
Synthetising Changes in XML Documents as PULs

Federico Cavalieri, Alessandro Solimando, Giovanna Guerrini
Università di Genova, Italy - {name.surname}@unige.it

ABSTRACT
The ability of efficiently detecting changes in XML documents is
crucial in many application contexts. If such changes are repre-
sented as XQuery Update Pending Update Lists (PULs), they can
then be applied on documents using XQuery Update engines, and
document management can take advantage of existing composition,
inversion, reconciliation approaches developed in the update pro-
cessing context. The paper presents an XML edit-script generator
with the unique characteristic of using PULs as edit-script language
and improving the state of the art from both the performance and
the generated edit-script quality perspectives.

1. INTRODUCTION
The ability of detecting changes in documents, through the so

called diff algorithms, is crucial in many data management con-
texts. Such algorithms take as input two pieces of data and detect
the differences between them, so that such differences can be ana-
lyzed or employed to tranform data. Various representations can be
adopted for differences, usually referred to as edit-scripts or deltas.

The problem has been widely investigated for flat text files as
well as for hierarchically-structured data and XML documents. For
flat text files, the popular GNU diff utility, based on the LCS algo-
rithm for finding the longest common subsequences in strings [15,
16], works well. More and more often, however, information is hi-
erarchically structured and represented in XML. As a consequence,
there has been a relevant number of studies devoted to the detection
of changes in hierarchically-structured documents in general [7, 9]
and in XML documents [11, 13, 19, 20] specifically. Such ap-
proaches take the structural properties imposed by the tag nesting
into account. They differ in the assumptions on the tree model
(e.g., ordered or unordered), in the format of the edit-scripts, in
the cost models, in the assumptions on the document contents (e.g.,
duplicate subtrees are uncommon and can be used to identify reli-
able matches). Another significant difference in the proposed algo-
rithms is the chosen trade-off between result optimality and algo-
rithm complexity.

The standard language for updating XML documents is the W3C
recommendation XQuery Update Facility (XQUF) [18]. The evalu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 13
Copyright 2013 VLDB Endowment 2150-8097/13/13... $ 10.00.

ation of an XQUF expression on a document produces an unordered
list of atomic update requests, represented as a Pending Update List
(PUL), that is then applied on the document. A decoupled PUL ex-
ecution model, by which PULs can be exchanged across machines
and applied on a machine different from the one where they have
been produced, has been proposed [4, 5].

An XML differencing algorithm is only one of the tools in an
XML engineer toolbox. In most contexts where change detec-
tion is useful, such as collaborative editing or versioning, other
change manipulation operations are needed. Notable examples are
change reverting, merging, reconciliation, and composition of a
sequence of consecutive changes. Operators for these manipula-
tions on PULs have been proposed in [4, 5] and implemented in the
Zorba1 XQUF engine.

PULs are thus an excellent candidate as edit-script language and
we believe that a PUL-based, fast, and efficient algorithm for differ-
encing XML documents is needed. Unfortunately, the XML diff al-
gorithms proposed in the literature cannot be easily adapted due to
the set of supported edit primitives (e.g., there is no move operator
in PULs, while relabelings and changes at leaves can be detected)
or the assumptions they rely on. Another limitation of these sets of
edit operations w.r.t. PULs is that the order of update operations of
the same kind is not prescribed, and all update operations refer to
the original document.

Contributions. The paper introduces PUL-Diff, an approxi-
mated diff algorithm, and brings the following contributions: (i)
improvement over the state of the art with respect to edit-script
quality, differencing time and robustness of the employed heuris-
tics, as experimentally verified in Section 7 and in the extended
experimental section [6]; (ii) edit-script expressed as PULs, a for-
mally grounded W3C standard, which can be evaluated by exist-
ing XQUF engines and effectively manipulated [3, 4]. As relevant
building blocks of the diff algorithm, the paper proposes: (i) an ex-
act and optimal solution to the problem of finding, given a set of
two-dimensional weighted points, one of the maximal-weight sub-
sets defining a strictly increasing function, which is used in PUL-
Diff to improve the quality of the edit-script; (ii) an adaptation of
the pq-grams based fanout weighted tree edit-distance estimation to
approximate the minimum cost of a PUL transforming a tree into
another, that is, the PUL tree edit-distance.

Outline. The paper is organized as follows. Section 2 discusses
relevant related work, whereas Section 3 introduces some prelim-
inary notions. Section 4 presents the PUL-Diff algorithm. Sec-
tion 5 and Section 6 detail its relevant components, namely, the
identification of the heaviest increasing point subset and the PUL
tree edit-distance, respectively. Section 7 provides an evaluation

1http://www.zorba-xquery.com

1630

of PUL-Diff (i.e., complexity analysis, experiments, and compar-
ative analysis with state of the art XML differencing algorithms).
Finally, Section 8 concludes the paper.

2. RELATED WORK
Given two trees and a set of operations with an associated cost

model, the tree edit-distance problem is to compute the minimum-
cost sequence of operations that transforms the first tree in the
second one. The best known algorithms for the tree edit-distance
problem decompose the trees into smaller subtrees and subforests
by removing one node after the other. The classical algorithm by
Zhang and Shasha [21] runs in O(n4) time, whereas the proposal
of Demaine et al. [12] is worst-case optimal and runs in O(n3).
The runtime behavior of these algorithms heavily depends on the
tree shapes and on the employed decomposition strategy. At each
decomposition step, they rely on a fixed strategy to choose which
node to remove. Pawlik and Augsten [17] dynamically and op-
timally choose a different strategy. The proposed algorithm run-
time complexity is in O(n3) and outperforms the previous propos-
als. Given the high computational cost of the exact approaches,
many approximated algorithms have been proposed.

The MH-Diff algorithm [8], targeting unordered trees, is a heuris-
tic-based approach, where the edit-distance problem is reduced to
a minimum cost edge cover in a bipartite graph. Each operation is
given a user-defined fixed cost, except for the relabeling operation
that employs a user-provided function that compares the values of
two nodes. XyDiff [11] computes hash values for all the subtrees
of the analyzed trees using DOMHASH2, an efficient hashing func-
tion specifically tailored for XML subtrees. XyDiff then searches
for exact matches in a bottom-up traversal and eagerly tries to ex-
pand them looking for common ancestors for the two trees, relying
on the node names. This behavior helps detecting renaming, but
using hash values and bottom-up traversal prevents the detection of
changes in the leaves, a very frequent kind of update. Matches are
then improved through a top-down visit of the two trees, trying to
propagate existing matches. X-Diff addresses change detection for
XML documents modeled as unordered trees [19]. It integrates key
XML structure characteristics with a standard edit-distance tech-
nique, thus resulting in an efficient algorithm. The algorithm com-
putes hashes similarly to XyDiff but with XHash, that is suited to
commutative models. This algorithm considers our set of primi-
tive operations. Kf-Diff [20] achieves linear time-complexity trans-
forming tree-to-tree correction problem into tree comparison with-
out duplicated paths. It supports both ordered and unordered trees.
The algorithm is label-based and thus not robust against renam-
ing. To the best of our knowledge there are no proposals tailored to
W3C’s PULs.

Augsten et al. [2] propose an estimation of the tree edit-distance
for ordered trees based on pq-grams, subtrees of a fixed shape
corresponding to the substrings (called q-grams) used for string
similarity evaluation. pq-grams are composed by a stem made of
p elements (bound by the parent-child relation) and a base of q
consecutive siblings: the last element of the stem is named an-
chor node. A tree is therefore represented by its set of pq-grams
like a string is represented by its q-grams. We propose an adap-
tation of pq-grams where in each pq-gram the nesting depth of
its anchor node is included (in order to reflect the absence of a
move operation in PULs), and where different pq-grams for node
names and values are used (not to overestimate PUL tree edit-
distance when nodes have different names or values). The absence
of a move primitive also requires a method for removing matches

2http://www.ietf.org/rfc/rfc2803.txt

that would be expressed through this operation. This problem can
be reduced to a generalization of the Heaviest Increasing Subse-
quence (HIS) problem [14]. Such generalized Heaviest Increasing
Point Subset (HIPS) problem aims at finding, given a set of two-
dimensional weighted points, one of the maximal-weight subsets
defining a strictly increasing function.

3. PRELIMINARIES
In this section, we introduce the definitions and concepts used in

the remainder of the paper. Specifically, the tree representation of
XML documents, the XQUF language, and its dynamic represen-
tation of updates (i.e., PULs) are introduced.

