
SPARSI: Partitioning Sensitive Data amongst Multiple

Adversaries

Theodoros Rekatsinas

University of Maryland

thodrek@cs.umd.edu

Amol Deshpande

University of Maryland

amol@cs.umd.edu

Ashwin Machanavajjhala

Duke University

ashwin@cs.duke.edu

ABSTRACT
We present SPARSI, a novel theoretical framework for partition-
ing sensitive data across multiple non-colluding adversaries. Most
work in privacy-aware data sharing has considered disclosing sum-
maries where the aggregate information about the data is preserved,
but sensitive user information is protected. Nonetheless, there are
applications, including online advertising, cloud computing and
crowdsourcing markets, where detailed and fine-grained user data
must be disclosed. We consider a new data sharing paradigm and
introduce the problem of privacy-aware data partitioning, where a
sensitive dataset must be partitioned among k untrusted parties (ad-
versaries). The goal is to maximize the utility derived by partition-
ing and distributing the dataset, while minimizing the total amount
of sensitive information disclosed. The data should be distributed
so that an adversary, without colluding with other adversaries, can-
not draw additional inferences about the private information, by
linking together multiple pieces of information released to her. The
assumption of no collusion is both reasonable and necessary in the
above application domains that require release of private user in-
formation. SPARSI enables us to formally define privacy-aware
data partitioning using the notion of sensitive properties for mod-
eling private information and a hypergraph representation for de-
scribing the interdependencies between data entries and private in-
formation. We show that solving privacy-aware partitioning is, in
general, NP-hard, but for specific information disclosure functions,
good approximate solutions can be found using relaxation tech-
niques. Finally, we present a local search algorithm applicable to
generic information disclosure functions. We conduct a rigorous
performance evaluation with real-world and synthetic datasets that
illustrates the effectiveness of SPARSI at partitioning sensitive data
while minimizing disclosure.

1. INTRODUCTION
The landscape of online services has changed significantly in

the recent years. More and more sensitive information is released
on the Web and processed by online services. The most common
paradigm to consider are people who rely on online social networks
to communicate and share information with each other. This leads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to
present their results at 7KH���WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�9HU\�/DUJH�
'DWD�%DVHV��$XJXVW���WK�����WK�������5LYD�GHO�*DUGD��7UHQWR��,WDO\.
Proceedings of the VLDB Endowment, Vol. 6, No. 13
Copyright 2013 VLDB Endowment 2150-8097/13/��... $ 10.00.

to a diverse collection of voluntarily published user data. Online
services such as Web search, news portals, and recommendation
and e-commerce systems, collect and store this data in their effort to
provide high-quality personalized experiences to a heterogeneous
user base. Naturally, this leads to increased concerns related to an
individual’s privacy and the possibility of private personal informa-
tion being aggregated by untrusted third-parties such as advertisers.

A different application domain that is increasingly popular is
crowdsourcing markets. Tasks, typically decomposed into micro-
tasks, are submitted by users to a crowdsourcing market and are
fulfilled by a collection of workers. The user needs to provide
each worker with the necessary data to accomplish each micro-
task. However, this data may contain information that is sensitive
and care must be taken not to disclose any more sensitive informa-
tion than minimally needed to accomplish the task. Consider, for
example, the task of labeling a dataset with information about the
location of different individuals to be used as input to a machine
learning algorithm. Since the cost of hand-labeling the dataset is
high, submitting this task to a crowdsourcing market provides an
inexpensive alternative. However, the dataset might contain sen-
sitive information about the trajectories the individuals follow and
the structure of the social network they form. Hence, we must per-
form a clever partitioning of the dataset to the different untrusted
workers to avoid disclosing sensitive information. Observe that,
under this paradigm, the sensitive information in the dataset is not
necessarily associated with a particular data entry.

Similarly with the rise of cloud computing, increasing volumes
of private data are being stored and processed on untrusted servers
in the cloud. Even if the data is stored and processed in an en-
crypted form, an adversary may be able to infer some of the private
information by aggregating, over a period of time, the information
that is available to her (e.g., password hashes of users, workload
information). This has led security researchers to recommend split-
ting data and workloads across systems or organizations to remove
such points of compromise [27, 7].

In all applications presented above, a party, called publisher, is
required to distribute a collection of data (e.g., user information)
to many different third parties. The utility in sharing data results
either from the improved quality of personalized services or from
the cost reduction in fulfilling a decomposable task. The sensitive
information is often not limited to the identity of a particular entity
in the dataset (e.g., a user using a social network based service), but
rather arises from the combination of a set of data items. It is these
sets we would like to partition across different adversaries.

1.1 Illustrative Examples
We next use two real-world examples to show how utility can be

obtained via partitioning the data, how sensitive information is dis-
closed and why there is no incentive for the adversaries to collude.

1594

EXAMPLE 1. Consider a scenario where users share their lo-
cations via check-ins at different time instances either with location-
based data aggregators like location-based social networks (e.g.,
Brightkite [1]) and Gowalla [2]) or location-based recommenda-
tion systems, powered by companies like Google, Yelp and Yahoo.
User location data is of particular interest to advertisers, as ana-
lyzing it can provide them with a detailed profile of the user. Using
such data allows advertisers to devise efficient personalized mar-
keting strategies. Hence, they are willing to pay large amounts of
money to the data publisher for user information. On the other
hand, the user receives personalized services (e.g., notifications for
friends near-by) or recommendations for locations of interest.

The utility for publishing this data comes from both the money
advertisers are willing to pay and the quality of the recommen-
dation the user receives. Sharing data with different third-parties
yields different amounts of utility, since advertisers may be inter-
ested only in a particular subset of user check-ins. Also, recom-
mendation quality may vary across different systems. For example,
Google offers more accurate recommendations for sparsely popu-
lated regions while Yelp is more accurate for urban areas.

However, analyzing the locations of multiple users collectively
can reveal information about the friendship links between users,
thus, revealing the structure of the social network. It was recently
shown [4] that simple trajectory similarity techniques can be very
accurate at predicting the existence of a friendship link between
two users. Thus, the disclosure of sensitive information can be
computed using the probability that a friendship link exists given
the revealed data. Disclosing the structure of the social network
might not be desirable, as it can be used for viral marketing pur-
poses, which may drive users away from using the services de-
scribed above. Thus, a natural tradeoff exists between publishing
user data and receiving high monetary utility, versus keeping this
data private to ensure the popularity of the social network. We note
that there is no incentive for advertisers and location-based service
providers to collude due to conflicting monetary interests. Further,
such collusion will likely run afoul of the two-party agreements be-
tween the publisher and the service providers.

This example shows how an adversary may infer some sensitive
information that is not explicitly mentioned in the dataset but is
related to the provided data and can be inferred only when partic-
ular entries of the dataset are collectively analyzed. Not revealing
all those entries together to an adversary prevents disclosure of the
sensitive information. We further exemplify this using a crowd-
sourcing application.

EXAMPLE 2. Consider outsourcing medical transcription data.
Medical transcription is a vital part of healthcare operations. Ac-
curate, timely transcription of daily notes such as operating room
reports, and radiology reports is essential for communication among
healthcare providers, and has become important in the develop-
ment of electronic health records. Due to cost-saving policies health-
care providers often outsource their transcription [5] by dividing
the task into micro-tasks submitted to multiple workers.

Utility is obtained by outsourcing the task that needs to be com-
pleted, and can be modeled by a function that takes into account
both the quality and cost for each worker. Medical records contain
confidential information and if all fields in a record are revealed to
the same worker, highly sensitive information is disclosed. How-
ever, if each record is partitioned in a way that different workers
are responsible for transcribing different fields of it, no sensitive in-
formation is disclosed. Patients, healthcare providers and doctors
cannot be linked with confidential information, such as a disease or
a particular treatment. Disclosure of sensitive information can be

modeled using a step function that captures the fact that if certain
fields are disclosed together sensitive information is revealed.

In scenarios as the one described above, the probability that ad-
versaries who may collude will be assigned to the same task is mi-
nuscule due to the large number of anonymous available workers.
Moreover, collusion is regulated by the HIPPAA’s privacy regula-
tions [5], which prevents workers from hiring subcontractors and
sharing the data with other parties.

The second example illustrates how distributing a dataset allows
one to achieve a particular task, while minimizing the disclosure of
sensitive information.

1.2 Problem Definition and Contributions
Motivated by applications such as the ones presented above, we

introduce the problem of privacy-aware partitioning of a dataset,
where our goal is to partition a dataset among k untrusted parties
and to maximize either user’s utility, or the third parties’ utilities,
or a combination of those. Further, we would like to do this while
minimizing the total amount of sensitive information disclosed.

Most of the previous work has either considered sharing pri-
vacy-preserving summaries of data, where the aggregate informa-
tion about the population of users is preserved, or has bypassed the
use of personal data and its disclosure to multiple advertisers [25,
22, 15]. These approaches focus on worst-case scenarios assum-
ing arbitrary collusion among adversaries. Therefore, all adver-
saries are combined and treated as a single adversary. However,
this strong threat model does not allow publishing of fine-grained
information needed in many applications.

