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ABSTRACT
The problem of rewriting keyword search queries on graph
data has been studied recently, where the main goal is to
clean user queries by rewriting keywords as valid tokens ap-
pearing in the data and grouping them into meaningful seg-
ments. The main solution to this problem employs heuris-
tics for ranking query rewrites and a dynamic programming
algorithm for computing them. Based on a broader set of
queries defined by an existing benchmark, we show that the
use of these heuristics does not yield good results. We pro-
pose a novel probabilistic framework, which enables the op-
timality of a query rewrite to be estimated in a more princi-
pled way. We show that our approach outperforms existing
work in terms of effectiveness and efficiency of query rewrit-
ing. More importantly, we provide the first results indicating
query rewriting can indeed improve overall keyword search
runtime performance and result quality.

1. INTRODUCTION
Keyword search on graph data has attracted large inter-

est. It has proven to be an intuitive and effective paradigm
for accessing information, helping to circumvent the com-
plexity of structured query languages and to hide the un-
derlying data representation. Using simple keyword queries,
users can search for complex structured results, including
connected tuples from relational databases, XML data, RDF
graphs, and general data graphs [8, 5, 18]. Existing work so
far focuses on the efficient processing of keyword queries [6,
5], or effective ranking of results [12, 14].

In addition, recent work studies the problem of keyword
query cleaning [16, 4]. The motivation is keyword queries
are dirty, often containing words not intended to be part of
the query, words that are misspelled, or words that do not
directly appear but are semantically equivalent to words in
the data. Besides dirty queries, keyword search solutions
also face the problem of search space explosion. Searching
results on graph data requires finding matches for the indi-
vidual keywords as well as considering subgraphs in the data
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connecting them, which represent final answers covering all
query keywords. The space of possible subgraphs is gener-
ally exponential in the number of query keywords. Through
grouping keywords into larger meaningful units (called seg-
ments), the number of keywords to be processed and the
corresponding search space is reduced.

The two main tasks involved in query cleaning (henceforth
also called query rewriting) are token rewriting, where query
keywords are rewritten as tokens appearing in the data, and
query segmentation, where tokens are grouped together as
segments representing compound keywords. Query rewrit-
ing helps to improve not only the result quality but also the
runtime performance of keyword search. Towards a rewrit-
ing solution that enables more effective and efficient keyword
search, we provide the following contributions:

Probabilistic Ranking of Query Rewrites and Its
Impact on Keyword Search Effectiveness. The opti-
mality of query rewrites has been defined based on heuris-
tics for scoring tokens and segments, including an adoption
of TFIDF [16, 4]. However, we show in this work that for
ranking query rewrites, existing work based on these heuris-
tics has several conceptual flaws and does not yield high
quality results. Instead of using ad-hoc heuristics, we pro-
pose a probabilistic framework for keyword query rewriting,
which enables the optimality of query rewrites to be studied
in a systematic fashion. In particular, optimality is cap-
tured in terms of the probability a query rewrite can be
observed given the data, and estimated using the principled
technique (Maximum Likelihood Estimation). Furthermore,
while previous work only considers the textual information
but neglects the rather rich graph structure, which might
be more crucial for keyword search on graph data, our ap-
proach takes both textual and structural information in the
data into account. In [16, 4], it has shown that w.r.t. the
proposed ad-hoc notion of optimality, computed rewrites are
accurate. However, the actual effect of query rewriting on
the quality of keyword search results is not clear. Using the
recently established benchmark [2] for keyword search, we
show that our approach not only yields better query rewrites
but more importantly, also better keyword search results.

Context-based Computation of Query Rewrites and
Its Impact on Keyword Search Efficiency. The prob-
lem of computing query rewrites has shown to be NP-hard.
A solution [16] based on dynamic programming has been
proposed for this, which computes optimal query rewrites by
considering all possible combinations of optimal sub-query
rewrites. There, the optimality of a rewrite is based on the
optimality of all its components, while our probabilistic ap-
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Figure 1: Example data graph

proach enables optimality to be captured merely based on
the previously observed context in an incremental rewrit-
ing process. We show that this probabilistic model not only
produces higher quality results but also can be exploited
by a context-based top-k algorithm that is more efficient
than the previous solution. Moreover, while previous work
reported the search space reduction resulting from segmen-
tation, its impact on overall keyword search performance is
not clear. In this work, we show that the search space re-
duction can outweigh the overhead incurred through query
rewriting, resulting in better overall runtime performance.

Outline. We provide an overview of the problems in
Sec. 2. Then, we present our solution for ranking and com-
puting query rewrites along with differences to the most re-
lated work in Sec. 3 and Sec. 4, respectively. Experimental
results are presented in Sec. 5, followed by more related work
in Sec. 6 and conclusions in Sec. 7.

2. OVERVIEW
We firstly provide an overview of the keyword search prob-

lem, then discuss the role of keyword query rewriting.

2.1 Keyword Search on Graph Data
Keyword search solutions have been proposed for dealing

with different kinds of data, including relational, XML and
RDF data. In the general setting, existing approaches treat
these different kinds of data as graphs:

Definition 1 (Data). Data are captured as a directed
labeled graph D(N,E) called data graph, where N = NR ]
NA is the disjoint union of resource and attribute value
nodes NR and NA, respectively, and E = ER ]EA is the set
of directed edges, where ER are edges between two resources
called relations, i.e., e(ni, nj) ∈ ER iff ni, nj ∈ NR, and EA
are edges between a resource and an attribute value called
attributes, i.e., e(ni, nj) ∈ EA iff ni ∈ NR∧nj ∈ NA. Each
data element e ∈ N ]E is labeled with some text L(e) called
label describing e.

Results in this setting are defined as Steiner trees [8], or
Steiner graphs in the graph data setting [10, 9]:

Definition 2 (Result / Steiner Graph). A result to
a keyword query Q also called Steiner graph is a subgraph
of D(N,E) denoted as DS = (NS , ES), which satisfies the
following conditions: 1) for every q ∈ Q there is at least
one element nq ∈ N (called keyword element) that matches
q, i.e., the label L(nq) contains q. The set of keyword el-
ements containing one for every q ∈ Q is NQ ⊆ NS; 2)
for every possible pair ni, nj ∈ NQ and ni 6= nj, there is a
path ni ! nj, i.e., an edge e(ni, nj) ∈ E or a sequence of
edges e(ni, nk) . . . e(nl, nj) in E, such that every ni ∈ NQ is
connected to every other nj ∈ NQ. Such a graph is called

Keyword Query Possible Query Rewrites

“Publication Article�John⊕McCarthy�Turing⊕Award∗

John McCarty Article�John⊕McCarthy�Tuning⊕Award
Tuning Award” Article�John⊕McCarty�Turing⊕Award

Article�John⊕McCarty�Tuning⊕Award

Table 1: Possible query rewrites

a d-length Steiner graph when paths that connect keyword
elements are of length d or less.

Example 1. Given the data graph in Fig. 1, for the key-
word query shown in Table 1, there is one matching Steiner
graph as highlighted in Fig. 1, namely the one connecting the
three nodes Article, John McCarthy and Turing Award
(assuming that keywords have already been rewritten so that
they match the labels of these three nodes, e.g., “Tuning
Award” has been rewritten to match the node Turing Award).

For finding whether some data elements match query key-
words, existing solutions typically use an inverted index and
treat elements (their labels) as documents (task 1). For find-
ing paths to form Steiner graph from these elements (task
2), they explore the data as an undirected graph, traversing
the edges without taking their direction into account. For
pragmatic reasons, existing keyword search solutions [5, 18,
10] apply a maximum path length restriction d, such that
only paths of length d or less have to be traversed.

2.2 Keyword Query Rewriting
The label L(e) of each data element e and the query Q can

be conceived as a sequence of tokens, e.g., the label Turing
Award consists of two tokens Turing and Award. Query
rewriting firstly maps query keywords (also called query to-
kens) to tokens appearing in the labels of data elements (to-
ken rewriting), and then groups the resulting data tokens
into segments to form query rewrites (query segmentation):

Definition 3 (Token Rewrite). Let TokenD be the
set of all tokens in the data graph D. Token rewriting with
factor m is a function rewritem, which maps a query token
q to a list of m data tokens t ∈ TokenD associated with
the respective distance d between q and t. Given a keyword
query Q = {q1, q2, . . . , qn}, a query token rewrite is a m×n
matrix M of tokens t ∈ TokenD, where the i-th column is
obtained through rewritem(qi).