3.1 Tree Representation of XML Documents
The data model of XQuery is XDM3, which describes all permis-

sible values of expressions in the language. Every instance of the
data model is a sequence, that is, an ordered collection of zero or
more items. An item is either a node or an atomic value. Nodes can
be nested to form a tree and are of different kinds. For brevity we
consider only document, element, and text nodes. Document nodes
do not have a parent, while only element and document nodes may
have children. The textual contents of elements are modeled by
separate text nodes. A document is a tree whose root node is a doc-
ument node. Given a tree T , we denote its root as R(T), its nodes
asV(T), and its weight, i.e., the number of its nodes, as Ω(T). The
weight of a node v, denoted as Ω(v), is equal to the weight of the
subtree rooted at that node, denoted as T (v). The weight of a list
of trees L, denoted as Ω(L), is equal to the sum of the tree weights.
The empty list is denoted as Λ. Given a node v ∈ V(T), we de-
note its children as γE(v), its ancestors as A(v), and its parent as
P(v). The <p relation corresponds to the document order, that is,
the ordering of nodes in the XML serialization of a document.

3.2 XQUF and PULs
An XQuery expression is evaluated on one or more XDM

instances and returns an XDM instance. Its evaluation does not
change the state (that is, the parent, children, name, or value) of any
node. XQUF extends the language by introducing a new kind of
expressions, named updating expressions, that can alter the state of
nodes, and a set of low level update operations representing a node
state change. The evaluation of an updating expression results in a
single pending update list (PUL), that is, an unordered list of up-
date operations. Two phases can thus be identified in the evaluation
of an XQUF expression: (i) production, in which the expression is
evaluated producing a PUL; (ii) application, in which the update
operations in the produced PUL are applied. The application or-
der is dictated by the operation kind and is specified in [18]. Let v
and v′ be nodes, L = [T1, . . . ,Tk] be a list of trees. The PUL node
update operations are the following: (i) ins←(v, L), ins→(v, L),
ins↙(v, L), ins↘(v, L) insert the tree sequence L before/after or
as first/last child of v, respectively; (ii) ins↓(v, L) inserts the tree
sequence L as child of node v, in an implementation dependent po-
sition; (iii) del(v) detaches node v from its parent (if any); (iv)
repN(v, L) replaces node v with the tree sequence L; (v) repV(v, s)
replaces the value of node v with the value s; (vi) repC(v, v′) re-
places the children of node v with the optional text node v′; (vii)
ren(v, n) renames node v as n. We do not consider put operation,
as it is not a node update operation, and insertAttributes op-
eration, as we do not consider node attributes. We assign to each
operation a fixed unitary cost, to which we sum the weight of the
removed/inserted nodes.

3http://www.w3.org/TR/xpath-datamodel

1631

D 1 (O C). Let op be an operation. Its
cost, denoted as ξ(op), is:

ξ(op) =

1 + Ω(L) if op = insd(v, L), d ∈ {←,→,↙,↘, ↓}
1 + Ω(v) if op = del(v)
1 if op ∈ {repV(v, s), ren(v, n)}
1 + Ω(v) + Ω(L) if op = repN(v, L)
Ω(v) + Ω(v′) if op = repC(v, v′),

where Ω(Λ) = 0
4

The cost of a PUL ∆, denoted as ξ(∆), is the sum of the costs of its
operations.

3.3 Matches and Weights
The PUL-Diff algorithm (presented in Algorithm 1) compares

two XML documents, named source (resp. target), and denoted as
S (resp. T). Subscripts s and t denote nodes in the source and target
trees, respectively, and are omitted when no confusion arises. This
comparison has one main goal: decide which subtrees of the source
document should be considered deleted (i.e., present in the source
document but not in the target one), which should be considered
inserted (i.e., present in the target document but not in the source
one), and which should be considered matching, that is, present in
both documents with marginal or no changes. In the former case
the edit-script expresses the transformation of these matching trees.

D 2 (M CM). A match m is a
pair 〈s, t〉, where s ∈ V(S) and t ∈ V(T). A match m is complete if
T (s) is identical to T (t), partial otherwise. 4

Intuitively, the weight of a match 〈s, t〉 measures the advantage, in
terms of edit-script cost, of considering the two nodes to match over
considering them not to match. The match weight thus ranges from
1 + Ω(s) + Ω(t) when the two subtrees are identical (no operation
required if we consider them to match, repN(s, t) if we consider
them not to match) to 0 when s and t are so different that the most
cost-efficient transformation is repN(s, t).

D 3 (MW). The weight of a match 〈s, t〉,
denoted as ψ(〈s, t〉), is defined as 1 + Ω(s) + Ω(t) − ξ(∆), where
∆ is a minimum cost edit-script transforming T (s) in T (t). 4

Given a set of matches M, function ψ returns the sum of the weights
of all the matches in M. Let 〈s, t〉 be a match. Since no move
operation is allowed in a PUL, it may not be possible to transform
T (s) into T (t), without removing T (s) and inserting T (t). If we
consider each match in isolation this situation happens whenever s
and t are at different nesting depths in the respective trees.

D 4 (VM). A match 〈s, t〉 is valid iff s and t
are at the same nesting depth. 4

If we consider a set of matches, we need to ensure that for each
pair of matches the two source and target nodes are in the same
structural relationship.

D 5 (CM). Let 〈q, r〉 and 〈s, t〉 be two
valid matches. 〈q, r〉 and 〈s, t〉 are compatible iff all of the follow-
ing conditions holds: (i) (q <p s ⇐⇒ r <p t), (ii) (q ∈ A(s) ⇐⇒
r ∈ A(t)), (iii) (P(q) = P(s) ⇐⇒ P(r) = P(t)). 4

E 1. Let A = a(b(c, d), e(f , g)) and B = h(i(j, k)) be two
trees represented as terms (i.e., A has an a labeled root node, with b
and e labeled children; node b has in turn c and d labeled children).
〈c, j〉 and 〈d, k〉 are compatible matches, whereas 〈c, k〉 and 〈d, j〉
are not. �

D 6 (CM S). A set M of matches is
consistent iff all its elements are pair-wise compatible. 4

Algorithm 1 PUL-Diff Algorithm
1: function PUL-D (S ,T)
2: matches← ∅
3: identicalSubtreeMatching(R(T), ref matches)
4: if matches[R(T)] , Λ then
5: return ∅
6: end if
7: if matches = ∅ then
8: matches[R(T)]← {〈R(S),R(T), 0, False〉}
9: else
10: refineBottomUp(R(T), ref matches)
11: end if
12: refineTopDown(R(S),R(T), matches, ref matches)
13: if matches = ∅ then
14: return {repN(R(S),R(T))}
15: end if
16: return generateEditScript(R(S), R(T), matches)
17: end function

4. THE PUL-Diff ALGORITHM
PUL-Diff compares a source and a target document and produces

an edit-script that reflects the difference between them. The edit-
script can then be used to transform the source document into the
target one. In the edit-script, the subtrees which are present in only
one of the two documents will be either inserted or deleted, while
similar matching subtrees will be transformed one into the other
(e.g., by means of renaming operations). Identical matched sub-
trees, instead, will not require any modification. Since PULs do
not allow us to “move” subtrees without deleting and re-inserting
them, not all the identical or similar subtrees of the two documents
should be matched. PUL-Diff first detects and matches the sim-
ilar or identical subtrees of the two documents and then decide
which matches should be kept and which should be discarded to
obtain a consistent match set. To guide this decision, with the ob-
jective of reducing the edit-script cost, we rely on the match weight.
PUL-Diff is structured in four subsequent stages: (i) identical sub-
tree matching, (ii) bottom-up refinement, (iii) top-down refinement,
and (iv) edit-script generation. Ideally, the goal of the first three
stages is to detect the heaviest consistent subset of the set of all
possible matches M = {〈s, t〉 | s ∈ V(S), t ∈ V(T)}, that is, de-
tect the best possible matches between the source and target trees.
Since this computation would be extremely expensive we employ
the following heuristics. In the identical subtree matching stage
(Section 4.1), the algorithm looks for complete valid matches. In
this stage, we only consider subtrees appearing once in the source
document. The purpose of the bottom-up refinement stage (Sec-
tion 4.2) is to detect the best suitable match for any unmatched
target node having at least one matched descendant, while ensuring
that all detected matches are compatible. In the top-down refine-
ment stage (Section 4.3) the algorithm tries to match unmatched
descendants of matched target nodes. In the edit-script generation
stage (Section 4.4) the two trees are visited bottom-up generating
an edit-script according to the previously detected matches.

The detected matches are stored in a map named matches, which
associates nodes of the target tree with their matches. Since match
weights will often be estimated, the representation of a match 〈s, t〉
(Definition 2) is extended to a quadruple 〈s, t,w, c〉, where w is an
estimation of ψ(〈s, t〉) and c ∈ {True, False} specifies whether the
match is complete or not.

In the presented algorithms the ref keyword denotes function
arguments passed by reference, both in function calls and within
function signatures. In what follows we detail the four stages com-
posing the PUL-Diff algorithm.