Other approaches have explicitly focused on online advertising,
and have developed specialized systems that limit information dis-
closure by storing sensitive information on the user’s side [14, 26].
While effective, the proposed techniques are not applicable to other
data partitioning scenarios, like crowdsourcing or cloud computing.
Finally, Krause et al. have studied how the disclosure of a subset
of the attributes of a data entry can allow access to fine-grained in-
formation [18]. While considering the utility-disclosure tradeoff,
their work does not take into account the interdependencies across
different data entries and assumes a single adversary (third party).

In this work we propose SPARSI, a new framework that allows
us to formally reason about leakage of sensitive information in sce-
narios such as the ones presented above, namely, setups where we
are given a dataset to be partitioned among a set of non-colluding
adversaries in order to obtain some utility. We consider a general-
ized form of utility that captures both the utility that each adversary
obtains by receiving part of the data and the user’s personal utility
derived by fulfilling a task. We elaborate more on this generaliza-
tion in the next section. This raises a natural tradeoff between max-
imizing the overall utility while minimizing information disclosure.
We provide a formal definition of the privacy-aware data partition-
ing problem, as an optimization of the aforementioned tradeoff.

While non-collusion results in a somewhat weaker threat model,
we argue that it is a reasonable and practical assumption in a vari-
ety of scenarios, including the ones discussed above. In setups like
online advertising there is no particular incentive for adversaries to
collude, due to conflicting monetary interests. Collusion in crowd-
sourcing and cloud computing scenarios is prevented by the corre-
sponding privacy laws and two-party agreements. In crowdsourc-
ing scenarios the probability that adversaries who may collude will
be assigned to the same task is minuscule due to the large num-
ber of anonymous available workers. Attempts to collude can often
be detected easily, and the possibility of strict penalization (by the
crowdsourcing market) provides additional disincentive to collude.

1595

Finally, in most of these situations the assumption of no collusion
is a necessary one for accomplishing the task.

The main contributions of this paper are as follows:
• We introduce the problem of privacy-aware data partitioning

across multiple adversaries, and analyze its complexity. To
our knowledge this is the first work that addresses the problem
of minimizing information leakage when partitioning a dataset
across multiple adversaries.

• We introduce SPARSI, a rigorous framework based on the no-
tion of sensitive properties that allows us to formally reason
about how information is leaked and the total amount of infor-
mation disclosure. We represent the interdependencies between
data and sensitive properties using a hypergraph and we show
how the problem of privacy-aware partitioning can be cast as
an optimization problem.

• We analyze the problem for specific families of information dis-
closure functions, including step and linear functions, and show
how good solutions can be derived by using relaxation tech-
niques. Furthermore, we propose a set of algorithms, based on
a generic greedy randomized local search algorithm, for obtain-
ing approximate solutions to this problem under generic fami-
lies of utility and information disclosure functions.

• Finally, we demonstrate how, using SPARSI, one can distribute
user-location data, like in Example 1, to multiple advertisers
while ensuring that almost no sensitive information about po-
tential user friendship links is revealed. We experimentally ver-
ify the performance of the proposed algorithms for both syn-
thetic and real-world datasets. We compare the proposed greedy
local search algorithm against approaches tailored to specific
disclosure functions, and show that it is capable of producing
solutions that are close to the optimal.

2. SPARSI FRAMEWORK
In this section we start by describing the different components

of SPARSI. More precisely, we show how one can formally reason
about the sensitive information contained in a dataset by introduc-
ing the notion of sensitive properties. Then, we show how to model
the interdependencies between data entries and sensitive properties
rigorously, and how to reason about the leakage of sensitive infor-
mation in a principled manner.

2.1 Data Entries and Sensitive Information
Let D denote the dataset to be partitioned among different adver-

saries. Moreover, let A denote the set of adversaries. We assume
that D is comprised of data entries d

i

2 D that disclose mini-
mal sensitive information if revealed alone. To clarify this consider
Example 1 (Section 1.1) where each data entry is the check-in lo-
cation of a user. The user is sharing this information voluntarily
with the social network service in exchange for local advertisement
services, hence, this entry is assumed not to disclose sensitive infor-
mation. In Example 2, the data entries to be published are the fields
of the prescriptions. Observe that if the disease field is revealed in
isolation, no information is leaked about affected individuals.

However, revealing several data entries together discloses sensi-
tive information. We define a sensitive property to be a property
that is related to a subset of data entries but not explicitly repre-
sented in the data set, and that can be inferred if the data entries
are collectively analyzed. Let P denote the set of sensitive proper-
ties that are related to data entries in D. To formalize this abstract
notion of indirect information disclosure, we assume that each sen-
sitive property p 2 P is associated with a variable (either numerical
or categorical) V

p

with true value v⇤
p

. Let D
p

⇢ D be the smallest

Sensitive Properties Data Entries
checkIn<i1, l2>
checkIn<i1, l2>
checkIn<i1, l3>
checkIn<i2, l2>
checkIn<i2, l2>
checkIn<i2, l3>
checkIn<i3, l3>
checkIn<i3, l1>
checkIn<i3, l1>

p1: friends<i1, i2>
p2: friends<i1, i3>
p3: friends<i2, i3>

p1 p3

p2
(a) Dependency Bipartite Graph (b) Dependency Hypergraph

Figure 1: A dependency graph between data entries and sensi-
tive properties.

set of data entries from which an adversary can infer the true value
v⇤
p

of V
p

with high confidence, if all entries in D
p

are revealed to
her. We assume that there is a unique such D

p

corresponding to
each property p. We say that data entries in D

p

disclose informa-
tion about property p 2 P and that information disclosure can be
modeled as a function over D

p

(see Section 2.2).
We assume that sensitive properties are specified by an expert

and the dependencies between data entries in D and properties in
P , via sets D

p

, 8p 2 P , are represented as an undirected bipar-
tite graph, called a dependency graph. Returning to the example
applications presented above we have the following: In Example 1
the sensitive properties correspond to the friendship links between
users, and the associated datasets D

p

correspond to the check-in
information of the pairs of users participating in friendship links.
In Example 2, the sensitive properties correspond to the links be-
tween a patient’s id and a particular disease, or a doctor’s id and
particular medication. In general, it has been shown that data min-
ing techniques can be used to determine the dependencies between
data items and sensitive properties [21].

Let G
d

denote such a dependency graph. G
d

has two types of
nodes, i.e., nodes P that correspond to sensitive properties and
nodes D that correspond to data entries. An edge connects a data
entry d 2 D with a property p 2 P only if d can potentially dis-
close information about p. Alternatively, we can use an equivalent
hypergraph representation, that is easier to reason about in some
cases. Converting the dependency graph G

d

into an equivalent de-
pendency hypergraph is simply done by mapping each property
node into a hyperedge. Figure 1 shows an example of a bipartite
graph and its equivalent hypergraph, corresponding to the social-
network scenario presented in Example 1 (Section 1.1). Since our
goal is not to disclose any information about friendship links in
the social network, each sensitive property correspond to a friend-
ship link in the network. The dependencies between check-ins and
friendship links are captured by the edges in the bipartite graph.

2.2 Information Disclosure
We model the information disclosed to an adversary a 2 A us-

ing a vector valued function f
a

: P(D) ! [0, 1]|P |, which takes
as input the subset of data entries published to an adversary, and
returns a vector of disclosure values; one per sensitive property.
That is, f

a

(S
a

)[i] denotes the information disclosed to adversary
a 2 A about the ith property when a has access to the subset S

a

of
data entries. We assume that information disclosure takes values in
[0, 1], with 0 indicating no disclosure and 1 indicating full disclo-
sure. Generic disclosure functions, including posterior beliefs, and
distribution distances can be naturally represented by SPARSI.

1596

We define the overall disclosure function f as an aggregate of
the disclosure functions of all adversaries. Before presenting the
formal definition, we define the assignment set, given as input to f .

DEFINITION 1 (ASSIGNMENT SET). Let x
da

be an indica-
tor variable set to 1 if data entry d 2 D is published to adver-
sary a 2 A. We define the assignment set S to be the set of all
variables x

da

, i.e., S = {x11, · · · , x1|A|, · · · , x|D||A|}, and the
assignment set S

a

corresponding to an adversary a 2 A to be
the set of indicator variables corresponding to adversary a, i.e.,
S
a

= {x1a, x2a, · · · , x|D|a}.

