
PREDIcT: Towards Predicting the Runtime of Large Scale
Iterative Analytics

Adrian Daniel Popescu†, Andrey Balmin‡§, Vuk Ercegovac‡∗, Anastasia Ailamaki†
†Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland

‡IBM Almaden Research Center, San Jose, CA, USA
§GraphSQL, Mountain View, CA, USA

ABSTRACT
Machine learning algorithms are widely used today for an-
alytical tasks such as data cleaning, data categorization, or
data filtering. At the same time, the rise of social media mo-
tivates recent uptake in large scale graph processing. Both
categories of algorithms are dominated by iterative subtasks,
i.e., processing steps which are executed repetitively until a
convergence condition is met. Optimizing cluster resource
allocations among multiple workloads of iterative algorithms
motivates the need for estimating their runtime, which in
turn requires: i) predicting the number of iterations, and ii)
predicting the processing time of each iteration. As both
parameters depend on the characteristics of the dataset and
on the convergence function, estimating their values before
execution is difficult.

This paper proposes PREDIcT, an experimental method-
ology for predicting the runtime of iterative algorithms. PRE-
DIcT uses sample runs for capturing the algorithm’s con-
vergence trend and per-iteration key input features that are
well correlated with the actual processing requirements of
the complete input dataset. Using this combination of char-
acteristics we predict the runtime of iterative algorithms,
including algorithms with very different runtime patterns
among subsequent iterations. Our experimental evaluation
of multiple algorithms on scale-free graphs shows a relative
prediction error of 10%-30% for predicting runtime, includ-
ing algorithms with up to 100x runtime variability among
consecutive iterations.

1. INTRODUCTION
Today’s data management requirements are more com-

plex than ever, going well beyond the traditional roll-up or
drill-down operators proposed in OLAP systems [10]. Ana-
lytical tasks often include machine learning or graph mining
algorithms [20, 26] executed on large input datasets. For
instance, Facebook uses machine learning to order stories in

∗Work done at IBM Almaden Research Center, current af-
filiation Google Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

the news feed (i.e., ranking), or to group users with simi-
lar interests together (i.e., clustering). Similarly, LinkedIn
uses large scale graph processing to offer customized statis-
tics to users (e.g., total number of professionals reachable
within a few hops). These algorithms are often iterative:
one or more processing steps are executed repetitively until
a convergence condition is met [20].

Execution of iterative algorithms on large datasets mo-
tivates the need for predicting their resource requirements
and runtime. Runtime estimates for such algorithms are a
pre-requisite for optimizing cluster resource allocations in a
similar manner as query cost estimates are a pre-requisite
for DBMS optimizers. Operational costs associated to large
cluster deployments are high, hence enterprises aim to maxi-
mize their utilization. In particular, schedulers and resource
managers are used to optimize resource provisioning, re-
duce over-provisioning, while at the same time satisfying
user contracted Service Level Agreements (SLAs) [36, 38].
Additionally, runtime prediction is a very useful mechanism
for answering feasibility analysis questions: ’Given a clus-
ter deployment and a workload of iterative algorithms, is it
feasible to execute the workload on an input dataset while
guaranteeing user specified SLAs?’

Predicting the runtime of iterative algorithms poses two
main challenges: i) predicting the number of iterations, and
ii) predicting the runtime of each iteration. In addition to
the algorithm’s semantics, both types of prediction depend
on the characteristics of the input dataset, and the inter-
mediate results of all prior iterations. On one hand, the
number of iterations depends on how fast the algorithm con-
verges. Convergence is typically given by a distance metric
that measures incremental updates between consecutive it-
erations. Unfortunately, an accurate closed-form formula
cannot be built in advance, before materializing all inter-
mediate results. On the other hand, the runtime of a given
iteration may vary widely compared with the subsequent
iterations according to the algorithm’s semantics and as a
function of the iteration’s current working set [13]. Due to
sparse computation, updating an element of the intermediate
result may have an immediate impact only on a limited num-
ber of other elements (e.g., propagating the smallest vertex
identifier in a graph structure using only point to point mes-
sages among neighboring elements). Hence, estimating the
time requirements, or alternatively, the size of the working
sets of each iteration before execution is difficult.

Existing Approaches: Prior work on estimating the
runtime or the progress of analytical queries in DBMS (e.g.,
[2, 8, 12, 14, 25]) or more recent MapReduce systems (e.g.,
[18, 19, 29, 32]) do not address the problem of predicting

1678

Key input features

Extrapolator

Model fitting /

feature selection

Historical
runs

Prediction

Sample run
Transform
function

Sampling
technique

Scaled features
Default

transformations

F(X,Y,Z)

Figure 1: PREDIcT’s methodology for estimating
the key input features and runtime of iterative al-
gorithms.

3

7

5

S1 6

2 4

3 S2 5

1 3

8

5

S3

1

2 4

3

8

7

6

5

G

Figure 2: Maintaining invariants for the number
of iterations when executing PageRank on sample
graphs.

the runtime of analytical workflows that include iterative
algorithms. For certain algorithms theoretical bounds
for the number of iterations were defined (e.g., [16, 20, 22]).
However, due to simplifying assumptions on the character-
istics of the input dataset theoretical bounds are typically
too coarse to be useful in practice.

1.1 Approach
This paper proposes PREDIcT, an experimental method-

ology for iterative algorithms that estimates the number of
iterations and per iteration key input features capturing re-
source requirements (such as function call counters, message
byte counters), which are subsequently translated into run-
time using a cost model. Figure 1 illustrates PREDIcT’s
approach to estimate the runtime of iterative algorithms.
One of the key components of PREDIcT is the sample run,
a short execution of the algorithm on a sample dataset that
can capture the number of iterations and the processing
characteristics of the complete input dataset. During the
sample run key input features are captured and used later
as a basis for prediction. However, as some algorithm pa-
rameters are tuned to a certain dataset size, a sampling run
cannot simply execute the same algorithm with the same
parameters on a smaller dataset. We first have to iden-
tify the parameters that need to be scaled and then apply
the transform function to obtain the suitable values for the
sample dataset size. One such parameter is the convergence
threshold used by PageRank [30] and other algorithms. We
illustrate the need to scale the threshold with an example.

Example: PageRank is an iterative algorithm that com-
putes the rank of all vertices of a directed graph by associat-
ing to each vertex a rank value that is proportional with the
number of references it receives from the other vertices, and
their corresponding PageRank values. PageRank converges

when the average delta change of PageRank at the graph
level from one iteration to the next decreases below a user
defined threshold τ ≥ 0. For acyclic graphs convergence to
τ = 0 is given by D + 1, where D is the diameter of the
graph. Consider Figure 2 showing an input graph G, and
three arbitrary samples S1-S3, with a sampling ratio of 50%
of vertices. The complete graph requires three iterations
to converge (i.e., D = 2). Sample S1 requires only two iter-
ations, while samples S2 and S3 require three iterations as
they preserve the diameter. However, none of the samples
above maintain invariants for the number of iterations given
an arbitrary convergence threshold τ > 0. Due to the differ-
ent number of vertices, edges or in/out node degree ratios of
samples S1-S3 as compared with G, the average delta change
of PageRank on the samples is not the same when compared
to the corresponding average delta change on G. Computing
the average delta change of PageRank for the first iteration
results in: ∆S1,1 = 3d/16, ∆S2,1 = d/8, ∆S3,1 = d/8, and

∆G,1 = d/16, where d = 0.85 is the damping factor (for
deriving the values please see section 4.1). For this exam-
ple, for a threshold τ = d/16 the actual run converges after
one iteration, whereas all sample runs continue execution.
By applying the transformation T = (τS = τG × 2) during
the sample run on samples S2 or S3, the same number of
iterations is maintained as on the complete graph. Hence,
only by combining a transform function with a sampling
technique (which maintains certain properties of G: e.g., di-
ameter), invariants can be preserved.