1632

dblp1

article2

author3 David C. Wong4

title5 Title 1.6

year7 20098

volume9 1810

number11 212

article13

author14 Ian G. Smith15

title16 Title 3.17

year18 200719

volume20 4521

number22 223

article24

author25 Kamal Sarabandi26

title27 Title 4.28

year29 200330

volume31 4132

number33 1034

article35

author36 Laurens De Vocht37

title38 Title 2.39

year40 201241

volume42 743

number44 5245

article46

author47 Haruko Miyakoda48

title49 Title 6.50

year51 201152

volume53 2654

number55 156

dblp1

article2

author3 David Wong4

title5 Title 1.6

volume7 188

number9 1010

article11

author12 Laurens De Vocht13

title14 Title 2.15

year16 201217

volume18 719

number20 5221

inproc22

author23 Ian G. Smith24

title25 Title 3.26

volume27 4528

year29 200730

number31 232

article33

author34 Kamal Sarabandi35

title36 Title 4.37

year38 200339

volume40 4141

number42 1343

article44

author45 Massimiliano Pieraccini46

title47 Title 5.48

year49 200650

volume51 4452

number53 11-254

article55

author56 Haruko Miyakoda57

title58 Title 6.59

year60 201161

volume62 2663

number64 165

Figure 1: Example source (left) and target (right) trees. We highlight with the same color corresponding parts of the two documents.

Algorithm 2 Identical Subtree Matching
1: function SM(t, ref matches)
2: candidates← identicalST(t)
3: if |candidates| = 1 then
4: matches[t]← 〈candidates[0], t, 1 + Ω(s) + Ω(t),True〉
5: else if |candidates| = 0 then
6: for each d in γE (t) do
7: identicalSubtreeMatching(d, ref matches)
8: end for
9: end if
10: end function

4.1 Identical Subtree Matching
The identical subtree matching stage, described in Algorithm 2,

matches identical subtrees of the two documents. These matches
will be used to limit the matches search effort in the following
stages. For this reason we do not consider significant (i.e., we do
not add them to the matches map) those matches involving a source
subtree that is repeated in the source document. Tree comparison
is hash-based. Before the first invocation of Algorithm 2, we com-
pute, for each node n in the source or target tree, a DOMHASH-
like signature that identifies the subtree rooted at n and the nesting
depth of n. Given a node t, the function identicalST(t) returns
each node s of the source tree which is at the same nesting depth of
t and whose subtree is identical to the subtree of t.

E 2. Consider the source and target trees in Figure 1.
The matches detected during the first stage of the algorithm are
reported in Table 1. Note that no matches have been detected for
node number31

t , since its subtree is repeated in the source tree. �

4.2 Bottom-up Refinement
The bottom-up refinement stage, detailed in Algorithm 3, solves

all incompatibilities among the matches detected in the previous
stage and tries to match all unmatched target nodes with at least
one matched descendant.

Specifically, we perform a bottom-up visit of the target tree and
for every visited unmatched node t we check whether any of its
children has been matched. In case none has been matched, we do
not have enough information to propose a match for t at this stage.
Otherwise, we consider the parent of each node matching one of the
children of t to be a candidate for matching t. The algorithm then
chooses one of the candidates, s, and produces a match between s
and t, discarding all matches among children of other candidates
and children of t. Moreover, the algorithm may also discard some
of the matches among children of s and children of t, if some of
them are incompatible.

Choosing the best candidate for matching t is crucial for the qual-
ity of the generated edit-script. Ideally, we would like to compare
all matches among t and each candidate and choose the match with
the highest weight. However, since determining match weights re-
quires to solve the exact tree edit-distance problem, we need to
approximate its computation. A first approximation is to deter-
mine, for each candidate node cand, the set of matches Ccand =

{〈c, d,w, r〉 | 〈c, d,w, r〉 ∈ matches ∧ c ∈ γE(cand) ∧ d ∈ γE(t)}
among its children and the children of t, and to consider the sum
Wcand =

∑
〈c,d,w,r〉∈Ccand

w of all the weights of the matches in Ccand

as an estimation of the match weight between cand and t. This ap-
proximation follows the observation that, if we consider cand and t

1633

Table 1: Summary of the matches detected during the three
stages of PUL-Diff algorithm, when applied to source (left) and
target (right) trees of Figure 1. The first column lists all target
nodes, whereas the second column reports their nesting depth.
The remaining columns contain the matched nodes, as detected
by the PUL-Diff at the end of each of the first three stages. The
↑ symbol denotes that an ancestor of the node has a complete
match

Stage 1 Stage 2 Stage 3
Target node Depth matches matches matches

dblp1 0 dblp1 dblp1

article2 1 article2 article2

author3 2 author3

title5 2 title5 title5 title5

volume7 2 volume9 volume9 volume9

number9 2 number33 number11

article11 1 article35

author12 2 ↑

title14 2 ↑

year16 2 ↑

volume18 2 ↑

number20 2 ↑

inproc22 1 article13 article13

author23 2 author14 author14 author14

title25 2 title16 title16 title16

volume27 2 volume20 volume20 volume20

year29 2 year18

number31 2 number22

article33 1 article24 article24

author34 2 author25 author25 author25

title36 2 title27 title27 title27

year38 2 year29 year29 year29

volume40 2 volume31 volume31 volume31

number42 2 number33

article44 1
author45 2

title47 2
year49 2

volume51 2
number53 2
article55 1 article46 article46 article46

author56 2 ↑ ↑ ↑

title58 2 ↑ ↑ ↑

year60 2 ↑ ↑ ↑

volume62 2 ↑ ↑ ↑

number64 2 ↑ ↑ ↑

to be matching, all matches of the children of t that are not in Ccand

would be discarded, while at least one of the matches among the
children of cand and children of t would be kept. The main limita-
tion of this estimation is that incompatible matches may be present
in Ccand and, if this happens, the real match weight of cand and t
could be lower than estimated, increasing the chance of choosing
a suboptimal candidate. We refine the approximation considering
the weight of one of the heaviest consistent subset HCcand of Ccand.
This problem can be solved using the HIPS algorithm, as we detail
in Section 5. Then we select the candidate s whose heaviest con-
sistent subset has the highest weight (function getBest at line 12)
and match s with t. Finally, all matches in Ccand \ HCcand and all
matches among the children of other candidates and children of t
are removed, since they are incompatible with the match of s and t.

E 3. Consider the source and target tree in Figure 1 and
the detected matches reported in Table 1. In the bottom-up refine-
ment stage, new matches are detected for the target nodes dblp1

t ,
article2

t , inproc22
t and article33

t , whereas the match of number9
t and

year29
t are discarded. Consider node article2

t . Two candidate nodes
are identified: article24

s (due to the match 〈number33
s , number9

t , 2,
True〉) and article2

s (due to the matches 〈title5
s , title

5
t , 2,True〉 and

〈volume9
s , volume7

t , 2,True〉). The algorithm matches article2
s and

Algorithm 3 Refine Bottom-Up
1: function BU(t,ref matches)
2: for each d in γE (t) do
3: if d is not leaf AND matches[d] = Λ then
4: refineBottomUp(d, matches)
5: end if
6: end for
7: candidates← ∅
8: for each cand in {P(c)|〈c, d,w, r〉 ∈ matches ∧ d ∈ γE (t)} do
9: Ccand ← {〈c, d,w, r〉|〈c, d,w, r〉 ∈ matches ∧ P(c) = cand ∧

d ∈ γE (t)}
10: candidates.add(〈cand,Ccand ,HIPS(Ccand)〉)
11: end for
12: 〈s,Cs,HCs〉 ← candidates.getBest()
13: matches[t]← 〈s, t, ψ(HCs), False〉
14: matches← matches \ (Cs \ HCs)
15: matches ← matches \ {〈c, d,w, r〉|〈c, d,w, r〉 ∈ matches ∧

P(d) = t ∧ P(c) , s}
16: end function

article2
t and removes the match 〈number33

s , number9
t , 2,True〉). Con-

sider now inproc22
t . A single candidate is identified (article13

s). The
set of matches among the children of node inproc22

t and the chil-
dren of node article13

s however is not consistent as 〈year18
s , year29

t ,
2, True〉 and 〈volume20

s , volume27
t , 2, True〉 are not compatible. The

algorithm matches article13
s and inproc22

t , discarding the match
〈year18

s , year29
t , 2,True〉. �

4.3 Top-down Refinement
The top-down refinement stage, detailed in Algorithm 4, aims

at improving the matches of the descendants of partially matched
target nodes. Differently from the identical subtree matching stage,
we look for source subtrees that are similar or identical (even if
they occur more than once in the source document).

Specifically, the top-down refinement works as follows. The tar-
get tree is visited top-down and for each visited node t, which is
partially matched with a node s, the algorithm tries to improve the
matches among the children of s and the children of t. Ideally, we
would like to consider the set M = {〈c, d〉 | 〈c, d〉 ∧ c ∈ γE(s) ∧ d ∈
γE(t)} of all possible matches among the children of s and those
of t and to identify the heaviest consistent subset HM of M, up-
dating the matches set accordingly (that is, if we discard a match
among two nodes s and t, we also discard any match among their
descendants).