Worst Disclosure. The overall disclosure can be expressed as:

f1(S) = max
a2A

(kf
a

(S
a

)k1) (1)

Using the infinity norm accounts for the worst case disclosure across
properties. Thus, full disclosure of at least one sensitive property
suffices to maximize the information leakage. This function is in-
different to the total number of sensitive properties that are fully
disclosed in a particular partitioning and gives the same score to all
that have at least one fully disclosed property.
Average Disclosure. Considering the sensitive information asso-
ciated with each sensitive property in isolation is natural in many
real-world scenarios like Examples 1 and 2. However, there are
cases where quantifying the amount of disclosed information re-
quires reasoning over sensitive properties in a collective manner.
We specifically consider the average function and introduce a vari-
ation of the overall disclosure function that considers the total dis-
closure per adversary. We replace the infinity norm in the equation
above with the L1 norm:

f
L1(S) = max

a2A

(

kf
a

(S
a

)k1
|P |) (2)

Observe that both Equation (1) and Equation (2) consider the
maximum over the disclosure across adversaries, i.e., they can be
written as:

f(S) = max
a2A

f 0
a

(S
a

) (3)

where f 0
a

(S
a

) = kf
a

(S
a

)k1 or f 0
a

(S
a

) =

kfa(Sa)k1
|P | .

For example, consider publishing single nucleotide polymorphisms
(SNP) genotyping microarray data. One should avoid disclosing
the identity of an individual whose trace is present in the data, as
well as, any information related to particular genetic traits of that
individual. Recent work has shown how one can determine whether
individuals are in a complex genomic DNA mixture by analyzing
SNP genotyping microarray data [16]. However, one also needs
to hide any information related to particular genetic traits. To cap-
ture both kinds of sensitive information, sensitive properties need
to model how SNP data entries are connected with different SNP
groups related to different genetic traits. An adversary can infer the
identity of an individual based on a function over all the sensitive
properties (here groups of SNPs) rather than each individual sen-
sitive property. Thus, it makes sense to also consider measures of
overall disclosure that are not just worst case over the disclosures
of each individual sensitive property.

2.3 Overall Utility
Let u denote the utility derived by partitioning the dataset across

multiple adversaries. We have that u : P(D ⇥ A) ! R, where
P(D ⇥ A) denotes the powerset of possible data-to-adversary as-
signments. Next we present how this utility function can be gener-
alized to capture the adversaries’ and publisher’s utility.

As discussed before, an adversary’s utility is obtained by acquir-
ing part of the dataset D (see Example 1) and the publisher’s utility

is derived by fulfilling a particular task that requires partitioning
the data (see Example 2). Under many real world examples these
two different kinds of utility can be unified under a single utility.
Consider Example 1. Typically, advertisers pay higher amounts for
data that maximize their individual utility. Thus, maximizing the
utility of each individual advertiser maximizes the utility (maybe
monetary) of the data publisher as well.

Based on this observation we unify the two types of utilities un-
der a single formulation based on the utility of adversaries. Intu-
itively, we would expect that the more data an adversary receives,
the less the observation of a new, previously unobserved, data entry
would increase the gain of the adversaries. This notion of dimin-
ishing returns is formalized by the combinatorial notion of sub-
modularity and is shown to hold in many real-world scenarios [23,
18]. More formally, a set function G : 2

V ! R mapping subsets
A ✓ V into the real numbers is called submodular [6], if for all
A ✓ B ✓ V , and v0 2 V \B, it holds that G(A[{v0})�G(A) �
G(B [{v0})�G(B), i.e., adding v0 to a set A increases G more
than adding v0 to a superset B of A. F is called nondecreasing, if
for all A ✓ B ✓ V it holds that G(A) G(B).

Let u
a

be a set function that quantifies the utility of each adver-
sary a. As mentioned above, we assume that u

a

is a nondecreasing
submodular function. For convenience we will occasionally drop
the nondecreasing qualification in the remainder of the paper. Let
U

A

denote the set of all utility functions for a given set of adver-
saries A. Let u denote the overall utility associated with publishing
the data (i.e., without considering the cost). The function u can
be defined as an aggregate function of all utilities u

a

2 U
A

. For
example the overall utility may be defined as a linear combination,
i.e., a weighted sum, of all functions in U

A

, following the form:

u(S) =
X

a2A

w
a

u
a

(S
a

) (4)

where S and S
a

are defined in Definition 1. Because all functions
in U

A

are submodular, u will also be submodular, since it is ex-
pressed as a linear combination of submodular functions [10].

An example of a submodular function u
a

is an additive function.
Assume that each data entry in d 2 D has some utility w

da

for an
adversary a 2 A. We have that u

a

(S
a

) =

P
d2D

w
da

x
da

, where
x
da

is an indicator variable that takes value 1 when data entry d is
revealed to adversary a and 0 otherwise. For the remainder of the
paper we will assume that utility u is normalized so that u 2 [0, 1].

3. PRIVACY-AWARE DATA PARTITIONING
In this section, we describe two formulations of the privacy-

aware partitioning problem. We show how both can be expressed
as maximization problems that are, in general, NP-hard to solve.
We consider a dataset D that needs to be partitioned across a given
set of adversaries A. We assume that the functions to compute the
overall utility and information disclosure are given. Let these func-
tions be denoted by u and f respectively.

In many cases publishing the data to adversaries also incurs a
monetary cost (see Example 2). Ideally, we wish to maximize the
utility while minimizing the disclosure and the cost; however, there
is a natural tradeoff between the two optimization goals. A tradi-
tional approach is to set a requirement on information disclosure
and cost while optimizing the utility. Accordingly we can define
the following optimization problem.

DEFINITION 2 (DISCBUDGET). Let D be a set of data en-
tries, A be a set of adversaries, and ⌧

I

be a budget on informa-
tion disclosure. This formulation of the privacy-aware partitioning

1597

problem finds a data entry to adversary assignment set S that max-
imizes u(S) under constraint f(S) ⌧

I

. More formally we have
the following optimization problem:

maximize
S2P(D⇥A)

u(S)

subject to f(S) ⌧
I

,
X

k

a=1
x
da

 t, 8d 2 D,

x
da

2 {0, 1}.

(5)

where x
da

and S are defined in Definition 1 as before and t � 1

is the maximum number of adversaries to whom a particular data
entry can be published. The upper bound t is used to model cases
where the number of assignments per data entry needs to be re-
stricted due to cost, e.g., monetary cost in crowdsourcing or cloud-
computing applications.

This optimization problem already captures our desire to reduce
the information disclosure while increasing the utility. However,
the optimization objective is agnostic to information disclosure.
Considering only the utility in the objective, does not differenti-
ate among solutions with the same utility that satisfy the disclosure
constraint but have significantly different disclosures, i.e., there is
no preference for solutions with smaller disclosure. To overcome
this, we consider a different formulation of the privacy-aware data
partitioning problem where we seek to maximize the difference be-
tween the utility and the information disclosure functions. We con-
sider the Lagrangian relaxation of the previous optimization prob-
lem. We assume that both functions are measured using the same
unit. We have the following:

DEFINITION 3 (TRADEOFF). Let D be a set of data entries,
A be a set of adversaries, and ⌧

I

be a budget on information disclo-
sure. This formulation of the privacy-aware partitioning problem
finds a data entry to adversary assignment S that maximizes the
tradeoff between the overall utility and the overall information dis-
closure, i.e., u(S)+�(⌧

I

�f(S)), where � is a nonnegative weight.
More formally we have the following optimization problem:

maximize
S2P(D⇥|A|)

u(S) + �(⌧
I

� f(S))

subject to f(S) ⌧
I

,
X

k

a=1
x
da

 t, 8d 2 D,

x
da

2 {0, 1}.

(6)

where x
da

and S are defined in Def. 1 and t is the maximum num-
ber of adversaries to whom a data entry can be published.

In both cases we modelled the cost using an upper bound on the
number of assignments for each data entry. Both formulations can
be extended to incorporate more sophisticated linear cost functions.
For example, one can consider an additive cost model, defined as:

c(S) =
X

a2A

X
d2Sa

c
da

(7)

where c
da

denotes the cost of assigning data item d to adversary a
and S and S

a

are defined in Definition 1. In the case of TRADE-
OFF, the objective retains its structural properties, e.g., submodu-
larity, since the cost function has a modular form [6]. We focus
our discussion on Definitions 2 and 3 for clarity. We prove that
both DISCBUDGET and TRADEOFF formulations of the privacy-
aware data partitioning problem are NP-hard by reducing them to
the problem of maximizing a submodular function under uniform
matroid constraints [20].

THEOREM 1. Both DISCBUDGET and TRADEOFF formulations
of the privacy-aware data partitioning problem are, in general, NP-
hard to solve.

PROOF. The problem is in NP since the size of every feasible
solution is polynomially bounded in the size of the given instance
and the objective can be computed in polynomial time. We now
show it is NP-hard. Consider the problem of maximizing a sub-
modular function u over a set of items S under k uniform matroid
constraints, where each matroid M

i

, 8i 2 [k] has rank r
i

. We now
reduce this NP-hard problem [20] to computing a solution for our
problem.