PREDIcT proposes the methodology for providing trans-
formation functions on a class of iterative algorithms that
operate on homogeneous graph structures, and have a global
convergence condition: i.e., computing an aggregate at the
graph level. Examples of such algorithms include: ranking
(e.g., PageRank, top-k ranking), clustering on graphs (e.g.,
semi-clustering) or graph processing (e.g., neighborhood es-
timation). PREDIcT provides a set of default rules for
choosing the transformations that work for a representative
class of algorithms. At the same time, users can plug in their
own set of transformations based on domain knowledge, if
the semantics of the algorithm are not already captured by
the default rules. Considering that a representative set of it-
erative, machine learning algorithms are typically executed
repetitively on different input datasets [10, 20, 26], and that
the space of possible algorithms is not prohibitive, deriving
such a set of customized transformations is also practical
and worthwhile.

As Figure 1 shows, after key input features (including
iterations) are profiled during the sample run and extrap-
olated to the scale of the complete dataset, a cost model
is required for translating key input features into runtime
estimates. For this purpose, PREDIcT introduces a frame-
work for building customizable cost models for network in-
tensive iterative algorithms executing using the Bulk Syn-
chronous Parallel (BSP) [34] execution model, in particu-
lar the Apache Giraph implementation1. Our framework
identifies a set of key input features that are effective for
network intensive algorithms, it includes them into a pool of
features, and then uses a model fitting approach (i.e., multi-
variate linear regression) and a feature selection mechanism
for building the cost model. The cost model is trained on
the set of input features profiled during the sample run, and
additionally, on the set of input features of prior actual runs
of the algorithm on different input datasets (if such runs

1http://giraph.apache.org

1679

exist). Such historical runs are typically available for ana-
lytical applications that are executed repetitively over newly
arriving data sets. Examples include: ranking, clustering,
social media analytics.

1.2 Contributions
To the best of our knowledge, this is the first paper that

targets runtime performance prediction of a class of iter-
ative algorithms on large-scale distributed infrastructures.
Although sampling techniques have been used before in the
context of graph analysis (e.g., [15, 23]), or DBMS (e.g., [9]),
this is the first paper that proposes the transform function
for maintaining invariants among the sample run and the ac-
tual run in the context of iterative algorithms and demon-
strates its practical applicability for prediction. We note
that the methodology we propose for estimating key input
features is conceptually not tied to Giraph, and hence, could
be used as a reference for other execution models operating
on graph structures such as GraphLab [26] or Grace [37]. To
this end identifying the key input features that significantly
affect the runtime performance of these engines is required.
For some iterative algorithms (that operate on graphs) our
approach for estimating iterations can be applied even to
non-BSP frameworks like Spark [39] and Mahout2.

This paper makes the following contributions:

• It proposes PREDIcT, an experimental methodology
for predicting the runtime of a class of network inten-
sive iterative algorithms. PREDIcT was designed to
predict not only the number of iterations, but also the
key input features of each iteration, which makes it
applicable for algorithms with very different runtime
patterns among subsequent iterations.

• It proposes a framework for building customized cost
models for iterative algorithms executing on top of Gi-
raph. Although the complete set of key features and
the cost model per se will vary from one BSP imple-
mentation to another (in a similar fashion as DBMS
cost models vary from one DBMS vendor to another),
our proposed methodology is generic. Hence, it can be
used as a reference when building similar cost models
on alternative BSP implementations.

• It evaluates PREDIcT on a representative set of algo-
rithms using real datasets, showing PREDIcT’s prac-
ticality over analytical upper bounds. For a 10% sam-
ple, the relative errors for estimating key input fea-
tures range in between 5%-20% , while the errors for
estimating the runtime range in between 10%-30%, in-
cluding algorithms with up to 100x runtime variability
among consecutive iterations.

2. RELATED WORK AND BACKGROUND
In this section we present related work on runtime predic-

tion techniques applied in the DBMS, and prior research on
algorithmic approaches used for providing analytical upper
bounds for the number of iterations. Then we introduce the
key concepts of the BSP processing model [34] which has
emerged as the new paradigm for executing graph process-
ing tasks at large-scale [28].

2http://mahout.apache.org/

2.1 Prediction and Iterative Processing
Prior work on iterative algorithms mainly focuses on pro-

viding theoretical bounds for the number of iterations an
algorithm requires to converge (e.g., [16, 20, 22]) or worst
case time complexity (e.g., [3]). These parameters, however,
are not sufficient for providing wall time estimates because of
the following reasons: i) As simplifying assumptions about
the characteristics of the input dataset are made, theoreti-
cal bounds on the number of iterations are typically loose [3,
22]. This problem is further exacerbated for a category of it-
erative algorithms executing sparse computation, where the
processing requirements of any arbitrary iteration vary a lot
as compared with subsequent/prior iterations [13, 26]. For
such algorithms, per iteration worst case time complexities
are typically impractical. ii) Per iteration processing wall
times cannot be captured solely by a complexity formula.
System level resource requirements (i.e., CPU, networking,
I/O), critical path modeling, and a cost model are addition-
ally required for modeling runtime.

Estimating the runtime execution of analytical workloads
was heavily studied in the DBMS context from multiple an-
gles: initial runtime predictors [2, 12, 14, 32], progress es-
timators [8, 27, 29], and self-tuning systems [18, 19]. None of
these approaches, however, is applicable for iterative pipelines,
where particular operators (i.e., algorithms) are executed
repetitively until a convergence condition is met. In con-
trast with algorithmic approaches, prediction approaches
proposed in the DBMS context account for system level re-
source requirements, and use a cost model (either analytical,
based on black box modeling or a hybrid) for translating
them into actual runtime.

Although adaptive query processing techniques such as [8,
27, 29] can be used for updating the cost model at runtime
(i.e., the processing cost factors), they cannot estimate or
calibrate key input features in the context of iterative algo-
rithms because: i) The processing requirements of consecu-
tive iterations may vary a lot (e.g., connected components),
and they are not necessarily monotonic as more iterations
are executed. ii) Stopping condition cannot be evaluated be-
fore an iteration is completed. In DBMS terminology, itera-
tive processing can be interpreted as a join aggregate query
among a relation that does not change (i.e., graph structure)
and a relation that gets updated in each iteration (i.e., the
propagation function). Hence, building accurate statistics
on the relation that is updated is not possible before exe-
cution. For the same reason above adaptive techniques for
calibrating statistics at runtime [11, 33] are not applicable.

Iterative execution was also analyzed in the context of re-
cursive query processing. In particular, multiple research ef-
forts [1, 4, 5] discuss execution strategies (i.e., top-down ver-
sus bottom-up) with the goal of performance optimization.
HaLoop [6] caches invariant input datasets among subse-
quent iterations when executing iterative algorithms imple-
mented using the MapReduce programming model. Ewen
et al. [13] optimize execution of incremental iterations that
are characterized by few localized updates, in contrast with
bulk iterations, that always update the complete dataset.
Although highly related to our research, as performance op-
timization determines the runtime of the queries, all the
aforementioned techniques are complementary to the goal
of estimating the runtime of the algorithms. PREDIcT can
be combined with previous work to perform cost-based opti-
mizations when executing workflows of iterative algorithms.

1680

2.2 The BSP Processing Model
Any algorithm executed on top of BSP is inherently iter-

ative: It runs in a succession of supersteps (i.e., iterations)
until a termination condition is satisfied. Each superstep
is composed of three phases: i) concurrent computation, ii)
communication, and iii) synchronization. In the first phase,
each worker performs computation on the data stored in the
local memory. In the second phase, the workers exchange
data among themselves over the network. In the last phase,
all workers synchronize at a barrier to ensure that all workers
have completed. Subsequently, a new superstep is started
unless a termination condition is satisfied.

In the context of graph processing, algorithms are par-
allelized using a vertex centric model: Each vertex of the
input graph has associated customized data structures for
maintaining state information and a user defined compute
function for implementing the semantics of the algorithm.
Intermediate results are sent to destination vertices using
a messaging interface. Any vertex can inspect the state of
its neighbors from the previous iteration, and can commu-
nicate with any other vertices of the graph based on their
identifiers. Messages sent in one superstep are received by
the targeted vertices in the subsequent superstep. Note that
not all the vertices are active (i.e., executing the compute
function) in all supersteps. A vertex that has finished its lo-
cal computation can vote to halt (i.e., switch to the inactive
mode). An inactive vertex can however be re-activated by a
designated message received during any of the following su-
persteps. The algorithm completes when all active vertices
vote to halt.