Example 2. Given the data graph in Fig. 1, we can con-
struct the matrix M for the example query in Table 1 using
the rewriting function rewrite2:

M =

(
Article John McCarty Tuning Award
−− −− McCarthy Turing −−

)
Note that the matrix M might have empty entries when there
are less than m candidate data tokens for a query token.

Definition 4 (Segment and Query Rewrite). Given
the query token rewrite M of dimension m×n, a segment is
a sequence of tokens in M from adjacent columns. A query
rewrite (also called segmentation) is a sequence of continu-
ous and non-overlapping segments S = s1s2 . . . sk such that
for all segments si, 1 ≤ i ≤ k, the first column of si+1 is next
to the last column of si, i.e., start(si+1) = end(si)+1, where
start(s) and end(s) denote the first column and the last col-
umn covered by s, respectively. A query rewrite can also be
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seen as a sequence of tokens t ∈ M and actions α, namely
S = t1α1t2 . . . tn−1αn−1tn, where ti denotes one token in the
i-th column of M and αi represents a concatenation action
denoted by ⊕ or a splitting action denoted by �. A splitting
action � captures the boundary of two segments.

Example 3. For our example query, Table 1 shows a
few query rewrites. The segment-based representation of the
rewrite Article�John⊕McCarthy�Turing⊕Award is s1 =
{Article}, s2 = {John,McCarthy}, s3 = {Turing,Award}.

Note that the first rewrite in the table captures the query
we would like to obtain because it yields the Steiner graph
presented in the previous example. As opposed to the orig-
inal query, segments in this rewrite correspond to tokens
in the data, thus facilitating the finding of relevant results.
Further, because segments stand for compound query key-
words, this rewrite contains only three instead of five. Ob-
serve that we have three other rewrites, where all constituent
segments also correspond to data tokens. However, we can
see data elements matching these segments are not con-
nected, i.e., do not form Steiner graphs. We consider a
rewrite to be valid when it yields Steiner graphs, and rele-
vant, when these graphs represent relevant answers. In order
to assess the relevance of answers, we use manually defined
ground truth provided by the keyword search benchmark [2].
Considering query rewrite optimality under these aspects of
validity and relevance makes our work different from the
main existing solution [16], which defines optimality based
on several heuristics that we will discuss next.

3. PROBABILISTIC QUERY REWRITING
Existing work [16] ranks a query rewrite S based on the

sum of all the scores of its segments, where the score of each
segment s depends on several heuristics, including the dis-
tance of tokens in s from the corresponding query keywords
and the number of tokens in s. A central heuristic is the
one based on an adoption of TFIDF. The TFIDF score of
a segment s is defined as ScoreIR(s) = max{tfidf(s, e) :
e ∈ N ] E}, where tfidf(s, e) is the TFIDF weight of the
segment s in the data element e, which is a tuple in previous
work. With respect to the two main aspects of query rewrit-
ing, namely validity and relevance, we identify the following
problems with TFIDF-based ranking:

Relevance. Intuitively, the TFIDF weight of a query
term q is high for a document d, when d contains a large
number of mentions of q (TF), and q discriminates d well
from other documents (IDF). The adoption of TFIDF here
computes the weight w.r.t. a tuple. However, query rewrites
have to be ranked, not tuples. A query rewrite S may
contain several segments corresponding to several tuples.
Thus, when S contains a segment s with high TFIDF weight
w.r.t. some tuples, it does not mean that S contains a large
number of mentions of s and that s discriminate S well from
others. In other words, it is not clear why a rewrite S with
higher TFIDF weighted segments is more relevant.

Validity. The TFIDF heuristic and others do not con-
sider structural information in the data. Some data elements
contain tokens and segments that represent relevant candi-
dates for token rewriting and segmentation. However, these
elements only help to generate valid query rewrites, when
they are actually parts of some Steiner graphs. Thus, to
ensure validity, paths in the data have to be considered.

3.1 Probabilistic Model
Let Q = {q1, q2, . . . , qn} be the user query, D be the data,

and S = t1α1t2 . . . αn−1tn be a query rewrite. The proba-
bility P (S|Q,D) can be calculated based on Bayes theorem:

P (S|Q,D) =
P (Q|S,D) · P (S|D)

P (Q|D)
(1)

Since P (Q|D) can be considered as a constant, denoted as
γ, given the fixed Q and D, we have

P (S|Q,D) =
1

γ
· P (Q|S,D) · P (S|D) (2)

The term P (S|D) is of particular interest in this work, as it
captures the probability of query rewrites. For token rewrit-
ing, we can focus on P (Q|S,D), which captures the proba-
bility of observing (the keywords in) Q given the (tokens in
the) intended query rewrite S and the data D.

3.2 Probabilistic Token Rewriting
Since users having the intended token ti in mind spec-

ify the query keyword qi commonly according to their word
usage and spelling habit, we assume that each qi is only
related to the corresponding token rewrite ti reflecting the
user’s search intention and the keyword query Q is indepen-
dent of the data D given the intended query rewrite S, i.e.,
P (Q|S,D) = P (Q|S). For the purpose of token rewriting,
the actions in a query rewrite S can be removed and each
qi is only dependent on ti. That is,

P (Q|S) = P (q1, q2, . . . , qn|t1α1t2 . . . αn−1tn)

= P (q1, q2, . . . , qn|t1, t2, . . . , tn) =

n∏
i=1

P (qi|ti) (3)

where P (qi|ti) models the likelihood of observing a query
keyword qi, given that the intended token is ti.

Then, this probability mass is distributed inverse propor-
tionally to the distance d(qi, ti), which measures the syn-
tactic and semantic distance between qi and ti. In our im-
plementation, d(qi, ti) is a combination of edit distance and
semantic distance, which is derived from the lexical database
WordNet, For each query keyword qi, we have

P (qi|ti) =
1

ε
· exp(−η · d(qi, ti)) (4)

where η is a parameter that controls how fast the probability
decreases with the distance and ε is a normalization factor.

3.3 Probabilities of Query Rewrites
For query segmentation, S is conceived as a sequence of

segments, or a sequence of token and segmentation action
pairs, such that the probability P (S|D) is estimated based
on tokens and actions in S:

P (S|D) = P (t1α1t2 . . . αn−1tn|D)

=

n−1∏
i=0

PD(αiti+1|t1α1t2 . . . αi−1ti) (5)

where PD(α0t1) = PD(t1) and PD(αiti+1|t1α1t2 . . . αi−1ti)
stands for P (αiti+1|t1α1t2 . . . αi−1ti, D). However, for a
keyword query Q containing many keywords, computing
P (S|D) will incur prohibitive cost when D is large in size.
To address this problem, we make the N th order Markov
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assumption to approximate that the probability of an ac-
tion on a token only depends on the N preceding token and
action pairs (to be precise, N preceding tokens and N − 1
actions and N = 2 in the following examples). That is,

P (S|D) ≈
n−1∏
i=0

PD(αiti+1|ti−N+1αi−N+1 . . . αi−1ti) (6)

For computing this, we build upon the idea behind the
n-gram language model. The n-gram model defines the prob-
ability of a sequence of tokens s = t1t2 . . . tl that appear in
the data as the joint probability of observing every token
ti+1 in s, given the previous tokens ti−N+1 . . . ti (called con-

text), i.e., P (t1t2 . . . tl) ≈
∏l−1
i=0 P (ti+1|ti−N+1 . . . ti) (note

that instead of n, we use N where n = N + 1). For various
information retrieval and text processing tasks, this approxi-
mation based on the Markov assumption has proven to work
well. We also rely on this assumption to focus only on the
previously observed context during the computation of query
rewrite probability. Typically, the Maximum Likelihood Es-
timation is employed, which computes this probability as
the count of ti−N+1 . . . titi+1, divided by the sum of counts
of all n-grams that share the same context ti−N+1 . . . ti, i.e.,

P (ti+1|ti−N+1 . . . ti) =
C(ti−N+1...titi+1)∑
t C(ti−N+1...tit)

, where C(ti . . . tj)

denotes the count of ti . . . tj appearing in the data.
For query segmentation, we need to adopt this idea such

that instead of token probability, the action-token pair prob-
ability specified in Eq. 6 can be derived. First, since query
segmentation is order insensitive, i.e., both “John McCarthy”
and “McCarthy John” should be grouped into one segment,
we consider n-gram as a set of tokens that co-occur in a
window of size n instead of a sequence of n tokens that ap-
pear contiguously. To facilitate the following discussion, we
firstly define the concept of action induced segment:

Definition 5 (Action Induced Segment). For Q =
{q1, q2, . . . , qn} and the corresponding query rewrite S =
t1α1t2 . . . αn−1tn, a segment si induced by action αi−1 is the
concatenation of the previously induced segment si−1 result-
ing from αi−2 and the token ti, i.e., si = si−1ti if αi−1 = ⊕;
otherwise (i.e., αi−1 = �), si = ti. For α0, we have s1 = t1.
The induced segment si(l) is a segment with length (i.e., the
number of constituent tokens) no larger than l. For a seg-
ment si with more than l tokens, si(l) is si without the first
l(si)− l tokens, where l(si) is the length of si.