We create the following instance of the privacy-aware data parti-
tioning. Fix the set of adversaries A to contain a single adversary,
i.e., |A| = 1, a set of data entries D such that D = S, and a
set of sensitive properties P over the data entries in D, such that
|P | = k and the i-th property contains exactly r

i

+ 1 items from
D. Let D

i

⇢ D be the set of data entries associated with property
i 2 P . Moreover, let the utility function be u, and, let the informa-
tion disclosure f be a step function of the following form: If all the
data entries corresponding to a particular sensitive property p 2 P
are revealed to the same adversary the disclosure is 1 otherwise 0.
Based on this form of f our objective is equivalent to maximiz-
ing utility alone. In particular we can replace the upper disclosure
threshold constraint in both formulations with the following linear
constraint

P
d2Di

x
da

< |D
i

|, 8i 2 P . We also set t = 1. Clearly,
this is a valid instance for privacy-aware partitioning. Notice that
each of the linear constraints above can be expressed as a uniform
matroid constraint. In fact the i-th constraint will correspond to a
matroid of rank |D

i

| � 1 = r
i

. It is easy to see that a solution
of this instance of the privacy-aware data partitioning problem is a
valid solution for the problem of maximizing the submodular func-
tion u under k uniform matroid constraints. This completes the
reduction.

In the remainder of the paper we describe efficient heuristics for
solving the partitioning problem – we present approximation algo-
rithms for specific information disclosure functions in Section 4,
and a greedy local-search heuristic for the general problem in Sec-
tion 5. Moreover, we present an empirical comparison between
DISCBUDGET and TRADEOFF in Section 6, showing that TRADE-
OFF yields solutions comparable to DISCBUDGET in terms of util-
ity, but with significantly smaller disclosure. Due to space con-
straints, henceforth, we will only focus on the TRADEOFF formu-
lation. All of our algorithms also work for the DISCBUDGET for-
mulation (with minimal modifications).

4. ANALYZING SPECIFIC CASES OF IN-
FORMATION DISCLOSURE

In this section, we present approximation algorithms when the
information disclosure function takes the following special forms:
1) step functions, 2) linearly increasing functions. The utility func-
tion is assumed to be submodular.

4.1 Step Functions
Information disclosure functions that correspond to a step func-

tion can model cases when each sensitive property p 2 P is either
fully disclosed or fully private. A natural application of step func-
tions is the crowdsourcing scenario shown in Example 2. When
certain fields of a medical transcription, e.g., name and diagnosis,
or gender and the zip code and birth date, are revealed together,
the corresponding sensitive property is disclosed. We now describe
such functions formally. Let D

p

⇢ D be the set of data entries as-
sociated with property p 2 P . Property p is fully disclosed only if

1598

D
p

is published in its entirety to an adversary. This can be modeled
using a set of step functions f

a

2 F :

f
a

(D
a

)[p] =

⇢
1 if D

p

✓ D
a

0 if D
p

6✓ D
a

Observe that information disclosure is minimized (and is equal to
0) when no adversary gets all the elements in D

p

, for all p. For
step functions we consider worst case disclosure, since ideally we
do not want to fully disclose any property.

Considering DISCBUDGET and TRADEOFF formulations sep-
arately is not meaningful for step functions. Since disclosure can
only take the extreme values {0, 1}, the maximum disclosure thresh-
old, ⌧

I

, should be set to 0 in TRADEOFF, as full disclosure of
a property always penalizes the utility. One can reformulate the
problem and seek for solutions that maximize the utility under the
constraint that information disclosure is 0, i.e., no property exists
such that all its data entries are published to the same adversary.

Given these families of information disclosure functions and a
submodular utility function, both formulations of privacy-aware
data partitioning can be represented as an integer program (IP):

maximize
S2P(D⇥|A|)

u(S)

subject to
X

d2Dp
x
da

< |D
p

|, 8p 2 P, 8a 2 A,

X
k

a=1
x
da

 t, 8d 2 D,

x
da

2 {0, 1}.

(8)

where t is the maximum number of adversaries to whom a particu-
lar data entry can be published.

The first constraint enforces that there is no full disclosure of a
sensitive property. The partitioning constraint enforces that a data
entry is revealed to no more than t adversaries. Solving the opti-
mization problem in (8) corresponds to maximizing a submodular
function under linear constraints.

For additive utility functions (u =

P
a2A

P
d2D

w
da

x
da

), Equa-
tion (8) becomes an integer linear program, that can be approxi-
mately solved in polynomial time in two steps. First, one can solve
a linear relaxation of Equation (8), where x

da

is some fraction in
[0, 1]. The resulting fractional solution can be converted into an
integral solution using a rounding strategy.

The simplest rounding strategy, called randomized rounding [24],
works as follows: assign data entry d to an adversary a with proba-
bility equal to x̂

da

, where x̂
da

is the fractional solution to the linear
relaxation. The value of the objective function for the derived in-
tegral solution is in expectation equal to the optimal value of the
objective achieved by the linear relaxation. Moreover, random-
ized rounding preserves all constraints in expectation. A differ-
ent rounding scheme, called dependent rounding [11], ensures that
constraints are satisfied in the integral solution with probability 1.
For an overview of randomized rounding techniques for budgeted
problems we refer the reader to the work by Doerr et al. [6]

One can solve the general problem with worst-case approxima-
tion guarantees by leveraging a recent result on submodular maxi-
mization under multiple linear constraints by Kulik et al. [19].

THEOREM 2. Let the overall utility function u be a nondecreas-
ing submodular function. One can find a feasible solution to the
optimization problem in (8) with expected approximation ratio of
(1� ✏)(1� e�1

), for any ✏ > 0, in polynomial time.
PROOF. This holds by Theorem 2.1 of Kulik et al. [19].

To obtain this approximation ratio, Kulik et al. introduce a frame-
work that first obtains an approximate solution for a continuous re-
laxation of the problem, and then uses a non-trivial combination

of a randomized rounding procedure with two enumeration phases,
one on the most profitable elements, and the other on the ‘big’ ele-
ments, i.e., elements with high cost. This combination enables one
to show that the rounded solution can be converted to a feasible one
with high expected profit. We refer the reader to Kulik et al. for a
detailed description of the algorithm.

4.2 Linearly Increasing Functions
In this section, we consider linearly increasing disclosure func-

tions. Linear disclosure functions can naturally model situtations
where each data entry independently affects the likelihood of dis-
closure. In particular, if normalized log-likelihood is used as a mea-
sure of information disclosure, the disclosure of a property p takes
the following additive form:

f
a

(·)[p] =
X

d2Dp
a
dp

x
da

(9)

where a
dp

is a weight associated with the information that is dis-
closed about property p when data d is revealed to an adversary.

We can rewrite the TRADEOFF problem as:

maximize
S2P(D⇥A)

u(S) + �(⌧
I

�max

a2A

(f 0
a

(S
a

)))

subject to f(S) ⌧
I

,
X

k

a=1
x
da

 t, 8d 2 D,

x
da

2 {0, 1}.

(10)

When the utility function is additive, the above problem is an in-
teger linear program, and hence can be solved by rounding the LP
relaxation as explained in the previous section.

For general submodular u(·), the objective is not submodular
anymore, since it cannot be expressed as the difference between a
submodular and a supermodular (i.e., max

a2A

(f 0
a

(S
a

))) function.
The maximum of additive information disclosure functions is not
supermodular [10]. Unlike the case of step functions, we cannot
use the result of Kulik et al. [19] to get an approximate solution.

Nevertheless, we can compute approximate solutions by consid-
ering the following max-min formulation of the problem:

maximize
S2P(D⇥A)

min

a2A

(u(S) + �(⌧
I

� f 0
a

(S
a

)))

subject to f(S) ⌧
I

,
X

k

a=1
x
da

 t, 8d 2 D,

x
da

2 {0, 1}.

(11)

Since the overall utility function is a nondecreasing submodular
function, and the disclosure for each adversary is additive, the ob-
jective now is a max-min of submodular functions. For worst-case
disclosure, the optimization objective can be rewritten as:

maximize
S2P(D⇥A)

min

a2A,p2P

(u(S) + �(⌧
I

� f
a

(S
a

)[p])) (12)

and, for average disclosure (Equation (2)), it can be written as:

maximize
S2P(D⇥A)

min

a2A

(u(S) + �(⌧
I

� 1

|P |
X

p2P

f
a

(S
a

)[p]))

The above max-min problem formulation is closely related to the
max-min fair allocation problem [13] for both types of informa-
tion disclosure functions. The main difference between Problem
(11) and the max-min fair allocation problem is that data items may
be assigned to multiple advrsaries. In the max-min fair allocation
problem a data item is assigned at most once. If t 1 then the

1599

two problems are equivalent, and thus, one can provide worst case
guarantees on the quality of the approximate solution. The prob-
lem of max-min fair allocation was studied by Golovin [13] and
Khot and Ponnuswami [17]. Let n denote the total number of data
entries (goods in the max-min fair allocation problem) and m de-
note the number of adversaries (buyers in the max-min fair allo-
cation problem). The first two papers focus on additive functions
and give algorithms achieving an (n�m+ 1)-approximation and
a (2m+1)-approximation respectively, while the third one gives a
O(n

1
2m

1
4
log n log

3
2 m)-approximation. Those algorithms could

be directly used if t 1. The local search heuristic that we present
next, on the other hand, can be used in either case.

