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ABSTRACT
In the recent past, the amount of high-dimensional data, such as
feature vectors extracted from multimedia data, increased dramat-
ically. A large variety of indexes have been proposed to store and
access such data efficiently. However, due to specific requirements
of a certain use case, choosing an adequate index structure is a
complex and time-consuming task. This may be due to engineering
challenges or open research questions. To overcome this limita-
tion, we present QuEval, an open-source framework that can be
flexibly extended w.r.t. index structures, distance metrics, and data
sets. QuEval provides a unified environment for a sound evalua-
tion of different indexes, for instance, to support tuning of indexes.
In an empirical evaluation, we show how to apply our framework,
motivate benefits, and demonstrate analysis possibilities.

Keywords
High-dimensional index selection & tuning, evaluation framework.

1. INTRODUCTION
In recent years, the amount of multimedia data increased dra-

matically. Reasons are proliferation of Web 2.0 technology and
digitalization of previously analog processes, such as digital acqui-
sition of biometric data in forensic use cases. Consequently, it is
important to access these data efficiently (e.g., for similarity or range
queries). To this end, many index structures have been proposed
that aim at accelerating the search in high-dimensional data (e.g., [8,
9, 13, 21, 27]).

Due to numerous available index structures, it is a non-trivial
task to choose the best index for a given problem. Amongst others,
dimensionality and amount of data as well as search facilities (exact
vs. nearest-neighbor vs. range queries) play a pivotal role for the
performance of index structures. In prior work, we give an overview
of existing impact factors for choosing an optimal high-dimensional
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index structure [20]. Finally, we argue that developing new index
structures or building combinations of existing ones, for instance
to tailor them for a specific domain, requires a unified environment
with a certain amount of alternative index structures to demonstrate
benefits and limitations of a new approach.

In this paper, we propose QuEval 1 (Query Evaluation Frame-
work) an open-source framework to address the aforementioned
issues. Our framework supports researchers as well as practitioners.
In particular, we make the following contributions:
• We introduce QuEval, a framework that can be flexibly ex-

tended w.r.t. index structures, distance metrics, and data sets.
• With QuEval, we provide a unified environment to benchmark

and tailor index-specific parameters to user-specific use cases.
• We demonstrate usability and show the benefits of QuEval

based on real-world examples. Furthermore, our evaluation
procedure can be seen as a general guideline to fairly bench-
mark newly proposed index structures.

The remainder of this paper is structured as follows. In Section 2,
we briefly explain the core components of our evaluation frame-
work QuEval. Then, in Section 3, we introduce four motivating
real-world examples that require high-dimensional index support.
Based on these examples, in Section 4, we subsequently define 12
evaluations using eight additional artificial data sets to demonstrate
purpose and benefits of our framework. In Section 5, we perform a
large experimental case study. The results indicate a totally different
index-structure selection to supports the aforementioned use case
characteristics (e.g., dimensionality, or amount of data). We con-
clude the paper with presentation of related work (Section 6) and
future work (Section 7).

2. THE QuEval FRAMEWORK
In this section, we give an overview on the architecture of our

Java-based framework. We introduce selected features that make
QuEval unique compared to existing evaluation frameworks. Finally,
we explain how others can extend our framework to their specific
purposes and requirements.

2.1 Overview and General Architecture
In the following, we introduce core components and the test case

facility, which allows configuring QuEval for a specific experiment.
Then, we present advanced features of QuEval. In Figure 1, we show
the architecture of our framework consisting of three major parts:
(1) Data-Generator, (2) Query-Point Generator, and (3) HDI-Tester.
1queval.de
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The Data-Generator creates new data sets, each with a certain
number of dimensions, amount of points, value domain, and stochas-
tic distribution (see Figure 1), which can be specified by a user.
These data sets can be re-used in multiple experiments and thus,
establish a sound basis for comparable evaluations.

The Query-Point Generator utilizes a generated data set to create
a set of query points with the same properties (e.g., dimensionality)
as the data set it belongs to. The framework uses these new points
to query all indexes in a test case for evaluation purposes. Our
framework can re-use query points for several test cases.

QuEval - Core Components

Data selection

data set

query 
points

data set selection
# points

(2) Query-Point Generator

# dimensions
# points
value domain
stochastic distribution

(1) Data-Generator

Legend
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data item 

uses

QuEval - Advanced Features

Visualization Extension

C++ Handler
Extension to R

resultsresults

(3) HDI-Tester

data set selection

random query selection

in-memory vs HDD

index selection
sequential scan
LSH

query parameters

...

# query points
# k of knn queries

distance metric selection

number of test runs

Figure 1: Architecture of our QuEval framework.

The High-Dimensional Index Tester (HDI-Tester) as another
central component of our framework performs the evaluation of a
certain test case using a description that contains:
• Data-set selection. A generated data set of the Data-Generator,

or a point collection stored as comma separated values (CSV)
must be selected.
• Query parameters. A user chooses a set of query points that

are generated by the Query-Point Generator for exact-match
queries. Furthermore, the user can define an amount of query
points from the data set for exact-match and knn queries.
Additionally, she is able to specify the k for knn queries.
• Distance-metric selection. Independent of the index struc-

tures, a user can select a distance metric (Minkowsky family,
Bray-Curtis, etc.) for knn queries.
• In-memory vs. HDD. Since we need to consider different

storage devices, it is possible to store the data accessed by an
index either in main memory or on HDD. In future, we want
to introduce a third option having a user-specific penalty for
accessing a point, to simulate for instance SSDs.
• Number of test runs. It is possible to state the number of runs

for each scenario. Hence, the user can compute robust mean
values of response times to ensure statistical soundness.
• Index-structure selection and index-parameter configuration.

For each selected index, the user can adjust the configuration
parameters to find the optimal configuration for a specific sce-
nario. Currently, the user can select between sequential scan
as reference, R-Tree variant (covering original R-Tree [21]
and R*-Tree [6]), k-d Tree [7], Pyramid Technique [26], Pro-
totype Based Approach [19], VA-File [31], p-stable LSH [15],

and M-tree [14]. The extension of the available index struc-
tures is subject of current development (e.g., B+Tree exten-
sions based on arbitrary space-filling curves).

A user creates a scenario description either in a graphic user
interface (GUI) or uses configuration files, allowing to schedule
several test cases (scripted variant). As a result, the user can analyze
the behavior of index structures for different scenarios. To evaluate
the selected indexes, the HDI-Tester determines accuracy and time
efficiency. In the case that our framework computes accuracy (based
on the distance metric), it relies on the sequential scan to determine
the correct query response and compares this result to the query
result of the evaluated indexes. After running a test case, the HDI-
Tester saves the results in a CSV file for further analyses. Besides the
introduced core components of QuEval, we offer advanced features,
which we describe next (cf. Figure 1).
• Visualization extension. This extension provides the opportu-

nity of visualizing how the partition of the data space takes
place. For instance, for the R-Tree variant, we can use this
facility to demonstrate effects of different split algorithms for
R-Trees [12] (e.g., for educational purposes).
• C++ handler. Since we are aware that many implementations

are written in C++, we offer a possibility to include C++ im-
plementation into QuEval similarly to Java implementations.
• Extension to statistic language R.2 For supporting analysis of

complex stochastic distributions, such as multivariate Gaus-
sian distribution (MVG) [4], there is a QuEval extension to
produce a data set for evaluation purposes via R.