In Apache Giraph, the BSP processing model is imple-
mented as a master-slave infrastructure, with one master
and multiple workers. The master is in charge of partition-
ing the input according to a partitioning strategy, allocating
partitions to workers and coordinating the execution of each
superstep (i.e., synchronization among workers). The work-
ers are in charge of executing the compute function for every
vertex of its allocated partition(s) and sending out messages
to destination vertices. The worker with the largest amount
of processing work is on the critical path, and hence deter-
mines the runtime of a superstep.

The runtime of an iterative algorithm executed in Giraph
can be broken down into multiple phases: the setup phase,
the read phase, the superstep phase and the write phase. In
the setup phase, the master sets up the workers and allocates
them partitions of the input graph based on a partitioning
strategy. In the read phase, each worker reads its share of
the input graph from the Hadoop file system (i.e., HDFS)
into the memory. In the superstep phase, the actual algo-
rithm is executed, and in the write phase, the output graph
is written back to HDFS. The superstep phase includes the
runtime of n supersteps (until the termination condition gets
satisfied), and it is the most challenging to predict from all
the other phases. Hence, our methodology is targeted to-
wards estimating the runtime of the superstep phase.

3. PREDICT
This section introduces PREDIcT, an experimental ap-

proach for predicting the runtime of a class of iterative al-
gorithms operating on graphs. In particular, we propose a
methodology for estimating the number of iterations, and
per iteration key input features for two categories of algo-
rithms that show very different running patterns in terms

of resource requirements per iteration: i) constant per iter-
ation runtime, and ii) variable runtime among subsequent
iterations.

3.1 Modeling Assumptions
In our proposed prediction methodology we make the fol-

lowing assumptions: i) All the iterative algorithms we an-
alyze in this paper are guaranteed to converge. ii) Input
datasets are graphs, and are amenable to sampling; the
sample graph maintains its key properties similar or propor-
tional with those of the original graph. iii) Both the sample
run and the actual run use the same execution framework
(i.e., Giraph) and system configuration parameters. iv) All
the worker nodes have uniform resource allocations, hence
processing costs among different workers are similar. v) The
dominating part of the runtime of the algorithms is network-
ing: i.e., sending/receiving messages from other vertices.

Such assumptions hold for a class of algorithms imple-
mented on top of BSP which are dominated by network
processing costs: Some of them have very short per ver-
tex computation (e.g., PageRank), while some others have
larger per vertex computation cost which is largely propor-
tional with the size and the number of messages received
(sent) from (to) the neighboring nodes (e.g., semi-clustering
[28], top-k ranking [21]).

3.2 Sample Run
The sample run is the preliminary phase of the predic-

tion approach that executes the algorithm on the sample
dataset. As explained in section 1.1, two sets of transfor-
mations characterize the execution of the algorithm during
the sample run: the sampling technique adopted and the
transform function. Once the set of transformations is de-
termined, the algorithm is executed on the sample. During
the sample run, per iteration key input features are pro-
filed and used later in the prediction phase as a basis for
estimating the corresponding features of the actual run.

3.2.1 Sampling Technique
The sampling technique adopted has to maintain key prop-

erties of the sample graph similar or proportional with those
of the original graph: Examples of such properties include
in/out degree proportionality, effective diameter, clustering
coefficient. Hence, we adopt similar sampling techniques
with those proposed by Leskovec et al. [23], which show
that such graph properties on the sample can be maintained
similar to those on the actual graph.

Random Jump: We choose Random Jump (RJ) from
the set of sampling methods proposed in [23], because it is
the sampling method that has no risks of getting stuck in an
isolated region of the graph, while maintaining comparable
results for all the key properties of the graph with Random
Walk and Forest Fire (D-statistic scores, that measure how
closely the properties of the sample fit the properties of the
graph, are shown in Table 1 of [23]). RJ picks a starting
seed vertex uniformly at random from all the input vertices.
Then, at each sampling step an outgoing edge of the current
vertex is picked uniformly at random and the current vertex
is updated with the destination vertex of the picked edge.
With a probability p the current walk is ended and a new
random walk is started from a new seed vertex chosen at
random. The process continues until the number of vertices
picked satisfies the sampling ratio. Such a sampling tech-
nique has the property of maintaining connectivity within a

1681

walk. Random jump achieves connectivity among multiple
walks by returning to already visited vertices on different
edges. Returning to already visited nodes also improves the
probability of preserving the in/out node degree proportion-
ality.

Biased Random Jump: Based on the observation that
convergence of multiple iterative algorithms we analyze is
inherently dictated by high out-degree vertices (e.g., PageR-
ank, top-k ranking, semi-clustering), we propose Biased Ran-
dom Jump (BRJ), a variation of Random Jump. BRJ is bi-
ased towards high out degree vertices: Compared with RJ,
BRJ picks k seed vertices from the graph in decreasing order
of their out-degree instead of using arbitrary seed vertices.
Then, for each new random walk performed a starting vertex
is picked uniformly at random from the set of seed vertices.
The intuition of BRJ is to prioritize sampling towards the
“core of the network”, that include vertices with high out
degrees. Biased random jump trades-off sampling unifor-
mity for improved connectivity: By starting random walks
from highly connected nodes (i.e., hub nodes), BRJ has a
higher probability of maintaining connectivity among sam-
pled walks than RJ, where jumps to any arbitrary nodes are
possible. We empirically find that BRJ has higher accuracy
than RJ in maintaining key properties of the graph (such as
connectivity), especially at small sampling ratios (the sam-
pling ratio proposed for RJ in [23] is 25%). Hence, BRJ is
used as our default sampling mechanism.

3.2.2 Transform Function
The transform function T is formally described by two

pairs of adjustments: T = (ConfS => ConfG, ConvS =>
ConvG), where ConfS => ConfG denotes configuration pa-
rameter mappings, while ConvS => ConvG denotes conver-
gence parameter mappings. For instance, the transforma-
tion T = (dS = dG, τS = τG × 1

sr
) for PageRank algorithm

denotes: Maintain the damping factor value on the sample
run equal with the corresponding value of the actual run,
and scale the convergence threshold. While the transform
function requires domain knowledge about the algorithm se-
mantics, we provide a default rule which works for a set of
representative algorithms and can be used as a reference
when choosing alternative transformations. For the case
that the convergence threshold is tuned to size of the input
dataset (i.e., convergence is determined by an absolute ag-
gregated value, as for PageRank): Tdefault = (IDConf , τS =
τG× 1

sr
), while for the case that convergence threshold is not

tuned to the size of the input dataset (i.e., convergence is
determined by a relative aggregated value or a ratio that is
maintained constant on a proportionally smaller dataset, as
for top-k ranking): Tdefault = (IDConf , τS = τG). Specif-
ically, we maintain all the configuration parameters of the
algorithm during the sample run (identity function over the
configuration space) and we scale or maintain the conver-
gence threshold for the sample run.

3.3 Key Input Features
We identify the key input features for the Giraph execu-

tion model based on a mix of domain knowledge and exper-
imentation. Table 1 shows the set of key input features we
identified for modeling the runtime of network intensive iter-
ative algorithms. The number of iterations is not extrapo-
lated, since the transform function attempts to preserve the
number of iterations during the sample run. In order to un-
derstand the selection of key input features, consider Figure

compute

message

sync

It
er

at
io

n

W1 W2 W3

Figure 3: BSP execution phases of an arbitrary it-
eration.

3 that illustrates the execution phases of an arbitrary iter-
ation of an iterative algorithm that uses BSP. Each worker
executes three phases: compute, messaging, and synchro-
nization, as explained in section 2.2.

Compute phase: In this phase the user defined function
that implements the semantics of the iterative algorithm is
executed for every vertex of the input graph. For a large
category of network intensive algorithms the cost of local,
per vertex computation (executing the semantics of the algo-
rithm) can be approximated by a constant cost factor, while
the cost of initiating messages to neighboring nodes is pro-
portional with the number of messages each vertex sends.
Hence, the compute time of each worker (which has mul-
tiple vertices allocated to it) is proportional with the total
number of active vertices (i.e., executing actual work), and
the number of messages each worker sends.