5. A LOCAL SEARCH HEURISTIC
So far we studied specific families of disclosure functions to

derive worst-case guaranties for the quality of approximate solu-
tions. In this section we present two greedy heuristic algorithms
suitable for any general disclosure function. We still require the
utility function to be submodular. Our heuristics are based on hill
climbing and the Greedy Randomized Adaptive Local Search Pro-
cedure (GRASP) [9]. Local search heuristics are known to perform
well when maximizing a submodular objective function [10].

5.1 Overall Algorithm
Our algorithm proceeds in two phases (Algorithm 1). The first

phase, which we call construction, constructs a data-to-adversary
assignment matrix M

ini

by greedily picking assignments that max-
imize the specified objective function G(·), e.g., the tradeoff be-
tween utility and information disclosure for the TRADEOFF for-
mulation, while ensuring that all disclosure and assignment con-
straints in the problem formulation are satisfied. The second phase,
called local-search, searches for a better solution in the neighbor-
hood of the M

ini

, by changing one assignment of one data item at
a time if it improves the objective function, resulting in an assign-
ment M . The construction algorithm may be randomized; hence,
the overall algorithm is executed r times, and the best solution
M

opt

= argmax{M1,...,Mr}G(M
i

) is returned as the final solution.

Algorithm 1 Overall Algorithm
1: Input: A: set of adversaries; G: objective function;

r: number of repetitions; t: max. adversaries per data item;
⌧
I

: max. disclosure
2: Output: M

opt

: a data-to-adversary assignment matrix
3: for all i = 1! r do
4: M; empty assignment , g

opt

 G(M;)

5: hM
ini

, g
ini

i CONSTRUCTION(G,A, t);
6: hM, gi LOCALSEARCH(G,A, t,M

ini

, g
ini

);
7: if g > g

opt

then
8: M

opt

 M ; g
opt

 g;
9: return M

opt

;

5.2 Construction Phase
The construction phase (Algorithm 2) starts with an empty data-

to-adversary assignment matrix and greedily adds a new hd, ai as-
signment to the mapping M if it improves the objective function.
This is achieved by iteratively performing two steps. The algorithm
first computes a set of candidate assignments S. For any data item
d (which does not already have t assignments), and any adversary
a, hd, ai is a candidate assignment if it does not appear in M .

Second, the algorithm picks the next best assignment from the
candidates (using PICKNEXTBEST, Algorithm 3). We consider
two methods for picking the next best assignment – GREEDY and

Algorithm 2 CONSTRUCTION
1: Input: G: objective function; A: set of adversaries;

t: max. adversaries per data item; ⌧
I

: max. disclosure
2: Output: hM, gi: data-to-adversary assignment, objective

value
3: maxIterations t · |D|
4: Initialize: M empty assignment
5: for all i 2 [1,maxIterations] do
6: // Compute a set of candidate assignments
7: D

M

 data entries assigned to < t adversaries in M ;
8: Let S D

M

⇥A�M
9: // Pick the next best assignment that improves the objective

10: hd, ai PICKNEXTBEST(M, g, S,G)

11: if hd, ai is NULL then
12: break; // No new assignments improve the objective
13: Assign the selected data entry d to the selected adversary a;
14: return hM,G(M)i;

Algorithm 3 PICKNEXTBEST

1: Input: G: objective function; M : current assignment;
g: current value of objective, S: possible new assignments

2: Output: new assignment hd?, a?i, or NULL
3: GREEDY:
4: hd?, a?i argmaxhd,ai2S

G(M [hd, ai)
5: GRASP:
6: Pick the top-n assignments S

n

having the highest value for
ghd,ai = G(M [hd, ai) from S, and having ghd,ai > g and
fhd,ai < ⌧

I

.
7: hd?, a?i is drawn uniformly at random from S

n

8: if G(M [hd, ai) > g then
9: return hd, ai

10: else
11: return NULL

GRASP. The GREEDY strategy picks hd?, a?i that maximizes the
objective G(M [hd?, a?i). On the other hand, GRASP identi-
fies a set S

n

of top n assignments that have the highest value for
the objective ghd,ai = G(M [hd, ai), such that ghd,ai is greater
than the current value of the objective g. Note that S

n

can contain
less than n assignments. The GRASP strategy picks an assign-
ment hd?, a?i at random from S

n

. Both strategies return NULL
if hd?, a?i does not improve the value of the objective function.
The construction stops when no new assignment can improve the
objective function. The run time complexity of the construction
phase is O(t · |A| · |D|2). There are O(t · |D|) iterations, and
each iteration may have a worst case running time of O(|D| · |A|).
PICKNEXTBEST permits a simple parallel implementation.

5.3 Local-Search Phase
The second phase employs local search (Algorithm 4) to improve

the initial assignment M
ini

output by the construction phase. In
this phase, the data items are considered exactly once in some (ran-
dom) order. Given the current assignment M , for each data item,
a set of neighboring assignments N

d

(including M) are considered
by (i) removing an assignment to an adversary a in M , (ii) modify-
ing the assignment from adversary a to an adversary a0 (that d was
not already assigned to in M), and (iii) adding a new assignment (if
d is not already assigned to t adversaries in M). Next, the neigh-
boring assignment in N

d

with the maximum value for the objective
M

opt

is picked. The next iteration considers the data item suc-
ceeding d (in the ordering) with M

opt

as the current assignment.

1600

Algorithm 4 LOCALSEARCH
1: Input: G: objective function; A: set of adversaries;

t: max. assignments per data item; M : current assignment;
g: current objective value

2: Output: hM
opt

, g
opt

i: the new assignment, the corresponding
objective value

3: for all d 2 D do
4: A

d

 the set of adversaries to whom data item d is assigned
(according to current assignment M);

5: // Construct a set of neighboring assignments
6: N

d

 {M}.
7: if (|A

d

| < t) then N
d

 N
d

[{M [{hd, a0i}|8a0 62 A
d

};
8: for each adversary a 2 A

d

do
9: N

d

 N
d

[{M � {hd, ai}}
10: N

d

 N
d

[{M � {hd, ai} [{hd, a0i}|8a0 62 A
d

};
11: // Pick the neighboring assignment with maximum objective
12: // such that the upper disclosure is satisfied
13: M

opt

 argmax
M

02Nd
G(M 0

)

14: M M
opt

15: return hM
opt

, G(M
opt

)i;

We found that making a second pass of the dataset in the local
search phase does not improve the value of the objective function.
The run time complexity of the local-search phase is O(t·|A|·|D|).

5.4 Extensions
The construction phase (Algorithm 2) runs in quadratic time in

the size of D. This is because in each iteration, the PICKNEXTBEST
subroutine computes a global maximum assignment across all data-
adversary pairs. While this approach makes the algorithm more ef-
fective in avoiding local minima it reduces its scalability due to its
quadratic cost. The quadratic complexity of the algorithm can be
limiting when partitioning large datasets.

To improve scalability, we propose using a local myopic ap-
proach during construction. Instead of considering all possible
(data,adversary) pairs when constructing the list of candidate as-
signments (see Ln. 8 in Algorithm 2), one can consider a single
data entry d and populate the set of candidate assignments S using
only (data,adversary) pairs that contain d. We fix a total ordering of
the data entries O, and perform t iterations of the following:
• Consider the next data item d in O. Let M be the current as-

signment.
• Construct S as ({d}⇥A)�M .
• Pick the next best assignment in S that improves the objective

function using Algorithm 3 (GREEDY or GRASP).
• Update the current assignment M , and proceed with the next

data entry in O.
We compare the performance of the two versions of the proposed

algorithmic framework in Section 6. The run time complexity of
the myopic-construction phase is O(t · |A| · |D|).

5.5 Discussion
The correctness of the algorithms stems directly from the fact

that both construction and local search ensure that each data item is
assigned to no more that t adversaries, and that the upper bound on
disclosure is satisfied. The algorithms are generic enough to handle
arbitrary utility and disclosure functions, as well as, constraints on
cost. As mentioned before we focus on the problem formulations
presented in Section 3 for clarity.

6. EXPERIMENTS
In this section we present an empirical evaluation of SPARSI.

The main questions we seek to address are: (1) how the two ver-
sions of the privacy-aware partitioning problem – TRADEOFF and
DISCBUDGET– compare with each other, and how well they ex-
ploit the presence of multiple adversaries with respect to disclosure
and utility, (2) how the different algorithms perform in optimizing
the overall utility and disclosure, and (3) how practical SPARSI is
for distributing real-world datasets across multiple adversaries.