While the n-gram model predicts the probability of a to-
ken ti+1 given the context si, the task of query segmentation
is to predict the action-token pair αiti+1, i.e., the probabil-
ity that ti+1 is concatenated with si (⊕ti+1) and that ti+1

forms a new segment (�ti+1). Whereas ⊕ depends on the
probability ti+1 can be observed given si, the action � intu-
itively depends on the probability ti+1 has a different con-
text ¬si( 6= si). To compute the probabilities for both these
actions, the entire event space consisting of both contexts
si and ¬si has to be taken into account. Based on these
observations, for the case where i > 0, we have

PD(αiti+1|si(N),¬si(N))

=

{
C(si(N)ti+1)∑

t C(si(N)t)+C(¬si(N)t)
if αi = ⊕

C(¬si(N)ti+1)∑
t C(si(N)t)+C(¬si(N)t)

if αi = �
(7)

where C(si(N)ti+1) is the count of si(N)ti+1 as n-gram in
the labels of some elements in D. Note that

∑
t C(si(N)t)+

C(¬si(N)t) =
∑
t C(t). For i = 0, the query rewrite prob-

ability can be computed by considering only the first token
because there is no need to make an action. Thus, we have

PD(α0t1) = PD(t1) =
C(t1)∑
t C(t)

(8)

where C(t) is the count of token t in D. The following
example shows that while intuitively appealing, using this
probability of query rewrite leads to unexpected results.

Example 4. Suppose that for the partial keyword query
Q′ = “Publication John McCarty” we have S′=Article �
John ⊕ McCarthy. Given the next query keyword “Tun-
ing”, we then have the token rewrites “Tuning” and “Tur-
ing”, and the counts C((John ⊕McCarthy)Tuning) = 0
and C((John ⊕McCarthy)Turing) = 0 because “Tuning”
and “Turing” never appear together with “John McCarthy”,
C(¬(John ⊕ McCarthy)Tuning) = 2 and C(¬(John ⊕
McCarthy) Turing) = 1 because “Tuning” and “Turing”
appear respectively twice and once in other contexts. Based
on Eq. 7, we have P (�Tuning|John ⊕ McCarthy) = 2

3

and P (�Turing|John ⊕ McCarthy) = 1
3

. The resulting
query rewrites are respectively Article�John⊕McCarthy�
Tuning and Article� John⊕McCarthy � Turing, where
the former is more likely than the latter. Continuing with
“Award”, we obtain 4 final query rewrites where those with
“Tuning” still have higher probability than those with “Tur-
ing”. Looking at the data, we rather expect the contrary,
i.e., those with “Turing” should be preferred.

3.4 Probabilities of Valid Query Rewrites
The previous model considers relevance but not validity.

The probability of every action-token pair αiti+1 depends
on the count of ¬si(N)ti+1. This may lead to cases, where
query rewrites do not yield Steiner graphs, i.e., the segments
match keyword elements that are not connected. In partic-
ular, the previous example show that P (�Tuning|John ⊕
McCarthy) is relatively high (i.e., relevant) because Tuning
matches some data elements. However, John ⊕McCarthy
and Tuning match data elements that are not connected
and thus the splitting action inducing John⊕McCarthy�
Tuning does not result in any answer (i.e., is not valid).

The above problem arises because the language model is
designed to model unstructured data. It might be ineffective
when applied to Steiner graphs, which are rich in structural
information. Extending this model to take the graph struc-
ture into account, we propose to focus on estimating the
actions only based on events that actually lead to results.
The goal is to produce valid query rewrites, which yield non-
empty sets of Steiner graphs. Clearly, it follows from Def. 2
that a query rewrite is valid when every possible pair of its
segments is connected. More formally, the connectivity of
segments is defined as follows:

Definition 6 (Connected Segments). Let si and sj
be two segments, Ni, Nj ⊆ N be the sets of corresponding
keyword elements in D(N,E) such that for each ni ∈ Ni
and nj ∈ Nj, the labels L(ni) and L(nj) contain si and sj,
respectively. The segments si and sj are connected (denoted
as si ! sj) when there is at least one ni ∈ Ni and one
nj ∈ Nj and ni 6= nj such that ni ! nj, where the d-length
restriction of paths also applies.

With the N th order Markov assumption, there are two
cases to consider for computing valid query rewrites. When
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si(N) ti+1i

si+1

si ti+1

...

iPi(N)

si+1

i-1

(a) l(si) ≥ N for ⊕ (b) l(si) < N for ⊕

si(N) ti+1i

si+1

si ti+1

...

iPi(N)

si+1

i-1

(c) l(si) ≥ N for � (d) l(si) < N for �

Figure 2: Segment si+1 induced by action αi performed on
segment si (set of segments Pi(N)) and token ti+1

the previously induced segment si has length equal or greater
than N , it suffices to focus on si(N) to predict the next ac-
tion αi on ti+1. Fig. 2(a) and 2(c) illustrate this, showing
the induced segment si+1 given the action αi is ⊕ or �.
As before, the events for ⊕ti+1 are si(N)ti+1 (clearly, these
events lead to valid segments because they correspond to
cases where elements in the data graph have labels contain-
ing si(N)ti+1). In cases where ti+1 does not have context
si(Ni), � is considered. However, � only yields Steiner
graphs when ti+1 is connected with si(N). That is, instead
of all ¬si(N)ti+1, only the events si(N) ! ti+1 are relevant
in this case. Note that ¬si(N)ti+1 captures all events where
ti+1 does not co-occur with si(N), which clearly include all
events where ti+1 appears in the label L(ni), si(N) appears
in the label L(nj) and ni 6= nj . The set of events denoted by
si(N) ! ti+1 is a subset of events captured by ¬si(N)ti+1,
namely ni ! nj instead of ni 6= nj . We use si(N) ! ti+1

to focus on valid query rewrites while ¬si(N)ti+1 stands for
all query rewrites. For estimating the probability, we have

PD(αiti+1|si(N), si(N) !)

=

{
C(si(N)ti+1)∑

t C(si(N)t)+C(si(N)!t)
if αi = ⊕

C(si(N)!ti+1)∑
t C(si(N)t)+C(si(N)!t)

if αi = �
(9)

As opposed to the previous adoption of the n-gram model,
focusing on si alone when it has length less than N is not
enough. This is because the connectivity of segments in-
duced previous to si has an impact on the validity of query
rewrites. The action αi on the next token ti+1 depends on
the set of previously induced segments Pi(N) and si, where
Pi(N) is the set of the induced segments that precede si and
together with si, contains at most N tokens in total, i.e.,∑
sρi∈Pi(N) l(sρi) + l(si) ≤ N . The components to be con-

sidered for the probability estimation of ⊕ and � are shown
in Fig. 2(b) and 2(d), respectively. The segment siti+1 re-
sulting from the concatenation action ⊕ is valid only when
siti+1 is connected to all preceding segments in Pi(N). Sim-
ilarly, a splitting action � only leads to valid segments when
ti+1 is connected to all preceding segments in Pi(N) ∪ {si}
(henceforth, simply denoted as Pi(N)si). Thus in this case,
the probability is estimated as

PD(αiti+1|Pi(N) ! si,Pi(N)si !)