Messaging phase: During this phase, messages are sent
over the network and added into the memory of the destina-
tion nodes. Some BSP implementations can spill messages
to disk. Hence, the runtime of this phase is proportional
with the number of messages, their sizes, and the number
and sizes of messages spilled to disk (if spilling occurs).

Synchronization phase: The synchronization time of a
worker w.r.t. the worker on the critical path (the slowest
worker) depends on the partitioning scheme adopted, which
in turn may result in skewed work assignment among work-
ers. Instead of trying to model the synchronization time
among workers explicitly, we model it implicitly by identify-
ing the worker on the critical path, which has close to zero
synchronization time.

Name Description Extrapolation
ActVert Number of active vertices yes
TotVert Number of total vertices yes
LocMsg Number of local messages yes
RemMsg Number of remote messages yes
LocMsgSize Size of local messages yes
RemMsgSize Size of remote messages yes
AvgMsgSize Average message size no
NumIter Number of iterations no

Table 1: Key Input Features

While the set of features illustrated in Table 1 is effective
for network intensive algorithms, they should not be inter-
preted as complete. Given the generality of selecting input
features into the cost model, our proposed methodology can
be extended to include additional key input features in the
pool of candidate input features. For instance, counters cor-
responding to spilling messages to disk during the messaging

1682

phase shall be also considered if spilling occurs. Giraph cur-
rently does not support spilling of messages to disk, hence
such features were not required in our experiments.

3.4 Prediction
There are two phases in the prediction process: i) Ex-

trapolation of key input features profiled during the sample
run; and ii) Estimating runtime by plugging in extrapolated
features into a cost model.

Extrapolator: As shown in Figure 1, in the first predic-
tion phase an extrapolator is used to scale-up input features
profiled during the sample run. The input metrics that are
used in the extrapolation phase are the number of edges and
the number of vertices of the sample graph S, and the corre-
sponding number of edges and vertices of the complete graph
G. We use two extrapolation factors: i) For features that pri-
marily depend on the number of vertices (e.g., ActVert), we

extrapolate with a scaling factor on vertices: i.e., eV = |VG|
|VS |

.

ii) For features that depend both on the number of input
nodes and edges (e.g., message counts depend on how many
outbound edges a vertex has) we extrapolate with a scaling

factor on edges: i.e., eE = |EG|
|ES |

. Note that not all key input

features require extrapolation: e.g., number of iterations is
preserved during the sample run. Extrapolation of input
features is done at the granularity of iterations: i.e., the in-
put features of an arbitrary iteration of the sample run are
extrapolated and then used to predict the runtime of the
corresponding iteration of the actual run.

Customizable Cost Model: In the second phase ex-
trapolated features are plugged into a cost model to com-
pute estimated runtime. The cost model is invoked multiple
times, on extrapolated input features corresponding to each
iteration of the sample run. Hence, the number of iterations
is used implicitly rather than explicitly in prediction.

Based on the processing model breakdown presented in
sub-section 3.3, we propose a cost modeling technique for
network intensive algorithms that uses multivariate linear
regression to fit a set of key input features into per it-
eration runtime. Formally, given a set of input features
X1, ..., Xk, and one output feature Y (i.e., per iteration run-
time), the model has the functional form: f(X1, ..., Xk) =
c1X1 + c2X2 + ... + ckXk + r where ci are the coefficients
and r is the residual value. A modeling approach based on
a fixed functional form was chosen for several reasons: i)
For network intensive algorithms, each phase of the Giraph
BSP execution model except the synchronization phase can
be approximated by a fixed functional form (multivariate
linear regression). The synchronization phase is modeled
implicitly, as explained in section 3.3. ii) A fixed functional
form can be used for prediction on input feature ranges that
are outside of the training boundaries (e.g., train on sam-
ple run, test on actual run). In fact the coefficients of the
model can be interpreted as the ”cost values” corresponding
to each input feature.

We use the set of features presented in Table 1 as candi-
dates in the cost model. Customization of the cost model
for a given iterative algorithm is done by selecting the actual
input features that have a high impact on the response vari-
able Y , and yield a good fitting coefficient for the resulting
model. In particular, selecting the actual key features from
the above pool of features is based on an sequential forward
selection mechanism [17] that selects the features that yield
the best prediction accuracy on the training data.

Cost Model Extensions: For the cases where the com-
pute phase is not linearly proportional with the number of
active vertices, and the number and size of messages, our
proposed cost model is extensible as follows: i) The com-
pute phase and messaging phase are separately profiled; ii)
A similar approach as above is used to model the messag-
ing phase; iii) A non linear approach is used to model the
compute function (e.g., decision trees). For this purpose,
MART scale [25] can be used, as it was designed to be ac-
curate even on key input features outside of the training
boundaries. While such an extension is worthwhile, it is
beyond the scope of this paper.

Modeling the Critical Path: In the BSP processing
model, the runtime of one iteration is given by the worker on
the critical path (i.e., the slowest worker). In a homogeneous
environment where each worker has the same share of system
resources, the worker on the critical path is the worker pro-
cessing the largest part of the input graph. For a vertex cen-
tric partitioning scheme, non-uniform allocations may exist
if some vertices are better connected than others, which in
turn results into larger processing requirements. This ob-
servation holds for network intensive algorithms, where the
number of outgoing edges determine the messaging require-
ments of the vertex, and in turn, the runtime. We adopt the
following methodology for finding the worker on the crit-
ical path: For a given partitioning scheme of vertices to
partitions, and a mapping of partitions to workers, the to-
tal number of outbound edges for each worker is computed.
The worker with the largest number of outbound edges is
considered to be on the critical path. Such a method for
finding the slowest worker can be piggybacked in the initial-
ization phase of the algorithm, in the read phase, and can
be exploited for prediction just before the algorithm starts
its effective execution in the superstep phase.

Training Methodology: For training the cost model we
use both sample runs and measurements of previous runs of
the algorithm that were given different datasets as input (if
such runs exist). Such a training scenario is applicable for
the class of algorithms we target to address in the paper, as
the underlying cost functions corresponding to each input
feature: i.e., cost of sending/receiving messages, or the cost
of executing the compute function, are similar when execut-
ing the same algorithm on different input datasets. Hence,
once a cost model is built, it can be reused for predicting
the runtime of the algorithm on different input datasets.

The cost model is trained at the granularity of iterations:
Key input features are profiled and maintained on a per-
worker basis for each iteration of the algorithm. Specifically,
the code path of each BSP worker was instrumented with
counters for all the input features potentially required in the
cost model. Then, all counters are used to train the model.

3.5 Limitations
PREDICT was designed for a class of iterative algorithms

that operate on homogeneous graph structures and use a
global convergence condition: i.e., computing an aggregate
at the graph level (i.e., an average, a total, a ratio of up-
dates). Algorithms for which convergence is highly influ-
enced by the local state of any arbitrary vertex of the graph
are not amenable to sampling, and hence, PREDIcT method-
ology cannot be used for these cases. Similarly, PREDIcT
cannot be used on degenerate graph structures where main-
taining key graph properties in a sample graph is not pos-
sible. Similar to traditional DBMS techniques, we cannot

1683

use a sample of a dataset to estimate outliers, but we can
use it to produce average values. We note that the sampling
requirements in our case are more relaxed, as we do not use
sampling to approximate results. Instead, sampling is used
as a mechanism to approximate the processing characteris-
tics of the actual run. Examples of algorithms where our
methodology is not applicable: collaborative filtering (het-
erogeneous graphs with two entity types: e.g., users and
movies) or simulating advertisements in social networks [21]
(the decision to further propagate an advertisement depends
on the local interest of the node receiving the advertise-
ment (i.e., his interest list). Examples of datasets where
our methodology is not applicable: e.g., degenerated, non
uniform graph structures, e.g., lists.