2.2 Possible Extensions
One of our primary design goals of QuEval is to offer several

extensibility options. As a result, a user can integrate additional
index structures or distance metrics.

2.2.1 Index-Structure Extensibility
Initially, we provide seven index structures with QuEval. How-

ever, for other user-specific index structures we provide a mechanism
that allows seamless integration with minimum implementation ef-
fort. Indeed, a programmer only needs to provide a class file that
extends an abstract class serving as basis for accessing all index
structures.3 Within the abstract class, there are three types of meth-
ods that should be implemented: (1) general purpose methods, (2)
access methods, and (3) optional glue code for the GUI-based vari-
ant of QuEval. General purpose methods provide information about
the name of the index and current parameter configuration. These
methods require about one line of source code. Access methods
include usually an insert method to build the index and methods
for each supported query type. Since the existing index structures
use the same mechanism, they can be used as a starting point (i.e.,
template) for adding new index structures. Optional glue is required
to set index specific parameters via GUI (cf. Section 4.2). For
the GUI variant one additional method needs to be implemented,
otherwise default parameters values are used. Note, in the scripted
version, we can set parameters without this method.

2.2.2 Distance-Metrics Extensibility
In addition to existing distance metrics (Minkowsky family, Bray-

Curtis, etc.), it is possible to extend QuEval with further distance
metrics. We provide an abstract class, which can be extended to
implement own distance metrics. A user has to implement for an
additional metric two methods computing the distance of two points

2www.r-project.org
3queval.de/docs/AIndexStructure.htm
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w.r.t. the points data type (integer or double). For our examples,
these methods require usually five to eight lines of code.

3. PURPOSE OF QuEval
Before we present the details of indexing high-dimensional spaces,

we introduce four use cases. With the help of these use cases, we
later on demonstrate that our framework is useful for many applica-
tion scenarios.

3.1 Motivating Examples
High-dimensional indexes may be used for various purposes. To

demonstrate the application of our framework, we pick use cases
from different domains. This way, we show that using QuEval
results in benefits for various application scenarios. In the remainder
of this paper, we use these examples to demonstrate how to apply
QuEval to select a suitable index structure in an empirical evaluation.

In a current research project, we are generally interested in the
future of crime-scene investigation. Particularly, we deal with the
acquisition of latent fingerprints [30]. Thus, we use two examples
derived from our current research project. Besides crime-scene
investigation there are additional use cases where indexing can be
applied. Therefore, we use two different scenarios derived from
scientific data management and physical activity recognition. In the
following, we introduce the single use cases ordered by increasing
dimensionality.

Latent Fingerprint Identification (LFI). Large scale data-
intensive systems, such as the automated fingerprint identification
system (AFIS),4 are used by many authorities to support experts
in finding similar fingerprints to those collected at crime scenes.
For a given latent print, AFIS returns a fixed number of similar
fingerprints that are furthermore examined by a human expert. To
improve the throughput and response time, we want to speed up
the access time similar to the forensic case database. Similarly
to the second test case, we have different partitions of the overall
fingerprint basis, divided, for instance, by the reason why a print is
in the system (suspect, police officer, witness, etc.) and different
classes of fingerprints (arch, left loop, etc.). Because of the different
challenges such as query type (knn vs. exact-match) and the demand
for efficient query processing, we need a solution (i.e., an index)
that can address all of these challenges.

Sensor Parameter Tuning (SPT). When examining a poten-
tial crime-scene, an important task is latent fingerprint acquisition.
Generally, we favor non-destructive optic technologies. However,
due to optic characteristics of a surface containing the fingerprint
(e.g., degree of light reflection and transparency), we need to adjust
sensor parameters, use a different type of sensor, or classical inva-
sive acquisition techniques. Since there is no trivial way to compute
these parameters, we use indexes with stored ones for known mate-
rials and compute nearest neighbors to adjust these parameters. Our
main task is to avoid unsuitable sensor parameter configurations.
Hence, we do not need to find the optimal configuration and thus,
can use approximative index structures. Furthermore, we need to
be aware that sensor devices are (to some extent) mobile embedded
devices that are for security reasons not linked to large database
servers. As a result, we have limited CPU and memory resources.

Scientific Data Management (SDM). In scientific experi-
ments, classification of results via a certain amount of previously
classified nearest neighbors is an important task to interpret the
results. For instance, in physics, results of particle experiments to
4https://www.interpol.int/Public/Forensic/
Fingerprints/RefDoc/default.asp

identify new elementary particles or determining the fraction (or
amount) of a certain particle type are a field of application. Gen-
erally, these data sets used for classification are high-dimensional
and low-populated data spaces consisting of representatives form-
ing clusters and removed noise. Furthermore, the amount of data
from new experiments is large. Thus, efficient determination of
nearest neighbors is crucial. However, we do not need to support
exact-match queries.

Physical Activity Monitoring (PAM). Similar, to the SDM
use case, classification of different physical activities (e.g., walking)
can be done by computing the distance to several nearest neighbors
with known activity [28]. In contrast, to the SDM use case, we have
many data. So, the data space is not that sparsely populated as for
SDM use case. Thus, we hypothesize that we have to apply different
index structures as for the SDM use case.

3.2 Adopting the Examples for QuEval
We conduct a case study based on the motivating examples to

demonstrate applicability and benefits of QuEval in practice. To
this end, we define test cases for each of the exemplary use cases
that should be evaluated with QuEval. For our evaluation, the
selected data sets must fulfill the following requirements to ensure
repeatability and scalability: (1) substantial amount of data (at
least several thousands), (2) open access to the data set, and (3)
different characteristics w.r.t. properties (e.g., dimensionality) to
show differences in our exemplary evaluation. In the following, we
provide details on the data sets that we use in our evaluation.

Latent Fingerprint Identification. Due to privacy issues, we
cannot publish large fingerprint databases and to the best of our
knowledge existing latent fingerprint databases, such as the NIST
database,5 contain only a few hundred entries. To circumvent this
problem, we perform the evaluation with a publicly available data
set based on different hand-writing features, which is also used for
forensic evidences [2]. The data set has 16 dimensions and contains
10,992 data points.

Sensor parameter tuning. For this use case, we apply a real-
world data set based on the spectral texture features used to identify
latent fingerprints [25]. The data set has 43 dimensions and contains
411,961 data points.

Scientific Data Management. Here, we use a particle identi-
fication data set for evaluation. Particularly, we use a data set having
50 dimensions and 130,064 points [29].

Physical Activity Monitoring. For the PAM use case we use
a PAM benchmarking data set published in [28]. The data set has 51
dimensions and contains 3,850,505 points and thus, is the largest in
our evaluation.