We empirically study these questions using both real and syn-
thetic datasets. First we discuss the experimental methodology, and
then we describe the data and results that demonstrate the effective-
ness of our framework on partitioning sensitive data. The evalua-
tion is performed on an Intel(R) Core(TM) i7 3.7 GHz/64bit/32GB
machine. SPARSI is implemented in MATLAB, using MOSEK,
a commercial optimization toolbox. The local-search procedures
used for the real-world data experiments are implemented in Java.

Algorithms: We evaluate the following algorithms:
• RAND+: Each data entry is assigned to exactly t adversaries.

The probability of assigning a data entry to an adversary is
proportional to the corresponding utility weight w

da

. We run
the random partitioning a 100 times, and select the data-to-
adversary assignment that maximizes the objective function.
Random has been shown to be a highly effective heuristic for
extensions of the max-cut problem [12], and is thus a natural
heuristic to solve this problem.

• LP: We solve the LP relaxation of the optimization problems for
step (Section 4.1) and linear (Section 4.2) disclosure functions.
We generate an integral solution from the resulting fractional
solution using naive randomized rounding (see Section 4.1),
where the constraints are satisfied in expectation. Moreover,
we perform a second pass over the derived integral solution to
guarantee that the cardinality constrains are satisfied. This is a
naive, yet effective, rounding scheme because the fractional so-
lutions we get are close to the integral ones. More sophisticated
rounding techniques can be used [6]. We run the rounding 100
times and select the data-to-adversary assignment with maxi-
mum value of objective.

• ILP: We solve the exact ILP algorithm for step and linear dis-
closure functions.

• GREEDY: Algorithm 1 with GREEDY strategy for picking a
candidate

• GRASP: Algorithm 1 with GRASP strategy for picking the can-
didate assignments using n = 5 and r = 10.

• GREEDYL: Local myopic variant of Algorithm 1 (see Sec-
tion 5.4 with GREEDY strategy for picking a candidate).

• GRASPL: Local myopic variant of Algorithm 1 (see Section 5.4
with GRASP strategy for picking candidates) using n = 3 and
r = 10.

Evaluation: We use the following metrics for evaluation: (1) the
total utility u corresponding to the final assignment, (2) the infor-
mation disclosure f for the final assignment and (3) the tradeoff
between utility and disclosure, given by u+�(⌧

I

� f). While util-
ity and disclosure take values in [0, 1], the tradeoff can be greater
than 1. We evaluate the different algorithms using different step
and linear information disclosure functions for TRADEOFF.

For all experiments we set � = 1 and assume an additive util-
ity function of the form u

a

(S
a

) =

P
d2D wdaxdaP

d2D
P

top�t(A)2A wda
, where

x
da

is an indicator variable that takes value 1 when data entry d

1601

is revealed to adversary a and 0 otherwise, and top� t(A) returns
the top t adversaries with respect to weights w

da

. Observe that the
normalization used corresponds to the maximum total utility a valid
data-to-adversary assignment may have, when ignoring disclosure.
Using this value ensures that the total utility and the quantity ⌧

I

�f
have the same scale [0, 1]. For convenience we fixed the upper in-
formation disclosure to ⌧

I

= 0. Finally, for RAND+ we perform
10 runs and report the average, while for LP we perform the round-
ing procedure 10 times and report the average. The corresponding
standard errors are shown as error bars in the plots below.

6.1 Real Data Experiments
First we examine how SPARSI can be applied to real world do-

mains. We consider a social networking scenario as discussed in
Example 1. We desire to distribute the check-in information to
advertisers, while minimizing the information we disclose for the
structure of the network. We use the Brighkite dataset published by
Cho et al. [4]. This dataset was extracted from Brightkite, a for-
mer location-based social networking service provider where users
shared their locations by checking-in.

Each check-in entry contains information about the id of the user,
the timestamp and location of the check-in. In addition the dataset
contains the friendship network of users. The original dataset con-
tains 4.5 million check-ins, 58, 228 users and 214, 078 edges. We
run experiments both on the full dataset and on a sample, denoted as
BK-full and BK-sample respectively. For BK-sample we subsam-
ple the dataset and extract 365, 907 check-ins. The corresponding
friendship network contains 3, 266 nodes and 2, 935 edges.
Utility Weights: We start by modeling the utility. Recall that each
check-in contains information about location. We assume a total
number of k advertisers, and that each adversary is interested in
check-in entries that occurred in a certain geographical area. Given
an adversary a 2 A, we draw w

da

from a uniform distribution
U(0.8, 1) for all entries d 2 D that satisfy the location criteria
of the adversary, and we set w

da

= 0.1 otherwise. We simulate
this process by performing a random partitioning of the location
ids across adversaries. We assume an additive utility function.
Sensitive Properties and Information Disclosure: The sensitive
property, here, is the structure of the social network. We want to
minimize the information leaked about the existence of any friend-
ship link among users. Each friendship link can be associated with
a sensitive property. Now, we examine how check-in entries leak
information about the presence of a friendship link. Cho et al. [4]
proved that there is a strong correlation between the trajectory co-
sine similarity and the existence of a friendship link for two users.
Because of this strong correlation we assume that the information
leakage for a sensitive property, i.e., the link between a pair of
users, is equal to the trajectory similarity.

Let D
a

⇢ D be the check-in data published to adversary a 2 A,
and U denote the set of users referenced in D

a

. Given a sensi-
tive property p = e(u

i

, u
j

), u
i

, u
j

2 U, i 6= j we have that the
information disclosure for p is:

f(D
a

)[p] = CosineSimilarity(D
a

(u
i

), D
a

(u
j

)) (13)

where D
a

(u
i

) and D
a

(u
j

) denote the set of check-in data for users
u
i

and u
j

respectively. We aggregate the given check-ins based on
their unique pairs of users and locations. We extract 15, 661 and
98, 058 data entries for the subsampled and entire dataset respec-
tively. The entries contain the user id, the location and the number
of times that user visited that particular location. Cosine similarity
is computed over these counts.
Results: We aim to minimize the information leaked about all
edges in the entire network. We consider the average case informa-

Table 1: Runtime and percentage of unpublished data for
GREEDYL, GRASPL, GREEDY and GRASP for BK-sample.

Alg. Metric k=2 k=3 k=5 k=7 k=10

GREEDYL runtime (sec.) 87.6 82.8 100 42 14.5
unpub. data (%) 0 0 0 0 0

GRASPL runtime (sec.) 307 301 280 145 41.5
unpub. data (%) 0 0 0 0 0

GREEDY runtime (sec.) 2761 3095 3726 4323 4665
unpub. data (%) 6.4 0.4 0 0 0

GRASP runtime (sec.) 8181 10095 12495 14588 18296
unpub. data (%) 6.5 0.6 0 0 0

tion disclosure, and we solve the corresponding TRADEOFF prob-
lem with ⌧

I

= 0.5 and t = 2. Due to cosine similarity we are
limited to using RAND+ and the local-search heuristics. We run
experiments for |A| 2 {2, 3, 5, 7, 10}.

First we consider BK-sample. We evaluate the performance of
RAND+, GREEDYL, GRASPL, GREEDY and GRASP. The cor-
responding utility and disclosure are shown in Figure 2. GRASP
and GREEDY outperform RAND+ for all adversaries, since they
return solutions with utility close to one and almost zero disclo-
sure. Only for k = 2, RAND+ returns a solution with higher utility
but the corresponding average disclosure is above 0.6. Recall that
we compute the average over multiple runs of RAND+, where we
consider the best solution reported over multiple executions.

Next we focus on the myopic versions of the proposed local-
search procedure, i.e., GREEDYL and GRASPL. When the num-
ber of adversaries is small the corresponding utility is significantly
lower than the one returned by RAND+, GREEDY and GRASP.
This is expected since both algorithms give particular emphasis to
minimizing information disclosure due to the tradeoff formulation
of the optimization objective. As the number of adversaries in-
creases, both algorithms can exploit the structure of the problem
better, and offer solutions with higher utility values than RAND+
and comparable values to GREEDY and GRASP. Notice, that the
disclosure is again close to zero.

For completeness we report the runtime and percentage of non-
published data entries (i.e., number of data entries not published
divided by the total number of data entries in the dataset) for the
different local-search algorithms. The results are shown in Table
1. GREEDYL and GRASPL are significantly faster than GREEDY
and GRASP. This is expected due to their linear complexity, ver-
sus the quadratic complexity of GREEDY and GRASP. We ob-
serve that when the number of adversaries is small, GREEDY and
GRASP do not publish all the data. Nevertheless, the percentage
of non-published entries is significantly small. Their myopic alter-
natives, i.e., GRASPL and GREEDYL, publish everything but that
leads to higher disclosure and lower utility for small number of
adversaries. We see that the myopic versions of the proposed local-
search procedures are more time efficient and return solutions of
comparable quality with the corresponding global versions.