4. END-TO-END USE CASES
In this section we show how to apply PREDIcT’s pro-

posed methodology for predicting per iteration key input
features for two categories of network intensive algorithms
introduced in section 3: i.e., i) constant vs. ii) variable run-
time among subsequent iterations. For the second category
of algorithms, we consider two sub-cases: a) variable per
iteration runtime caused by different message size require-
ments among iterations, and b) variable per iteration run-
time caused by a different number of messages sent among
iterations. As end-to-end use cases, we choose PageRank for
category i), semi-clustering is chosen for category ii).a), and
top-k ranking is chosen for category ii).b).

4.1 PageRank
PageRank is an iterative algorithm proposed in the con-

text of the Web graph, where vertices are web pages and
edges are references from one page to the other. Conceptu-
ally, PageRank associates to each vertex a rank value pro-
portional with the number of inbound links from the other
vertices, and their corresponding PageRank values. In or-
der to understand how is the rank transfer between vertices
affecting the number of iterations, we introduce the formula
used for computing PageRank [30]:

PR(pi)it =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj)it−1

L(pj)
(1)

where PR(pi) is the PageRank of the vertex pi, N is the
total number of vertices, d is the damping factor (typically
set to 0.85), p1, p2, ..., pN are the vertices for which the rank
is computed, M(pi) is the set of vertices that link to pi, and
L(pj) is the number of outbound edges of vertex pj . The
rank value of each vertex is initialized to 1/N .

Convergence: PageRank algorithm converges when the
average delta change of PageRank value per vertex goes be-
low a user defined threshold τ . Formally, the delta change
of PageRank for an arbitrary vertex pi, corresponding to an
iteration it, is defined as: δi,it = |PR(pi)it − PR(pi)it−1|,
and the average delta change of PageRank for any arbitrary
vertex of a graph G is: ∆G,it=

1
N

∑
i δi,it. For simplicity,

∆G,it=∆G when referring to any arbitrary iteration. It can
be shown that for a directed acyclic graph the maximum
number of iterations required for PageRank to converge to
an average delta change of zero is the diameter of the graph
D plus one. For real graphs, however, the DAG assumption
does not hold as cycles between vertices are typical. There-
fore, an additional number of iterations is required for the
algorithm to converge to a convergence threshold τ > 0.

Sampling Requirements: In order to take a representa-
tive sample that can maintain the number of iterations of the
actual run similar with that of the sample run we make the
following observations: i) Maintaining connectivity is crucial
in propagating the PageRank transfer among graph vertices.
Therefore, the sampling technique should maintain the con-
nectivity among sampled vertices (i.e., the sample should
not degenerate into multiple isolated sub-graphs). ii) The
PageRank delta change per vertex depends on the number
of incoming and outgoing edges. The sample should ideally
maintain the in/out node degree ratio similar with the cor-
responding ratio on the original graph. iii) The diameter of
the graph determines the number of iterations required to
propagate the PageRank transfer among vertices located at
the graph boundaries. Hence, ideally the diameter of the
sample graph shall be similar with the diameter of the orig-
inal graph. In practice, maintaining the effective diameter
of the graph (as introduced in [20]) is more feasible, i.e.,
the shortest distance in which 90% of all connected pairs of
nodes can reach each other.

Transform Function: Consider the example introduced
in Figure 2: It can be shown that for any arbitrary iter-
ation, the average delta change of PageRank on graph S3
can be maintained the same with the average delta change
of PageRank on graph G (i.e., ∆S3 = ∆G) by the following
transform function: T = (IDConf , τS = τG × 1

sr
), where

Conf = {d}, and sr is the sampling ratio.
For a better understanding of transformation T, we com-

pute the PageRank of vertex 5 on graph G, and then on
graph S3, for the first iteration of the algorithm. On graph
G, the PageRank of vertex 5 is given by: (1 − d)/N +
2d/4N=(2 − d)/2N , while on graph S3: (1 − d)/(N/2) +
d/(2 ∗ (N/2)) = (2− d)/N . We observe that the PageRank
value of node 5 on the sample S3 is twice of the correspond-
ing PageRank value on graph G (equal with the inverse of
the sampling ratio), as the sample maintains the structure
of the original graph (i.e., in/out node degree ratio and di-
ameter). Similarly, it can be shown that the average delta
change of PageRank on the sample graph S3 is twice of the
corresponding average delta change of PageRank on graph
G (i.e., ∆S3 = ∆G × 2 = ∆G × 1

sr
). Hence, by applying

the transform function T for the sample run, invariants are
maintained for the number of iterations. In real graphs such
symmetric structures cannot be assumed. Still, we can use
such transformations as a basis for an heuristic approach
that shows good results in practice.

4.2 Semi-clustering
Semi-clustering is an iterative algorithm popular in social

networks as it aims to find groups of people who interact fre-
quently with each other and less frequently with others. A
particularity of semi-clustering as compared with the other
clustering algorithms is that a vertex can belong to more
than one cluster. We adopt the parallel semi-clustering al-
gorithm as described in [28]. The input is an undirected
weighted graph while the output is an undirected graph
where each vertex holds a maximum number of Cmax semi-
clusters it belongs to. Each semi-cluster has associated a
score value:

Sc =
Ic − fB ∗Bc
Vc(Vc − 1)/2

(2)

where Ic is the sum of the weights of all internal edges of the
semi-cluster, Bc is the sum of the weights of all boundary
edges, fB is the boundary edge factor (i.e., 0 < fB < 1,

1684

a user defined parameter) which penalizes the total score
value, and Vc is the number of vertices in the semi-cluster.
As it can be noticed, the score is normalized to the number
of edges in a clique of size Vc such that large semi-clusters
are not favored. The maximum number of vertices in a semi-
cluster is bounded to a user settable parameter Vmax. After
the set of best semi-clusters of each vertex are found, they
are aggregated into a global list of best semi-clusters.

Convergence: The algorithm runs in iterations: In the
first iteration, each vertex adds itself to a semi-cluster of size
one which is then sent to all of its neighbors. In the following
iterations: i) Each vertex V iterates over the semi-clusters
sent to it in the previous iteration. If a semi-cluster sc does
not contain vertex V and Vc < Vmax, then V is added to sc
to form sc′. ii) The semi-clusters sck that were sent to V in
the previous iteration together with the newly formed semi-
clusters sc′k are sorted by score and the best Smax are sent
out to V’s neighbors. iii) Vertex V updates its list of Cmax
best semi-clusters with the newly received / formed semi-
clusters (i.e., the semi-clusters from the set: sck, sc

′
k) that

contain V. The algorithm converges when the list of all semi-
clusters that every vertex maintains stop changing. As such
a stopping condition requires a large number of iterations an
alternative stopping condition that considers the proportion
of semi-cluster updates is more practical: More precisely:
updatedClusters
totalClusters

< τ , where updatedClusters represents the
number of semi-clusters updated during the current iter-
ation, while totalClusters represents the total number of
semi-clusters in the graph.

Sampling Requirements: Semi-clustering has similar
sampling requirements as PageRank: In particular, the sam-
pling mechanism should maintain the connectivity among
vertices (to avoid isolated sub-graphs) and the in/out node
degrees proportionality, such that a proportionally smaller
number of semi-clusters are sent along the edges of the sam-
ple graph in each iteration of the sample run.

Transform Function: For semi-clustering the conver-
gence threshold is not tuned to the size of the dataset as
a ratio of cluster updates decides convergence. Hence, we
use the transform function: T = (IDConf , τS = τG), with
Conf = {fB , Vmax, Cmax, Smax}, and sr is the sampling ra-
tio. Intuitively, the total number of cluster updates on a
sample that preserves the structure of the original graph is
proportionally smaller than the total number of cluster up-
dates on the complete graph. As for PageRank algorithm,
such transformations assume perfect structural symmetry of
the sample w.r.t. the original graph. Therefore, we adopt it
as an heuristic, which shows good results in practice.

4.3 Top-k Ranking
Top-k ranking for PageRank [21] finds the top k highest

ranks reachable to a vertex. Top-k ranking operates on out-
put generated by PageRank and it proceeds as follows: In
the first iteration, each vertex sends its rank to the direct
neighbors. In the following iterations, each vertex receives
a list of ranks from all the neighboring nodes, it updates
its local list of top-k ranks, and then it sends the updated
list of ranks to the direct neighbors. A node that does not
perform any update to its list of ranks in one iteration does
not send any messages to the neighbors. As the number of
messages and the message byte counts sent in each iteration
is variable (depending on the number of ranks stored per
node, and whether the node performed any updates), the
runtime of consecutive iterations is not constant.