4. EMPIRICAL EVALUATION
In engineering of data-intensive systems, selection and optimiza-

tion of adequate index structures is an important task. To demon-
strate the application and benefits of QuEval, we present an empiri-
cal evaluation for our motivating examples from Section 3. In the
first part of this section, we give an overview of index structures used
in our evaluation. Second, we describe the setup of our evaluation.

4.1 Index-Structure Selection
Next, we motivate the selection of index structures used in our

evaluation and describe their concepts. Since we are aware that
many index structures exist in the literature, we need to restrict the
5www.nist.gov/itl/iad/ig/latent.cfm
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amount of structures to promising candidates. First, the considered
index structures have to support required query types. As stated in
the previous sections, most of our use cases require exact-match and
knn query capability. Hence, we select indexes that support both
query types. Consequently, index structures such as iDistance [24]
or M-tree [14], optimized to support knn queries in arbitrary metric
spaces, are not considered. Nevertheless, these index structures
can be integrated, if needed for user-specific test cases. Overall,
we select a combination of tree-based indexes (i.e., R-Tree and k-d
Tree), improved sequential scans (i.e., VA-File and Prototype Based
Approach), and a hashing approach (i.e., p-stable LSH) to cover
a broad variety of index types based on the classification in [16].
Furthermore, we chose the Pyramid Technique which is mentioned
as not affected by the curse of dimensionality [8].

4.1.1 R-Tree, k-d Tree, and VA-File
Because R-Tree (including respective variants) and k-d Tree are

widely known tree based index structures, we just refer to the papers
of Guttman [21] and Bentley [7] presenting these structures. For
the same reason, we refer the reader to [31] for details on the VA-
File. Our implementation of the k-d Tree is based on an existing
variant.6 Furthermore, we implemented the R-Tree variant and
VA-File from scratch. Notably, our R-Tree variant is based on
the idea of GIST [22]. Thus, implementing a new R-Tree variant
means modifying insert heuristic and split algorithm. As a result,
for the subsequent evaluation, insert heuristic and split algorithm
are parameters that can be modified.

4.1.2 Pyramid Technique
According to Berchtold et al., the Pyramid Technique is a tech-

nique that is not affected by the curse of dimensionality [8], which
is an interesting property for our evaluation. The basic idea of this
technique is to divide a d-dimensional space into 2d pyramids. By
definition, a normalized d-dimensional point x is located in the
pyramid pi with the following condition:

i =

{
jmax if xjmax < 0.5
jmax + d if xjmax ≥ 0.5

jmax = (j|∀k, 0 ≤ (j, k) < d, j 6= k : |0.5− xj | ≥ |0.5− xk|)).

As a result, a point is inserted according to its dimension that has
the largest distance jmax to the center of the space. For instance, if
the position of this component is j, then the point is inserted in the
pyramid pj if the value is smaller than 0.5 or to the pyramid pj+d if
the value is larger or equal 0.5. For efficiently managing the points,
the pyramid is divided into several slices.

(0; 1)

(1; 0)(0; 0)

(0.5; 0.5)

(0; 1)

(1; 0)(0; 0)

(0.5; 0.5)

Figure 2: Space partition of a 2-d space by Berchtold et al. [8]
(left) and Lee and Kim [26] (right).

Different ways for partitioning pyramids are proposed to support
different query types. Berchtold et al. support range queries by
6http://home.wlu.edu/˜levys/software/kd/

splitting a pyramid horizontally according to their basis [8]. In
contrast, Lee and Kim divide a pyramid in a spherical way, starting
from the top of the pyramid to support knn queries [26]. In Figure 2,
we show a visualization of both partitioning approaches for a 2-
dimensional space. While the approach of Berchtold et al. refers to
hyper rectangles, Lee and Kim split the space into hyper spheres.
The latter ensures that all points in one pyramid, having the same
distance from top of the pyramid, are located in one slice and thus,
efficiently supports knn queries.

Because we are interested in the results of knn and exact-match
queries, our own implementation is based on the idea of Lee and
Kim [26]. In particular, a d-dimensional point x with a distance
of distx to the center of the space is located in the slice s where
s = b distx∗|s|

distmax+1
c. A detailed description of the algorithm and

proofs that indicate mathematical correctness are given in [26].

4.1.3 Prototype Based Approach
This index structure has been proposed by Gonzalez et al. as

Ordering Permutations [19]. The main idea of this approach is to
compare a specific representation of points in the data set with a
representation from the query point. In this case, a specific order of
prototypes is used as this representation.

p3

p2

p1

C132 C123 C213

C231C321C312

x

Figure 3: Space partitioning using three prototypes.

Gonzalez et al. define a distinct set of objects P with P ⊆ X
where X represents a data set. In Figure 3, the points p1, p2, and p3
are elements of P , which are called prototypes [19]. Furthermore, a
permutation Πx, which consists of all prototypes, is computed for
each x ∈ X . The order of prototypes in permutation Πx depends on
the distances of point x to the prototypes. For instance, in Figure 3,
we insert x into the data space. Prototype p2 has the smallest
distance relative to x and thus, prototype p2 is in the first position
of the permutation. Similarly, the second position is defined by
the prototype with the second smallest distance, p1. As a result,
x is assigned to permutation {p2, p1, p3}. Thus, the data space is
divided into a Voronoi diagram [3] using the prototypes as seeds
(combination of similar colored cells in Figure 3). So, within a
Voronoi cell, all points share the same prototype with the smallest
distance. If we extend each line (in three-dimensional spaces it is a
plane etc.) of the Voronoi cell with dashed parts, we obtain the cells
for the permutations. In this representation, all points in the cells
share the same order of prototypes. For instance, all points located
in cell C213 share the same order of prototypes in their permutation,
{p2, p1, p3}. For our case study, we adopt a C# implementation
from [19].

4.1.4 LSH Based on p-stable Distributions
This index structure uses Locality Sensitive Hashing (LSH) based

on p-stable distributions. The idea of this technique is to map the
original data space to a different space by means of hash functions.
These hash functions have the property that two points, close to each
other, have a higher probability of collision in the hashed space than
points that are far away. The LSH technique is introduced by Indyk
and Motwani [23] and has been improved and tested by Gionis et
al. [18].
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As a representative of this approach, we implement an index
based on p-stable LSH functions first presented by Datar et al. [15].
An example for a p-stable distribution is the Gaussian distribu-
tion N(0, 1) where p = 2. However, to increase the probability
that two points close to each other in the original space have a
collision in the hashed space, it is necessary to use different hash
functions. For each hash function, we need a random weight vector
gi, with dimensionality of points in the data set. This vector re-
quires independently chosen components from a p-stable distributed
function. Additionally, the hashing scheme needs a uniformly ran-
dom chosen offset oi between [0 . . . w], where w is the width of
hash buckets. Next, the hash value h(x) of a point x is defined by
h(x) = (b 〈g1,x〉+o1

w
c, ..., b 〈gd,x〉+od

w
c), where d is the number of

hash functions. In Figure 4, we show a 2D space that is partitioned
by two hash functions. For instance, point x2 is a candidate for
being a knn of query point q, due to a collision within a bucket of
hash function h2. Although we implement this index from scratch,
the implementation is based on the description of Datar et al. [15].