Due to their quadratic complexity GREEDY and GRASP are not
efficient for large datasets like BK-full. However, their myopic
variations, GREEDYL and GRASPL (see Section 5.4) are very ef-
ficient due to their linear complexity. Due to this, we only evaluate
the performance of RAND+, GRASPL and GREEDYL on BK-full.
Again, we consider the TRADEOFF version of the problem with
⌧
I

= 0.5 and t = 2. The corresponding utility and disclosure are
shown in Figure 3. We observe similar performance for the local-
search procedures. The runtime for GREEDYL ranges from 1017
to 4459 sec., while for GRASPL it ranges from 3683 to 13175 sec.
Finally, we report the objective value (i.e., u+(⌧

I

�f)) for the so-
lutions after running the construction phase only and after running
both the construction and local-search phase. The corresponding

1602

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 5 7 10

U
til

ity

Adversaries

Utility

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 3 5 7 10

D
is

c
lo

s
u
re

Adversaries

Disclosure

RAND+

GREEDYL

GRASPL

GREEDY

GRASP

Figure 2: Utility and disclosure for BK-sample. The proposed
local-search algorithms clearly outperform RAND+.

Table 2: Objective value for construction only versus construc-
tion with localsearch for GREEDYL and GRASPL. The results
correspond to BK-full.

Objective Value
Alg. Metric k=2 k=3 k=5 k=7 k=10

GREEDYL cstr. 1.276 1.067 0.878 0.823 0.829
cstr.+ loc. srch 1.276 1.068 0.886 0.895 0.829

GRASPL cstr. 1.066 0.885 0.733 0.691 0.743
cstr.+ loc.srch 1.066 0.886 0.734 0.785 0.743

results are shown in Table 2. We observe that in some cases (i.e.,
for k = 5 and k = 7) there is an improvement in the quality of the
solution. For example for k = 7 we see 8% and 13% improvement
for GREEDYL and GRASPL respectively. Similar results were ob-
served for BK-sample and synthetic data but are not reported due
to space limitations.

6.2 Synthetic Data Experiments
Next, we use synthetically generated data to understand the prop-

erties of different disclosure functions and the performance of the
proposed algorithms better. There are two data-related components
in our framework: (1) a hypergraph that describes the interactions
between data entries and sensitive properties (see Section 2.1), (2)
a set of weights w

da

representing the utility received when data en-
try d 2 D is published to adversary a 2 A. The synthetic data
are generated as follows. First, we set the total number of data en-
tries |D| 2 {50, 100, 200, 300, 500}, the total number of sensitive
properties |P | 2 {5, 10, 50, 100}, and the total number of adver-
saries |A| 2 {2, 3, 5, 7, 10}.

For simplicity we consider an additive utility function as shown
in Equation (4). Despite being a simple modeling choice, this util-
ity function clearly illustrates the efficiency of the proposed tech-
niques. Next, we describe the scheme we used to generate the util-
ity weights w

da

. There are two particular properties that need to be
satisfied by such a scheme. The first one is that assigning any entry
to an adversary should induce some minimum utility, since it al-
lows us to fulfil the task under consideration (see Example 2). The
second one is that there are cases where certain data items should
induce higher utilities when assigned to specific adversaries, e.g.,
some workers may have better accuracy than others in crowdsourc-
ing, or some advertisers may pay more for certain types of data.

The utility weights need to satisfy the aforementioned proper-
ties. To achieve this, we first choose a minimum utility value umin

from a uniform distribution U(0, 0.1). Then, we iterate over all
possible data-to-adversary assignments and set the corresponding
weight w

da

to a value drawn from a uniform distribution U(0.8, 1)
with probability p

u

, or to umin with probability 1�p
u

. For our ex-
periments we set the probability p

u

to 0.4. Notice that both prop-
erties are satisfied. Finally, weights are scaled down by dividing
them by the number of adversaries |A|.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 5 7 10

U
til

ity

Adversaries

Utility

 0

 0.05

 0.1

 0.15

 0.2

2 3 5 7 10

D
is

c
lo

s
u
re

Adversaries

Disclosure

RAND+

GREEDYL

GRASPL

Figure 3: Utility and disclosure for BK-full. The proposed
local-search algorithms clearly outperform RAND+.

Next, we describe how we generate a random hypergraph H =

(X,E), with |X| = |D| and |E| = |P |, describing the interac-
tion between data entries and sensitive properties. To create H we
simply generate an equivalent bipartite dependency graph G (see
Section 2.1) and convert that to the equivalent dependecy hyper-
graph. We iterate over the possible data to sensitive property pairs
and insert the corresponding edge to G with probability p

f

. For our
experiments we set p

f

to 0.3.
We examine the behavior of the proposed algorithms under sev-

eral scenarios, varying the properties of the dataset, the number of
adversaries and the family of disclosure functions considered.
Step Functions: First, we consider step functions. Under this fam-
ily of disclosure functions, both DISCBUDGET and TRADEOFF
correspond to the same optimization problem (see Section 4.1). As-
suming feasibility of the optimization problem, information disclo-
sure will always be zero. Thus, considering the total utility alone is
sufficient for comparing the different algorithms.

First, we fix the number of data entries in the dataset to be |D| =
500 and consider values of |P | in {5, 10, 50, 100}. Figure 4 shows
the utility derived by the data-to-adversary assignment correspond-
ing to different algorithms for |P | = 50. As depicted, all algo-
rithms that exploit the structure of the dependency graph (i.e., LP,
GREEDY, GREEDYL, GRASP and GRASPL) outperform RAND+.
In most cases, LP, GREEDYL, GREEDY and GRASP were able to
find the optimal solution that the ILP reported.

GRASPL finds solutions with non-optimal utilities, that are still
better than RAND+. Comparing GRASP and GRASPL, we con-
jecture that while randomization is helpful in the case of non-myopic
local-search it leads to worse solutions (with respect to utility) when
keeping a myopic view on the optimization objective. The reported
numbers correspond to no information disclosure, while missing
values correspond to full disclosure of at least one sensitive prop-
erty. For instance, the LP failed to find a valid solution for k = 2.
Similar results were observed for different values of |D| and |P |.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 5 7 10

U
til

ity

Adversaries

Utility (|D| = 500, |P| = 50)

RAND+
LP
ILP

GREEDYL
GRASPL
GREEDY

GRASP

Figure 4: Utility for step disclosure functions. Reported num-
bers correspond to no information disclosure; missing values to
full disclosure.

1603

All local-search algorithms explicitly satisfy the upper disclosure
constraint. To enforce this, the algorithm may avoid publishing
some data. In our experiments, however, all algorithms assign all
data items to at least one adversary. The experiments above show
that GREEDYL, GREEDY and GRASP are viable alternatives for
the case of step functions.
Linear Functions: Figure 5 compares the optimal ILP solution
to DISCBUDGET and TRADEOFF on a synthetic instance of the
problem by setting |D| = 50 and |P | = 10, and we run ILP for
|A| = {2, 3, 5, 7, 10}, setting the maximum allowed disclosure to
⌧
I

= 0.9 and t = 2. We consider both worst and average dis-
closure. For both versions of the optimization problem the disclo-
sure is decreasing as the number of adversaries increases. However,
TRADEOFF exploits the presence of multiple adversaries better, to
reduce disclosure while maintaining high utility.

Subsequently, we evaluate RAND+, LP, GREEDYL, GRASPL,
GREEDY and GRASP on TRADEOFF with ⌧

I

= 0.6. We do
not report any results for the ILP since for |D| > 50, it was not
able to terminate in reasonable time. First, we fix the number
of properties to |P | = 50 and consider instances with |D| =

{100, 200, 300, 500}, and consider worst case disclosure. The per-
formance of the algorithms for worst case disclosure and |D| =

500 is shown in Figure 6. As shown, LP, GREEDY and GRASP
outperform RAND+ both in terms of utility and disclosure. RAND+
performs poorly as it returns solutions with higher disclosure but
lower utility than the LP. Furthermore, we see that the performance
gap between the local-search algorithms and RAND+ keeps in-
creasing as the number of adversaries increases. This is expected
as the proposed heuristics consider the structure of the underlying
dependency graph, and can exploit the presence of multiple adver-
saries to achieve higher utility and lower disclosure.

We see that solutions derived using the LP approximation have
maximum utility, while solutions derived using the proposed local-
search algorithms have minimal disclosure. As presented in Fig-
ure 6 using the myopic construction returns solutions with low util-
ity. This is expected since the algorithm does not maintain a global
view of the data-to-adversary assignment. Observe that random-
ization improves the quality of the solution with respect to util-
ity, when the global-view construction is used (see GREEDY and
GRASP). Again, like in Section 6.1, when the myopic construction
is used, randomization gives solutions of lower quality.

The worst disclosure is an indicator of the overall performance
of the proposed algorithms. However, it does not provide us with
detailed feedback about the information disclosure across all prop-
erties for the different algorithms. To understand this better, we
measure the total number of properties that exceed a particular dis-
closure level. We present the corresponding plots for |D| = 500,
|P | = 50, k = 2 and k = 7 in Figure 7. As shown, the proposed

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 5 7 10

U
til

ity

Adversaries

Utility (|D| = 50, |P| = 10)

DiscBudget-Worst
Tradeoff-Worst

DiscBudget-Avg
Tradeoff-Avg

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 5 7 10

In
f.