Convergence: Top-k ranking it is executed iteratively
until a fixed point is reached [21], or alternatively, until the
total number of vertices executing updates goes below a user
defined threshold: i.e., activeV ertices

totalV ertices
< τ .

Sampling Requirements: There are two main require-
ments: i) Maintaining connectivity, in/out node degrees and
effective diameter among sampled vertices as for PageRank
algorithm, and ii) Maintaining the relative ordering of ranks
for sampled vertices. Top-k ranking is executed on output
generated by PageRank. Assuming an input sample that
satisfies the sampling requirements of PageRank, the result-
ing output generated by PageRank preserves the connectiv-
ity and the relative order of rank values. Consider Figure 2,
the rank of any node on S3 is twice the rank of the corre-
sponding node on G.

Transform function: We observe that the convergence
condition is not tuned to the size of the dataset as it uses a
ratio of updates to decide convergence. For a sample that
satisfies the sampling requirements, the ratio of rank up-
dates on the sample is maintained in pair with the ratio of
rank updates on the complete graph, hence, unlike PageR-
ank algorithm, no scaling is required: T = (IDConf , IDConv),
where Conf = {topK}, Conv = {τS = τG}.

5. EXPERIMENTAL EVALUATION
Experimental Setup: Experiments were performed on

a cluster of 10 nodes, where each node had two six-core
CPUs Intel X5660 @ 2.80GHz, 48 GB RAM and 1 Gbps
network bandwidth. All experiments were run on top of Gi-
raph 0.1.0, a library that implements the BSP model on top
of Hadoop. We use Hadoop 1.0.3 as the underlying MapRe-
duce framework. Unless specified otherwise each node is set
with a maximum capacity of three mappers, each mapper
having allocated 15GB of memory. Hence, our Giraph setup
has a total of 30 tasks (i.e., 29 workers and one master).

Datasets: Four real datasets are used for evaluating PRE-
DIcT: Two of them are web graphs: Wikipedia, and UK
2002, and the remaining two are social graphs: LiveJournal
and Twitter. The Wikipedia dataset is a subset of the on-
line encyclopedia including the links among all English page
articles as of 2010, UK 2002 is the web graph of the .uk do-
main as crawled by UbiCrawler3 in 2002, LiveJournal graph
models the friendship relationship among an online commu-
nity of users4, while Twitter graph5 models the following
relationships among users as crawled in 2009 [7]. Table 2
illustrates the characteristics of each dataset.

All datasets are directed graphs. For algorithms operating
on undirected graphs we transform directed graphs into the
corresponding undirected graphs. In Giraph, which inher-
ently supports only directed graphs, a reverse edge is added
to each edge.

Name Prefix # Nodes # Edges Size
[GB]

LiveJournal LJ 4,847,571 68,993,777 1
Wikipedia Wiki 11,712,323 97,652,232 1.4
Twitter TW 40,103,281 1,468,365,182 25
UK-2002 UK 18,520,486 298,113,762 4.7

Table 2: Graph Datasets

3http://law.di.unimi.it/software.php/#ubicrawler
4Courtesy of Stanford Large Network Dataset Collection
5Courtesy of Max Planck Institute for Software Systems

1685

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
It

e
ra

ti
o

n
s

Sampling Ratio

LJ Wiki UK Twitter

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
It

e
ra

ti
o

n
s

Sampling Ratio

LJ Wiki UK Twitter

Figure 4: Predicting iterations
for PageRank: ε = 0.01 (top), and
ε = 0.001 (bottom).

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
It

e
ra

ti
o

n
s

Sampling Ratio

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
It

e
ra

ti
o

n
s

Sampling Ratio

LJ Wiki UK

Figure 5: Predicting iterations
for semi-clustering: τ = 0.01
(top), and τ = 0.001 (bottom).

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r

It
e

ra
ti

o
n

s

Sampling Ratio

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
R

e
m

o
te

 M
e

ss
ag

e
 B

yt
e

s

Sampling Ratio

LJ Wiki UK

Figure 6: Predicting key features
for top-k ranking: Predicting it-
erations (top), and predicting re-
mote message bytes (bottom).

Algorithms: We evaluate PREDIcT on a set of rep-
resentative algorithms for ranking (i.e., PageRank, top-k
ranking), clustering (i.e., semi-clustering), and graph pro-
cessing (i.e., labeling connected components, and neighbor-
hood estimation). Due to space constraints complete results
for connected components and neighborhood estimation are
presented in the extended version of the paper [31].

Metrics of Interest: For validating our methodology,
we compute standard error metrics used in statistics that
show the accuracy of the fitted model on the training data.
In particular, we consider: the coefficient of determination
(i.e., R2), and the signed relative error (i.e., negative er-
rors correspond to under-predictions, while positive errors
correspond to over-predictions).

Sources of Error: There are two sources of error when
providing end-to-end runtime estimates: i) Misestimating
key input features; ii) Misestimating cost factors used in the
cost model. Depending on the the error sign of the two types
of estimates, the aggregated errors can either accumulate or
reduce the overall error. Hence, we first provide results on
estimating key input features, then, we provide end-to-end
runtime results.

Memory Limits: The memory resources of our deploy-
ment are almost fully utilized when executing the algorithms
on the largest datasets: i.e., Twitter and UK. In Apache
Giraph, in addition to the input graph which is read and
maintained into the memory, per vertex state and per vertex
message buffers are also stored into the memory. Hence, the
overall memory requirements are much larger than the size
of the dataset itself. For instance, executing semi-clustering
(which sends a large number of large messages) on the UK
dataset requires 90% of the full RAM capacity of our clus-
ter, hence, the memory resources of our setup are almost
fully utilized. As Giraph is currently lacking the capability
of spilling messages to disk, we run out of memory when try-
ing to run semi-clustering, top-k ranking, and neighborhood
estimation on the Twitter dataset6.

6Similar observations w.r.t Giraph are presented in [13].

5.1 Estimating Key Input Features
PageRank: This set of experiments shows the accuracy

of predicting the number of iterations for PageRank algo-
rithm as the size of the sampling ratio increases from 0.01 to
0.25. The convergence threshold value is set as τ = 1/N× ε,
where N is the number of vertices in the graph, and ε is the
convergence tolerance level, a sensitivity parameter varied
between 0.01 and 0.001. Figure 4 shows the results for all
datasets when BRJ is adopted as the underlying sampling
scheme. Sensitivity analysis w.r.t. the sampling method is
deferred to section 5.3. For a sampling ratio of 0.1, and a
tolerance level of ε = 0.01 the maximum mis-prediction for
the web graphs and Twitter datasets is less than 20%. Live-
Journal has 40% relative error for the same sampling ratio.
For this dataset, our results on multiple algorithms consis-
tently show that the sampling method adopted cannot cap-
ture a representative sample as for the other algorithms due
to its underlying graph structure which is not scale-free7.
Lower errors correspond to a tolerance level of ε = 0.001,
when PageRank converges in a larger number of iterations.
The relative errors for all datasets are maintained bellow
10% including LiveJournal. This is a desired outcome for a
prediction mechanism, as accurate predictions are typically
more useful for long running algorithms.

Semi-clustering: In this section we analyze the accu-
racy of predicting iterations for semi-clustering. The base
settings we used are: Cmax = 1, Smax = 1, Vmax = 10, fB =
0.1, τ = 0.001. Figure 5 shows the accuracy results for all
datasets but Twitter for two convergence ratios for τ = 0.01,
and τ = 0.001. As the memory footprint of semi-clustering
algorithm on Twitter is much larger than the total memory
capacity of our cluster we could not perform experiments on
this dataset. For a sampling ratio of 0.1 the relative errors
corresponding to all web graphs analyzed are below 20%.
Again, LiveJournal dataset shows higher variability in its
error trend due to its underlying graph structure which is

7We analyzed the out-degree distribution of LJ and we ob-
served that it is not following a power law. Similar observa-
tions are presented in the study of Leskovec et al. [24].