4.2 Case-study Design
In the following, we provide details on important aspects regard-

ing setup and execution of our case study.

4.2.1 Evaluation Setup
Next, we give basic information regarding the setup of the eval-

uation. This defines, which variation point (e.g., index-specific
parameters or stochastic distribution) we need to consider.

Parameters of Selected Index Structures. Most of the in-
troduced index structures exhibit specific parameters that may in-
fluence the performance of an index structure. Specifically for the
approximative index structures, these parameters have a consider-
able influence on accuracy of these structures. In the following, we
provide an overview of these parameters.

First, the parameters of an R-Tree variant are minimum and maxi-
mum number of points in a Minimum Bounding Rectangle (MBR)
as well as different insert and split algorithms that try to minimize
overlapping MBRs (e.g., R*-Tree). Next, for the Pyramid Tech-
nique, the configuration parameter is the number of bounding slices
a pyramid is divided into and for the VA-File, it is the number of par-
titions per dimension. Furthermore, the parameters of the Prototype
Based Approach are the number of prototypes and the amount of
data points to consider in knn-queries. Finally, the parameters of the
LSH based on p-stable distribution are the number of hash functions
and the width of the hash buckets. Additionally, both approximative
index structures are influenced by randomly created prototypes or
weight vectors. For these components, a seed is required, to ensure
reproducibility. For a better comparability, we choose the same seed
in all test cases. In Table 1, we give an overview of the parameters.

Stochastic Data Distributions. To show differences w.r.t. dif-
ferent stochastic distributions, we add more data sets to the evalua-
tion. Our goal is to determine whether experiences from uniformly

x1

x2
bucket borders 
of function h1
bucket borders 
of function h2

Legend

q

Figure 4: LSH based on p-stable distributions.

Table 1: Parameters of the evaluated indexes.
index structure parameter

R-Tree variant min, max points per MBR,MBR
split, insert algorithm

k-d Tree (no parameters)

Pyramid Technique slices per pyramid

VA-File bits per dimension

Prototype Based
Approach

#prototypes, considered
points in %, (random seed)

p-stable LSH #hash functions, width of
hash buckets, (random seed)

distributed or MVG data sets can be taken into account to select an
adequate index for real-world data. Thus, for each of the four test
cases from Section 3, we add a uniform and an MVG data set having
the same number of dimensions and points. For instance, all points
in the data sets Du

43, DMVG
43 , and Dr

43 have 43 dimensions, but the
first data set is uniformly distributed, the second is an MVG data set,
and the third is the real-world data set from Section 3.2. As a result,
we obtain 12 data sets (three from each test case) of our evaluation
(cf. Table 2).

Table 2: Overview on our evaluation data sets.
use case uniform data MVG data real-world data

LFI Du
16 DMVG

16 Dr
16

SPT Du
43 DMVG

43 Dr
43

SDM Du
50 DMVG

50 Dr
50

PAM Du
51 DMVG

51 Dr
51

Additional Properties. We limit the value domain within a
dimension to normalized point data such as [0...255]. For knn
queries, we set k = 10, based on the experience of other case studies
(e.g., [13, 31]). Furthermore, for each experiment run, we determine
the 10 nearest neighbors for 100 (pseudo randomly selected) points
of the data set. Finally, we state that all indexes are kept in main
memory, while the points of the data set (referenced in the index)
are located on HDD to consider different access time of different
storage devices.

4.2.2 Evaluation Metrics
For comparing different index structures and for optimization of

index-specific parameters, we apply several well-known metrics.
Note, for different use cases different metrics may be required. For
each execution of a test case, we query the index with 100 points
pseudo randomly selected from the data set.

Tresp. QuEval determines the amount of time required from sending
the first query to receiving the last query response.

Acc. For knn queries of approximative index structures, the ac-
curacy is Nf/Nall. Nf is the number of correctly found nearest
neighbors (in the right position). To determine the correct nearest
neighbors, we use a sequential scan. We query 100 points and de-
termine for each the 10 nearest neighbors. So, the total number
of nearest neighbors that can be found (Nall) is 1000. T x

resp is the
smallest Tresp configuration of an index with Acc ≥ x.

Nhdd. This metric describes the average number of points fetched
from HDD per query. Our index implementation do not store the
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data points itself, but a reference, similar to tuple identifiers. Thus,
whenever an index needs to fetch a point from HDD, it requests it
from QuEval’s buffer and storage management system. This allows
us to count accessed points. Currently, our storage structures are
optimized for sequential reading. Consequently, we can observe
different response times for random or sequential access of points.
This configuration is especially beneficial for sequential scanning.
Hence, we can conclude that each index that outperforms the sequen-
tial scan is a valid alternative. In future, we will evaluate different
storage and buffer strategies.

Mheap. This metric states the maximum amount of main memory
allocated by the Java virtual machine (runtime environment). This
metric may exclude certain index structures from further considera-
tions. For instance, in embedded environments we may have limited
main memory. Consequently, index structures that require more
memory cannot be used in this context.

Tbuild. states the index building time. This covers the time span from
sending the request of the first point to receiving the confirmation
of successful insertion of the last point of a specific data set.

To ensure statistical soundness, we always repeat test cases 120
times and compute a robust mean value per test case using a two-
sided γ-trimming (γ = 16.67%) to compensate outliers. Mean
value computation of execution times has been proved to be appro-
priate [17] in Java applications.

4.2.3 Test-case Execution
During test-case execution, we have to minimize system-specific

effects which may bias our results. Initially, we have to minimize
impacts of Java-specific runtime optimization and system effects
like garbage collection that can occur while testing performance of
Java applications [17]. To this end, we schedule a warm-up phase in
advance of each test case. To address the index structure parameters,
we divide our case study into two parts. First, we run each test
case to determine beneficial parameters for each index structure
(intra-index evaluation). Second, we use these parameters to run the
same test case 120 times for an actual comparison and evaluation of
different index structures (inter-index evaluation) (cf. Figure 5).

Index structure 
selection

Index 1

Define index-specific 
parameters to tune

Parameter tuning
(Intra evaluation)

- Range P1
- Range P2

Index Comparison
(Inter evaluation)

Optimum

t t

Figure 5: Overall evaluation procedure.

5. EVALUATION RESULTS
In this section, we present the results of our case study. First, we

present results of our intra-index evaluation, revealing that parameter
optimization is a crucial part for every evaluation of index structures.
Second, we present results of our comparison and evaluation of
different index structures. All tests are performed on an Intel Core
i5 with 8GB main memory using Windows 7 and Java 1.7 (64
Bit). We limit the amount of main memory that can be allocated
by our index structures to 6GB. The remaining 2GB are reserved
for operating system and different tasks that we cannot control. As
a result, index structures that exceed this amount of main memory
are unsuitable for this use case and thus, are excluded from this
part of the evaluation. Of course, we could use computers having
more amount of main memory, but due to our experiences, hardware
limitations are still common in practice.