While, as discussed in Section 4.2, identifying one of the heavi-
est consistent subset of a given set of matches is an efficient oper-
ation, the size of M, that is, (|γE(s)| ∗ |γE(t)|), could be significant.
Thus, we consider a smaller set of candidate matches candM which
contains, for each child d of t, (i) the match of d in matches, if any;
(ii) all complete matches between d and a child of s; (iii) the k best
matches among d and a subset of the children of s, produced by
similarityMatches method. Section 6, in what follows, is devoted
to the complex subproblems of reducing the number of compar-
isons for computing the top-k matches and of estimating the tree
edit-distance cost. Once the candidate matches set has been identi-
fied, we determine one of its heaviest consistent subsets, updating
the matches map accordingly.

E 4. Consider the source and target trees in Figure 1
and the detected matches reported in Table 1. In the top-down
refinement stage, the target nodes author3

t , number9
t , number31

t ,
number42

t are matched with source nodes author3
s , number11

s ,
number22

s , and number33
s . �

1634

Algorithm 4 Refine Top-Down
1: function TD(s, t, origMatches, ref matches)
2: currM ← {〈p, q,w, r〉 | 〈p, q,w, r〉 ∈ matches ∧ q ∈ γE (t)}
3: candM ← {〈p, q,Ω(t),True〉 | q ∈ γE (t) ∧ p ∈ identicalST(q) ∧

P(p) = s} ∪ currM ∪ similarityMatches(s, t, currM)
4: matches← matches ∪ HIPS(candM) \ (currM \ HIPS(candM))
5: for each d in γE (t) do
6: currMatch← matches[d]
7: origMatch← origMatches[d]
8: if currMatch , 〈Λ,Λ,Λ,Λ〉 AND !currMatch.c then
9: if !origMatch.c AND origMatch.s , currMatch.s then
10: matches ← matches \ {〈p, q,w, r〉|〈p, q,w, r〉 ∈

matches ∧ q ∈ D(d)}
11: end if
12: if γE (currMatch.s) , [] OR γE (d) , [] then
13: refineTopDown(currMatch.s, d, origMatches,

ref matches)
14: end if
15: end if
16: end for
17: end function

Algorithm 5 Edit-script Generation
1: function ES(s, t,matches)
2: repES ← {repN(s,T (t))}
3: transES ← compareNode(s, t)
4: for each unmatched node c in γE (s) do
5: transES ← transES ∪ del(c))
6: end for
7: for each partially matched node d in γE (t) do
8: transES ← transES ∪ generateEditScript(matches[d].s,

matches[d].t, matches)
9: end for
10: for each unmatched node u in γE (t) do
11: transES ← transES ∪ generateInsert(u)
12: end for
13: if ξ(repES) ≥ ξ(transES) then
14: return transES
15: else
16: return repES
17: end if
18: end function

4.4 Edit-script Generation
The last stage of the PUL-Diff algorithm is the edit-script gener-

ation. Since matches are propagated towards the root in the bottom-
up refinement stage, the two tree roots are partially matched when-
ever at least one of their descendant is matched. Algorithm 5 visits
the partially matched nodes bottom-up and for each visited pair of
partially matched nodes s and t, the algorithm contrasts the cost
of replacing T (s) with T (t), and the cost of transforming through
(ren, repV, ins←, repC, ins↘, del) operations T (s) in T (t) ac-
cording to the identified matches. The less expensive alternative is
chosen. Intuitively, the cost of the transformation will decrease as
more and more (valid and consistent) matches are identified among
the nodes in T (s) and those in T (t).

Specifically the transformation edit-script is generated as fol-
lows. First, the value and name of s and t are contrasted by means
of the compareNode function, generating a repV or a ren oper-
ation as required. Then, a del (resp., ins←/ins↘) operation is
generated for every unmatched children of s (resp., t). Insertion
operations are produced by means of the generateInsert func-
tion. Finally, the algorithm is recursively called on all the partially
matched children of t. Note that, to further reduce the edit-script
cost and produce deterministic edit-scripts, we might merge some
operations (e.g., whenever adjacent siblings have to be inserted, a
single insertion or node replacement is generated).

E 5. Consider the source and target trees in Figure 1
and the detected matches reported in Table 1. The following edit-
script is generated:

repV(author3,‘David Wong’),
del(year7),
repV(number11,‘10’),
ins←(article13, <article><author>Laurens De Vocht</author>
<title>Title 2.</title><year>2012</year><volume>7</volume>
<number>52</number></article>),
ren(article13,‘inproc’),
ins←(number22, <year>2007</year>),
del(year18),
repV(number33,‘2’),
repN(article35, <article><author>Massimiliano Pieraccini</author>
<title>Title 5.</title><year>2006</year><volume>44</volume>
<number>11 − 2</number></article>) �

5. HIPS: HEAVIEST INCREASING POINT
SUBSET

In the bottom-up refinement stage, we want to determine the
heaviest consistent subset of a set of matches, where all the source
and target nodes share the same parent. We map this problem into
the problem of identifying, starting from a set of two-dimensional
weighted points M, one of the heaviest subsets of M that defines a
strictly increasing function. Specifically, we represent each match
〈ci, d j,w, r〉 in Ccand, where i and j denote the index of ci and d j in
the respective sibling sequences, as a weighted point 〈i, j,w〉. Since
all matched source nodes and all matched target nodes are siblings
in their respective trees, incompatibility (Definition 5) can be refor-
mulated as follows.

D 7 (CM). Let m = 〈i, j,w〉 and m′ =

〈i′, j′,w′〉 be two matches represented by means of weighted points.
We say that m and m′ are compatible iff either i > i′ ∧ j > j′ or
i < i′ ∧ j < j′. 4

In the remainder of the section, we first present the problem state-
ment along with some basic definitions and notations used in what
follows, then we provide an exact O(|M| log |M|) algorithm along
with the related correctness and complexity proofs.

5.1 Problem Statement
Given a sequence σ over a linearly ordered alphabet Σ, finding

one of the longest subsequences of σ that is strictly increasing is
known as the Longest Increasing Subsequence (LIS) problem. Ja-
cobson and Vo [14] generalize the LIS problem to weighted se-
quences, defining the Heaviest Increasing Subsequence (HIS) prob-
lem. Given a sequence σ over Σ and a weight function defined on
the symbols and their positions in σ, the HIS problem is to find one
of the subsequences of σ with the highest sum of weights. They
propose an optimal algorithm with time complexity in O(n log n).

Let M be a set of matches, represented as points. Assuming that
the x component of each match is unique, we can determine the
heaviest consistent subset of M by applying the HIS algorithm on
the sequence consisting of the y components of the matches in M
in increasing order of their x component. Since multiple matches
can be present for the same source node, in this section we tackle
a generalization of the HIS problem, the Heaviest Increasing Point
Subset (HIPS), where, for each position in the sequence, multiple
mutually exclusive alternatives may be present. For sake of clar-
ity, we use the point-based notation, where a point p is a triple
〈x, y,w〉, where the x and y component of each point are chosen
from two linearly ordered alphabet X and Y , respectively, and w
denotes the point weight. We use p.x, p.y, and p.w to denote the
point components. The weight of a set of points M, denoted as
ψ(M), consists of the sum of the weights of its elements. Specifi-
cally, given a set M of points, the HIPS problem is to identify one
of the heaviest subsets of M that defines a strictly increasing func-
tion from X to Y . More formally, a point set M is increasing iff

1635

∀p1, p2 ∈ M, p1 , p2 ∧ (p1.x > p2.x ⇐⇒ p1.y > p2.y) ∧ (p1.x <
p2.x ⇐⇒ p1.y < p2.y).

D 8 (H I P S). Let M be a
point set. An increasing subset H of M is a heaviest increasing
point subset of M if no other increasing subset of M has a higher
weight. 4

Let σ = σ1σ2 . . . σn be a point sequence. Following the conven-
tions proposed in [14], we denote by σi the i-th element of σ. The
weight of σ is the sum of its components weights, denoted as ψ(σ).

We say that a point sequence τ = τ1τ2 . . . τl is a subsequence ofσ
if a sequence of integers i1 < i2 < . . . < il exists such that τ is equal
to σi1σi2 . . . σil . We denote by σi... j the contiguous subsequence of
σ consisting of the points from position i to j. We say that τ is
increasing iff τ1.x < τ2.x < . . . < τl.x and τ1.y < τ2.y < . . . < τl.y.

D 9. (H I P S). Given
a point sequence σ, an increasing point subsequence τ of σ is a
heaviest increasing point subsequence if no other increasing point
subsequence of σ has a higher weight. 4

E 6. 〈1, 2, 1〉 〈2, 3, 1〉 〈3, 5, 1〉 is a heaviest increasing
point subsequence of 〈1, 2, 1〉 〈2, 3, 1〉 〈2, 4, 1〉 〈3, 5, 1〉. �

In the algorithm we need to compare increasing subsequences of
σ and to decide whether they can be a subsequence of a heaviest
increasing point subsequence of σ. For this reason we introduce
the following definition.