=

{
C(Pi(N)!siti+1)∑

t C(Pi(N)!sit)+C(Pi(N)si!t)
if αi = ⊕

C(Pi(N)si!ti+1)∑
t C(Pi(N)!sit)+C(Pi(N)si!t)

if αi = �
(10)

where C(P ! s) denotes the count of segment s that is
connected to all segments in the set of segments P.

In addition to these two cases, Eq. 8 also applies for the
case i = 0, because no actions have to be considered.

Example 5. Consider the same case as in Example 4,
for Q′, S′ and the next query keyword “Tuning”. Due to the
same reason, we have C((John ⊕McCarthy)Tuning) = 0
and C((John ⊕ McCarthy)Turing) = 0. Differently, we
observe that C((John ⊕McCarthy) ! Tuning) = 0 and
C((John ⊕ McCarthy) ! Turing) = 1, because “Tur-
ing” is connected with “John McCarthy” once but “Tun-
ing” never. Based on Eq. 9, we have P (�Turing|John ⊕
McCarthy) = 1. Accordingly, the only query rewrite with
non-zero probability is Article�John⊕McCarthy�Turing.
When continuing with the keyword “Award”, instead of a
total of 4 final query rewrites, only the valid query rewrite
Article� John⊕McCarthy � Turing ⊕Award remains.

3.5 Reward Maximization Framework
Besides this principled ranking model based on language

modeling, additional heuristics that may perform well in
specific settings can be added on top using a reward model.
A typical assumption in keyword search is that when a result
is more compact, it is considered to be more meaningful and
relevant [8]. Also, neighboring query keywords should be
grouped together to produce longer segments [16].

We propose a reward model to accommodate heuristics.
A reward is associated with every action made in the query
rewriting process. To give preference to longer segments for
instance, we assign a reward for each action αi as

R(αi) = exp(β · l(si+1)) (11)

where si+1 is the segment induced by αi, β is used to control
the importance of this length based heuristic and R(α0) = 1.

The overall reward of a query rewrite S is computed from
the rewards of all actions made during query rewriting, i.e.,

R(S) =

n−1∏
i=0

R(αi) (12)

The final ranking, which combines the probability of query
rewrites P (S|Q,D) with the additional quality criteriaR(S),
is captured by the conditional reward defined as

R(S|Q,D) =R(S) · P (S|Q,D) =
1

γ
·R(S) · P (Q|S) · P (S|D)

=
1

γ
·
n−1∏
i=0

R(αi) · P (qi+1|ti+1) · PD(αiti+1|e) (13)

where e = null when i = 0, e = {si(N), si(N) !} when
l(si) ≥ N , and e = {Pi(N) ! si,Pi(N)si !} when
l(si) < N . Now, we arrive at our final notion of optimality:

Definition 7. ( Optimal Query Rewrites). Given the
data D, the query Q and its set of query rewrites S, the
optimal query rewrite S∗ is the one with the highest condi-
tional reward, i.e., S∗ = arg maxS∈S R(S|Q,D). The top-k

optimal query rewrites Sk are the k ones with the highest
conditional rewards.

4. COMPUTING TOP-K QUERY REWRITES
We will briefly revisit existing work on query rewriting and

show that our model enables a more efficient algorithm by
focusing only on the previously observed context. First, we
present the indexes and then the top-k rewriting algorithm.
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Segment Segment Length Count

si l(si) ≤ N + 1 C(si)
si ! Sj l(sj) +

∑
s∈Si l(s) ≤ N + 1 C(si ! Sj)

Table 2: The extended n-gram index capturing segments
containing no more than N+1 tokens, and their connections

4.1 Indexing
For token rewriting, tokens are managed separately in

a token index. It keeps tokens in the data as well as se-
mantically related entries such as synonyms extracted from
WordNet. The semantic distance between them is precom-
puted and stored. This and the edit distance between query
and index tokens are used to compute P (qi+1|ti+1) in Eq. 13.

For query segmentation, we build an extended n-gram in-
dex to materialize segments and connections between them.
It stores all segments si containing no more than N + 1 to-
kens and their counts. Further, let sj denote segments that
have length less than N+1. For every si, the set of all possi-
ble combinations of segments connected to si that together
with si have total length no more than N+1, denoted as Sj ,
are stored in the index together with the count of si ! Sj .
The extended n-gram index is illustrated in Table 2. This
index is employed to compute PD(αiti+1|e) in Eq. 13.

For efficient extended n-gram indexing, we employ the
concept of connectivity matrix Md

D, which is a boolean ma-
trix capturing paths between nodes in the data graph D.
An entry md

ij in Md
D is 1, iff there is a path between nodes

ni and nj of length no larger than d; otherwise, md
ij is 0.

The matrix Md
D is constructed iteratively using the formula

Md
D=Md−1

D ×M1
D. These matrices can be represented by

tables of the maximum size nc containing connected node
pairs in D, where nc denotes the number of node pairs that
are connected by paths of length d or less. Md

D is then gen-
erated by performing join on Md−1

D and M1
D. For further

details, we refer the interested readers to [19].
Now we clarify the index costs of our approach. Let

na, nr and n = na + nr be the number of attribute value
nodes, resource nodes and all nodes in D respectively, and
l be the bound of their labels. The time complexity and
index size w.r.t. the token index are both O(na · l). For
constructing the extended n-gram index, nodes in the data
graph have to be joined for computing paths between them.
In the worst case, a join on inputi and inputj requires
|inputi| × |inputj | time such that the complexity of com-
puting paths with length no larger than d is O(n2

c · d). In
practice, join operation can be performed more efficiently
using special indexes and implementations like hash join.
As a result, instead of |inputi| × |inputj |, a join requires
only |inputi|+ |inputj | such that the complexity is O(nc ·d).
Clearly, there are at most O(na · l) segments si resulting in
the time complexity and index size both as O(na·l). For each
si, at most O((nmaxa! · l)N ) combinations of connected seg-
ments Sj can be found, where nmaxa! denotes the maximum
number of attribute value nodes that are connected with one
and the same attribute value node by paths. As this has to
be done for all segments, the complexity for processing them
is O(na · l ·(nmaxa! · l)N ). Accordingly, the index size w.r.t. the
connected segments also comes to O(na · l · (nmaxa! · l)N ).

In summary, the total time complexity of constructing the
extended n-gram index is O(nc ·d+na · l+na · l ·(nmaxa! · l)N ),
including time for join processing and time for indexing the
individual segments si and the connected segments si ! Sj .

q1 q2 q3 q1 q3

N

Token Rewrite

Context

Segment

Query Rewrite

N

(a) Holistic Bottom-up (b) Holistic Inc. (c) Context-based Inc.

q2q1 q2 q3

Figure 3: Approaches to query rewriting

The total index size is O(na · l+na · l · (nmaxa! · l)N ), including
the indexes of si and si ! Sj . In our experiments, we use
N = 2 (n = 3), which has shown to be sufficient for queries
used in the benchmark [2]. Additionally, while nmaxa! = na
and nc = n2 at the most, in practice they are likely to be rel-
atively small, as one node is not connected to all others but
only a limited number of them, especially given the maxi-
mum path length d, such that the overall time complexity
and index size are much smaller than the worst case. Com-
pared with the indexing of previous work [16], which has the
time complexity and index size both as O(na · l), our index-
ing process is still more expensive. However, the additional
indexing consumption will become the supplementary to the
online query processing, which we will discuss later.