5.1 Intra-Index Evaluation
In the following, we briefly present results of our intra-index

evaluation for each index. Our experiences show that this part of the
evaluation requires high computation effort. Hence, using QuEval’s
script functions is helpful to schedule large amounts of tests (in
our evaluation several thousands). Furthermore, QuEval optionally
notifies the user via email in case that results exist. Generally, we
observe large differences among the indexes regarding parameter
changes as we point out in the following. To give credit to different
classes of indexes, we split the intra-index evaluation into one part
for exact and one part for approximative indexes.

5.1.1 Exact Indexes - Verification of Existing Results
In contrast to approximative index structures, exact ones always

return the correct knn (the same as the sequential scan does). As
a result, we exclude accuracy here and do not consider the trade-
off between performance and accuracy. In general, we are able
to verify existing results, such as the parameter suggestions from
Weber and Blott for the VA-File [31] or the degeneration of tree-
based indexes in spaces having more than 16 dimensions [32, 10].
However, determination of the specific influences is still valuable
from the engineering perspective.

R-Tree Variant. The main challenge of an R-Tree variant is to
avoid overlapping MBRs. This problem is even more challeng-
ing when the number of dimensions increases, which is a direct
consequence of the curse of dimensionality [9]. Furthermore, we
have to consider height and fan-out of the tree. Since there are four
parameters responsible for the performance of an R-Tree variant,
tuning itself is a multi-dimensional problem. However, our results
indicate that, for instance, even forD16 (affected less by the curse of
dimensionality), Nhdd indicates that knn search nearly degenerates
to a sequential scan (e.g., for DMVG

16 85% of the points are retrieved
from HDD). Overall, our data reveal that using R*-Tree [6] split and
insert delivers best results.

Another interesting/important observation we made is that the
R-Tree variant is the only index structure that exceeds the maximum
available heap space of 6GB for all three data sets with 51 dimen-
sions (D51). We depict the amount of Mheap that is required for this
index structure in Figure 9(b) (measured on a computer having 16
GB of RAM). Consequently, we have to exclude this index structure
from further considerations for these scenarios. Nevertheless, for
the remaining scenarios R-Tree variant is still a valid choice.

Pyramid Technique. Generally, our implementation verifies
that the Pyramid Technique is robust against parameter changes, as
stated by [8]. For instance, for D50 an exact match requires 1.12
HDD accesses on average for every configuration (8 to 16 slices).
This is a result of the linear computation effort for determining the
(spheric) pyramid slice where a point is located in. We only need
the dimension with the largest distance to the center of the pyramid.

Furthermore, for the same scenario, to determine 10 nearest neigh-
bors, the index accesses between 117,363 and 129,155 points from
HDD. This is in fact the whole data set having 130,064 points. Thus,
increasing the number of slices has no benefit. The reason is the
curse of dimensionality. Due to the fact that most points are located
in one of the corners of the space and slices meet in the corners,
only a few numbers of slices can be excluded for point lookup.

VA-File. The major challenge for tuning knn queries for the VA-
File is the trade-off between better approximations due to longer
bit vectors to minimize Nhdd and additional complex cell distance
computations due to longer vectors. For most scenarios, our results
show that the best trade-off is using 8 bits per dimension, which
is slightly more than the recommendation of Weber and Blott [31],
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who suggest to use 4 up to 6 bits. For example, in all D50,
the response times with 6 up to 16 bits per dimension are very
similar (maximum difference 10%). However, the average Nhdd

differs. For example, to determine the 10 nearest neighbors for
DMVG

50 , the VA-File performs approx. 33,908 HDD accesses for 4
bits per dimension, 700 for 8 bits, and 181 for 16 bits.Thus,
we conclude that distance computations due to longer bit vectors
compensate the benefit of a more precise approximation, which
is the same observation as in [31]. To verify our observation, we
analyze the computation time with the help of VisualVM,7 a profiler,
which is part of Java development kit. As expected, the time saved
for HDD accesses is compensated in functions determining whether
we have to consider a point or not. Particularly, for 4 bits per
dimension, point access requires about 20% of computation time,
while for 8 and 16 bits HDD access consumes about one percent
and thus, can be neglected. For exact-match queries, we observed a
similar tendency for the same reason.

5.1.2 Parameter Sensitivity of Approximative Indexes
For approximative structures, we have to take the trade-off be-

tween query response time and accuracy into account. Thus, we
have two optimization goals. Our results indicate that both index
structures are very sensitive to parameter changes. To allow a certain
amount of false nearest neighbors, we determine parameter T 0.9

resp
for each approximative index, meaning that at least 90% correct
neighbors are required. Without using our framework for test au-
tomation, finding these beneficial parameters manually is hardly
possible, because for both approximative indexes we need to test
about 300 parameter configurations for each scenario per index.

Prototype Based Approach. For the Prototype Based Ap-
proach, there are two parameters: (1) number of prototypes
and (2) percent of data searched. In Figure 6.(a), we
show the impact of the number of prototypes with a constant per-
cent of data searched for knn queries for DMVG

50 . If we increase the
number of prototypes, parameter Tresp deteriorates, but the index
delivers better accuracy. Furthermore, the positive effect becomes
weaker and the graph looks similar to square root functions (cf. Fig-
ure 6.(a)). Finally, these effects are the same for different values of
parameter (2), but starting point and slope of the graphs are different.
Currently, these effects are hardly predictable. In fact, the space
partition is based on slicing Voronoi cells. Summarily, we can create
nearly arbitrary convex shaped regions. However, knowledge about

7http://visualvm.java.net/

the way of creating beneficial space partitions is still fragmentary.
Consequently, tuning parameter configurations is time consuming
even with our framework, but still more efficient than manual tuning.

P-stable LSH. For our implementation of p-stable LSH, we con-
sider two parameters: (1) bucket width(w) and (2) number of
hash functions. When optimizing these parameters for exact
and knn queries, we made two basic observations. First, small
bucket widths are beneficial for exact-match queries, but impose
a low accuracy for knn queries, because there are only a few num-
bers of collisions (points in a bucket). Hence, to optimally support
exact-match and knn queries, we need two indexes with different pa-
rameters. Second, for knn queries, the correlation of the parameters
and Tresp (or Nhdd) and resulting accuracy is hardly predictable (cf.
Figure 6.(b)). Since the optimization of parameters is tedious (e.g.,
for every scenario we test several hundred parameter configurations),
we try to exclude and limit the parameter sets to certain bounds. As
a result of this intra-index evaluation, we made the following obser-
vations: First, the time for computing the hash value is constant and
thus, cannot be influenced by parameterization. Second, the number
of data points for each bucket is similar regarding uniform and MVG
data sets. Hence, we can estimate the response time, because we
know the number of buckets and that each bucket contains a similar
number of data points. However, we cannot predict the accuracy,
because we did not observe a correlation between accuracy and
accessed points, due to the sparsely populated space.

The primary result of this evaluation is that an intra evaluation
for every scenario is inevitable to perform an objective comparison
of different indexes. To this end, using QuEval’s unified test envi-
ronment and automation features are highly beneficial to schedule
large amounts of scenario executions.