D 10 (D P S). Consider two
increasing point subequences of a point sequenceσ, τ = τ1τ2 . . . τm

and υ = υ1υ2 . . . υn, and let ψτ and ψυ be the two sequence weights.
We say that υ is dominated by τ iff υn.y ≥ τm.y ∧ ψτ > ψυ or
υn.y > τm.y ∧ ψτ ≥ ψυ. 4

E 7. Consider the point sequence σ = 〈1, 2, 1〉 〈2, 2, 1〉
〈2, 3, 1〉 〈3, 4, 1〉 and the two following point subsequences of σ:
τ = 〈1, 2, 1〉〈2, 3, 1〉 and υ = 〈2, 3, 1〉〈3, 4, 1〉. According to Defini-
tion 10, υ is dominated by τ. �

5.2 Algorithm Description
Given the specific context in which we employ the algorithm,

without loss of generality we make the following assumptions on
the input data. Both X and Y alphabets are N0, each symbol pair
represents a point in a two-dimensional space, all points are differ-
ent, all weights are greater or equal to 0.

Intuitively, the algorithm considers a set of points M and sorts it
in ascending order on the point x component first, and then on the
point y component, producing a point sequence σ = σ1...σn.

Let Y1...i = {p.y | p ∈ σ1...i} be the set of all the y components of
the points in σ1...i. The algorithm scans σ (from the first to the last
element) and keeps updated an auxiliary set S . After σi symbol
has been considered, the set S represents one of the non-dominated
subsequences of σ whose last point y component is p.y, for each
p.y ∈ Y1...i (if at least one exists). When the last symbol of σ has
been considered, the highest-weight subsequence represented in S
(the one with the highest y component) contains all and only the
points in one of the heaviest increasing point subsets of M.

Specifically, the point set S is kept sorted in ascending order
on the points y component first, and on the x component second,
and provides the following functions (relying on the ordering of
S): (i) pred(p), which, given a point p, returns the point p′ in
S s.t. p′ is the majorant of the minorants of p. If no such point
exists, the function returns Λ. (ii) succ(p), which, given a point

Algorithm 6 HIPS Algorithm
1: function HIPS(M)
2: σ = σ1σ2 . . . σn ← the sequence of points in M sorted in ascending order on

the point x component first and on the y component second
3: S ← ∅, P← ∅, S W ← ∅, AQ← [],currXMaxW ← −1
4: for i← 1 to n do
5: pred← S .pred(〈0, σi.y, σi.w〉)
6: S W[σi]← S W[pred] + σi.w
7: P[σi]← pred
8: if S W[σi] > currXMaxW then
9: currXMaxW ← S W[σi]
10: succ← S .succ(pred)
11: if succ = Λ OR (σi.y < succ.y OR S W[succ] < S W[σi]) then
12: AQ.addLast(σi)
13: end if
14: end if
15: if i = n OR σi.x , σi+1.x then
16: processQueue(ref S , P, S W, AQ)
17: currXMaxW ← −1
18: AQ.clear()
19: end if
20: end for
21: return maximalS ubset(S , P)
22: end function
23:
24: function Q(ref S , P, S W, AQ)
25: for each µ in AQ do
26: succ← S .succ(P[µ])
27: while succ , Λ do
28: if S W[µ] < S W[succ] then
29: break
30: end if
31: S .remove(succ)
32: succ← succ(succ)
33: end while
34: end for
35: for each µ in AQ do
36: S .add(µ)
37: end for
38: end function
39:
40: function S(S , P)
41: MS ← ∅
42: curr← S .max()
43: while curr.x , τ do
44: MS ← MS ∪ {curr}
45: curr← P[curr]
46: end while
47: return MS
48: end function

p, returns the point p′ in S s.t. p′ is the minorant of the majorants
of p. If no such point exists, the function returns Λ. For brevity we
define succ(Λ) as min(). (iii) max() returns the greatest element
in S if S is not empty, Λ otherwise. (iv) min() returns the least
element in S if S is not empty, Λ otherwise. More precisely, the
algorithm represents non dominated subsequences of σ by means
of the point set S and two additional maps, S W and P. For each
subsequence τ, S stores the last considered element of τ, S W stores
the subsequence weight, while P associates each point in τ with its
predecessor.

Algorithm 6 starts by sorting the input set of points M in as-
cending order on the point x component first, and on the point y
component then, obtaining a point sequence σ (line 2). Then, for
each point σi in σ, the algorithm determines the heaviest subse-
quence τ (which is terminated by the pred point identified at line
5) in S to which σi can be appended. When the, possibly empty,
sequence τ has been determined, the algorithm updates the S W and
P maps accordingly (line 6–7). If τσi is not dominated by another
sequence ending at an element with the same x component of σi, it
is scheduled for addition to S (line 12).

When all the points with a given x component are visited, those
scheduled for addition, as well as the point set S and the maps

1636

S W and P, are given as input to the processQueue function (line
15–19). This function first removes from S (line 25–34) any sub-
sequence which is dominated by one of those scheduled for ad-
dition, then adds the scheduled subsequences to S (lines 35–37).
Finally, when all the input points have been processed, the heav-
iest increasing point subset of M is returned using the function
maximalSubset, that builds the heaviest increasing subsequence
with a traversal of the predecessor map P, starting from the maxi-
mal point S .max().

P 1 (C A 6). Given a set of
points M as input, Algorithm 6 returns one of the heaviest increas-
ing subsets of M. ^

P S P P 1. Assume that the input
point set contains no two points with the same x component and
let Y1...i = {p.y | p ∈ σ1...i} be the set of all y components of the
points inσ1...i. Under this assumption the proposition can be proved
by induction observing that, after the i-th element of the input has
been processed, the set S represents one of the non-dominated sub-
sequences (if any) whose last point y component is p.y, for each
p.y ∈ Y1...i.

Base case: After the first element σ1 has been considered, Y1...1

= {σ1.y}, and the algorithm represents the only non-dominated in-
creasing point subsequence of σ1...1 whose last point y component
is σ1.y, that is, [σ1] in S .

Inductive case: Assume now that, after the i-th element of σ
has been considered, S represents one of the non-dominated sub-
sequences (if any) whose last point y component is p.y, for each
p.y ∈ Y1...i. When the point σi+1 is considered, the algorithm en-
sures that at least one non-dominated increasing subsequence of
σi+1, ending with a point whose y component is σi+1.y, is repre-
sented in S . Thanks to the inductive hypothesis, we can observe
that either one of the highest weight subsequences of σ1..i+1 is al-
ready represented in S or it ends with σi+1. To determine one of the
highest weight subsequences of σ1..i+1 ending with σi+1, we rely on
the following observation. For any two non dominated point subse-
quences τ = τ1τ2 . . . τl and υ = υ1υ2 . . . υm of σ, where τl.y , υm.y,
according to Definition 10, either τl.y > υm.y ∧ ψ(τ) > ψ(υ) or
τl.y < υm.y ∧ ψ(τ) < ψ(υ). From this observation and the in-
ductive hypothesis, it follows that one of the highest weight sube-
quences ending with σi+1 consists of the subsequence represented
in S ending with the point with the highest y component smaller
than σi+1.y (if such an element exists in S , [] otherwise) concate-
nated with σi+1. This sequence, if not dominated, is represented in
S by means of the processQueue function. Therefore, after the
last point of σ has been considered, the sequence represented in
S , ending with the point with the highest y component, is one of
the heaviest increasing point subsequence of σ. Since σ is sorted
on the points x component in ascending order first, we can easily
observe that each heaviest increasing point sequence of σ contains
all and only the points of one of the heaviest increasing point sub-
set of M. The proof can then be easily extended to arbitrary in-
put sequences, where multiple points with the same x component
may be present, observing that the algorithm considers increasing
sequences consisting of points with different x components, thus
proving the proposition.

P 2. Given a sequence σ = σ1σ2 . . . σn, the time
complexity of the HIPS algorithm is in O(n log n). ^

P S P 2. In Algorithm 6, at most n invo-
cations of the pred and succ functions are required by the HIPS
function. The processQueue function, which is invoked at most n
times, requires across all invocations to evaluate n times the succ

function (specified at line 26). The succ function (line 32) is also
evaluated at most n times since it is only invoked when an ele-
ment is removed from S , which contains at most n elements. If S
is efficiently implemented, for instance using self-balancing binary
search trees, both pred and succ can be evaluated inO(log n) time,
proving the proposition.

6. APPROXIMATE TREE MATCHING
In the top down-refinement stage, we consider partial matches

and try to improve them, that is, to increase the weight of the
matches among the children of the two partially matched nodes.
Let 〈s, t,w, False〉 be one of the considered matches. Ideally, we
would like to identify one of the heaviest consistent subset of all
possible matches among the children of s and those of t. While
identifying one of the heaviest consistent subset of a given set of
matches is an efficient operation, the number of all the possible
matches could be large. Moreover, exactly determining the mini-
mum cost of a PUL transforming a tree into another is extremely
expensive.

