microsoft SQL Server
PDW, translates some SQL operators on HDFS-resident
data into MapReduce jobs. The decision of when to push
operators from the database to Hadoop largely depends on
the text file loading performance of the database.

Bulk loading of index structures has, e.g., been discussed
for B-trees [8, 9]. Database cracking [13] and adaptive in-
dexing [14] propose an iterative creation of indexes as a by-
product of query processing. These works argue that a high
cost has to be paid up-front if indexes are created at load-
time. While this is certainly true for disk-based systems, we
have shown that for main memory databases at least the cre-
ation of primary indexes—which enable the validation of pri-
mary key constraints—as a side-effect of loading is feasible.
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7. OUTLOOK AND CONCLUSION
Ever increasing main memory capacities have fostered the

development of in-memory database systems and very fast
network infrastructures with wire speeds of tens of Gbit/s
are becoming economical. Current bulk loading approaches
for main memory databases, however, fail to leverage these
wire speeds when loading structured text data. In this work
we presented Instant Loading, a novel CSV loading approach
that allows scalable bulk loading at wire speed. Task- and
data-parallelization of every phase of loading allows us to
fully leverage the performance of modern multi-core CPUs.
We integrated the generic Instant Loading approach in our
HyPer system and evaluated its end-to-end application per-
formance. The performance results have shown that Instant
Loading can indeed leverage the wire speed of emerging 10
GbE connectors. This paves the way for new (load-work-
unload)* usage scenarios where the main memory database
system serves as a flexible and high-performance compute
engine for big data processing—instead of using resource-
heavy MapReduce-style infrastructures.

In the future we intend to support other structured text
formats and include more data preprocessing steps such as
compression, clustering, and synopsis generation. E.g., small
materialized aggregates [21] can efficiently be computed at
load time. Another idea is to port our scalable loading ap-
proach to coprocessor hardware and general-purpose GPUs.
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