5.2 Inter-Index Evaluation: Exact Match
Based on the results of the intra-index evaluation, we can now

apply our identified parameters to perform a sound comparison of
indexes for our scenarios with the help of QuEval. In Figure 7, we
depict the results of our exact-match scenarios by means of a bar
chart for each scenario. Furthermore, we provide results for all three
data sets for each scenario. Hence, for every index in every figure
there are three bars showing the average of measured response time
of uniform (Du

x ), MVG (DMVG
x ), and real-world data (Dr

x), where
x indicates the dimensionality (from left to right). Recapitulate, we
have to exclude R-Tree variant from the evaluation forD51, because
it exceeds the maximum available heap space in our evaluation.

1660



Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3

1,0E+4

1,0E+5

1,0E+6

(c) 50 Dimensions

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

10E-2

10E-1

10E+0

10E+1

10E+2

(a) 16 Dimensions

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3

1,0E+4

1,0E+5

1,0E+6

(b) 43 Dimensions

T
re

sp
 in

 m
s

T
re

sp
 in

 m
s

T
re

sp
 in

 m
s

k-d Tree Prot

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3

1,0E+4

1,0E+5

1,0E+6

(d) 51 Dimensions

real w orld

MVG

uniform

 

 

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

0%

20%

40%

60%

80%

100%

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

0%

20%

40%

60%

80%

100%

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

0%

20%

40%

60%

80%

100%

R-Tree

0%

20%

40%

60%

80%

100%

Seq: Sequential Scan R-Variant: R-Tree Variant k-d Tree Pyr: Pyramid Technique
VA: VA-File Prot: Prototype Based Approach p-stable: p-stable LSH

T
re

sp
 in

 m
s

103

102

101

100

10-1

105

106

104

103

102

101

100

10-1

105

106

104

103

102

101

100

10-1

105

106

104

103

102

101

100

10-1

CPU time (%)

IO time (%)

Part I: Tresp exact-match response times

Part II: CPU/IO ratio of Tresp

Figure 7: Part I: Exact match Tresp in ms (logarithmic scale), Part II CPU/IO ratio.

Thus, we strike out the R-Tree variant in Figure 7(d).
Finally, to distinguish between CPU- and HDD-based indexes as

well as to make certain effects explicit, we also depict the amount
of in-memory computation time (e.g., comparison of bit strings for
VA-File etc.) and the amount of time necessary to fetch points from
HDD in Part II of the same Figure. We use an empirically measured
approximation of the time necessary for HDD lookups and number
of HDD accesses captured by QuEval to compute CPU and HDD
ratio. Note that we use logarithmic scales to depict our results.

Main Observations. First, our results reveal that the Pyramid
Technique outperforms every other index at least by several factors,
except for D51 where the Tresp of the k-d Tree is quite similar. Fur-
thermore, the response time of this index is very stable even when
changing the data distribution, dimensionality, or amount of data
(between 0.7 and 7.8ms). Second, our measurements reveal that
Pyramid Technique, Prototype Based Approach, and k-d Tree re-
quire more time for real-world data while the p-stable LSH approach
seems to benefit from real-world data (except for D50).

Interpretation and Consequences. The explanation for our
first observation is that the Pyramid Technique requires only linear
effort to determine the pyramid slice where a point is located in [8].
As a result, the Pyramid Technique can directly access the searched
point within a certain slice. Furthermore, if a slice does not exist,
we can conclude that the searched point does not exist in the data
set. The reason for the exception in Dr

51 is a degeneration in the
respective real-world data set. Thus, there are several slices having
a large amount of points that is also observable in the higher amount
of IO time (cf. Figure 7 Part II(d)). Nevertheless, this index requires
only 1.45 HDD accesses on average for all of our scenarios. Conse-
quently, to speed up exact-match queries in high-dimensional data,
we recommend to use Pyramid Technique. For the second obser-
vation, we assume that the main reason is that due to the changed
distribution the probability of collisions increases. Hence, the aver-

age number of points in a bucket or slice increases. For instance, for
uniform data, Pyramid Technique requires on average 1.03 HDD
accesses, while for real-world data this value is about 1.62. For
the Prototype Based Approach this difference is even more obvious.
Especially for our real-world data (Dr

43), nearly 10% of the data
are fetched from HDD, because there is a large number of points
having the same permutation (key). To explain this effect, we an-
alyzed the data set with the help of two-dimensional scatter plots.
The results reveal a correlation between nearly constant dimensions
dominated by some outliers and two-valued dimensions causing this
huge amount of collisions.

5.3 Inter-Index Evaluation: knn Queries
Similarly to Section 5.1, we divide the evaluation into a compari-

son of exact indexes and approximative ones.

5.3.1 Exact Index Structures
We depict the results of our knn-query experiments in Figure 8.

Analogously to Figure 7, there is a figure for all scenarios having
the same dimensionality. Additionally, we explicitly distinguish
between exact and approximative indexes, indicated by a vertical,
dashed line in each subfigure (i.e., Part I of Figure 8 (a)–(d)). Finally,
we also present the results of main-memory consumption in Figure 9,
which contains exemplary data of the Sensor Tuning (SPT )and the
Physical Activity Monitoring (PAM) scenario. To determine main-
memory consumption, we use jamm.8

Main Observations. First, our data reveal that for sparsely pop-
ulated spaces (D50) Tresp converges to Tresp of a sequential scan,
independent of stochastic distributions or other properties. Second,
the results of our tree-based indexes indicate a considerably better
response time for real-world data (at least factor ten) and clearly
outperform a sequential scan. Third, for every scenario, the VA-File

8https://github.com/jbellis/jamm
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is between 2 and 4 times faster than a sequential scan and is the only
index that efficiently reduces the number of HDD accesses (less than
one percent of the points are accessed). It also requires least main
memory. For instance, for data set Du

43 with a total size of 65MB,
VA-File requires 20MB compared to 200MB of an R-Tree variant.
Finally, for the Pyramid Technique there is only one scenario (Fig-
ure 8(b), real-world data) where we observe a clearly faster response
time than those of a sequential scan (Pyr: 66s, Seq: 189s).

Interpretation and Consequences. First, even for a non-
uniform distributed data set, high-dimensional data points are mostly
located near to at least one of the borders of the space. As a result,
the effect of stochastic distributions diminishes. Furthermore, the
average distance of all points is similar and thus, nearest neighbors
are spread across the whole space, which means that a large number
of points have to be visited to find the k nearest neighbors. Summar-
ily, for some cases using a sequential scan is sufficient since most
indexes degenerate to a sequential scan using large amount of main
memory and require additional CPU time.

For the second observation, we need to explain why tree-based
indexes do not outperform a sequential scan for MVG or uniform
data in our test cases. Apparently, Nhdd reveals that the R-Tree

variant as well as the k-d Tree are in fact similar to a sequential scan
since most points are accessed to retrieve the nearest neighbors. For
example, data set Du

43 consists of 411,961 points. Particularly, the
R-Tree variant accesses 388,691 points on average, which means
in fact the whole data set. For the R-Tree variant we observed
low overlap of leaf nodes. However, due to large distances of
currently found nearest neighbors, leafs cannot be excluded even
when there is no overlap. Similarly, k-d Tree contains several list-
like degenerations. This property causes a performance decrease for
exact-match queries, but allows the knn algorithm to exclude large
parts of the tree.