In the remainder of the section, we tackle both problems. Specif-
ically, in Section 6.1 we introduce our pq-gram based technique for
estimating the minimal cost of a PUL transforming a tree into an-
other, whereas in Section 6.2 we present our approach for choosing
candidate matches between two tree sequences.

6.1 Tree PUL Edit-distance
One of the most relevant problem for tree data structures is the

tree edit-distance, that is, to determine, given two trees S and T , a
set of edit operations, and an associated cost function, the minimum
cost of a sequence of edit-operations which transform S into T .

Exact algorithms, such as those in [12, 21], have optimal time
complexity in O(n3). To estimate PUL edit-distance, we extend
the pq-gram approximated similarity measure [2]. pq-grams are
a generalization of string q-grams: they are subtrees of fixed size
and shape, composed by a stem made of p elements (bound by the
parent-child relation) and a base of q consecutive siblings: the last
element of the stem is named anchor node and the element of the
base are children of this node. To ensure that each node of the
tree appears in at least one pq-gram as an anchor node, the tree
is extended with dummy nodes not occurring in the original tree.
Moreover, the textual content of element nodes is concatenated to
their name, and text nodes are removed. The obtained tree is named
extended tree representation. The similarity between two trees can
then be estimated computing the Jaccard-distance of the sets of all
pq-grams extracted from the two trees extended representations.

In our context, since “move” operations are not allowed, identi-
cal pq-grams whose anchor node is at different nesting levels should
not increase the similarity of the two trees under analysis. More-
over, we experimentally observed that pq-grams tend to
under-estimate the similarity of trees where nodes have different
labels or values w.r.t. to our PUL cost model, because they embed
node labels and values in the same pq-gram [6].

To overcome these limitations, we introduce pql-grams, in two
flavors: name pql-grams and value pql-grams. Both are gener-
ated from the same extended representation used for generating
pq-grams, but name pql-grams contain only node names, whereas
value pql-grams contain only node values. Moreover, both kinds
of pql-grams include the nesting level of their anchor nodes. Tree
similarity is computed as for pq-grams. Consider two trees S and
T . Starting from the pql-gram-based similarity α between them
(which ranges from 0 when two trees share no pql-gram to 1 when
they have the same pql-grams), we estimate the PUL edit-distance

1637

as (1−α)(Ω(S)+Ω(T))/2. An experimental evaluation of the qual-
ity of the pql-gram-based PUL edit-script distance estimation can
be found in Section 7.2.1.

6.2 Window-based Sequence Matching
In the top-down refinement stage (see Section 4.3), we contrast

the sequence of children of two partially matched nodes and aim at
identifying the heaviest consistent subset of all the possible matches
among nodes in the two sequences. In this section, we propose
a window-based approximated approach, which uses pql-grams to
estimate the tree PUL edit-distance between two trees.

We start by defining a search window for each unmatched node
of the target sequence, exploiting existing matches among nodes in
the two sequences. We partition the source and target sequences
in consecutive partitions, each delimited by two currently matched
nodes (first/last are delimited by the start/end of the node sequence).
Since the current matches are consistent, we expect the best match
for the nodes in the i-th target sequence to lie in the i-th source
partition. More precisely, we consider the probability that the best
match for a node of the i-th sequence can be found in the j-th source
sequence is inversely proportional to the quantity |i − j|.

While using larger windows grants an higher probability of find-
ing the best match for a given target node, it also increases the
probability that the considered matches are incompatible with the
other matches. For this reason, using large windows (or even the
entire source sequence) do not usually increase the quality of the
identified matches, as experimentally verified in Section 7.2.2.

E 8. Consider a partial match 〈s, t, 6, False〉 and let the
node sequence reported at the top (resp. bottom) of Figure 2 to
be the sequence of children of s (resp. t), where matches are de-
picted with a line. A simple heuristics for defining a search window
for each target node d is to scan in both directions the target chil-
dren sequence, starting from d, and to consider the window defined
by the two source nodes matched by the first encountered matched
node in each direction. If the start (resp. end) of the target sequence
is reached, the start (resp. end) of the source children sequence is
used instead. For instance, using this criteria, the search window
for K is [C..G], whereas for O it is [G..H]. �

Figure 2: Source sequence (top) and target sequence (bottom).

As a further optimization, we do not perform a 1-to-1 compar-
ison between a target node and each node in its source window.
Rather, we compare all target nodes with these source window sub-
trees at the same time. Specifically, let d1, . . . , dn and c1, . . . , cm

be a set of target nodes and their common source window, respec-
tively. We first compute and sort the sets Ps (resp. Pt) of all source
(resp. target) window pql-grams and tag each pql-gram with the
subtree of the source (resp. target) window it belongs to. Then,
through a scan of both sets we populate an m × n matrix M, where
the Mi, j cell contains the number of pql-grams in common between
ci and d j. Starting from this matrix, we can easily compute the pql-
gram distance. We remark that, even if the worst case complexity
does not change, this approach is more efficient than 1-by-1 com-
parisons and yields a speedup proportional to the number of unique
pql-grams.

Algorithm 7 accepts two partially matched nodes s and t, and
first partitions the sequences of children of s and t, so that matched

Algorithm 7 Similarity Matches
1: function M(s, t, matches)
2: candMatches← ∅
3: {s1, ..., sn} ← the partitions of γE (s) according to the matched nodes
4: {t1, ..., tn} ← the partitions of γE (t) according to the matched nodes
5: for p = 1..n do
6: sGrams← {〈pql, o, c〉 | 〈pql, o〉 ∈ pqlGrams(c) ∧ c ∈ sp}

7: tGrams← {〈pql, o, d〉 | 〈pql, o〉 ∈ pqlGrams(d) ∧ d ∈ tp}

8: M ← a zero-filled |sp | × |tp | matrix
9: M[i][j]←

∑
〈pql,o1 ,o2〉∈X min(o1, o2)

10: where X = {〈pql, o1, o2〉 | 〈pql, o1, ci〉 ∈ sGrams ∧
∧〈pql, o2, d j〉 ∈ tGrams}

11: candMatches.add(heaviestMatches(M, s, t))
12: end for
13: return candMatches
14: end function

nodes occur only as the first/last element of a partition (lines 3-
4). Let n be the number of identified partitions. The algorithm
then estimates the similarity between all the subtrees in the p-th
source and target partition (lines 5-12). To compare two partitions
the algorithm first computes, thanks to function pqlGrams, for each
node c (resp. d) in the source (resp. target) partition, the set of
all pql-grams of T (c) (resp. T (d)), along with their number of
repetitions in the set of pql-grams of T (c) and the node c (resp. d).

The algorithm then populates the matrix M, as described in the
previous paragraph. The k-heaviest matches for each target window
node are then identified and added to the candidate matches map,
thanks to function heaviestMatches (line 11). When all the par-
titions have been processed, all the candidate matches are returned.
We stress that, in the PUL-Diff algorithm the search window for
a given target node d depends on Ω(d), and on the weights of the
matches delimiting the subsequences adjacent to the one d belongs
to. Additionally, we enforce an upper-bound for the number of sub-
trees in the target window to limit the comparison complexity.

P 3 (C A 7). Let P and Q be
two trees. The time complexity of Algorithm 7, applied on P and
Q, is in O(n log n), and the spatial complexity is in O(n), where
n = |V(P)| + |V(Q)|. ^

P S P 3. As an extension of the proof
given in [2], the computation of the pql-grams distance between
two trees is in O(n log n). The number of nodes in both the source
and target window is limited to a constant number. For what con-
cerns spatial complexity, the number of pq-grams for a tree t is
linear in the number of nodes of t [1]. For the same tree, the num-
ber of pql-grams is twice the number of pq-grams, so again linear:
pql-grams are used only in the window-search approach, whose
worst-case requires the computation of the pql-grams for both the
source and target tree. The worst-case space complexity for pql-
grams computation is thus in O(n).

7. ALGORITHM EVALUATION
In this section we first investigate the PUL-Diff complexity (Sec-

tion 7.1). Then, we present an experimental evaluation of the PUL
edit-distance estimation and provide a time and edit-script cost com-
parison with other state of the art XML differencing algorithms
(Section 7.2).

7.1 Algorithm Complexity
The following proposition states the temporal and spatial com-

plexity of the PUL-Diff algorithm.

1638

P 4. Let S and T be two XML documents. The tem-
poral complexity of PUL-Diff on S and T is in O(n log n), whereas
the spatial complexity is in O(n), where n = |V(S)| + |V(T)|. ^

P S P 4. The identical subtree matching
stage (Algorithm 2) computes a hash signature of each subtree in S
and T , using a bottom-up DOMHASH-like approach, with a cost
linear in the number of nodes of S and T . Moreover, n hash-table
insertions and up to |V(T)| hash-table lookups must be performed.
The space required to store the node hash signatures is in O(n).