4.2 Holistic Top-k Query Rewriting
Previous work [16] has shown that the problem of comput-

ing top-k query rewrites is NP-hard and proposed a dynamic
programming solution, which relies on a procedure for com-
puting the top-k segments (find_sk). The input is the token
rewrite matrix M of dimension m×n (n denotes number of
query keywords and m the number of tokens for every key-
word). For any given (sub-)query covering keywords from i
to j, find_sk computes the optimal segments sk(i, j) that
cover the columns from i to j in M . A greedy algorithm is
employed for scanning paths in the submatrix of dimension

m×n′, n′ = j− i+1, which in the worst case, produces mn′

possible segments. The complexity of find_sk is O(ml),
when assuming that the lengths of database terms, namely

labels, are bounded by l and l < n′, otherwise O(mn′).
Clearly, query rewriting solution (find_Sk) covering the

columns from i to j may include optimal segments of length
n′ as well as any combination of smaller segments in sub-
solutions that spans from i to j for finding the top-k rewrites
Sk(i, j), which results in the complexity of O(k · n′ · ml).
For computing rewrites of a query of length n, we need to
find the optimal segments of length n, as well as solving
(a maximum of n2) sub-problems of finding and combining
query rewriting solutions of (sub-)queries covering keywords
from i to j, 1 ≤ i ≤ j ≤ n, such that the complexity of
computing top-k query rewrites is O(k · n3 ·ml).

Fig. 3(a) illustrates the bottom-up approach, where each
box with label Token Rewrite denotes a set of tokens in
the data for each keyword and each box with label Segment
and Query Rewrite stands for a set of optimal segments
and rewriting solutions for a particular pair of (i, j), respec-
tively. For computing the Query Rewrite box corresponding
to i = 1 and j = 3, which represents the solution to the fi-
nal query consisting of three keywords, this approach starts
with smaller solutions and iteratively combines them (the
combination is illustrated through arrows). The incremen-
tal variant of this approach is shown in Fig. 3(b), which
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involves solving the same (number of) subproblems. The
difference is only the order in which the sub-solutions are
combined (it incrementally covers more keywords in every
iteration). An early return condition is introduced, which
can yield O(k ·n2 ·ml) but because there is no guarantee for
this to apply, the worst case complexity is still O(k ·n3 ·ml).

4.3 Context-based Top-k Query Rewriting
A substantial difference between previous work and ours

lies in the notion of optimal query rewrites. The previous al-
gorithm takes all possible segments of a (sub-)query rewrite
into account because determining optimality requires com-
puting the score of every (sub-)query rewrite, which is based
on the score of all its segments. As opposed to that, our
probabilistic model provides a principled way to compute
query rewrite scores based on query rewrites probabilities,
and to focus only on the previously observed context.

We propose an incremental top-k procedure that starts
with query rewrites containing one token and then itera-
tively constructs larger query rewrites by appending more
token rewrites. Fig. 3(c) illustrates that query rewrites in
each iteration are computed based on the combination of
query rewrites obtained in the previous iteration and token
rewrites from the current iteration. The main difference to
the holistic approach is that in each iteration, instead of
considering all combinations of sub-solutions as well as the
segments covering the current query, we directly employ the
previous query rewrites. In particular, we focus on those
ones that vary in the context of a fixed length N (because
intuitively speaking, only this context has an impact on the
optimality). We introduce the notion of pattern to group
query rewrites representing the same context.

Definition 8 (Prefix, Suffix and Pattern). Given
a (partial) query rewrite S = t1α1t2 . . . αn−1tn, a prefix of S

with length l is a partial query rewrite Ŝ = t1α1t2 . . . αl−1tl
and a suffix of S with length l is a partial query rewrite
Ŝ = tn−l+1αn−l+2tn−l+2 . . . αn−1tn, where 1 ≤ l ≤ n. The
pattern p of a query rewrite S is the suffix of S with length
N , when S has more than N tokens, otherwise p is S.

When partial query rewrites share the same pattern, the
one with higher conditional reward is preferred over one
other because it results in final rewrites with higher rewards:

Lemma 1. Let Q = Q′Q′′ consisting of two partial queries
Q′ and Q′′. Let S′′ be a query rewrite corresponding to Q′′,
S′1, S

′
2 and S1 = S′1αS

′′, S2 = S′2αS
′′ be two particular query

rewrites corresponding to Q′ and Q, respectively. When S′1
and S′2 share the same pattern, i.e., p(S′1) = p(S′2), we have

R(S′1|Q′, D) > R(S′2|Q′, D) =⇒ R(S1|Q,D) > R(S2|Q,D)

Proof Outline: Consider l(Q′′) = 1. For any rewrite of
Q′′ denoted by t (i.e., S′′ = t), we have conditional rewards
R(S1|Q,D) = 1

γ
·R(S′1|Q′, D)·[R(α)·P (Q′′|t)·PD(αt|e1)] and

R(S2|Q,D) = 1
γ
· R(S′2|Q′, D) · [R(α) · P (Q′′|t) · PD(αt|e2)]

using Eq. 13. When S′1 and S′2 have the same pattern p,
the events are same, i.e., e1 = e2 such that PD(αt|e1) =
PD(αt|e2). Hence, if R(S′1|Q′, D) > R(S′2|Q′, D), then we
have R(S1|Q,D) > R(S2|Q,D). This also generalizes to
l(Q′′) > 1. For Q′′ = {qj , . . . , qn}, we have R(S1|Q,D) =
1
γ
·R(S′1|Q′, D) ·

∏n−1
i=j−1[R(αi) ·P (qi+1|ti+1) ·PD(αiti+1|ei,1)]

andR(S2|Q,D) = 1
γ
·R(S′2|Q′, D)·

∏n−1
i=j−1[R(αi)·P (qi+1|ti+1)·

PD(αiti+1|ei,2)]. Because ei,1 = ei,2 for j − 1 ≤ i < n.

Algorithm 1: Finding Top-k Query Rewrites

Input: the user query Q = {q1, q2, . . . , qn}.
Result: the top-k optimal query rewrites Sk.

1 P ← ∅;
2 foreach i ∈ [1 . . . n] do
3 (P ′, P )← (P, ∅);
4 Ti ← TokensRewrites(qi);
5 foreach sp ∈ CommonSubpatterns(P ′) do
6 P ′sp ← PatternsWithSuffix(P ′, sp);

7 foreach t ∈ Ti do
8 Sksp⊕t ← ∪kp′∈P ′sp (Skp′ 1⊕ t);

9 if Sksp⊕t 6= ∅ then
10 P ← P ∪ {sp⊕ t};
11 end

12 Sksp�t ← ∪kp′∈P ′sp (Skp′ 1� t);

13 if Sksp�t 6= ∅ then
14 P ← P ∪ {sp� t};
15 end

16 end
17 end

18 end

19 Sk ← ∪kp∈PS
k
p ;

20 return Sk;

We not only prefer the ones with higher rewards but, more
specifically, we can focus on the k ones with highest rewards.
We provide this theorem to capture that it is sufficient to
keep track of the top-k rewrites for each distinct pattern:

Theorem 1. Let Q = (q1, . . . , qn) be the query and Q′ =
(q1, . . . , qi) be any partial query s.t. 0 < i < n. Let Sk be
the top-k query rewrites of Q and S′kp be those top-k query
rewrites of Q′ with pattern p. Then for any non-top-k query
rewrite S′p /∈ S′kp with pattern p, there is no top-k query

rewrite S ∈ Sk such that S′p is a prefix of S.

Proof Outline: Assume that there is a top-k query rewrite
S = S′pαS

′′ of Q with a non-top-k S′p as prefix. Let S̄ =

S̄′pαS
′′ be a query rewrite of Q with a top-k S̄′p ∈ S′kp as pre-

fix. As R(S̄′p|Q′, D) > R(S′p|Q′, D), it follows from Lemma 1
that R(S̄|Q,D) > R(S|Q,D). Thus, there are at least k
query rewrites S̄ with R(S̄|Q,D) > R(S|Q,D), which con-
tradicts the assumption that S is a top-k rewrite.

4.4 Algorithm
Based on these results, we propose an algorithm that in

every iteration, joins token rewrites with previous partial
query rewrites and keeps the top-k results for each pattern.

Definition 9 (Action Induced Join). Let S be a set
of partial query rewrites with non-zero rewards, i.e., ∀S ∈
S, R(S|Q,D) > 0. The join between S and a token t induced
by an action α results in a new set of query rewrites

S 1α t = {Sαt|S ∈ S ∧R(Sαt|Q,D) > 0}
Performing this join thus requires computing the reward

for Sαt (via Eq. 13). The 1α is only successful when adding t
to S (through concatenation or splitting) does not render the
resulting rewrite invalid, i.e., only when R(Sαt|Q,D) > 0.