Third, as known from literature, for high-dimensional data spaces
most indexes degenerate to sequential scans [31]. Thus, accelerating
sequential scanning results in a constant benefit that requires only
low amounts of main memory. Furthermore, stochastic distributions
have only a minor effect on the VA-File, because this structure
considers approximation of all points. However, according to our
results, the key factor that currently limits the performance of our
implementation of VA-File are main memory computations and thus,
processor speed is an optimization potential (e.g., parallelization).
Finally, for the Pyramid Technique, as discussed in the intra-index
evaluation, the major performance issue is that we can exclude
only a small number of pyramids and their corresponding slices.
Although we state that Pyramid Technique is up to three times faster
for real-world data (because most of the points are not located in
one of the corners of the space). Nevertheless, we measured faster
response times of different indexes. Hence, we conclude that for all
of our test cases, to support knn queries, we would use a different
index structure for each of them.

Overall, we cannot give a clear recommendation which index to
use, in contrast to exact-match queries. However, according to our
results, applying a VA-File is always a good choice independent of
data distribution or number of dimensions. Using VA-File is more
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beneficial if the HDD accesses are even more costly than in our
test cases. Reasons which may prevent a developer from applying
a VA-File are low CPU performance or little point look up times
(e.g., SSD instead of HDD). Furthermore, our data reveal that using
tree-based indexes for highly clustered or real-world data is a good
choice as well. However, before applying for instance an R-Tree
variant, analysts need to know how data are distributed, which is
occasionally time consuming.

5.3.2 Approximative Index Structures
In contrast to exact indexes, we have to consider accuracy for

approximative index structures as well. Hence, in Figure 8, we
depict the fastest query response that delivers at least 90% of the
correct nearest neighbors (T 0.9

resp ).

Main Observations. First, for 11 out of 12 test cases, T 0.9
resp

of the Prototype Based Approach is faster than T 0.9
resp of p-stable

LSH (except for Dr
43) and for all test cases faster than a sequential

scan. Second, both indexes have a faster response time for real-
world than for MVG or uniform data. This is also observable in
the amount of accessed points from HDD (Nhdd). In particular,
knn-query processing with p-stable LSH for uniform or MVG data
results in accessing a large percentage of points from the data set
(e.g., 73% for Du

51). In contrast, for real-world data the number of
points fetched from HDD is significantly reduced (e.g., 0.74% for
Dr

51).
Finally, we observed best T 0.9

resp of our approximative index struc-
tures compared to Tresp of a sequential scan for the three data sets
derived from the Physical Activity Monitoring use case (D51). Es-
pecially for real-world data (Dr

51), our measurements reveal a speed
up by factor 15 for Prototype Based Approach and for p-stable LSH.
We can observe a similar, but not that strong tendency, for D50.
However, for any other scenario the approximative index structures
are outperformed by exact ones.

Interpretation and Consequences. The first observation is
due to parameter adjustment in the intra-index evaluation. For in-
stance, we can use smaller bucket widths for p-stable LSH and have
to consider less data for Prototype Based Approach. Furthermore,
our analysis reveals that the LSH approach works best for real-world
data with many dimensions containing nearly constant values. In our
real-world data sets there are, for instance, dimensions dominated
by outliers, that contain highly clustered data, or dimensions having
only few values. All these properties of our real-world data result
in relatively small distances of neighbors. This is the reason why
p-stable LSH works best for 51 dimensions, because we can select
small buckets and still have a high probability of containing the
correct neighbors. Our analysis of the real-world data set confirms
that, despite some multivariate skew and Gaussian-like distributions,
data are dominated by outliers, highly clustered data, and few data
values. As a result, distance of points is relatively small and thus,
the probability of collisions is higher than for MVG or uniform
data. This also explains the good T 0.9

resp times for Dr
51. Due to small

distances between the single points, collisions in hash buckets for p-
stable LSH as well as similar permutations for the Prototype Based
Approach are more likely than for uniform or MVG data. As a
consequence, we recommend these index structures even for our
high-dimensional use cases (e.g., D43), in case that a small amount
of false nearest neighbors is acceptable.

5.4 Inter-Index Evaluation: Building Times
In many scenarios, such as data warehousing, indexes are not

updated, but rebuild to contain the most recent data. Thus, index
building times may be an additional criterion to select an optimal

index structure for a given use case. In particular long building
times may furthermore exclude index structure despite of having a
reasonable performance. To this end, we depict the index building
times (Tbuild) in Figure 10.

We observed very similar building times for uniform, MVG,
and real-world data, thus we only present the results for uniformly
distributed data sets as representative to improve understandability.
For every index, we use the optimized parameters determined in the
intra index evaluation.

Main Observations. In particular, we observed larger differ-
ences between the single data sets than between the index structures
of one data set. For instance, creating the VA-File for Du

50 required
about 480ms while for Du

16 only 50ms are required. Furthermore,
our results indicate that for one data set the difference between the
fastest and the slowest index building time is about one magnitude.
Finally, we observed that ranking the different building times for
the different data sets results in very similar results. For instance,
building the VA-File required, except for Du

51, the least amount of
time due to its easy computation of bit vectors. In turn, creating the
Prototype Based Approach index resulted in the largest measure-
ments, because for every insert the distance to all prototypes has to
be computed.

Interpretation and Consequences. Summarily, although our
results show only a maximum difference for index building times
about one magnitude, the intra-index evaluation and additional
test indicate that building times may be crucial. For instance, the
anomaly in the VA-File building time for Du

51 reflects an imple-
mentation detail of our VA-File. To be independent of sorted data,
we decided to compute the borders of single cells on all points of
the data set, which is no problem for smaller data sets. However,
for several million points computing these borders is costly, but
minimizing the index building times was not our main target. Never-
theless, small modifications of the VA-File for large data sets result
in similar query performance and a by two magnitudes smaller index
building time. In the same sense, in the intra evaluation we used
several split algorithms (e.g., Guttman’s quadratic split algorithm)
for our R-Tree variant that resulted in building times about a magni-
tude higher than selected variant. Even more costly were spherical
variants, such as the SS-tree. To this end, QuEval evaluates and
stores the index building times for further examination as well.

5.5 Overall Suggestions and Conclusions
Subsequently, we summarize the selection of indexes for our

four use cases, to demonstrate a possible result of an evaluation
performed with the help of QuEval. First, for the SPT test case,
we recommend to apply the VA-File that clearly outperforms a se-
quential scan and minimizes the required main memory. This is
an important property for our embedded devices (i.e., the sensors).
Second, in the fingerprint example, we have no resource limita-
tions. So, we can apply an R-Tree variant for that we observed
far the best response times although it also requires most amount
of main memory. Moreover, for the forensic use-case test case,
that is dominated by exact-match queries, we suggest to use the
Pyramid Technique, due to our results using Pyramid Technique
results in fastest exact-match response times for all of our scenarios.
Finally, for real-world high-dimensional data (e.g., Dr

51), we can
recommend using approximative index structures, such as Prototype
Based Approach.