The bottom-up refinement stage (Algorithm 3) performs, for each
node in |V(T)|, a (very small) constant number of hash-table inser-
tions/lookups and deletions. Moreover, across all invocations, the
HIPS algorithm processes at most |V(T)| matches. Let M be a set
of matches. Since the time complexity of the HIPS algorithm is
in O(|M| log |M|) (see Proposition 2) the worst-case complexity for
the second stage is O(n log n).

The top-down refinement stage (Algorithm 4) performs, for each
node in |V(T)|, a (very-small) constant number of hash-table in-
sertions/lookups and deletions. For reducing the complexity of
this stage, the number of identical matches identified at line 3 by
function identicalST is limited using a window-based approach.
Therefore, across all invocations, the window-match algorithm (Al-
gorithm 7) is invoked on at most |V(S)| source nodes and at most
|V(T)| target nodes. If we assume a costant tree depth, according
to Proposition 3, the worst-case time complexity for the third stage
is in O(n log n). Moreover, the number of matches is always linear
in |V(T)| during this stage, thus the spatial complexity of storing
the matches is in O(n). For what concerns pql-grams, according to
Proposition 3, the spatial complexity is again in O(n).

The edit-script generation (Algorithm 5) visits both the source
and target tree and performs a small constant number of hash-set
lookups for each target node. Moreover, no more than n operations
can be generated and no more than |V(T)| nodes can be inserted.
Since the number of generated operation is at most n, the spatial
complexity is in O(n).

7.2 Experiments
Since no suitable versioned XML document collection is avail-

able, we relied on synthetic documents, generated as follows. The
source document is either produced by means of the XMark docu-
ment generator4 or selecting a random subset of the first-level chil-
dren of the DBLP XML document5. These two kinds of source
documents presents different characteristics. XMark documents
have a complex organization, with subtrees representing several
different entities, whereas DBLP-based documents are a simple list
of subtrees describing scientific publications. Instead of comput-
ing the exact edit-script cost between the source and target docu-
ments, we randomly generate a minimal PUL with a known cost
(using a complex blocking strategy for the target elements of the
generated operations), and we obtain the target document by ap-
plying this PUL to the source document. These PULs contain
randomly generated del, insd, repN, ren, repV operations. In-
serted and replaced subtrees can be randomly generated, similar
or equal to another subtree of the source document, or randomly
selected from another XMark/DBLP document. New names and
values can be randomly generated, or be randomly selected from
another XMark/DBLP document. We also simulate subtree moves
through pairs of deletion and insertion. The number of each oper-
ation type is roughly the same. Although we ran the experiments
with many different distributions of operation types, for brevity we

4http://www.xml-benchmark.org
5http://www.informatik.uni-trier.de/˜ley/db

only report the results obtained with this distribution. No signifi-
cant differences were found using XMark and DBLP-based docu-
ments. To easily combine and contrast the results obtained consid-
ering documents of different sizes, we do not reason directly on the
tree edit-distance, rather we consider the change ratio, that is, the
edit-distance divided by the source document weight.

In the experiments we considered p = 2, q = 3 in pq-grams and
pql-grams generations, k = 5, with no limits on the approximated
matching window size. The tests has been performed on a PC with
an Intel Core i7-2670QM CPU, 16GB of RAM and Kubuntu Linux
12.10 64-bit O.S. For increasing statistical significancy, every time
measurement is averaged over at least 50 samples.

In the remainder of the section, we first experimentally eval-
uate the quality of the PUL edit-distance estimation obtained by
means of tree-grams, then we empirically test the soundness of our
window-based approach used in top-down refinement stage, and we
finally provide a time and edit-script cost comparison with other
state of the art XML differencing algorithms.

7.2.1 PUL Edit-distance Estimation
This section experimentally evaluates the quality of the PUL

edit-script distance estimation using tree-grams (i.e., pq-grams and
pql-grams). Let S , T , and T ′ be three trees and let e1 (resp. e2) be
the edit-script distance between S and T (resp. S and T ′). Our goal
is to maximize the confidence that if e1 > e2, then the edit-script
distance between S and T is higher than the one between S and
T ′. Thus, we need that, independently from the kind of operations
which are needed to transform a tree into another, (i) the estimated
change ratio increases when the real one does and the increments
are similar, (ii) for any given real change ratio, the estimated change
ratio has a low variance.

As discussed in Section 6, tree-grams distance is only used to
select, in a sequence of trees, the k most similar trees to a given
one. Even if the k best matches, according to the estimation, are
sub-optimal, the application of the HIPS algorithm often chooses a
(near-)perfect set of matches, as experimented in Section 7.2.2.

We considered both homogeneous and non-homogeneous ran-
dom PULs, composed by del, insd, repN, ren, repV or move
operations. For each operation we also investigated additional as-
pects: (i) the deleted subtrees weight range, for del operations,
(ii) the number of inserted subtrees, their weight range and gen-
eration algorithm for insd and repN operations, (iii) the number
of adjacent sibling moved subtrees, for move operations, (iv) the
name generation algorithm for ren PULs, (v) the value genera-
tion algorithm for repV PULs. We considered the following in-
serted tree generation algorithms: (i) random trees, (ii) trees which
have a similar structure (10% of the nodes are renamed, 70% of
the text values are changed) to either one of the inserted subtree
sibling or to a subtree at the same nesting depth, (iii) trees which
have a similar size to that of their new sibling/replaced node, but
random structure, names, and values, (iv) real trees, randomly ex-
tracted from another XMark/DBLP document, among the subtrees
which usually occur in the considered document, at the considered
position (e.g., a new article/person can be inserted next to an-
other article/person). Random tree height is limited to 6 and the
structure roughly resembles that of an XMark document. For the
tests we generated roughly 1 million source documents and PULs,
with different change ratios, uniformly distributed among the fol-
lowing values (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and
the following kinds (random, homogeneous del, insd, repN, ren,
repV and move). Moreover, for each kind, the PUL are uniformly
distributed among the different parameters of interest.

1639

Table 2: PUL change ratio estimation summary, random PULs
pq-gram estimation pql-gram estimation

Change ratio Mean Standard dev. Mean Standard dev.
0.01 0.029572 0.026947 0.016702 0.008945
0.05 0.124398 0.107564 0.074867 0.035163
0.10 0.213398 0.169629 0.135634 0.056661
0.20 0.338368 0.231525 0.231765 0.078262
0.30 0.425672 0.255584 0.305835 0.086130
0.40 0.492553 0.263406 0.365108 0.089523
0.50 0.556594 0.278110 0.418311 0.100024

For brevity, in Table 2, we only report the results for random non-
homogeneous PULs. We can observe that as the real change ratio
increases, both the pq-gram and the pql-gram estimated change ra-
tios increase of a similar amount. pq-grams overestimate the edit-
script cost when renamings or value-changes are necessary and
have a much higher variance. Therefore, at least in our context,
pql-grams provide a better estimation. Additional details can be
found in the extended experimental section [6].

7.2.2 Window-based Sequence Test
In the top-down refinement stage a sequence of source subtrees is

contrasted with a sequence of target subtrees aiming at finding the
heaviest consistent set of matches among them. The algorithm em-
ploys an approximated approach: each target subtree is compared
employing pql-grams with all the source subtrees in its search win-
dow. The best k matches for each target subtree are inserted into a
set M. The HIPS algorithm is then invoked on M identifying the
heaviest consistent subset of M.

In this experiment, we aim at replicating the window-based match
settings producing subtree sequences, with a subtree size ranging
from 20 to 60 nodes. Target documents are generated using ran-
dom non-homogeneous PULs. The quality of the chosen matches
for entire sequences of children is considered in Section 7.2.3. Here
we consider the worst-case scenario: in each sequence all subtrees
are very similar to each other (e.g., all DBLP article elements
or all auction XMark elements), and modifications are roughly
uniformly distributed among subtrees. For each generated pair of
sequences we contrast the cost difference between the edit-script
generated by PUL-Diff ignoring all perfect matches (to simulate
matching two sequences of unmatched subtrees), the edit-script
generated by PUL-Diff, and an optimal edit-script.

Results for different sequence lengths (from 10 to 500) and dif-
ferent values for k are reported in Figure 3. Change ratio does
not significantly influence the results, we present only results for
change ratio 0.5. In each plot the left (resp. right) side represents
the result obtained without (resp. with) perfect matches. Indepen-
dently from sequence length and value of k, the selected matches
are on average very precise. the median of the cost difference w.r.t.
the optimal solution is always below 5%. Increasing the value of
k above 3, when perfect matches are employed, has negligible im-
pact. When perfect matches are not employed, increasing the value
of k to about half the length of the sequence yields to edit-scripts
as expensive as those identified with perfect matches. However, the
average distance between the edit-script obtained with/without per-
fect matches is extremely small (1-2%) Surprisingly, increasing the
length of the sequence reduces the distance between the computed
edit-scripts and the optimal one, thanks to the HIPS algorithm.