Definition 10 (Top-k Union). Given sets of rewrites
[S] = {S1, . . . ,Sm}, where every rewrite in Si is associated
with a reward, the top-k union ∪kSi∈[S]Si simply returns the
k rewrites in ∪Si∈[S]Si with the highest rewards.
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Dataset Size Rel. Tuples IToken IPQR IPV QR IBQR

Mondial 9 28 17,115 0.2/0.04 0.3/0.08 1.8/0.18 2.2/0.05
IMDb 516 6 1,673,074 7.9/8.67 179/17.6 303/40.8 150/9.53
Wikipedia 550 6 206,318 13/2.18 320/3.46 445/8.01 176/2.26

Table 3: Dataset size, number of relations and tuples, index size/indexing time
w.r.t. token index IToken (same one used by all approaches) and the additional
indexes used by two variants of our approach IPQR, IPV QR and the one used by
the state-of-the-art baseline IBQR (all sizes and time are in MB and minutes)

Dataset |Q| |q| ¯|q| |R| ¯|R|
Mondial 50 1-5 2.04 1-35 5.90
IMDb 50 1-26 3.88 1-35 4.32
Wikipedia 50 1-6 2.66 1-13 3.26

Table 4: Number of queries |Q|, range in
number of query keywords |q| and relevant
results |R|, average number of query key-
words ¯|q| and relevant results ¯|R| per query

Employing these operators, Alg. 1 starts with the first
query keyword (i = 1) and iteratively constructs larger
rewrites by appending more keywords (1 < i ≤ n). It uses
P ′ and P to keep track of the patterns of the last and cur-
rent iteration, and Skp to keep track of the top-k rewrites
for each pattern p. In every iteration, spαt are collected
(line 10 and 14) and added to P , where sp is a subpattern
and t a token rewrite. A subpattern sp of p is simply p
when l(p) < N , otherwise it is p(N − 1) (p without the first
token). The grouping of patterns in P ′ to their subpatterns
sp (line 6) yields group containing elements p′ ∈ P ′sp that
share the same suffix sp. For each qi, a list Ti of m token
rewrites are retrieved from the token index (line 4). For ev-
ery subpattern sp and t ∈ Ti, the new patterns sp ⊕ t and
sp� t can be formed. For each new pattern, the top-k query
rewrites Skspαt are computed and updated by employing 1α
and top-k union (line 8 and 12). The final top-k query
rewrites of Q are computed by applying the top-k union
on the top-k results Skp obtained for each p ∈ P (line 19).

Complexity. In each iteration, there are at most m to-
ken rewrites, which have to be joined with the k results for
each pattern. In the worst case, the number of patterns is
same as the number of segments of length N , which as dis-
cussed, is mN . As this has to be done for n iterations, the
total complexity of Alg. 1 is O(k ·n ·mN+1). With respect to
the complexity of the holistic approach, O(k ·n3 ·ml), using
previously obtained query rewrites in every iteration and fo-
cusing on the context of length N translate to the changes
from n3 to n and ml to mN+1. The former can yield a sub-
stantial difference in performance because while the other
parameters can be fixed to a small number, the number of
keywords n cannot be controlled and may be large. The
latter effect can also be substantial as it has been shown
that n-grams with a relatively small N are indeed sufficient
in many information and text processing tasks, while the
bound of labels l could be much larger.

5. EXPERIMENTAL EVALUATION
We performed experiments to assess the merits of our ap-

proach to query rewriting and its impact on keyword search
based on the recently established benchmark [2].

5.1 Evaluation Setting
We compare our approach with an implementation of the

state-of-the-art keyword query cleaning solution (BQR) [16].
We use two variants of our approach, one ranks based on
the probability of query rewrites (PQR) and the other uses
the probability of valid query rewrites (PVQR) as discussed
in Sec. 3.3 and Sec. 3.4. Both of them integrate the addi-
tional heuristics shown in Sec. 3.5. All systems were imple-
mented in Java 1.6 on top of MySQL1 and Lucene2. Ex-

1
http://www.mysql.com

2
http://lucene.apache.org

periments were performed on a Linux server with two Intel
Xeon 2.8GHz Dual-Core CPUs and 8GB memory. We use
all the three sets of data, queries, and relevance assessments
available in the benchmark [2]. In the experiments, we use
N = 2 and d = 3, which are sufficient for queries used in the
benchmark. We found that the setting of η = 1, β = 0.33
and m = 10 achieve the best performance. All reported re-
sults are based on these values. The effects of these model
parameters are discussed in detail in Sec. 5.3.

Data. Table 3 provides the main statistics of the three
datasets. IMDb employed in [2] is actually a subset from the
original IMDb. Also, a selection of articles from Wikipedia
was included in the benchmark, and the PageLinks table was
augmented with an additional foreign key to explicitly indi-
cate referenced pages. The Mondial dataset is much smaller,
which captures geographical and demographic information
from the Web sources such as the CIA World Factbook.

Indexes. Table 3 also reports indexing performance of
the three systems w.r.t. index size and indexing time. As
shown, the index used by PVQR needs more time and space
than the one for PQR, because the former indexes not only
n-grams, but also connectivity information. Compared to
BQR, PVQR’s index is about a factor of 2 larger and the
indexing process takes about 4 times longer, which is consis-
tent with our analysis. We also provide a breakdown of the
indexing time of PVQR into two parts attributable to join
processing and index creation. The elapsed time (join pro-
cessing + index creation) for indexing Mondial, IMDb and
Wikipedia is respectively 0.18(0.06+0.12), 40.8(11.5+29.3)
and 8.01(0.47+7.54) minutes. Observe that join processing
make up 33%, 28% and 6% of the indexing time for Mondial,
IMDb and Wikipedia, respectively. The reason of such dif-
ference lies in the graph topology of the datasets, where the
structure of Mondial is slightly more complex than that of
IMDb, which in turn is much denser than that of Wikipedia.

Queries. For each dataset, 50 queries were proposed [2].
Table 4 provides the statistics of queries and results. Many
keywords in these queries can be grouped into segments.
While they are suitable for studying the segmentation prob-
lem, further token modifications are needed to study token
rewriting. From these queries, called Clean set, we obtain
queries with dirty tokens by rewriting keywords following
the same method used in XClean [13], a recent proposal for
the token rewriting problem. First, we apply random edit
operations, namely insertion, deletion and substitution, to
each keyword with length larger than 4 in the Clean queries
to obtain the Rand set of dirty queries. Second, we make use
of the list of common misspellings occurring in Wikipedia3.
For each Clean query, we replace the keyword that can be
found in the list with one of its misspelled forms to obtain
the Rule set of dirty queries.

3
http://en.wikipedia.org/wiki/Wikipedia:Lists of common misspellings
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Figure 4: Evaluation results for efficiency of query rewriting

5.2 Efficiency of Query Rewriting
Figs. 4(a-b) show the average time for computing top-k

query rewrites for IMDb and Wikipedia. Mondial is a very
small dataset, where all queries can be rewritten in less than
8 ms on average. For the sake of space, we omit its results
because individual times exhibit only minor differences.

Compared to Wikipedia, IMDb contains many more tu-
ples and IMDB queries are longer. This is reflected in the
performance results. All systems take substantially more
time for IMDb than Wikipedia. The performance of PVQR
is consistently better than the other two systems for both
datasets. PVQR is about 3-4 times faster than BQR for
IMDb and about 2 times faster for Wikipedia. These differ-
ences are primarily due to the pruning capability of PVQR,
i.e., PVQR prunes non-valid results. Compared to PQR,
the amount of valid sub-query rewrites that have to be kept
track of is smaller. The amount of partial rewrites consid-
ered by BQR is even much larger than PQR, as it considers
all possible combinations of previously obtained segments.
It is worth mentioning that Fig. 4(a) excludes the effect of
4 long IMDB queries with length 9, 11, 26, and 11. The
reason is that BQR could not finish them within the time
limit we set to 1 minute, while PVQR only takes 634 ms,
691 ms, 1657 ms and 746 ms respectively, for Clean queries
(and even less for Rule and Rand queries).