On a more abstract level, software engineers shall use our sugges-
tions as a starting point, which index structures are valid candidates
to accelerate a certain use case. Therefore, they need to map their
specific use case to the most similar one of our scenarios. More-
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Figure 10: Index building time for uniform data.

over, the introduced evaluation procedure, consisting of intra and
inter-index evaluation and QuEval’s unified environment, supports
software engineers to select one of the candidate index structures
in a reasonable way. This is especially beneficial when designing
new data-intensive solutions from scratch or optimizing existing
ones. Finally, for non-database experts, the detailed description of
parameters and influence factors, as well as the agglomeration of our
experiences in our framework are useful to understand the complex
nature of indexing high-dimensional spaces.

Furthermore, we argue that our evaluation procedure is valuable
for database researchers as it simplifies argumentation for which
scenarios newly introduced index structures are beneficial and what
are imposed drawbacks when referring to our proposed evaluation
procedure.

Summarily, we conclude that using our QuEval framework de-
livers valid and interesting results. Due to the open nature of our
framework, we invite the community to:
• design and implement new index structures and benchmark

them with QuEval,
• tailor existing approaches for new use cases, such as indexing

of encrypted data, that can be integrated into our framework,
• provide new or improved implementations of existing index-

structures.
We describe the details of contributing own implementations to
QuEval on our website (www.queval.de).

5.6 Threats to Validity
In this section, we discuss threats to validity that may affect

the results of our case study. To this end, we distinguish between
internal (relation of input to output) and external (generalization of
our results) validity.

5.6.1 Internal Validity
For the implementation of the selected index structures, we choose

Java 7 as programming language, which may influence our results.
First, we had to reimplement some index structures in Java. Second,
with Java a fine-grained memory management, such as with C/C++
is not possible. This may influence optimization of our index struc-
ture implementation (regarding memory issues). However, since all
index structures are implemented in Java, we have a comparable
foundation for an objective comparison. Furthermore, for all index
structures, we optimize the implementation in a same way and our
C++ Handler allows for inclusion of C++ indexes as well.

Finally, Java-specific optimization could render our results mean-
ingless. As a countermeasure, we use a warm-up period at the
beginning of each test. Consequently, our presented results in pre-
vious sections do not consider this period and thus, the effects of
Java-specific optimization can be omitted. We perform reproducibil-
ity and stability studies showing that we can reproduce stable results,
which is conform to [17].

5.6.2 External Validity
Within our case study, we compare and evaluate seven indexes for

high-dimensional data. Since this is just an excerpt of possible index
structures that currently exist, our results may not be generalizable
for other structures. However, we have chosen index structures
with different characteristics to cover a wide variety of existing
approaches. For instance, amongst the presented index structures,
there are indexes using space partitioning as well as data partitioning
methods. Furthermore, the considered index structures are based
on different internal data structures such as trees, hash functions,
or bitmap indexes. Hence, we argue that our case study, although
not totally comprehensive, is generalizable to some extent. Finally,
we argue that, because of the open nature of our framework, it is
possible to easily integrate further indexes to conduct additional
experiments, for instance with GPU-based implementations [11].

6. RELATED WORK
In recent years, many new index structures have been developed,

mainly due to limitations of existing ones such as [8, 9, 13, 21, 27].
However, all of them evaluate their new or improved index structure
against a relatively small set of other index structures. For example,
Berchtold et al. evaluate the Pyramid Technique against the X-
Tree, the Hilbert R-Tree variant, and the sequential scan [8]. The
purpose of our framework is to ease handling this large amount index
structures and helping to quantify the benefits of newly proposed
index structures.

A different approach is to introduce index structures that can
be used for various purposes. For instance, M-tree [14] and iDis-
tance [24] are designed to speed up knn queries in arbitrary metric
spaces. Additionally, GIST offers a generalization for tree-based
indexes [22]. However, we argue, that due to specific requirements
of a test case, generalized solutions often cannot provide the same
benefits as specialized ones.

For evaluating different high-dimensional index structures, there
already exist some frameworks, such as ELKI [1] and MESSIF [5].
However, these frameworks offer only a subset of QuEval’s func-
tionality (e.g., amount of index structures, distance metrics, and
extensibility properties) or are tailored to specific domains. ELKI is
mainly designed for cluster analysis optionally supported by index
structures. MESSIF only focuses on metrical data structures and
considers no in-memory storage of indexes.

7. CONCLUSION AND FUTURE WORK
Due to versatile characteristics of indexing high-dimensional data,

choosing a suitable index structure for a specific use case is very
difficult. Hence, we introduce QuEval, an extensible framework to
evaluate and to support research in the domain of high-dimensional
index structures. To show the benefits of our framework, we con-
duct an empirical evaluation based on four real-world examples (i.e.,
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with optimized parameters). Within our evaluation, we perform an
intra-index evaluation to guarantee an objective and unbiased com-
parison of index structures. Our results verify existing knowledge
and suggestions for well-known index structures as well as point out
parameter sensitivity of approximative indexes. Summarily, choos-
ing the right parameters plays a pivotal role for the performance of
some indexes and thus, should be a vital part of each evaluation.
In summary, we conclude that applying QuEval for large empirical
evaluation studies is beneficial and produces highly relevant results,
relevant in practice as well as in research especially if data-intensive
solutions need to be embedded in complex information systems.
Consequently, we invite the community to extend our framework
and benefit from its evaluation functionality.

In future work, we want to improve our method for evaluating
newly introduced index structures to establish it as standardized
procedure. Moreover, we want to collect and publish statistics for
a multitude of indexes and large variety of test cases that allows a
user to choose a suitable index for a given test case or at least limits
the number of index structures for evaluation. We intend to extend
our framework (e.g., storage structures). For instance, we want to
add further index structures to the framework. Furthermore, we
want to add specific workload containing for instance fixed ratios of
different query types. Finally, we will evaluate the impact of new
trends in databases, such as GPU co-processing or cloud computing,
which is generally possible due to the open nature of our framework.

ACKNOWLEDGMENTS
This work has been funded in part by the BMBF No.: 13N10817
and DFG grant No.: SA 465/34-2. We also like to thank Martin
Tobies for his helpful support.

8. REFERENCES
[1] E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, and

A. Zimek. Evaluation of clusterings – metrics and visual
support. In ICDE, pages 1285–1288, 2012.

[2] F. Alimoglu and E. Alpaydin. Methods of combining multiple
classifiers based on different representations for pen-based
handwriting recognition. In TAINN, pages 637–640, 1996.

[3] F. Aurenhammer. Voronoi diagrams: A survey of a
fundamental geometric data structure. ACM Comput. Surv.,
23:345–405, 1991.

[4] A. Azzalini and A. Dalla Valle. The multivariate skew-normal
distribution. Biometrika, 83(4):715–726, 1996.

[5] M. Batko, D. Novak, and P. Zezula. Messif: Metric similarity
search implementation framework. In DELOS, pages 1–10,
2007.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-Tree: An efficient and robust access method for points and
rectangles. In SIGMOD, pages 322–331, 1990.

[7] J. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18:509–517, 1975.
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