Therefore, the proposed pql-gram-based distance metric, when
paired with an HIPS-based top k matches pruning algorithm, is very
reliable. Moreover, we stress that PUL-Diff benefits from perfect
matches and thus the length of the sequences compared by the al-
gorithm is much shorter.

7.2.3 Performance Test
This test aims at empirically determining the time complexity of

PUL-Diff for different document sizes and change ratios, as well as
contrasting the edit-script cost and computational time of PUL-Diff
with the state of the art. The PULs generating the target documents
contain random del, insd, repN, ren and repV operations.

We identified several interesting XML differencing tools for or-
dered models in the literature, including XyDiff [11], DeltaXML
[13], MMDiff [7], XMDiff [7], and RTED [17], the best perform-
ing exact algorithm. On our test machine RTED requires more than
3 minutes and 14GB of RAM for differencing two 256KB docu-
ments. Other exact algorithms (i.e., MMDiff and XMDiff) require
even more time. For this reason, we considered only XyDiff (C++

version) and DeltaXML 6.4.1 (Linux 14-days trial version, limited
to 1 million nodes, roughly, 7MB). The edit-script produced by
these algorithms can be contrasted with ours without unfair advan-
tages. Specifically, w.r.t. our cost model, the relevant differences
are that the repC operation exist only in PUL-Diff and that a move
operation exists only in XyDiff. Since in this test we disabled the
generation of repC operations, and since XyDiff devotes a great
effort to minimize the number of moves, we just consider the cost
of XyDiff move operations as the cost of the equivalent deletion
and insertion operations. Moreover, we double checked that the
XyDiff edit-script costs are fair by contrasting the presented results
with the results obtained disabling the generation of moves in the
PULs used to produce the target documents, and employing only
randomly generated names, values, and inserted/replacement sub-
trees to almost avoid move operations in the XyDiff edit-scripts.

We report in Figure 4 the cost difference between a minimum-
cost edit-script (the one used to generate the target document) and
the cost of the edit-script generated by PUL-Diff, XyDiff, and Delta-
XML. We consider different change ratios and document sizes. As
can be observed in the figure, independently from the change ra-
tio, both PUL-Diff and DeltaXML produce almost minimal edit-
scripts, with a slight advantage for PUL-Diff. XyDiff, instead, pro-
duces far worse results. With very small documents (up to 1MB)
its quality is comparable with that of the other two algorithms, but
usually the generated edit-script is far from optimal. This result
does not seem to depends on the XyDiff algorithm implementation
as [10, 11] consider small documents and report that XyDiff can
compute an edit-script 5 times more expensive than the considered
reference (on average 2 times more expensive).

In Figure 4, we contrast also the time required for differencing
two documents with different sizes and change ratios. We can ob-
serve that XyDiff is roughly 2 to 5 times slower than PUL-Diff
and that both algorithms have an almost linear time complexity.
As expectable, the change ratio and the two document sizes in-
fluence the expected computational time. For what concerns PUL-
Diff, as the change ratio increases, the number of perfectly matched
subtrees decreases, thus increasing the time spent in the top-down
refinement stage. The result also shows that the quality of the
DeltaXML edit-scripts is counterbalanced by an exponential com-
putational time, which is evident for a change ratio of at least 0.3.

8. CONCLUSIONS
In the paper we propose an algorithm for synthetising the changes

between two XML documents as PULs. The choice of PULs as
edit-scripts influences the algorithm, since no move operator is con-
sidered, while internal node relabelings and changes at leaves are
detected. No assumptions are made on the trees to be compared
(e.g., few duplicate node labels, as in [9]). The results of the ex-
perimental evaluation against state of the art approaches are very

1640

0

5

10

15

20

25

1 3 5
TopK

O
p
ti
m

a
l
S

o
lu

ti
o
n
 D

is
ta

n
c
e
 (

%
)

1 3 5
TopK

(a) Sequence length 10.

0

2

4

6

8

 1 3 5 10 20
TopK

O
p
ti
m

a
l
S

o
lu

ti
o
n
 D

is
ta

n
c
e
 (

%
)

 1 3 5 10 20
TopK

(b) Sequence length 50.

0

0.5

1

1.5

2

2.5

3

3.5

 1 3 5 10 20 30 50100
TopK

O
p
ti
m

a
l
S

o
lu

ti
o
n
 D

is
ta

n
c
e
 (

%
)

 1 3 5 10 20 30 50100
TopK

(c) Sequence length 500.

Figure 3: Window-based sequence matching with change ratio 0.5. Cost distance from an optimal solution.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Document Size (MB)

T
im

e
 (

s
)

XyDiff

DeltaXML

PULDiff

(a) Change ratio 0.1, time.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Document Size (MB)

T
im

e
 (

s
)

 XyDiff

DeltaXML

PULDiff

(b) Change ratio 0.3, time.

0 5 10 15 20 25
0

50

100

150

200

250

Document Size (MB)
T

im
e

 (
s
)

 XyDiff

DeltaXML

PULDiff

(c) Change ratio 0.5, time.

100

200

300

XyDiff

0 5 10 15 20 25
0

10

20

30

40

50

Document Size (MB)

O
p

ti
m

a
l
S

o
lu

ti
o

n
 D

is
ta

n
c
e

 (
%

)

 XyDiff

DeltaXML

PULDiff

(d) Change ratio 0.5, cost.

Figure 4: Differencing time and cost-distance from an optimal solution w.r.t. document size.

good, both in terms of time and edit-script cost. As future work
we plan to extend the proposal for supporting all the node kinds
(e.g., attributes and comments), to refine the pql-grams based edit-
distance estimation with a deeper inquiry of its formal properties,
and to perform experiments on the spatial complexity.

9. REFERENCES
[1] N. Augsten, M. Böhlen, and J. Gamper. Approximate

Matching of Hierarchical Data Using pq-Grams. In VLDB,
pages 301–312, 2005.

[2] N. Augsten, M. Böhlen, and J. Gamper. The pq-gram
Distance between Ordered Labeled Trees. ACM Transactions
on Database Systems, 35(1):4, 2010.

[3] F. Cavalieri. Updates on XML Documents and Schemas. PhD
thesis, 2013. http://felix.disi.unige.it/
downloads/thesisFC/phdthesis.pdf.

[4] F. Cavalieri, G. Guerrini, and M. Mesiti. Dynamic Reasoning
on XML Updates. In EDBT, pages 165–176, 2011.

[5] F. Cavalieri, G. Guerrini, and M. Mesiti. Decoupled
Execution of XML Updates. Submitted, 2012.

[6] F. Cavalieri, A. Solimando, and G. Guerrini. Synthetising
Changes in XML Documents as PULs Extended
Experiments. http://felix.disi.unige.it/
downloads/puldiff/experiments.pdf.

[7] S. S. Chawathe. Comparing Hierarchical Data in External
Memory. In VLDB, pages 90–101, 1999.

[8] S. S. Chawathe and H. Garcia-Molina. Meaningful Change
Detection in Structured Data. In SIGMOD, pages 26–37,
1997.

[9] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change Detection in Hierarchically Structured
Information. In SIGMOD, pages 493–504, 1996.

[10] G. Cobena, T. Abdessalem, and Y. Hinnach. A Comparative
Study for XML Change Detection. In BDA, 2002.

[11] G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes
in XML Documents. In ICDE, pages 41–52, 2002.

[12] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An
Optimal Decomposition Algorithm for Tree Edit Distance.
ACM Transactions on Algorithms, 6(1), 2009.

[13] R. L. Fontaine. A Delta Format for XML: Identifying
Changes in XML Files and Representing the Changes in
XML. In XML Europe, 2001.

[14] G. Jacobson and K.-P. Vo. Heaviest Increasing/Common
Subsequence Problems. In Combinatorial Pattern Matching,
pages 52–66, 1992.

[15] W. Miller and E. Myers. A File Comparison Program.
Software: Practice and Experience, 15(11), 1985.

[16] E. Myers. An O (ND) Difference Algorithm and its
Variations. Algorithmica, 1(2):251–266, 1986.

[17] M. Pawlik and N. Augsten. RTED: A Robust Algorithm for
the Tree Edit Distance. PVLDB, 5(4):334–345, 2011.

[18] W3C. XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10/, 2011.

[19] Y. Wang, D. J. DeWitt, and J. Cai. X-Diff: An Effective
Change Detection Algorithm for XML Documents. In ICDE,
pages 519–530, 2003.

[20] H. Xu, Q. Wu, H. Wang, G. Yang, and Y. Jia. KF-Diff+:
Highly Efficient Change Detection Algorithm for XML
Documents. In CoopIS/DOA/ODBASE, pages 1273–1286,
2002.

[21] K. Zhang and D. Shasha. Simple Fast Algorithms for the
Editing Distance Between Trees and Related Problems.
SIAM J. Comput., 18(6):1245–1262, 1989.

1641