 D
is

cl
o

su
re

Adversaries

Information Disclosure (|D| = 50, |P| = 10)

DiscBudget-Worst
Tradeoff-Worst

DiscBudget-Avg
Tradeoff-Avg

Figure 5: The (a) utility and (b) disclosure when solving DIS-
CBUDGET and TRADEOFF optimally. TRADEOFF reduces dis-
closure more effectively while maintaining high utility.

search-algorithms can exploit the presence of multiple adversaries
effectively to minimize disclosure. Comparing Figures 7(a) and
7(b) we observe that the number of properties for which disclo-
sure exceeds a particular threshold reaches zero for a significantly
smaller thresholds for k = 7.

Figure 8 illustrates the percentage of unpublished data items for
|D| = 500, |P | = 100, with ⌧

I

taking values in {0.2, 0.4, 0.6, 0.8},
and considering 2 adversaries. We observe that LP, GREEDYL,
and GRASPL retain the same level of unpublished items for dif-
ferent disclosure thresholds, while GRASP and GREEDY are able
to find solutions where all data points are published to the adver-
saries, as the disclosure threshold increases. For k > 2 the number
of unpublished data items for all algorithms drops to zero.

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
P

ro
p
e
rt

ie
s

Disclosure Level

#Prop. per Disc. Level(k=2)

RAND+

LP

GREEDYL

GRASPL

GREEDY

GRASP
 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
P

ro
p
e
rt

ie
s

Disclosure Level

#Prop. per Disc. Level(k = 7)

RAND+

LP

GREEDYL

GRASPL

GREEDY

GRASP

Figure 7: Properties exceeding a particular disclosure level for
|D| = 500 and |P | = 50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
e

rc
.

o
f

U
n

p
u

b
lis

h
e

d
 D

a
ta

Disclosure Level

% Unpublished Data. (k=2, |D| = 500, |P| = 50)

LP

GREEDYL

GRASPL

GREEDY

GRASP

Figure 8: Unpublished data items for different disclosure levels.

7. RELATED WORK
There has been much work on the problem of publishing sen-

sitive datasets [3, 8]. Information disclosure is characterized by a
privacy definition, expressed either as syntactic constraints on the
output dataset (e.g., k-anonymity [25] or `-diversity [22]), or as
constraints on the publishing algorithm (e.g., ✏-differential privacy
[8]). Each privacy definition is associated with a privacy level (k,
`, ✏, etc.) that represents a bound on the information disclosure.
Typical algorithmic techniques for data publishing, which include
generalization, or coarsening of values, suppression, output pertur-
bation, and sampling, attempt to maximize the utility of the pub-
lished data given some level of privacy (i.e., a bound on the disclo-
sure). Krause et al. [18] consider the trade-off between utility and
disclosure, considering general submodular utility and supermod-
ular disclosure functions. They formulate a submodular optimiza-
tion problem, and present efficient algorithm for solving it. How-
ever, all the above techniques assume publishing data to a single
adversary. Even under the presence of multiple parties, prior work
makes a worst-case assumption of arbitrary collusion. In this paper,
we formulate the novel problem of multiple non-colluding adver-
saries, and develop near-optimal algorithms for trading-off utility
for information disclosure in this setting.

1604

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 5 7 10

O
b
je

ct
iv

e

Adversaries

Objective (|D| = 500, |P| = 50)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 5 7 10

U
til

ity

Adversaries

Utility (|D| = 500, |P| = 50)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 5 7 10

D
is

c
lo

s
u
re

Adversaries

Worst Disclosure (|D| = 500, |P| = 50)

RAND

LP

GREEDYL

GRASPL

GREEDY

GRASP

Figure 6: Tradeoff objective, utility and disclosure for linear functions considering worst disclosure. LP, GREEDY and GRASP
outperform RAND+. LP returns the maximum utility, while the local-search heuristics return the minimum disclosure.

8. CONCLUSIONS AND FUTURE WORK
Increasing amounts of sensitive information are released on the

Web and processed by online services, naturally raising concerns
related to privacy in domains where detailed and fine-grained in-
formation must be published. Motivated by applications like on-
line advertising and crowd-sourcing markets, we introduced the
problem of privacy-aware data partitioning, namely, the problem
of splitting a sensitive dataset amongst untrusted parties. We pre-
sented SPARSI, a theoretical framework that allows us to formally
define the problem as an optimization of the tradeoff between the
utility derived by publishing the data and the maximum informa-
tion disclosure incurred to any single adversary. We proved that
solving it is NP-hard and presented a performance analysis of dif-
ferent approximation algorithms for a variety of synthetic and real-
world datasets, and demonstrated how SPARSI can be applied in
the domain of online advertising. Our algorithms were able to par-
tition user-location data to multiple advertisers while ensuring that
almost no sensitive information about potential friendship links of
these users can be inferred by any advertiser.

Our research has raised several interesting research directions.
To our knowledge, this is the first work that leverages the presence
of multiple adversaries to minimize information disclosure while
maximizing utility. While we provided worst case guarantees for
several families of disclosure functions, an interesting future di-
rection is to examine if rigorous guarantees can be provided for
other widely-used information disclosure functions like informa-
tion gain. Finally, it is of particular interest to consider how the
proposed framework can be extended to interactive scenarios where
data is published to adversaries based on their queries, or in stream-
ing data where the partitioning must be done in an online manner.
Acknowledgements: We would like to thank the anonymous re-
viewers for their comments. This work was supported by the Na-
tional Science Foundation under Grants No. 0916736 and No.
1253327 and a gift from Google.

9. REFERENCES
[1] Brightkite: A location based social network.

http://en.wikipedia.org/wiki/Brightkite.
[2] Gowalla: A location based social network.

http://en.wikipedia.org/wiki/Gowalla.
[3] B.-C. Chen, D. Kifer, K. Lefevre, and A. Machanavajjhala.

Privacy-preserving data publishing. Foundations and Trends in
Databases, 2(1-2):1–167, 2009.

[4] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user
movement in location-based social networks. In KDD, pages
1082–1090, 2011.

[5] M. Davino. Assessing privacy risk in outsourcing. American Health
Information Management Association, vol. 75, 2004.

[6] B. Doerr, M. Künnemann, and M. Wahlström. Randomized rounding
for routing and covering problems: experiments and improvements.
In SEA, 2010.

[7] Y. Duan, N. Youdao, J. Canny, and J. Zhan. P4p: Practical large-scale
privacy-preserving distributed computation robust against malicious
users abstract. In Proceedings of the 19th USENIX Security
Symposium, page 14, 2010.

[8] C. Dwork. Differential privacy: A survey of results. In TAMC, pages
1–19, 2008.

[9] T. A. Feo and M. G. Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109–133, 1995.

[10] S. Fijishige. Submodular functions and optimization. Annals of
Discrete Mathematics. Elsevier, 2005.

[11] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan.
Dependent rounding and its applications to approximation
algorithms. J. ACM, 53(3):324–360, 2006.

[12] M. X. Goemans and D. P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM, 42(6):1115–1145, 1995.

[13] D. Golovin. Max-min fair allocation of indivisible goods. Technical
report, CMU, 2005.

[14] S. Guha, B. Cheng, and P. Francis. Privad: practical privacy in online
advertising. In NSDI, page 13, 2011.

[15] M. Hardt, K. Ligett, and F. McSherry. A simple and practical
algorithm for differentially private data release. CoRR, 2010.

[16] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.
Craig. Resolving individuals contributing trace amounts of DNA to
highly complex mixtures using high-density SNP genotyping
microarrays. PLoS Genet, 4, 2008.

[17] S. Khot and A. K. Ponnuswami. Approximation algorithms for the
max-min allocation problem. In APPROX/RANDOM, 2007.

[18] A. Krause and E. Horvitz. A utility-theoretic approach to privacy and
personalization. In AAAI, pages 1181–1188, 2008.

[19] A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular set
functions subject to multiple linear constraints. In SODA, pages
545–554, 2009.

[20] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko.
Non-monotone submodular maximization under matroid and
knapsack constraints. In STOC, pages 323–332, 2009.

[21] T. Li and N. Li. Injector: Mining background knowledge for data
anonymization. In ICDE, pages 446 – 455, 2008.

[22] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. `-diversity: Privacy beyond k-anonymity.
In ICDE, page 24, 2006.

[23] A. Marshall. Principles of Economics. 1890.
[24] P. Raghavan and C. Tompson. Randomized rounding: A technique

for provably good algorithms and algorithmic proofs.
Combinatorica, 7(4):365–374, 1987.

[25] L. Sweeney. k-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[26] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertising. In
NDSS, 2010.

[27] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic:
privacy-aware data intensive computing on hybrid clouds. In CCS,
pages 515–526, 2011.

1605