1686

less amenable to sampling. We have performed sensitivity
analysis w.r.t. Smax and Vmax when running semi-clustering
on LJ dataset, which has the highest relative error on the
base settings. In particular, we analyzed two cases: i) in-
creasing Smax from one to three, and ii) increasing Vmax
from ten to twenty. Compared with the base settings, for
a sampling ratio of 0.1 (or larger) the relative errors were
maintained in similar bounds for all sampling ratios.

Top-k Ranking: We analyze the accuracy of estimat-
ing key input features in Figure 6. We execute sample runs
on output generated by PageRank, and use a convergence
threshold of τ = 0.001. We observe that the relative errors
for estimating iterations are bellow 35% for all scale free
graphs analyzed, while the errors for estimating remote mes-
sage bytes are bellow 10%. Similarly to our experiments on
PageRank and semi-clustering, higher errors are observed
for LiveJournal dataset: For a sampling ratio of 0.1, the
number of iterations are over-estimated by a factor of 1.5,
while the message byte counts by 40%. An interesting obser-
vation for top-k ranking is that the accuracy of estimating
the message byte counts is more important than the accu-
racy of estimating the number of iterations per se. The rea-
son is that the runtime of consecutive iterations varies and
it is proportional with the number of message byte counts
and the number of active vertices of each iteration.

Upper Bound Estimates: We analyze the accuracy
of predicting iterations for PageRank when using analytical
upper bound estimates. In particular, for PageRank iter-
ations are approximated using the analytical upper bound
as defined in the detailed survey of Langville et al. [22]:

#iterations = log10ε
log10d

, where ε is the tolerance level as de-

fined above, and d = 0.85 is the dumping factor. Note that
the formula does not consider the characteristics of the in-
put dataset, and as we show next, such bounds are loose:
For a tolerance level of ε = 0.001 we obtain a number of
42 iterations using the above formula, whereas the actual
number of iterations is less than 21 for all datasets (a fac-
tor of 2x misprediction). For a tolerance level of ε = 0.1 a
misprediction of 3.5x is obtained for the Wikipedia dataset.

5.2 Estimating Runtime
In this section we show the accuracy of predicting the

end-to-end runtime execution for semi-clustering and top-k
ranking. As they show runtime variability among subse-
quent iterations, they are more challenging to predict than
algorithms with constant per iteration runtime (i.e., PageR-
ank). For training the cost model we show results for two
cases: i) Prior executions of the algorithm do not exist; ii)
Historical executions of the algorithm on different datasets
exist. For first case, sample runs on samples of 0.05, 0.1,
0.15 and 0.2 are used for training. For the case that history
exists, prior runs on all other datasets but the predicted one
are additionally considered. Once a cost model is built it
can be used multiple times, for predicting the runtime of
the algorithm on different input datasets.

Semi-clustering: Figure 7 a) shows the accuracy of pre-
dicting runtime for the case that history does not exist. The
coefficient of determination of the cost models correspond-
ing to the three datasets on which predictions are made are
as follows: R2

LJ = 0.82, R2
Wiki = 0.89 and R2

UK = 0.84,
and show that each multi-variate regression model fits the
training data (the closer the value to one, the better the
model is). The key input features that achieve the highest
correlation on the multi-variate model are the local and re-

mote message byte counters. It can be observed that the
error trend for each dataset is very similar with the corre-
sponding error trend for predicting iterations (see Figure 5
for τ = 0.001). In contrast to predicting iterations, addi-
tional errors in estimating per-iteration input features (i.e.,
message byte counters) and cost model approximations are
determining an error difference between the two graphs. For
a sampling ratio of 0.1 the errors are less than 30% for the
scale free graphs and less than 50% for LiveJournal.

Figure 7 b) shows similar results for the case that his-
tory exists. The corresponding coefficient of determina-
tion of each of the three models is improved: i.e., R2

LJ =
0.95, R2

Wiki = 0.95 and R2
UK = 0.88. The error trends

for Wikipedia and LiveJournal are similar to the case when
sample runs are used for training. The cost factors for the
UK dataset are improved and the errors are reduced to less
than 10% when using a sampling ratio of 0.1 or larger.

Top-k Ranking: We analyze the accuracy of estimating
time in Figure 8. We observe that the error trends are less
than 10% for the scale free graphs analyzed. The key input
features that achieve the highest correlation on the multi-
variate model are the local and remote message bytes and
their corresponding message counts. For the case history is
not used, the coefficient of determination of the models are
as follows: R2

LJ = 0.95, R2
Wiki = 0.96 and R2

UK = 0.99.
Yet, the cost factors corresponding to the cost model for
LJ dataset are over-predicted: That is due to the training
phase which uses very short sample runs, especially for small
datasets such as LJ. As the overhead of running very short
iterations surpasses the actual processing cost associated to
each key input feature, the coefficients of the cost model are
over-estimated. Hence, the end-to-end relative errors are de-
termined not only by over-predicting key input features, but
also by over-predicting cost factors. In contrast to LJ, for
larger datasets fairly accurate cost models can be built using
sample runs. For the case history is used, all the cost models
are improved: R2

LJ = 0.99, R2
Wiki = 0.99 and R2

UK = 0.99.
We observe that the error trends are in pair with the error
trends for estimating message byte counts (Figure 6).

5.3 Sensitivity to Sampling Technique
In this section we analyze the accuracy of predicting it-

erations when varying the underlying sampling technique.
In order to analyze the impact of bias on maintaining key
properties on the sample, we compare RJ with BRJ. Addi-
tionally, we select MHRW [15], another sampling technique
based on random walks that in contrast with RJ, removes
all the bias from the random walk, which is known to in-
herently have some bias towards high degree vertices. All
sampling techniques use a probability p = 0.15 for restart-
ing the walk, while the number of seed vertices for BRJ is
k = 1% of the total vertices of the graph. Figure 9 shows sen-
sitivity analysis for predicting iterations for semi-clustering
and top-k ranking on UK dataset. We observe that for a
sampling ratio of 0.1, the relative error for BRJ is smaller or
similar with that of the other sampling techniques. Similar
results are obtained for the other algorithms analyzed [31].
The result shows that the bias towards high out-degree ver-
tices of BRJ contributes to a good accuracy in prediction
for the algorithms we analyze in this paper. The reason is
that the convergence of these algorithms is inherently “dic-
tated” by highly connected nodes: For instance, for semi-
clustering such nodes contribute significantly to the ratio of
semi-cluster updates. While other iterative algorithms

1687

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
R

u
n

ti
m

e

Sampling Ratio

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
R

u
n

ti
m

e

Sampling Ratio

LJ Wiki UK

Figure 7: Predicting runtime for
semi-clustering: a) Training with
sample runs (top), b) Training
with sample runs and actual runs
(bottom).

-1

-0.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
R

u
n

ti
m

e

Sampling Ratio

LJ Wiki UK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r

R
u

n
ti

m
e

Sampling Ratio

LJ Wiki UK

Figure 8: Predicting runtime for
top-k: a) Training with sample
runs (top), b) Training with sam-
ple runs and actual runs (bot-
tom).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
It

e
ra

ti
o

n
s

(S
C

)

Sampling Ratio

BRJ RJ MHRJ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e

la
ti

ve
 E

rr
o

r
It

e
ra

ti
o

n
s

(T
o

p
-k

)

Sampling Ratio

BRJ RJ MHRJ

Figure 9: Predicting iterations:
Sensitivity analysis w.r.t. sam-
pling for semi-clustering (top)
and top-k ranking (bottom) on
UK web graph.

such as: random walks with restart [20] (proximity estima-
tion), or Markov clustering [35] are expected to benefit from
sampling methods based on random walks, customized sam-
pling methods may be required for other algorithms.