We observe that Clean queries require more time than
Rule queries, which in turn, take more time than Rand
queries. This may seem less intuitive for that one would
expect processing clean queries should be easier. Clearly,
for Clean queries, the list of token rewrites always contains
the intended one. These correct token rewrites yield seg-
ments, i.e., intermediate results, which have to be processed.
For dirty queries, especially Rand, the list of token rewrites
may contain no (or not many) correct ones, which cannot be
combined to form segments, hence there are no (or fewer)
intermediate results to be processed. More time is needed
for segmentation when there are more intermediate results.

5.3 Effectiveness of Query Rewriting
The ground truth for this experiment can be obtained

from the keyword search results captured by the mentioned
benchmark. According to the results judged as correct, we
add segment boundaries to the Clean queries. These target
queries and their identified segments constitute the ground
truth. This ground truth thus reflects both the quality of
token rewriting and query segmentation. We use the stan-
dard metric Mean Reciprocal Rank (MRR) and an adoption
of Precision at k (P@k). Given a set of keyword queries Q
and the corresponding top-k lists of rewrites, let Q∗ be the
queries for which the correct rewrite could be captured by

Query Set η = 0 1 5 10 15

Mondial(Clean) 0.80 0.97 0.97 0.97 0.97
Mondial(Rule) 0.80 0.97 0.97 0.97 0.97
Mondial(Rand) 0.86 0.99 0.99 0.99 0.97

IMDb(Clean) 0.67 0.82 0.83 0.83 0.83
IMDb(Rule) 0.68 0.82 0.81 0.81 0.81
IMDb(Rand) 0.60 0.77 0.73 0.72 0.72

Wikipedia(Clean) 0.81 0.94 0.94 0.94 0.94
Wikipedia(Rule) 0.79 0.89 0.89 0.89 0.89
Wikipedia(Rand) 0.84 0.93 0.91 0.91 0.91

Table 5: MRR of PVQR vs. η (β = 0.33)

Query Set β = 0 0.25 0.33 0.5 1

Mondial(Clean) 0.97 0.97 0.97 0.97 0.97
Mondial(Rule) 0.97 0.97 0.97 0.97 0.97
Mondial(Rand) 0.98 0.99 0.99 0.99 0.99

IMDb(Clean) 0.74 0.80 0.82 0.82 0.81
IMDb(Rule) 0.74 0.80 0.82 0.82 0.81
IMDb(Rand) 0.68 0.74 0.77 0.77 0.77

Wikipedia(Clean) 0.89 0.94 0.94 0.94 0.93
Wikipedia(Rule) 0.85 0.89 0.89 0.89 0.89
Wikipedia(Rand) 0.88 0.92 0.93 0.93 0.93

Table 6: MRR of PVQR vs. β (η = 1)

the corresponding top-k list, and for each query Qi ∈ Q, let
ranki be the rank of the correct rewrite in the top-k list,

then P@k = |Q∗|
|Q| and MRR = 1

|Q|
∑
Qi∈Q

1
ranki

.

First, we study the effects of different model parameters
on query rewriting. We experimented with different values
of η, which reflects the sensitivity to spelling errors and se-
mantic differences (See Eq. 4). The effect of η on MRR val-
ues for PVQR is shown in Table 5. The best results are high-
lighted in bold font. Observe that η = 1 achieves the best
results for almost every query set except Clean queries for
IMDb. The MRR values increase quickly from η = 0 to η =
1, then reach a plateau. When η > 1, while the MRRs might
increase slightly for clean queries (See IMDb(Clean)), we
observe minor decrease for dirty queries (See IMDb(Rule),
IMDb(Rand) and WIkipedia(Rand)). This is probably due
to the fact that when η is higher, we are stricter with the dis-
tance between token rewrites and query keywords. In other
words, we prefer the original queries without token rewrit-
ing. That has a beneficial effect on clean queries but might
bring errors in dirty queries because the misspelled query
keywords will be ranked higher. The effect of β, which re-
flects the sensitivity to the length of segment (See Eq. 11),
for PVQR is shown in Table 6. When β is larger, longer seg-
ments are preferred. In the experiments, the MRRs improve
when β is larger than 0. This means applying this segment
length based heuristic yields better results. However, this
should not be done too aggressively: the best results are
achieved when β reaches 0.33. To study the effect of m,
which denotes the number of token rewrites considered for
each query keyword, we vary its value from 1 to 15. We
observe that the MRR values for all three approaches are
highest and most stable when m approaches 10.

Fig. 5(a) illustrates MRR for the three datasets. Simi-
lar to the performance results, IMDb constitutes the most
difficult case, where MRR is particularly low for PQR and
BQR. PVQR achieves the best results for all types of queries
over all datasets. On average, Rand queries yield the lowest
MRR while Clean queries the highest. This is expected be-
cause in the latter case, it is easier to obtain correct token
rewrites, hence more relevant segments can be constructed.

Figs. 5(b-c) illustrate P@k for IMDb and Wikipedia. On
average, PVQR also outperforms the other two systems for
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Figure 5: Evaluation results for effectiveness of query rewriting

Query Set BQR PVQR/H PVQR
MRR MRR Impr. MRR Impr.

Mondial(Clean) 0.88 0.97 10.2% 0.97 0.0%
Mondial(Rule) 0.88 0.97 10.2% 0.97 0.0%
Mondial(Rand) 0.78 0.98 25.6% 0.99 1.0%

IMDb(Clean) 0.38 0.74 94.7% 0.82 10.8%
IMDb(Rule) 0.32 0.74 131.3% 0.82 10.8%
IMDb(Rand) 0.19 0.68 257.9% 0.77 13.2%

Wikipedia(Clean) 0.73 0.89 21.9% 0.94 5.6%
Wikipedia(Rule) 0.71 0.85 19.7% 0.89 4.7%
Wikipedia(Rand) 0.72 0.88 22.2% 0.93 5.7%

Table 7: The respective effects of our probabilistic model
and additional heuristics on effectiveness of query rewriting

all types of queries. For Wikipedia, BQR achieves good
results when k is large, especially for Clean queries. Never-
theless, PVQR is still better than BQR for the same type of
queries. Because Mondial is simple and good performance
is yielded by all systems (P@k > 0.7) and especially PVQR
(P@k > 0.9), we omit its results for the sake of space.

The best performance achieved by PVQR in all the cases
clearly reflects the superiority of PVQR and its usage of
the graph data structure. The difference in performance
between PVQR and other systems is most evident for IMDb.
This is because IMDb contains a much larger data graph
than other datasets and thus the graph structure is more
crucial for finding the Steiner graphs here.

Furthermore, we investigate the respective contributions
of our probabilistic model and the additional heuristics to ef-
fectiveness of query rewriting. Table 7 illustrates MRRs for
BQR completely based on the ad-hoc heuristics, our proba-
bilistic model (PVQR/H) without the heuristics on top and
the default PVQR integrating also the additional heuris-
tics. While the results illustrate a significant improvement
achieved by PVQR/H on BQR, especially for IMDb, PVQR
improves PVQR/H relatively slightly by adding heuristics.
This clearly shows the benefit of using our probabilistic
model to effectiveness of query rewriting. In addition, the
improvement yielded by the additional heuristics witnesses
the adaptability of our approach.

5.4 Impact on Efficiency of Keyword Search
For investigating the impact of query rewriting on key-

word search, we employed two keyword search systems: the
bidirectional search solution (BDS) [8] explores paths be-
tween keyword elements online, while the keyword join ap-
proach (KJ ) [9] materializes paths in the index and only join
them online. KJ was shown to be faster than BDS but also
employs a larger index. Given the three query sets (Clean,
Rule, Rand), we use them as they are (NQR), rewrite them
using PVQR and BQR to obtain 9 types of queries. For

queries with rewriting, we use the top-1 as input to the key-
word search systems. For reasons of space, we omit the
Mondial results and explicitly discuss them in the text only
when they are relatively different from the other results.

Figs. 6(a-d) illustrate the average time for processing these
9 types of keyword queries using KJ (Figs. 6(a-b)) and BDS
(Figs. 6(c-d)) for IMDb and Wikipedia. Further, the time
is decomposed into query rewriting and keyword query pro-
cessing components, e.g., QR(Clean) is the time needed for
rewriting the Clean queries, andKJ(QR(Clean)) is the time
KJ needs to process these rewritten queries.