SR PR PR SC CC TOP-K NH
(UK) (TW) (UK) (TW) (UK) (UK)

0.01 67 69 57 70 61 60
0.1 124 145 205 105 230 223
0.2 185 260 369 129 414 429
1.0 992 4069 4192 861 3387 1857

Table 3: Runtime of sample runs (for sampling ra-
tios SR=0.01, 0.1 and 0.2) and actual runs (SR=1.0)
for PageRank (PR), semi-clustering (SC), connected
components (CC), top-k ranking (TOP-K), and
neighborhood estimation, in seconds.

5.4 Overhead Analysis
Table 3 shows the runtime of the sample run and actual

run for all algorithms when using multiple sampling ratios
on the largest graphs: Twitter and UK. The sample run of
PageRank for a sampling ratio of 0.1 on the Twitter dataset
accounts for 3.5% of the runtime of the actual run. The
reason is that the sampling mechanism stops after a given
ratio of vertices (not edges) is sampled. As the Twitter
graph is much denser than the others, the average number of
incident edges per vertex is almost 9x smaller for the sample
graph. For semi-clustering, the runtime of the sample run
on a 0.1 sample of the UK dataset accounts for 4.8% of
the runtime of the actual run for a similar reason as before.
We conclude that the runtime of the sample run is much
smaller than the runtime of the actual run particularly for
long running algorithms, where the runtime of the iterations
dominate the runtime of the algorithm (i.e., the overhead of
pre-processing the graph is relatively small). For algorithms
where the overhead of pre-processing the graph dominates
(e.g., CC), the overhead of running sample runs is higher.

6. CONCLUSIONS
This paper presents PREDIcT, an experimental method-

ology for predicting the runtime of a class of iterative algo-
rithms operating on graph structures. PREDIcT builds on
the insight that the algorithm execution on a small sample
can be transformed to capture the processing characteristics
of the complete input dataset. Given an iterative algorithm,
PREDIcT proposes a set of transformations: i.e., a sample
technique and a transform function, that only in combina-
tion can maintain key input feature invariants among the
sample run and the actual run.

Additionally, PREDIcT proposes an extensible framework
for building customized cost models for iterative algorithms
executing on top of Giraph, a BSP implementation. Our ex-
perimental analysis of a set of diverse algorithms: i.e., rank-
ing, semi-clustering, and graph processing shows promising
results both for estimating key input features and time es-
timates. For a sample ratio of 10%, the relative error for
predicting key input features ranges in between 5%-35%,
while the corresponding error for predicting runtime ranges
in between 10%-30% for all scale-free graphs analyzed.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers and EPFL DIAS lab

members for their valuable suggestions that helped us im-
proving the earlier version of the paper. We thank Thomas
Heinis, Daniel Lupei, Shivnath Babu, Christopher Koch,
Minos Garofalakis, and Aleksander Madry for useful discus-
sions and feedback. We are very grateful to NCCR MICS,
BigFoot Project, and Hasler Foundation for supporting the
research activity of EPFL authors.

8. REFERENCES
[1] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and

J. D. Ullman. Map-Reduce Extensions and Recursive
Queries. In EDBT, pages 1–8, 2011.

[2] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu.
Interaction-aware Prediction of Business Intelligence

1688

Workload Completion Times. In ICDE, pages
413–416, 2010.

[3] D. Arthur and S. Vassilvitskii. How Slow is the
k-means Method? In SCG, pages 144–153, 2006.

[4] F. Bancilhon and R. Ramakrishnan. An Amateur’s
Introduction to Recursive Query Processing
Strategies. In SIGMOD, pages 16–52, 1986.

[5] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen,
N. Polyzotis, T. Condie, M. Weimer, and
R. Ramakrishnan. Scaling Datalog for Machine
Learning on Big Data. CoRR, abs/1203.0160, 2012.

[6] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient Iterative Data Processing on Large
Clusters. PVLDB, 3:285–296, 2010.

[7] M. Cha, H. Haddadi, F. Benevenuto, and K. P.
Gummadi. Measuring User Influence in Twitter: The
Million Follower Fallacy. In ICWSM, 2010.

[8] S. Chaudhuri, R. Kaushik, and R. Ramamurthy.
When Can We Trust Progress Estimators for SQL
Queries? In SIGMOD, pages 575–586, 2005.

[9] S. Chaudhuri, R. Motwani, and V. Narasayya.
Random Sampling for Histogram Construction: How
Much is Enough? In SIGMOD, pages 436–447, 1998.

[10] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. MAD Skills: New Analysis Practices for
Big Data. PVLDB, 2(2):1481–1492, 2009.

[11] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Found. Trends databases, 1(1):1–140, 2007.

[12] J. Duggan, U. Cetintemel, O. Papaemmanouil, and
E. Upfal. Performance Prediction for Concurrent
Database Workloads. In SIGMOD, pages 337–348,
2011.

[13] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning Fast Iterative Data Flows. PVLDB,
5(11):1268–1279, 2012.

[14] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. Jordan, and D. Patterson. Predicting
Multiple Metrics for Queries: Better Decisions
Enabled by Machine Learning. In ICDE, pages
592–603, 2009.

[15] M. Gjoka, M. Kurant, C. T. Butts, and
A. Markopoulou. Walking in Facebook: A Case Study
of Unbiased Sampling of OSNs. In INFOCOM, pages
2498–2506, 2010.

[16] S. Har-Peled and B. Sadri. How Fast is the k-means
Method? In SODA, pages 185–202, 2005.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference and Prediction, Second Edition. Springer,
2008.

[18] H. Herodotou and S. Babu. Profiling, What-if
Analysis, and Cost-based Optimization of MapReduce
Programs. PVLDB, 4(11):1111–1122, 2011.

[19] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A Self-tuning
System for Big Data Analytics. In CIDR, pages
261–272, 2011.

[20] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
PEGASUS: A Peta-Scale Graph Mining System
Implementation and Observations. In ICDM, pages
229–238, 2009.

[21] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A System for

Dynamic Load Balancing in Large-scale Graph
Processing. In EuroSys, pages 169–182, 2013.

[22] A. N. Langville and C. D. Meyer. Deeper Inside
PageRank. Internet Mathematics, 1(3):335–380, 2003.

[23] J. Leskovec and C. Faloutsos. Sampling from Large
Graphs. In KDD, pages 631–636, 2006.

[24] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Statistical Properties of Community
Structure in Large Social and Information Networks.
In WWW, pages 695–704, 2008.

[25] J. Li, A. C. König, V. Narasayya, and S. Chaudhuri.
Robust Estimation of Resource Consumption for SQL
Queries Using Statistical Techniques. PVLDB,
5(11):1555–1566, 2012.

[26] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. PVLDB, 5(8):716–727,
2012.

[27] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query
SQL Progress Indicators. In EDBT, pages 921–941,
2006.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
System for Large-Scale Graph Processing. In
SIGMOD, pages 135–146, 2010.

[29] K. Morton, M. Balazinska, and D. Grossman.
ParaTimer: A Progress Indicator for MapReduce
DAGs. In SIGMOD, pages 507–518, 2010.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical Report 1999-66, Stanford InfoLab,
1999.

[31] A. D. Popescu, A. Balmin, V. Ercegovac, and
A. Ailamaki. Towards Predicting the Runtime of
Iterative Analytics with PREDIcT. Technical Report
187356, EPFL, 2013.

[32] A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco,
and A. Ailamaki. Same Queries, Different Data: Can
We Predict Runtime Performance? In ICDE
Workshops, pages 275–280, 2012.

[33] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil.
LEO - DB2’s LEarning Optimizer. In VLDB, pages
19–28, 2001.

[34] L. G. Valiant. A Bridging Model for Parallel
Computation. CACM, 33(8):103–111, 1990.

[35] S. van Dongen. A Cluster Algorithm for Graphs.
Technical Report INS-R0010, CWI, 2000.

[36] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA:
Automatic Resource Inference and Allocation for
MapReduce Environments. In ICAC, pages 235–244,
2011.

[37] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.
Asynchronous Large-Scale Graph Processing Made
Easy. In CIDR, 2013.

[38] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar,
V. Kumar, S. Parekh, K.-L. Wu, and A. Balmin.
FLEX: A Slot Allocation Scheduling Optimizer for
MapReduce Workloads. In Middleware, pages 1–20,
2010.

[39] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In HotCloud, 2010.

1689