The ratio of these two components seems to depend on
the complexity of keyword query processing (reflected in
the dataset size and query length), and the systems used
for that: Clearly, with a slower system (BDS), the frac-
tion of time needed for query rewriting is smaller (compare
(c+d) with (a+b)). With higher complexity (IMDb), query
rewriting makes up a larger part of the total (compare (b+d)
with (a+c)). Meanwhile, we also observe that with slower
systems as well as higher complexity, the positive effect of
query rewriting on keyword query processing is also higher
(compare NQR with PVQR and BQR), e.g., the highest re-
duction in time PVQR and BQR can achieve is for BDS over
IMDb. This is because for longer queries, more keywords
can be grouped into segments, and with slower system and
larger datasets, this effect of segmentation is more evident.

Clean queries take more time than Rule queries, which in
turn, is more difficult to process than Rand queries. Similar
to the effect observed in the query rewriting experiment, this
is due to the number of intermediate results, e.g., for Rand
query keywords, keyword search systems find fewer match-
ing elements. Accordingly, query rewriting (PVQR,BQR)
leads to reduction in time especially for Clean and Rule
queries, i.e., yields better performance than NQR. In partic-
ular, PVQR is about 5-6 times (2-3 times) faster than NQR
for IMDb (Wikipedia). For Rand query, less time is needed
in total (compared to Rule and Clean). Hence, there is less
room for time reduction through rewriting in this case. Also,
the segmentation effect is small here as Rand queries yield
fewer correct tokens that can be grouped.

We observe that PVQR is 2-3 times faster than BQR for
IMDb and is slightly better than or similar to BQR for
Wikipedia. Actually, BQR is slightly better than PVQR
for many Wikipedia queries. However, this is entirely due
to the fact that BQR requires less time for keyword query
processing. BQR prefers rare terms, which yield fewer (rel-
evant) keyword elements to be processed. However, the fact
that BQR processes fewer (relevant) results is not shown in
this experiment, but becomes evident in the following study.
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Figure 6: Evaluation results for keyword search

5.5 Impact on Effectiveness of Keyword Search
Both KJ and BSD implement a combination of proximity-

and TFIDF-based ranking studied in the benchmark [2].
Since both systems use the same ranking, keyword search
answers are very similar, hence we only show results for KJ.
We use Precision and Recall for evaluating keyword search
results obtained for the 9 types of queries. Given Q, let Rk
be the top-k results and R∗ the ground truth results cap-
tured by the benchmark. For different values of k, we have

Precision = |R∗∩Rk|
|Rk|

, and Recall = |R∗∩Rk|
|R∗| .

For different k, Figs. 6(e-f) plot the precision achieved by
KJ for the 9 types of queries over IMDb and Wikipedia.
As expected, precision consistently decreases with higher k.
The queries rewritten by PVQR achieve the best results and
the worst results are yielded for BQR queries. Improvements
achieved by PVQR over NQR are largest for the dirty queries
Rule and Rand (up to 60% for k = 1) and smallest for Clean
(up to 10% ). BQR obtains better results than NQR only
for Rand queries. Thus, the conclusions are: Higher pre-
cision can be obtained for Clean queries compared to dirty
queries (with or without rewriting). Rewriting with PVQR
improves precision for all types of queries while BQR yields
better results only for the most dirty queries (Rand). Note
that these results correspond to the ones from the rewriting
experiments, where PVQR produces better rewrites than
BQR. Hence, we conclude that better query rewrites yield
higher precision of keyword search results.

Figs. 6(g-h) show that for recall, similar differences can be
observed between the approaches (NQR, PVQR and BQR)
and queries (Clean, Rule and Rand) for small values of
k. However, while PVQR achieves highest recall for all
Wikipedia queries, it performs slightly worst than NQR on
Clean IMDb queries when k ≥ 10. The conclusion is PVQR
improves recall on dirty queries but not on Clean queries
when a large number of results have to be considered.

The relative differences between the approaches and be-
tween the queries are the same for the Mondial dataset.

However, we note that precision and recall for Mondial are
consistently higher than for IMDb and Wikipedia.

5.6 Analysis of Impact of Query Rewriting
In the experiments, we observe that token rewriting helps

to find more relevant keyword elements and thus improve the
quality of the final keyword search answers for dirty queries.
This explains why PVQR achieves significantly higher preci-
sion and recall than NQR for Rule and Rand queries. BQR
improves NQR only for Rand queries because it yields poor
results for retrieving the top-1 query rewrite that we use as
input to the keyword search systems.

Existing keyword search systems usually use a threshold
to restrict the size of the retrieval list of keyword elements,
where relevant ones might be excluded. Here we use the de-
fault setting in [9] to retrieve the top-300 matching elements
for each keyword. In essence, query segmentation leads to
fewer compound keywords. Clearly, due to the higher se-
lectivity of compound keywords yielded by segmentation, it
is more likely to have the correct keyword elements. For
queries without segmentation, the retrieval list may contain
no or fewer correct ones, especially for the common (non-
discriminative) keywords. The observation that PVQR ob-
tains better results than NQR even for Clean queries con-
firms our analysis. The only exception is the recall for Clean
IMDb queries when k is large. This is because while query
segmentation reduces the search space, it may not preserve
all true positives, hence it cannot yield higher recall.

In terms of efficiency, query segmentation has a positive
effect because fewer keywords have to be processed. This
effect is evident for clean queries, where efficiency improve-
ments can be entirely attributed to query segmentation.
While token rewriting improves the quality of the keyword
search, it has a negative effect on efficiency. The reason is
that clean tokens yield more keyword elements that have to
be processed. However, the combined effect of token rewrit-
ing and query segmentation on efficiency is still positive, as
indicated by improvements obtained for the dirty query sets.

1652



In summary, query rewriting has a clear positive effect on
precision of keyword search, while still preserving high recall
when the number of results is not too large. Also, it improves
efficiency because the positive effect of query segmentation
is larger than the negative effect of token rewriting.

6. RELATED WORK
We firstly discuss the previous work that specifically tar-

gets token rewriting and query segmentation, and then the
related work of query rewriting that tackles both tasks.

Token Rewriting. This problem, a.k.a. spell check-
ing, has attracted interest in the Web context [11, 3]. Syn-
tactic and semantic distances to dictionary words and the
context constitute the main feature space. Based on such
features, XClean [13] and our approach employ the same er-
ror model [15] to estimate the probability of token rewrite.
The difference is that while XClean assumes the specific
XML type semantics in a semi-structured setting which does
not exist in our more general graph setting, our approach
takes into account connectivity information to prune token
rewrites that do not lead to valid results. Further, XClean
only considers the problem of token rewriting (thus, only
Sec. 3.2 contains overlaps with XClean).

Query Segmentation. Query segmentation is exten-
sively studied in the Web search setting [17, 1, 7]. In [7],
query segmentation is based on mutual information between
pairs of query keywords. The work in [1] uses supervised
learning to decide whether to create a segment boundary at
each keyword position, and [17] proposes an unsupervised
method for query segmentation using generative language
models. While the use of probabilistic model is not new in
the text-centric Web search setting (e.g., [17]), our work is
different to the previous work (including [16] for structured
data) in that we use connectivity information in the data
for focusing on segments that lead to valid results.

Query Rewriting. The most related work [16] first in-
troduces the problem of keyword query rewriting over the
relational database. It targets both token rewriting and seg-
mentation based on the ad-hoc heuristics. The subsequent
work [4] explores query logs to improve the quality of query
rewriting using the same heuristics. In contrast to the exist-
ing work, we propose a probabilistic framework to enable the
query rewriting problem to be studied in a more principled
way. Different from query rewriting, [20] investigates the
problem of query reformation to provide totally new queries
which are similar or related to the initial one.

7. CONCLUSIONS AND FUTURE WORK
We discuss drawbacks of existing work on query rewriting

and propose a principled probabilistic approach to this prob-
lem. In the experiments, we show that for query rewriting,
our approach is several times faster than the state-of-the-
art baseline and also yields higher quality of rewrites espe-
cially for large datasets. Most importantly, we show that
these improvements also carry over to the actual keyword
search. Our approach consistently improves keyword search,
i.e., yields several times faster keyword search performance
and substantially improves the precision and recall of key-
word search results, while the baseline also provides faster
performance but compromises on the quality of results, i.e.,
achieves good results only for very dirty queries.
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